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Section S1: Instrumentation

All the synthesis are carried out in the nitrogen atmosphere in dry toluene as a solvent. The
reaction was monitored by analytical thin layer chromatography (TLC) using Silica Gel 60/UV
254 purchased from Merck Specialties Pvt Ltd in a UV chamber containing 254 nm and 365
nm light source. The product was purified by column chromatography using silica gel with
mesh 100-200. NMR spectra of the compounds are taken in chloroform-d6 solution and
tetramethylsilane (TMS) as an internal standard. NMR spectra was recorded in Bruker
Ascend™ 400 spectrometer. *H NMR spectra was recorded at 400 MHz and *3C NMR was
recorded at 100 MHz. Mass spectra was recorded in MALDI-TOF spectrometer with CHCA
matrix. Single crystal X-ray data was collected in Bruker Kappa Apex Il CCD duo
diffractometer (operated at 1500 W power: 50 kV, 30 mA) at 150K using graphite
monochromatic Mo Ka radiation (1 = 0.71 A). Crystal structures were solved in APEX
software by direct method and refined by least-squares against F2 in SHELXL-97 package.'?
Absorption spectra in liquid state and in solid state were recorded in Shimadzu UV-2600 and
Shimadzu UV-3600i plus double beam spectrometer. Fluorescence and phosphorescence
spectra were collected in FluoroMax-4 and FluoroLog-3 (Horiba Jobin Yvon). Liquid nitrogen
Dewar assembly (FL-1013) was used to record spectra at 77K. Quantum yield was measured
by an integrating sphere (K-sphere, Horiba Jobin Yovn) connected with FluoroMax-4. Short
lifetime (nanosecond range) of the sample was collected in FluoroCube system associated with
FluoroHub and PPD-850 (Horiba Jobin Yvon) detector, 375 and 402 nm nanoLED were used
as excitation source. Long lifetime (microsecond and above) was collected in DeltaFlex
(Horiba Jobin Yvon) connected with DeltaHub and 355 nm spectralLED was used for excitation
of the samples. For two-photon absorption, 800 nm mode-locked Ti-sapphire laser (Mai-Tali,
Spectra-Physics) was used as the excitation source. Two-photon excitation and emission
spectra were collected by using a multiphoton microscopy (Leica, Germany) at 63X and 10X

oil immersion objectives.

Section S2: Materials

All the chemicals for synthesis were purchased from Sigma-Aldrich and TCI and were used
without any further purification. For spectroscopic studies, spectroscopy grade solvents were
purchased from Spectrochem Pvt Ltd, India. For solid state study, the quartz plates are
purchased from Ted Pella INC.



Section S3: Experimental Methods

Preparation of 10 wt% CBP films

10 mg emitter and 90 mg CBP were weighed to make 10 wt% emitter-doped CBP. The
compounds were dissolved in chloroform and pre-washed quartz plates were spin-coated with
80 uL of solvent at 3000 rpm for 60 seconds. After that, those plates were kept in vacuum for

2 hours prior to photophysical measurements.

Section S4: Synthesis and characterization

All the synthetic schemes are given in Scheme S1. All the reactions are performed in inert
atmosphere and compounds are characterised by NMR, MALDI-TOF and SCXRD.
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Scheme S1: Synthesis of CZPHCN, tCzPHCN and Cz2CzPHCN.

Synthesis of 2,3-bis(4-bromophenyl)fumaronitrile (Br2FN)3: Commercially available 4-
bromophenyl acetonitrile was taken as a precursor for the synthesis of 2,3-bis(4-
bromophenyl)fumaronitrile. A mixture of 4-bromophenyl acetonitrile (1.25 mmol) and
molecular iodine (1.25 mmol) was purged with nitrogen, and dry diethyl ether (8 mL) was
added via a syringe. After that, a solution of sodium methoxide (0.25 mmol) in methanol (2
mL) was slowly added to it at -78°C with continuous stirring over a period of 30 min. Then the

resulting solution was further stirred for 30 min at -78°C. After that, the solution was kept in



an ice bath for 5 h. The resulting mixture was quenched with 5% HCI (5 mL) solution below
10°C. The solution was filtered and washed with a cold methanol-water (1:1) solution and a
white color compound was isolated. Finally, the structure of Br2FN was characterized by ‘H
NMR, $3C NMR and mass spectroscopy.

IH NMR (400 MHz, CDCls): § 7.73 — 7.67 (m, 8H).

13C NMR (101 MHz, CDCls): 6 132.7, 130.6, 130.1, 126.8, 124.7, 116.1.

MALDI-TOF: m/z calcd. For C16HsBr2N2 383.8898 found 383.3152.

Synthesis of 3,6-dibromo-9,10-dicyanophenenthrene (Br2PHCN)?: A solution of Br2FN
(0.39 mmol) in chloroform (70 mL) was taken in a RB and then some crystals of molecular
iodine was added to it. The mixture was irradiated with a 450W Mercury vapour lamp for 8 h
and the reaction was monitored by checking TLC. Then the resulting solution was evaporated
and the crude product was purified by silica gel column chromatography with hexane/ethyl
acetate mixture. The structure of the photochemical product Br2PHCN was confirmed by NMR
spectroscopy.

'H NMR (400 MHz, CDCL,): 5 8.82 (s, 2H), 8.27 (d, /= 8.4 Hz, 2H), 7.99 (d, /= 8.5 Hz, 2H).

HRMS: m/z calcd. For C16HgBr2N2 [M]+ 386.9132 found 386.944.

General procedure for synthesis of CZPHCN, tCzPHCN and Cz2CzPHCN: An oven dried
Schlenk tube containing 3 mL of dry toluene was degassed by bubbling of nitrogen for 10
minutes. To this were added 3,6-dibromophenenthrene-9,10-dicarbonitrile (Br2PHCN) (300
mg), carbazole (for CzZPHCN, 3,6-di-tert-butyl-9H-carbazole for tCzPHCN and 9'H-9,3":6',9"-
tercarbazole for Cz2CzPHCN) (2.2 equiv), sodium tert-butoxide (157.44 mg), P(‘Bu)s (0.279
mL) and Pdz(dba)z (45 mg). The Schlenk tube was heated at 100 °C for 24 hours. After
completion of the reaction, the toluene was removed under vacuum and the crude product was
purified by column chromatography with 230-400 mesh silica (40% DCM/hexane). The yield
was 50-65%. The final product was confirmed by 'H, **C, MALDI-TOF and single-crystal
XRD analysis.



CzPHCN

1H NMR (400 MHz, CDCls): *H NMR (400 MHz, CDCls) § 8.89 (d, J = 2.0 Hz, 2H), 8.69 (d,
J =8.7 Hz, 2H), 8.19 (dd, J = 8.7, 1.9 Hz, 2H), 8.15 (d, J = 7.6 Hz, 4H), 7.57 — 7.53 (d, 4H),
7.43 (td, J=7.7,1.3 Hz, 4H), 7.34 (td, J = 7.5, 1.0 Hz, 4H).

13C NMR (101 MHz, CDCls): 6 141.1, 140.3,129.7, 128.5, 126.8, 126.7, 124.3, 121.4, 120.9,
120.7, 109.4.

MALDI-TOF: Calculated mass for C40H22N4 is 558.644, found 558.887.

tCzPHCN

H NMR (400 MHz, CDClz): *H NMR (400 MHz, CDCls): & 8.86 (d, J = 2.0 Hz, 2H), 8.64
(d, J = 8.7 Hz, 2H), 8.21 — 8.12 (m, 6H), 7.54 — 7.44 (m, 8H), 1.45 (s, 36H).

13C NMR (101 MHz, CDCls): § 144.4,141.3,138.4, 132.3, 129.4, 127.9, 126.3, 124.2, 119.8,
116.7,115.9, 114.9, 108.8, 34.8, 31.9.

MALDI-TOF: Calculated mass for CseHs4N4 is 783.076, found 782.587.

Cz2CzPHCN

'H NMR (400 MHz, CDCls): 6 9.15 (d, J = 2.0 Hz, 2H), 8.86 (d, J = 8.7 Hz, 2H), 8.37 (d, J =
1.8 Hz, 2H), 8.33 (d, J = 2.0 Hz, 4H), 8.14 (d, J = 7.7 Hz, 8H), 7.78 (d, J = 8.7 Hz, 4H), 7.66
(dd, J = 8.7, 2.0 Hz, 4H), 7.40 — 7.30 (m, 16H), 7.29 — 7.23 (m, 8H).

13C NMR (101 MHz, CDCls): § 141.7, 140.6, 140.2, 131.8, 130.4, 129.1, 127.6, 126.9, 126.1,
124.9,123.4,121.4,120.5, 120.4, 120.1, 117.1, 110.9, 109.6.

MALDI-TOF: Calculated mass for CseHsaN4 is 1218.416, found 1218.42.



'H NMR spectrum of 2,3-bis(4-bromophenyl)fumaronitrile in CDCls at 298K
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13C NMR spectrum of 2,3-bis(4-bromophenyl)fumaronitrile in CDCl3 at 298K
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Mass spectra of 2,3-bis(4-bromophenyl)fumaronitrile
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'H NMR spectrum of 3,6-dibromo-9,10-dicyanophenenthrene in CDCl; at 298K

‘Chemical shift (ppm)

PHBr2
o © w0 ow
@ NN S o
o~ oW oo © © o 0~
] NNO
© ©® o A A
NN
1
e e °
o o o
T T T T T T T T T T T T T T T T T T
C N 93 92 91 90 89 88 87 86 B85 B84 83 82 81 B0 79 78 77 76
Chemical shift (ppm)
I W J_.
:
o~
T T T T T T T T T T T T T T T T T T T T
5 10.0 9.5 8.5 8.0 7.5 7.0 6.5 6.0 55 5.0 4.5 4.0 35 3.0 25 2.0 1.5 1.0 0.5 0.0




Mass spectra of 3,6-dibromo-9,10-dicyanophenenthrene
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13C  NMR spectrum of 3,6-di(9H-carbazol-9-yl)phenanthrene-9,10-dicarbonitrile

(CzPHCN) in CDCls at 298K
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'H NMR spectrum of 3,6-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)phenanthrene-9,10-
dicarbonitrile (tCzPHCN) in CDCl3 at 298K
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Mass spectra of 3,6-bis(3,6-di-tert-butyl-9H-carbazol-9-yl)phenanthrene-9,10-
dicarbonitrile (tCzPHCN)
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1BC NMR
dicarbonitrile (Cz2CzPHCN) in CDCl3 at 298K
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Section S5: Computational Information

Quantum mechanical calculations were performed using Gaussian 09 package* in
supercomputer (Param-Brahma facility, IISER Pune). The geometry of all the molecules was
optimized, and frequencies are calculated at B3LYP/6-31g(d,p) level of theory in gas phase.
With the optimized structure, TD-DFT calculations are carried out to see electronic distribution
of electrons in molecular orbitals. Natural transition orbital (NTO) calculations are done to see
the nature of excited states. The quantum mechanics/molecular mechanics (QM/MM) method
is considered by using the two-layer ONIOM module based on the SCXRD crystallographic
structure. A two-layer ONIOM model was constructed that separates the layers in the QM
region for the central molecule of interest and the MM region for the surrounding
environments. At first, using the QM/MM model, the system was optimized, and frequency
calculation showed the absence of imaginary frequency. Then, TD-DFT calculations were
performed to get the single point energies of the excited states. The spin-orbit coupling matrix
element (SOCME) between singlets and triplets was calculated by using zeroth-order regular

approximation (ZORA) to the Dirac equation®. All the calculations were done by PYSOC
program®,
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Fig. S1 Ground state energy scan of (a) CZPHCN, (b) tCzPHCN and (c) CzZ2CzPHCN with

respect to donor-acceptor dihedral angle (6p4).
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Table S1 Theoretical parameters from TD-DFT calculations.

Molecules HOMO- | f(So » | AEsr | AEgr, | <SiJHso|T1 | <SiJHso[T2> | <Si|Hsol
LUMO S,)? V)P | (evy > (cm1)d (cm™)® T3>
overlap (cm™)f

CzPHCN 0.45 0.178 | 0.4423 | 0.039 0.23040 0.10460 0.37194

tCzPHCN 0.44 0.216 | 0.3847 | 0.0382 0.19792 0.10114 0.36719

Cz2CzPHCN 0.14 0.048 0.069 - 0.15651 0.07218 0.13053
0.0322

2 oscillator strength of S, — S, absorption, ® energy difference between S; and Ti state, ©

energy difference between S; and T state, 9 spin-orbit coupling matrix elements between S;

and triplet states.
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Section S6: Crystallographic Data
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Table S2 Crystal data and structure refinement for CZPHCN.

Identification code
CCDC No.
Empirical Formula
Formula weight
Temperature/K
Crystal system
Space group

alA

b/A

c/A

o

B

Y
Volume/A3

Z

pcalc (g/cm?®)

p/mm?

F(000)

Radiation

20 range for data collection
Index ranges

Reflection collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [I>=2c(1)]
Final R indexes[all data]
Largest diff. peak/hole/e A

CzPHCN
2420130
CaoH22N4
558.62
150
Cmc2(1)
Orthorhombic
23.294(8)
16.771(6)
8.709(3)
90
90
90
3402(2)
4
1.091
0.065
1160.41
MoK\a(A=0.71073)
2.4310 19.06
-26 =<h=<30, -21=<k=<21, -11=<Il=<1]1,
31967
3977[R(int) =0.1093 R(sigma) = 0.0891]
3977/1/200
0.837
R1=0.0653, wR>=0.1748
R1=0.1729, wR>= 0.2485
0.26/-0.17
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Table S3 Crystal data and structure refinement for tCzZPHCN.

Identification code
CCDC No.
Empirical Formula
Formula weight
Temperature/K
Crystal system
Space group

alA

b/A

c/A

o

B

Y
Volume/A3

z

pcalc (g/cm?®)

pw/mm?

F(000)

Radiation

20 range for data collection
Index ranges

Reflection collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [I>=2c(1)]
Final R indexes[all data]
Largest diff. peak/hole/e A

tCzPHCN
2420153
Cs6HsaN4
783.03

150

P 2i/c
Monoclinic
16.3865(11)
10.2297(6)
35.160(2)

90
103.138(2)
90

5739.6(6)

4

0.906

0.053

1672.0
MoK\a(A=0.71073)
2.32t0 25.03

-21=<h=<20, -11=<k=<13,

145179

13157[R(int) = 0.1738  R(sigma) = 0.1048]

13157/0/553
1.023

R1=0.0856, wR2=0.1963
R1=0.1583, wR2= 0.2287
0.67/-0.29

-45 =< | =< 45,
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Table S4 Crystal data and structure refinement for CzZ2CzPHCN.

Identification code Cz2CzPHCN
CCDC Number 2420155
Empirical formula CegHsoNs
Formula weight 1219.431
Temperature/K 150

Crystal system triclinic

Space group P1

alA 16.2336(13)

b/A 17.0377(12)

c/A 17.1281(14)

a/° 66.243(2)

B/° 67.979(2)

v/° 89.261(2)
Volume/A3 3966.0(5)

Z 2

pealcg/cm?® 1.021

w/mm? 0.061

F(000) 1268.7

Crystal size/mm? 0.21 x0.15x0.12
Radiation Mo Ka (A =0.71073)

20 range for data collection/°4.12 to 50

Index ranges -21<h<21,-18<k<22,-21<1<22
Reflections collected 82757

Independent reflections 13943 [Rint = 0.0770, Rsigma = 0.0831]
Data/restraints/parameters ~ 13943/234/936

Goodness-of-fit on F2 1.073

Final R indexes [1>=25 (I)] R:=0.0732, wR2 =0.2183

Final R indexes [all data] R1 =0.1005, wR2 = 0.2449

Largest diff. peak/hole / e A= 0.44/-0.50
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Along a axis Along b axis Along c axis

tCzPHCN CzPHCN

Cz2CzPHCN

3.379 A Y
D &

Fig. S7 Intramolecular interactions in (a) 4CzIPN and (b) 4CzTPN. Intermolecular interactions

in (c) 4CzIPN and (d) 4CzTPN.
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Fig. S8 Intermolecular interactions in (a-c) CZPHCN, (d) tCzPHCN and (e-f) CzZ2CzPHCN.

Fig. S9 Hirshfeld surface’ analysis of a) CzZPHCN, b) tCzZPHCN and ¢) Cz2CzPHCN using

Crystal Explorer software.®

Note 1: Effect of cyano group in layer formation

In CzPHCN, the nitrogen atom of CN interacts with one upper layer phenanthrene ring (N***C,
3.248 A) and one lower layer carbazole ring (N**C, 3.180 A) as shown in Fig. S10a and these
interactions propagate (along with other non-covalent interactions) throughout the crystal
facilitating the formation of layers. For tCZPHCN, CN group interacts with neighbouring tert-
butyl carbazole group (N''C, 2.722 A and N-H, 2.732 A) as shown in Fig. S10c,d. For
Cz2CzPHCN, nitrogen atom of cyano group interacts with neighbouring carbazole group
(N-*H) with a distance 0of 2.736 A as shown in Fig. S10e,f. These interactions hold the structure
and help in the formation of layers.
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Fig. S10 Interaction of -CN groups with other moieties of (a,b) CZPHCN, (c,d) tCzPHCN and
(e,f) Cz2CzPHCN. Black dotted lines represent interaction of cyano groups with other
moieties and different color codes represent different molecules.

Section S7: Photophysical Properties
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Fig. S11 Solvent polarity-dependent steady-state PL of (a) CZPHCN, (b) tCzPHCN and (c)
Cz2CzPHCN.
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Fig. S12 Prompt fluorescence lifetime of (a) CZPHCN, (b) tCzZPHCN and (c) CzZ2CzPHCN in

10 uM toluene solution at room temperature.
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Fig. S13 Prompt fluorescence lifetime of (a) CZPHCN, (b) tCzPHCN and (c) CzZ2CzPHCN in

neat films at room temperature (brown) and at 77K (blue).
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Fig. S14 Phosphorescence lifetime of (a) CZPHCN, (b) tCzZPHCN and (¢) CzZ2CzPHCN in neat

films at 77K.
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Fig. S15 Estimation of AEg;r of (a) CzPHCN, (b) tCzPHCN and (c) Cz2CzPHCN from

fluorescence spectra (black line) and phosphorescence spectra (blue line) onset.
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Fig. S19 Steady state PL spectra of (a) CZPHCN, (b) tCzPHCN and (¢) CzZ2CzPHCN in neat

films taken in ambient (red) and vacuum (black) conditions.
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Fig. S20 Prompt fluorescence lifetime of (a) CZPHCN, (b) tCzPHCN and (c) Cz2CzPHCN in
10 wt% CBP film at room temperature.
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Fig. S24 Steady state PL spectra of (a) CzZPHCN, (b) tCzPHCN and (c¢) CzZ2CzPHCN in 10

wt% CBP films taken in ambient (red) and vacuum (black) conditions.

Table S5: Photophysical parameters in 10 wt% CBP films.

Molecules PL | ¢? dpr | dpr | Tpr | Top | K (107 s | kisc (107 | Krisc
(nm) (s) | (us) | (S1=So)® |s™) (10°s™)
(S1— (Ti—
T1)C S1)¢
CzPHCN 520 (0.78 | 0.71 | 0.07 | 106 | 1.4 6.78 2.66 2.18
CBP film
tCzPHCN 530 (094 | 0.73 | 0.21 | 9.6 0.9 7.64 2.78 11.6
CBP film
Cz2CzPHCN | 556 | 0.7 055 (0.15 | 131 |51 4,33 3.31 1.06
CBP film

2 ¢ is the total PLQY measured in ambient condition. ®k: (S1— So) = ¢pr/Ter. “kisc (S1— T1) =

(1=¢ppr)/Trr. Ykrisc (T1=S1) = Por/(KiscPprTDETPE).
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Note 2: Effect of solvent and thickness in the preparation of neat film

Films from different solvents

0.5 mg of the compound was dissolved in 1 ml of THF and DCM, and spin-coated neat films
of all the emitters were prepared on a pre-cleaned quartz substrate, which were dried for 4 hours
in high vacuum to completely remove trapped solvent molecules before the experiment.
Absorption spectra (Fig. S25) and emission spectra (Fig. S26) were collected to check the
solvent effect on neat films. No significant spectral shift was observed in absorption and
emission spectra, which indicates that the solvent has hardly any role in the absorption and
emission profile of the compounds.
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Fig. S25 Normalized absorption spectra of (a) CZPHCN, (b) tCzPHCN and (c) CzZ2CzPHCN
of spin-coated films prepared from 1 mM THF (green) and DCM (purple) solvent.
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Fig. S26 Normalized photoluminescence spectra of (a) CzPHCN, (b) tCzPHCN and (c)
Cz2CzPHCN of spin-coated films prepared from 1 mM THF (green) and DCM (purple)
solvent.

Films of different thicknesses

To examine the influence of the thickness of the film, we prepared films of different
thicknesses. We prepared a stock solution of 1mg/mL in chloroform and from that 50 uL, 100
puL and 200 pL solutions were used to prepare the neat films of different thicknesses. As
predicted, 50 pL spin-coated substrate will be the thinnest film and 200 pL spin-coated
substrate will be the thickest. Again, the films were dried in high vacuum for 4 hours to ensure
complete removal of the trapped solvents. Then, UV-vis absorption (Fig. S27) and emission
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spectra (Fig. S28) were recorded, and no distinguishable changes were observed, signifying
that the thickness has no role in the absorption and emission process.
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Fig. S27 Normalized absorption spectra of (a) CZPHCN, (b) tCzPHCN and (c) Cz2CzPHCN
of spin-coated films prepared by spin-coating with 50 uL, 100 puL and 200 pL solutions of
CHCls of concentration 0.5 mg mL™!. Cyan circle: 50 pL, magenta circle: 100 pL and olive
circle: 200 uL.
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Fig. S28 Normalized photoluminescence spectra of (a) CzPHCN, (b) tCzPHCN and (c)
Cz2CzPHCN of spin-coated films prepared by spin-coating with 50 pL, 100 pL and 200 pL
solutions of CHCl3 of concentration 0.5 mg mL™!. Cyan circle: 50 uL, magenta circle: 100 pL
and olive circle: 200 pL.
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Section S8: Aggregation Induced Emission

The photophysics of agueous solutions for molecules are the key to improving their application
in biological systems and photonic technologies.®!° In the present work, we designed some
charge-transfer-based molecules with reduced molecular interactions, and their emission
properties were determined in aggregated states. Since the molecules are not soluble in water,
a binary mixture of organic and aqueous solvents was used to induce aggregation. For all three
of the molecules synthesized, an initial decrease in the PL intensity of the molecules was shown
at lower fractions of water content, followed by a sharp rise at higher fractions, which
confirmed their AIE properties (Fig. S29). The emission intensity of CzZPHCN decreases by
15% at a fraction of water content compared to its pure acetonitrile solution. The intensity
keeps decreasing until it reaches fw = 30%, where it begins to increase slightly until f = 70%
along with a blue shift in the emission from 600 nm to 586 nm. At fw = 90%, the emission
intensity drastically increases with a further blue shift to 555 nm (Fig. S29a,d). The initial
decrease in intensity at lower water fractions can be attributed to the stabilization of the CT
state in the higher polarity of water, exhibiting solvatochromic behavior. The subsequent
increase in intensity and blue-shifted emission are associated with aggregate formation,
facilitated by the hydrophobic environment created at higher water content. For tCzPHCN, the
emission intensity decreases down to fw = 15%, but with further water addition (fw > 30%), the
intensity rises dramatically (Fig. S29b,e). On the contrary, Cz2CzPHCN is almost non-
emissive at fw = 0-15%, while it becomes emissive at fw > 30%. The intensity shoots up
dramatically with additional water addition (Fig. S29c,f). These observations indicate an early
onset of aggregation at reduced water fractions fw = 30% for both tCzPHCN and Cz2CzPHCN
with respect to the case for CZPHCN where f,, was set at 70%. Presumably, an effect of excess
hydrophobic end groups contributes toward earlier onset aggregation at smaller contents of a
cosolvent (water, here). These results emphasize the crucial role of molecular structure and
hydrophobicity in controlling aggregation and emission behavior, thus opening avenues for the

design of tailored strategies for aqueous-compatible luminescent materials.
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Fig. S29. Emission spectra of (a) CzPHCN and (b) tCzPHCN in different fractions of
ACN/water binary mixture. Emission spectra of (¢) Cz2CzPHCN in DMF/water binary
mixture. PL intensity of (d) CzZPHCN, (e) tCzPHCN and (f) CzZ2CzPHCN with different water
fractions and the inserted cuvette pictures are taken in the highest and lowest water fractions.
PL spectra of CzPHCN and tCzPHCN were collected by 400 nm excitation and for
Cz2CzPHCN, excitation was 430 nm.
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Section S9: Two-Photon absorption

Organic luminogens that are excited by two photons have gained significant attention in the
past few years because of their excellent optical properties, such as higher penetration depth,
high spatial resolution, and minimal scattering of light.!! Unlike one-photon-excited
fluorophores, these luminogens are particularly advantageous in biological applications
because they induce minimal damage to the target cells, making them ideal for cell imaging
applications. All three luminogens- CzPHCN, tCzPHCN, and Cz2CzPHCN possess extensive
n-conjugated structures and strong charge transfer capabilities, leading to significant
hyperpolarizability and efficient two-photon absorption properties. In order to better appreciate
these properties, we probed the two-photon absorption behavior of these luminogens. Our
results show that all three luminogens have notable two-photon activity, in their molecular
aggregates as shown in Fig. S30. The two-photon excited emission spectra, obtained upon
excitation at 845 nm, were very similar to the single-photon excited emission spectra produced
under 420 nm excitation (Fig. S30, S31). This similarity indicates stability and consistency in
their emission characteristics. In addition, the emission spectra exhibit an anti-Stokes shift,
with the excitation wavelengths ranging from 700 nm to 1100 nm (Fig. S30, S31). Power-
dependent measurements of two-photon emission intensity, plotted on a log-log scale, present
a slope of approximately 2 (Fig. S32). This result ensures that the observed emission is a
predominantly two-photon process and contains minimal contributions from one-photon

emissions.
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Fig. S30 Microscopic images of (a) CzPHCN, (d) tCzPHCN and (g) Cz2CzPHCN (c) in 80%
organic/water mixture. (b,e,h) Two-photon excited emission spectra (excitation wavelength =
845 nm and power = 7.7 mW) (Onset: two-photon excited PL of aggregates, excitation: 800
nm). (c,f,i) Two-photon absorption spectra (emission window = 525-567 nm for CzZPHCN and
tCzPHCN and 525-650 nm for Cz2CzPHCN).
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Fig. S32 Power dependence study (excitation = 845 nm) of (a) CzZPHCN, (b) tCzPHCN and
(c) Cz2CzPHCN.
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Section S10: Second harmonic generation (SHG)

Experimental Setup for Second-Harmonic Generation

For second-harmonic generation (SHG) experiments, ultrafast (~50 fs) laser pulses of varying
wavelengths from an optical parametric amplifier (OPA) were used as the excitation source.
The OPA (TOPAS-C, Light Conversion) was pumped by a regenerative amplifier (Spitfire Pro
XP, Spectra-Physics) with a pulse width of 45 fs (FWHM), a 1 kHz repetition rate, and a central
wavelength of 800 nm. The amplifier was seeded by 35 fs pulses from a mode-locked Ti:
Sapphire oscillator (Tsunami SP, Spectra-Physics) operating at 80 MHz with the same central
wavelength (800 nm). The OPA was used to produce excitation wavelengths in the range of
1200-1440 nm, with a wavelength separator mounted on Mixer 3 for precise wavelength
selection. For the experiments, the pump beam from the OPA passed through a neutral density
(N.D.) filter to facilitate power-dependent measurements, followed by an 850 nm long-pass
filter to ensure the purity of the pump beam. After passing through the half-wave plate, the
pump pulses were focused on the sample using a 200 mm plano-convex lens. To prevent
sample damage, the sample was positioned away from the focal point, resulting in a beam spot
size of 400 um at the sample. The SHG signal generated by the sample was collimated using a
25 mm plano-convex lens and passed through a 750 nm short-pass filter to eliminate any
residual traces of the pump beam. The collimated output was subsequently detected using a

miniature spectrometer (USB4000, Ocean Optics) coupled to a 400 um optical fiber.

750 nm
Half Wave Sho['t Pass
N. D. Filter Plate Filter

Sample

Detector

Glan 400 pm

800nm Polarizer f=200mm  f=25mm OpticalFiber
Long Pass
Filter

Fig. S33 Schematic of the SHG setup.
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Calculation of second-order nonlinear susceptibility and LIDT

To quantify the second-harmonic generation (SHG) response, the second-order nonlinear
susceptibility @ of the material was calculated. The integrated intensity of the SHG spectrum
of the sample was compared with that of a standard reference material, potassium dihydrogen
phosphate (KDP), at 1064 nm. Using a modified version of Maxwell’s nonlinear equation for
relative intensity (Equation S1), the ¥® value for CZPHCN was determined to be 0.128 pm V-
1 at 1064 nm. Subsequently, the SHG-integrated intensity of the sample was measured at the
excitation wavelength of 1320 nm, where the SHG response was found to be at its maximum.

The corresponding x® value at 1320 nm was determined to be 0.21 pm V11214

D=, @ [sCo (S1)
Xs X In(Z®)
@ =, @202) [1CGw) (S2)
Koy Ko, (Zwl) 1(2wy)

Here, )(5(2) and )(R(Z) represent the second-order nonlinear optical (NLO) susceptibilities of
the sample and reference, respectively, while Is(2w) and Ir(20) denote the corresponding
relative SHG emission intensities. Additionally, (1) ® and y2) @ correspond to the second-
order susceptibilities at the fundamental pump frequencies w1 and w2, while I(2w1) and I(2w2)

represent their respective SHG intensities.'>1°

The laser-induced damage threshold (LIDT) of CzPHCN was evaluated using Equation S3. At
laser power levels exceeding 9.5 mW, the sample began to deviate from the expected quadratic
behavior, indicating the onset of instability.!” The LIDT was determined as the intensity
corresponding to the maximum power level before this deviation. For CzPHCN, the LIDT was
found to be 37.82 GW cm™.

Energy per pulse

Pulse width x Ef fective Spot Area
(S3)

Where, Energy per pulse =

Peak Intensity =

Average Power

Repetition Rate

Average Power
Repetition Ratex Pulse Width x Ef fective Spot Area

LIDT = Peak Intensity =

9.5x1073 W
1000 Hzx 50X10715 s x X (400 X10~6m)?2

LIDT = Peak Intensity =
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LIDT = Peak Intensity = 37.82 GW cm™

Polarisation dependence of second harmonic generation:

When a strong electric field is applied to a dielectric material, it induces polarization, causing
the material's response to deviate from linearity. This polarization is typically represented by a
power series, where the second-order nonlinear polarization is mathematically related t

o the incident electric field through the following equation.

R = SOZXi(jzlejEk
jk
Here, i, j, and k represent the Cartesian indices.'® The polarization-dependent SHG response of
the pump light was recorded to investigate the structural anisotropy of the material. As depicted
in Fig. 4d of the main manuscript, the two-lobed pattern represents the SHG response as a
function of the pump polarization angle, with the polarization axis aligned orthogonal to the
crystal axis.’® The consistent SHG intensity, followed by a gradual decline, can be attributed
to the pronounced nonlinearity along both axes. This interaction between polarized light and
the crystal lattice demonstrates the pronounced anisotropic nature of the CZPHCN crystal. The

polarization ratio of the CzZPHCN crystal was determined to be 46% using the following

equation.
(Imax=Imin)
- max min X 100
(Imax'”min)
3
@ (b) .
! Ref(KDP) = 1064 nm Lig 2
- CzPHCN) = 1064 nm =
= CzPHCN = 1320 nm r6 B
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Fig. S34 (a) Comparison of the SHG integrated intensity of CZPHCN with the reference KDP
used for calculating ¥?. (b) Power-dependent SHG response at the wavelength corresponding

to the maximum SHG intensity.
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Fig. S35 Excitation wavelength (1200 nm to 1500 nm) dependent PL and THG signals for (a)
tCzPHCN and (b) Cz2CzPHCN. Excitation power dependent PL and THG signals at the
excitation wavelength of 1300 nm for (c) tCzPHCN and (d) CzZ2CzPHCN. Excitation power
dependence of two-photon excited PL intensities for (¢) tCzPHCN and (f) CzZ2CzPHCN.
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Table S6 SHG properties of the reported emitter vs this work

Name CCDC Space | Highest | Corresponding Second- Laser-
group SHG excitation order non- | induced
observed wavelength linear damage
at susceptibility | threshold
x®) (LIDT)
DPAOCN | 2287184 | P2,2,2, 610 nm 1220 nm 0.19 pm V'at | 13.27 GW
(Reported) 1220 nm cm? at
excitation 1220 nm
excitation
CzPHCN | 2420130 | Cmc2,; 660 nm 1320 nm 021 pm V'at | 37.82 GW
(This 1320 nm cm? at
work) excitation 1320 nm
excitation

Section S11: Piezoelectricity and Ferroelectricity

Preparation of CZPHCN Device for Piezoelectric Energy Harvesting Measurements

The tightly sandwiched nanogenerator devices of CzPHBN crystallites were prepared by
attaching small (2 X 5 mm?) conductive adhesive copper tapes (Cu-lids in the schematic) at the
corners of the ITO-coated PET sheets, which serve as the top and bottom. In the next step,
adhesive Kapton tapes were placed on the borders of the ITO-coated PET sheets to avoid direct
contact between the electrodes. Subsequently, CzPHBN crystallites were deposited on one of
the ITO surfaces and then the other ITO-coated sheet with Cu tape with the Kapton border was
placed above the crystal layer. In the last step, copper wires were soldered on the Cu-lids and
the device was fully encapsulated with another layer of adhesive Kapton tapes to keep the
sandwiched structure intact during measurements and reduce the static charge developed

during the continuous impact on the device.

Ferroelectric Measurements

To investigate the ferroelectric properties of CZPHBN, P-E hysteresis loop measurements were
conducted on a thin film sample of approximately 2.21 um thickness drop-casted on an Indium
tin oxide (ITO)- coated glass surface, and Gallium Indium eutectic was used to the make top
contact. These measurements were performed using the aixACCT TF-2000E model hysteresis
loop analyzer. The experiments were conducted by applying the dynamic leakage current
compensation (DLCC) mode to reduce the contributions from non-hysteretic components of

the loop.
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Table S7 Reported ferroelectric materials vs CZPHCN.

Compounds Ps References
(R)- and (S)-(N,N-dimethyl-3- 0.4 20
fluoropyrrolidinium) iodide
Amide-functionalized pyrene (Py) and naphthalene-diimide (NDI) 3.2 2
polyurethane (P1) and pyrene (Py) 0.8 2
DABCODA/LTa of DTa 0.42 2
DBCz-TCNQ complex 1.23 24
P1 2 2
[D55DMBP][Dia] 1.7 26
[H-55DMBP][Hia] 1.2 26
CzPHCN 0.32 This work
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Table S8 Reported small organic-based piezoelectric materials vs CZPHCN

Composite Output Current/ current- Active Application/ | References
Materials | voltage (V) density area input
(cm?)

y-glycine 0.45 - 1.8x1.8 | 0.172N, 0.5 Hz 2
L-Tyr 0.5 35nA 0.6 x 0.6 31N, 0.2 Hz 28
L-AcW 1.46 - 1.0x1.0 52N, 0.2 Hz 29
L-Acl 1.13 - 1.0x1.0 52N, 0.2 Hz 29
L-AcC 0.27 - 1.0x1.0 52N, 0.2 Hz 29
Pro-Phe-Phe 14 52nA 0.7 x0.7 55N, 0.2 Hz 30
Hyp-Phe-Phe 0.45 39.3nA 0.7x0.7 23N, 0.2 Hz %0
Phe-Phe 0.2 7.0 nA - 55N, 1Hz %0
HFPD-PVA 18 - 2%x2 40N, 4 Hz 81
AD>A-1 0.05+0.01 | 0.89 +0.05 nA/cm? 0.544 17 N,5Hz 82
AD>A-2 0.08 £0.01 | 2.19+0.11 nA/cm? 0.544 17N, 5Hz 82
AD:A 2.0+0.10 | 29.15+ 1.50 nA/cm? 0.544 17N, 5Hz 82
ADA 2.2+0.11 | 45.64 +2.28 nAlcm? 0.544 17N,5Hz 82
ADsA 1.9+0.10 | 27.00 £ 1.35 nA/cm? 0.544 17 N,5Hz 82

CzPHCN 2.8 0.41 pA i;nf 21N, 10 Hz This work
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Section S12: Literature Reported PLOY

Table S9 Literature reports of PLQY vs this work.

Structures Name PLQY | State | Referen
(%) ces
4CzIPN 35 Neat 3
film
4CzTPN 15.3 50% i
@ o
N film
NC N O
% N: ¢:CN
& “N
4CzPN 42 Neat 3
film
5CzBN or 21 Neat 36
5CzCN film
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s 2tCz2CzBN 66 Neat 3
cN ) film
AN
{

7 N
CzPHCN 62 Neat This
O O films work
& ‘”
Cr g
CN
CN
tCzPHCN 84 Neat This
films work
N
Cr 00
CN
CN
Cz2CzPHCN 44 Neat This
O films work
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