Highly Stereoselective Synthesis of Polysubstituted Housanes and Spiro-Oxa-Housanes: Application and Mechanistic Insights

Abdur Rouf Samim Mondal, Nakul Abhay Bapat, Harshita Mishra and Durga Prasad Hari*

Department of Organic Chemistry, Indian Institute of Science Bangalore, India, 560012

dphari@iisc.ac.in

Table of Contents

1. General methods	S 2
2. Preparation of Diazo compounds, Cyclopropenes and Maleimides	S 3
3. Optimization of Housane Synthesis	S 40
4. Scope of Diastereoselective Synthesis of Housane	S43
5. Optimization and Scope of Spiro-Oxa-Housane	S75
6. Application of Housanes: Stereospecific Synthesis of Bicyclic imide derivatives	S83
7. Mechanistic investigations	S98
8. Crystal Structure	S101
9. DFT studies	S113
10. References	S176
11. NMR Spectra for new compounds	S178

1. General methods

1.1 Solvents, Reagents, Glassware and Reaction Setup

Unless otherwise specified, all reactions were conducted under an inert atmosphere of nitrogen or argon using hot air oven dried (120 °C) glassware utilizing standard Schlenk-line technique. Air- and moisture-sensitive liquids and solutions were transferred via syringe into the reaction vessels through a rubber septum under inert atmosphere. Unless otherwise specified, all reagents were purchased at highest commercial quality and used as received. Non-anhydrous solvents were purchased at the highest commercial quality and used as received. Organic solvents used for carrying out reactions were dried using standard methods. All work up and purification were carried out with reagent grade solvents in air. Temperatures described 20 °C and below 20 °C were achieved using immersion cooler by Julabo and above 20 °C were achieved using heat-on block system from Radley's. The photoreactions were done by using KESSIL lamp (PR 160L-440 nm) by keeping distance of 5 cm from the reaction vessel. No filter was used in light-promoted reactions.

1.2 Analytical methods

Chromatography: Column chromatography was carried out using Sigma-Aldrich silica gel (60 Å, 230-400 mesh, 40-63 µm). Reactions were monitored by thin-layer chromatography (TLC), using aluminium-backed Merck Kieselgel 60 F254 fluorescent treated silica gel plates, which were visualized under UV light or by staining with aqueous basic KMnO₄, or phosphomolybdic acid solution in ethanol. IR: Infrared (FT-IR) spectra were recorded of neat sample on Bruker alfa FT-IR, v_{max} in cm⁻¹ and the bands are characterized as strong (s), medium (m), and weak (w). Melting Point: Melting points were measured in open glass capillary on a Buchi M-560 melting point apparatus. NMR: NMR spectra were recorded on Bruker Ultrashield spectrometer at 400 MHz (for ¹H-NMR), 101 MHz (for ¹³C-NMR), 376 MHz (for ¹⁹F-NMR). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as internal standard (CDCl₃: δ 7.26 ppm for ¹H-NMR and δ 77.00 ppm for ¹³C-NMR). For ¹H-NMR, data are reported as follows: chemical shift, multiplicity (s = singlet, brs = broad singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublets, t = triplet, q = quartet, dt = doublet of triplets, m = multiplet etc.), coupling constants (Hz) and integration. NMR yields: Following work up or/and solvent evaporation, dibromomethane (relative to limiting starting material) was added to the crude residue. The resultant mixture was dissolved in CDCl₃, and a 0.5 mL sample of the resultant solution taken for ¹H-NMR analysis. Yields were calculated based on the integrals of known product resonances relative to dibromomethane (2H, at 4.94 ppm in CDCl₃). **MS**: High Resolution Mass Spectrometry (HRMS) was performed on Waters e2695 XEVO G2-XS Q-TOF instrument.

Important Safety Note

Handling of diazo compounds should only be done in a well-ventilated fume cupboard using an additional blast shield. No incidents occurred handling of diazo compounds during the preparation of this manuscript, yet the reader should be aware of carcinogenicity and explosiveness of the herein described diazo compounds. Any reactions described in this manuscript should not be performed without strict risk assessment and proper safety precautions.

2. Procedures for starting materials synthesis:

2.1 Procedures for the synthesis of diazo compounds:

Methyl 2-diazo-2-phenylacetate (11a)

Step-1: Following a slightly modified procedure,¹ a 100 mL round bottom flask was charged with phenylacetic acid (**9a**) (5.44 g, 40.0 mmol, 1.00 equiv) in methanol (40 mL). Then, 4-6 drops of concentrated H₂SO₄ were added to the resulting mixture at room temperature and allowed to stir overnight at 80 °C. After concentrating the reaction mixture, the residue was diluted with water (40 mL) and the reaction mixture was extracted with ethyl acetate (3×60 mL). The combined organic layers were washed with saturated NaHCO₃ (30 mL) followed by 20 mL brine, dried over Na₂SO₄, and then the solvent was removed via rotary evaporation to yield compound **10a** as a colorless oil (5.20 g, 34.6 mmol, 86%). This product was used in the next step without further purification.

Step-2: Following a slightly modified procedure,^[1] a 100 mL two-neck round bottom flask charged with methyl 2-phenylacetate (**10a**) (1.50 g, 10.0 mmol, 1.00 equiv), *p*-ABSA (3.6 g, 15 mmol, 1.5 equiv) and MeCN (30 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (3.0 mL, 20 mmol, 2.0 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (30 mL), and the organic phase was extracted with diethyl ether (2×50 mL). The combined organic layers were dried

over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (silica, 1:20 v/v Et₂O:Hexane) to afford the title product **11a** as a red liquid (1.4 g, 7.9 mmol, 79%).

- **TLC** (Et₂O:Hexane, 1:9 v/v): R_f = 0.6, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.52 7.45 (m, 2H, ArH), 7.43 7.34 (m, 2H, ArH), 7.23 7.15 (m, 1H, ArH), 3.87 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 165.6, 128.9, 125.8, 125.4, 124.0, 51.9. One carbon was not resolved at 101 MHz.

The characterization data matched the reported values.¹

tert-Butyl 2-diazo-2-phenylacetate (11b)

Step-1: Following a slightly modified procedure,² a 250 mL round bottom flask was charged with phenylacetic acid (**9a**) (5.44 g, 40.0 mmol, 1.00 equiv) and 160 mL of HPLC grade CH₂Cl₂. Then, 24 g of MgSO₄ and 5 mL of concentrated H₂SO₄ were added to the resulting mixture at room temperature. To this solution, *tert*-butanol (19.0 mL, 200 mmol, 5.00 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 20 h. After completion of the reaction, the reaction mixture was quenched with saturated NaHCO₃ (100 mL). The product was extracted with CH₂Cl₂ (2 × 50 mL), washed with 100 mL brine, and then, dried over Na₂SO₄. The volatiles were evaporated, and the residue was purified by silica gel column chromatography (1:50 v/v Et₂O:Hexane) to give *tert*-butyl 2-phenylacetate **10b** as a colorless oil (3.50 g, 18.2 mmol, 45%).

- **TLC (Et₂O:Hexane, 1:9 v/v):** R_f = 0.7, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.45 7.12 (m, 5H, ArH), 3.56 (s, 2H, ArCH₂CO₂^tBu₃), 1.49 (s, 9H, CO₂^tBu).
- ¹³C NMR (101 MHz, CDCl₃): δ 170.7, 134.5, 129.0, 128.3, 126.7, 80.5, 42.5, 27.9. The characterization data matched the reported values.²

Step-2: Following a slightly modified procedure,¹ a 100 mL two-neck round bottom flask charged with *tert*-butyl 2-phenylacetate (**10b**) (1.92 g, 10.0 mmol, 1.00 equiv), *p*-ABSA (3.6 g, 15 mmol, 1.5 equiv) and MeCN (30 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (3.0 mL, 20 mmol,

2.0 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (30 mL), and the organic phase was extracted with diethyl ether (2×50 mL). The combined organic layers were dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (silica, 1:20 v/v Et₂O:Hexane) to afford the title product **11b** as a yellow liquid (1.1 g, 5.0 mmol, 50%).

- TLC (Et₂O:Hexane, 1:9 v/v): R_f = 0.6, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.51 7.45 (m, 2H, Ar*H*), 7.38 (t, *J* = 7.8 Hz, 2H, Ar*H*), 7.19 7.14 (m, 1H, Ar*H*), 1.57 (s, 9H, CO₂^{*t*}Bu₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 164.5, 128.8, 126.0, 125.4, 123.9, 81.9, 63.6, 28.3. The characterization data matched the reported values.²

Methyl 2-diazo-2-(*o*-tolyl)acetate (11c)

Step-1: Following a slightly modified procedure,¹ a 100 mL round bottom flask was charged with 2-(*o*-tolyl)acetic acid (**9b**) (6.0 g, 40 mmol, 1.0 equiv) in methanol (40 mL). Then, 4-6 drops of concentrated H₂SO₄ were added to the resulting mixture at room temperature and allowed to stir overnight at 80 °C. After concentrating the reaction mixture, the residue was diluted with water (40 mL) and the reaction mixture was extracted with ethyl acetate (3×60 mL). The combined organic layers were washed with saturated NaHCO₃ (30 mL) followed by 20 mL brine, dried over Na₂SO₄ and then the solvent was removed via rotary evaporation to yield compound **10c** as a colorless oil (5.50 g, 33.5 mmol, 82%). This product was used in the next step without further purification.

Step-2: Following a slightly modified procedure,¹ a 100 mL two-neck round bottom flask charged with methyl 2-(*o*-tolyl)acetate (**10c**) (1.64 g, 10.0 mmol, 1.00 equiv), *p*-ABSA (3.60 g, 15.0 mmol, 1.5 equiv) and MeCN (30 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (3.0 mL, 20.0 mmol, 2.0 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (30 mL, and the organic layer was extracted with diethyl ether (2×50 mL). The combined organic layers were dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was

purified by flash column chromatography (silica, 1:20 v/v Et_2O :Hexane) to afford the title product **11c** as an orange oil (1.4 g, 7.3 mmol, 73%).

- TLC (Et₂O:Hexane, 1:9 v/v): $R_f = 0.50$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.37 (m, 1H, ArH), 7.30–7.23 (m, 3H, ArH), 3.83 (s, 3H, CO₂CH₃), 2.32 (s, 3H, ArCH₃)
- ¹³C NMR (101 MHz, CDCl₃): δ 166.7, 137.9, 131.1, 130.9, 129.1, 126.6, 124.3, 52.3, 20.1. One carbon was not resolved at 101 MHz.

The characterization data matched the reported values.³

Methyl 2-diazo-2-(2-(trifluoromethyl)phenyl)acetate (11d)

Step-1: Following a slightly modified procedure,¹ a 100 mL round bottom flask was charged with 2-(2-(trifluoromethyl)phenyl)acetic acid (**9c**) (8.16 g, 40.0 mmol, 1.00 equiv) in methanol (40 mL). Then, 4-6 drops of concentrated H₂SO₄ were added to the resulting mixture at room temperature and allowed to stir overnight at 80 °C. After concentrating the reaction mixture, the residue was diluted with water (40 mL) and the reaction mixture was extracted with ethyl acetate (3×60 mL). The combined organic layers were washed with saturated NaHCO₃ (30 mL) followed by 20 mL brine, dried over Na₂SO₄ and then the solvent was removed via rotary evaporation to yield compound **10d** as a colorless oil (8.00 g, 36.7 mmol, 91%). This product was used in the next step without further purification.

Step-2: Following a slightly modified procedure,¹ a 100 mL two-neck round bottom flask charged with methyl 2-(2-(trifluoromethyl)phenyl)acetate (**10d**) (2.18 g, 10.0 mmol, 1.00 equiv), *p*-ABSA (3.60 g, 15.0 mmol, 1.50 equiv) and MeCN (30 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (3.00 mL, 20.0 mmol, 2.00 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (30 mL), and the organic phase was extracted with diethyl ether (2×50 mL). The organic layers were dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (silica, 1:20 v/v Et₂O:Hexane) to afford the title product **11d** as a yellow liquid (1.9 g, 7.8 mmol, 77%).

• **TLC** (Et₂O:Hexane, 1:9 v/v): $R_f = 0.50$, UV, KMnO₄.

- ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 7.9 Hz, 1H, ArH), 7.65 7.46 (m, 3H, ArH), 3.81 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 166.2, 134.4, 132.2, 129.9 (q, J = 30.1 Hz), 129.4, 126.8 (q, J = 5.3 Hz), 123.7 (q, J = 274.72 Hz), 123.4 (d, J = 2.0 Hz), 52.3. One carbon was not resolved at 101 MHz.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -61.66.

The characterization data matched the reported values.¹

Methyl 2-diazo-2-(2-methoxyphenyl)acetate (11e)

Step-1: Following a slightly modified procedure,¹ a 100 mL round bottom flask was charged with 2-(2-methoxyphenyl)acetic acid (**9d**) (6.64 g, 40.0 mmol, 1.0 equiv) in methanol (40 mL). Then, 4-6 drops of concentrated H₂SO₄ were added to the resulting mixture at room temperature and allowed to stir overnight at 80 °C. After concentrating the reaction mixture, the residue was diluted with water (40 mL) and the reaction mixture was extracted with ethyl acetate (3×60 mL). The combined organic layers were washed with saturated NaHCO₃ (30 mL) followed by 20 mL brine, dried over Na₂SO₄ and then the solvent was removed via rotary evaporation to yield compound **10e** as a colorless oil (6.30 g, 34.4 mmol, 87%). This product was used in the next step without further purification.

Step-2: Following a slightly modified procedure,¹ a 100 mL two-neck round bottom flask charged with methyl 2-(2-methoxyphenyl)acetate (**10e**) (1.80 g, 10.0 mmol, 1.00 equiv), *p*-ABSA (4.80 g, 20.0 mmol, 2.00 equiv) and MeCN (30 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (4.50 mL, 30.0 mmol, 3.0 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (30 mL), and the organic layer was extracted with diethyl ether (2×50 mL). The combined organic layers were dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (silica, 1:20 v/v Et₂O:Hexane) to afford the title product **11e** as an orange solid (1.6 g, 7.7 mmol, 77%).

• **TLC** (Et₂O:Hexane, 1:9 v/v): $R_f = 0.40$, UV, KMnO₄.

- ¹H NMR (400 MHz, CDCl₃): δ 7.54 (dd, J = 7.8, 1.7 Hz, 1H, ArH), 7.27–7.22 (m, 1H, ArH), 7.01 (td, J = 7.6, 1.2 Hz, 1H, ArH), 6.88 (dd, J = 8.3, 1.2 Hz, 1H, ArH), 3.84 (s, 3H, ArOCH₃), 3.82 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 166.8, 155.6, 130.3, 128.8, 121.3, 113.8, 111.0, 55.7, 52.1 One carbon was not resolved at 101 MHz.

The characterization data matched the reported values.⁴

Methyl 2-(2-chlorophenyl)-2-diazoacetate (11f)

Step-1: Following a slightly modified procedure,¹ a 100 mL round bottom flask was charged with 2-(2-chlorophenyl)acetic acid (**9e**) (6.8 g, 40 mmol, 1.0 equiv) in methanol (40 mL). Then, 4-6 drops of concentrated H₂SO₄ were added to the resulting mixture at room temperature and allowed to stir overnight at 80 °C. After concentrating the reaction mixture, the residue was diluted with water (40 mL) and the reaction mixture was extracted with ethyl acetate (3×60 mL). The combined organic layers were washed with saturated NaHCO₃ (30 mL) followed by 20 mL brine, dried over Na₂SO₄ and then the solvent was removed via rotary evaporation to yield compound **10f** as a colorless oil (6.30 g, 34.2 mmol, 86%). This product was used in the next step without further purification.

Step-2: Following a slightly modified procedure,¹ a 100 mL two-neck round bottom flask charged with methyl methyl 2-(2-chlorophenyl)acetate (**10f**) (1.84 g, 10.0 mmol, 1.00 equiv), *p*-ABSA (3.60 g, 15.0 mmol, 1.5 equiv) and MeCN (30 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (3.00 mL, 20.0 mmol, 2.0 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (30 mL), and the organic layer was extracted with diethyl ether (2×50 mL). The combined organic layers were dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (silica, 1:20 v/v Et₂O:Hexane) to afford the title product **11f** as a yellow liquid (1.65 g, 7.80 mmol, 78%).

- **TLC** (Et₂O:Hexane, 1:9 v/v): $R_f = 0.40$, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.53 (dd, J = 7.7, 1.9 Hz, 1H, ArH), 7.39 (dd, J = 7.9, 1.6 Hz, 1H, ArH), 7.26 (m, 2H, ArH), 3.81 (s, 3H, CO₂CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 165.6, 133.5, 132.1, 129.8, 129.4, 127.0, 123.7, 61.6, 52.0.

The characterization data matched the reported values.³

Methyl 2-(2-bromophenyl)-2-diazoacetate (11g)

Step-1: Following a slightly modified procedure,¹ a 100 mL round bottom flask was charged with 2-(2-bromophenyl)acetic acid (**9f**) (8.52 g, 40.0 mmol, 1.00 equiv) in methanol (40 mL). Then, 4-6 drops of concentrated H₂SO₄ were added to the resulting mixture at room temperature and was allowed to stir overnight at 80 °C. After concentrating the reaction mixture, the residue was diluted with water (40 mL) and the reaction mixture was extracted with ethyl acetate (3×60 mL). The combined organic layers were washed with saturated NaHCO₃ (30 mL) followed by 20 mL brine, dried over Na₂SO₄ and then the solvent was removed via rotary evaporation to yield compound **10g** as a colorless oil (8.00 g, 34.9 mmol, 88%). This product was used in the next step without further purification.

Step-2: Following a slightly modified procedure,¹ a 100 mL two-neck round bottom flask charged with methyl 2-(2-bromophenyl)acetate (**10g**) (2.29 g, 10.0 mmol, 1.00 equiv), *p*-ABSA (3.60 g, 15.0 mmol, 1.50 equiv) and MeCN (30 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (3.0 mL, 20.0 mmol, 2.0 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (30 mL), and the organic layer was extracted with diethyl ether (2×50 mL), dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (silica, 1:20 v/v Et₂O:Hexane) to afford the title product **11g** as a yellow liquid (2.0 g, 7.9 mmol, 79%).

- TLC (Et₂O:Hexane, 1:9 v/v): $R_f = 0.40$, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.0 Hz, 1H, ArH), 7.51 (dd, J = 7.9, 1.7 Hz, 1H, ArH), 7.41 7.33 (m, 1H, ArH), 7.25 7.11 (m, 1H, ArH), 3.84 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 166.0, 133.3, 133.0, 130.1, 127.7, 125.7, 124.5, 52.3.
 One carbon was not resolved at 101 MHz.

The characterization data matched the reported values.¹

Methyl 2-diazo-2-(3-(trifluoromethyl)phenyl)acetate (11h)

Step-1: Following a slightly modified procedure,¹ a 100 mL round bottom flask was charged with 2-(3-(trifluoromethyl)phenyl)acetic acid (**9g**) (8.16 g, 40.0 mmol, 1.00 equiv) in methanol (40 mL). Then, 4-6 drops of concentrated H₂SO₄ were added to the resulting mixture at room temperature and allowed to stir overnight at 80 °C. After concentrating the reaction mixture, the residue was diluted with water (40 mL) and the reaction mixture was extracted with ethyl acetate (3×60 mL). The combined organic phases were washed with saturated NaHCO₃ (30 mL) followed by 20 mL brine, dried over Na₂SO₄ and then the solvent was removed via rotary evaporation to yield compound **10h** as a colorless oil (7.60 g, 34.8 mmol, 88%). This product was used in the next step without further purification.

Step-2: Following a slightly modified procedure,¹ a 100 mL two-neck round bottom flask charged with methyl 2-(3-(trifluoromethyl)phenyl)acetate (**10h**) (2.18 g, 10.0 mmol, 1.00 equiv), *p*-ABSA (3.6 g, 15 mmol, 1.5 equiv) and MeCN (30 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (3.0 mL, 20 mmol, 2.0 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (30 mL), and the organic phase was extracted with diethyl ether (2×50 mL). The combined organic layers were dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (silica, 1:20 v/v Et₂O:Hexane) to afford the title product **11h** as a yellow solid (1.5 g, 6.1 mmol, 61%).

- TLC (Et₂O:Hexane, 1:9 v/v): $R_f = 0.55$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.79 (s, 1H, ArH), 7.64 (d, J = 7.9 Hz, 1H, ArH), 7.50 (t, J = 7.9 Hz, 1H, ArH), 7.43 (d, J = 7.8 Hz, 1H, ArH), 3.89 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 165.1, 131.6 (q, J =30.7 Hz), 129.5, 127.2, 126.8, 124.1 (q, J = 272.6 Hz), 122.5 (q, J = 4.0 Hz), 120.6 (q, J = 4.0 Hz), 52.3. One carbon was not resolved at 101 MHz.
- ¹⁹**F NMR (377 MHz, CDCl₃):** δ -63.34.

The characterization data matched the reported values.⁵

Ethyl 2-diazo-2-(2-(trifluoromethyl)phenyl)acetate (11i)

Step-1: Following a slightly modified procedure,¹ a 100 mL round bottom flask was charged with 2-(2-(trifluoromethyl)phenyl)acetic acid (**9c**) (4.08 g, 20.0 mmol, 1.00 equiv) in methanol (20 mL). Then, 2-3 drops of concentrated H₂SO₄ were added to the resulting mixture at room temperature and allowed to stir overnight at 90 °C. After concentrating the reaction mixture, the residue was diluted with water (20 mL) and the reaction mixture was extracted with ethyl acetate (3×30 mL). The combined organic layers were washed with saturated NaHCO₃ (15 mL) followed by 10 mL brine, dried over Na₂SO₄ and then the solvent was removed via rotary evaporation to yield compound **10i** as a colorless oil (3.20 g, 13.8 mmol, 69%). This product was used in the next step without further purification.

Step-2: Following a slightly modified procedure,¹ a 100 mL two-neck round bottom flask charged with methyl ethyl 2-(2-(trifluoromethyl)phenyl)acetate (**10i**) (2.32 g, 10.0 mmol, 1.00 equiv), *p*-ABSA (3.6 g, 15 mmol, 1.5 equiv) and MeCN (30 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (3.0 mL, 20 mmol, 2.0 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (30 mL), and the organic phase was extracted with diethyl ether (2×50 mL), dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (silica, 1:20 v/v Et₂O:Hexane) to afford the title product **11i** as a yellow liquid (2.10 g, 8.13 mmol, 81%).

- TLC (Et₂O:Hexane, 1:9 v/v): $R_f = 0.51$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 7.9 Hz, 1H, ArH), 7.58 (d, J = 4.4 Hz, 2H, ArH), 7.51 7.42 (m, 1H, ArH), 4.27 (q, J = 7.1 Hz, 2H, CO₂CH₂CH₃), 1.27 (t, J = 7.2 Hz, 3H, CO₂CH₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 165.7, 134.3, 132.1, 129.8 (q, J = 30.2 Hz), 129.2, 126.7 (q, J = 5.3 Hz), 122.4 (q, J = 274.72 Hz), 61.3, 58.4, 14.2. One carbon was not resolved at 101 MHz.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -61.7.
 The characterization data matched the reported values.⁶

Methyl 2-(4-bromophenyl)-2-diazoacetate (11j)

Step-1: Following a slightly modified procedure,¹ a 100 mL round bottom flask was charged with 2-(4-bromophenyl)acetic acid (**9i**) (8.52 g, 40.0 mmol, 1.00 equiv) in methanol (40 mL). Then, 4-6 drops of concentrated H₂SO₄ were added to the resulting mixture at room temperature and allowed to stir overnight at 80 °C. After concentrating the reaction mixture, the residue was diluted with water (40 mL) and the reaction mixture was extracted with ethyl acetate (3×60 mL). The combined organic layers were washed with saturated NaHCO₃ (30 mL) followed by 20 mL brine, dried over Na₂SO₄ and then the solvent was removed via rotary evaporation to yield compound **10j** as a colorless oil (7.90 g, 34.5 mmol, 86%). This product was used in the next step without further purification.

Step-2: Following a slightly modified procedure,¹ a 100 mL two-neck round bottom flask charged with methyl 2-(4-bromophenyl)acetate (**10j**) (2.29 g, 10.0 mmol, 1.00 equiv), *p*-ABSA (3.6 g, 15mmol, 1.5 equiv) and MeCN (30 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (3.0 mL, 20 mmol, 2.0 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (30 mL), and the organic layer was extracted with diethyl ether (2×50 mL). The combined organic layers were dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (silica, 1:20 v/v Et₂O:Hexane) to afford the title product **11j** as a yellow liquid (2.2 g, 8.6 mmol, 86%).

- TLC (Et₂O:Hexane, 1:9 v/v): $R_f = 0.50$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.50 (dd, J = 8.6, 1.6 Hz, 2H, ArH), 7.36 (dd, J = 8.7, 1.6 Hz, 2H, ArH), 3.87 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 165.2, 132.0, 125.3, 124.7, 119.3, 52.1. One carbon was not resolved at 101 MHz.

The characterization data matched the reported values.¹

Methyl 2-diazo-2-(4-methoxyphenyl)acetate (11k)

Step-1: Following a slightly modified procedure,¹ a 100 mL round bottom flask was charged with 2-(4-methoxyphenyl)acetic acid (**9j**) (6.64 g, 40.0 mmol, 1.0 equiv) in methanol (40 mL). Then, 4-6 drops of concentrated H₂SO₄ were added to the resulting mixture at room temperature and allowed to stir overnight at 80 °C. After concentrating the reaction mixture, the residue was diluted with water (40 mL) and the reaction mixture was extracted with ethyl acetate (3×60 mL). The combined organic layers were washed with saturated NaHCO₃ (30 mL) followed by 20 mL brine, dried over Na₂SO₄ and then the solvent was removed via rotary evaporation to yield compound **10k** as a colorless oil (6.35 g, 34.5 mmol, 88%). This product was used in the next step without further purification.

Step-2: Following a slightly modified procedure,¹ a 100 mL two-neck round bottom flask charged with methyl 2-(2-methoxyphenyl)acetate (**10k**) (1.8 g, 10 mmol, 1.0 equiv), *p*-ABSA (4.8 g, 20 mmol, 2.0 equiv) and MeCN (30 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (4.5 mL, 30 mmol, 3.0 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (30 mL), and the organic phase was extracted with diethyl ether (2×50 mL). The combined organic layers were dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (silica, 1:20 v/v Et₂O:Hexane) to afford the title product **11k** as a red liquid (1.45 g, 7.00 mmol, 70%).

- **TLC** (Et₂O:Hexane, 1:9 v/v): $R_f = 0.30$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.42 7.33 (m, 2H, ArH), 6.98 6.90 (m, 2H, ArH), 3.85 (s, J = 1.4 Hz, 3H, ArOCH₃), 3.80 (s, J = 1.6 Hz, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 166.2, 158.0, 125.9, 116.8, 114.6, 55.3, 51.9. One carbon was not resolved at 101 MHz.

The characterization data matched the reported values.¹

Dimethyl 2-diazomalonate (111)

Following a slightly modified procedure,¹ a 100 mL two-neck round bottom flask charged with dimethyl malonate (**10l**) (2.2 mL, 19 mmol, 1.0 equiv), *p*-ABSA (6.8 g, 28.5 mmol, 1.50 equiv) and MeCN (57 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (5.68 mL, 38.0 mmol, 2.00 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (60 mL), and the organic layer was extracted with diethyl ether (2×100 mL). The combined organic layers were dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (silica, 1:10-3:7 v/v Et₂O:Hexane) to afford the title product **11l** as a pale-yellow liquid (1.6 g, 8.6 mmol, 53%, solid at -20 °C).

- TLC (Et₂O:Hexane, 4:6 v/v): $R_f = 0.25$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 3.85 (s, 6H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 161.2, 52.4. One carbon was not resolved at 101 MHz.

The characterization data matched the reported values.¹

Diethyl 2-diazomalonate (11m)

Following a slightly modified procedure,¹ a 100 mL two-neck round bottom flask charged with diethyl malonate (**10m**) (1.5 mL, 10.0 mmol, 1.0 equiv), *p*-ABSA (3.6 g, 15.0 mmol, 1.50 equiv) and MeCN (30 mL, 0.3 M) under argon atmosphere. The reaction mixture was cooled to 0 °C in an ice bath. To this ice-cold solution, DBU (3.1 mL, 20.0 mmol, 2.00 equiv) was added dropwise while stirring, and the reaction mixture was allowed to stir at room temperature for 24 h. The reaction mixture was quenched with water (30 mL), and the organic layer was extracted with diethyl ether (2×500 mL). The combined organic layers were dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column

chromatography (silica, 1:10-3:7 v/v Et₂O:Hexane) to afford the title product **11m** as a paleyellow liquid (1.1 g, 6.0 mmol, 60%).

- TLC (Et₂O:Hexane, 1:1 v/v): $R_f = 0.50$, UV.
- ¹H NMR (400 MHz, CDCl₃): δ 4.36 4.22 (m, 4H, CO₂CH₂CH₃), 1.39 1.26 (m, 6H, CO₂CH₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 161.0, 61.6, 14.3. One carbon was not resolved at 101 MHz.

The characterization data matched the reported values.¹

2.2 Procedures for the synthesis of Cyclopropenes:

Methyl-1,2,3-triphenylcycloprop-2-ene-1-carboxylate (1a)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11a** (880 mg, 5.00 mmol, 1.00 equiv) and diphenyl acetylene (**12a**) (6.23 g, 35.0 mmol, 7.0 equiv) were dissolved in 50 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 3% Et₂O/hexane as eluent to afford the title compound **1a** (1.10 g, 3.37 mmol, 67%) as colorless solid.

- TLC (Et₂O/Hexane, 2:8 v/v): $R_f = 0.50$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, J = 8.1 Hz, 4H, ArH), 7.52 7.45 (m, 6H, ArH), 7.44 7.37 (m, 2H, ArH), 7.31 7.26 (m, 2H, ArH), 7.23 7.17 (m, 1H, ArH), 3.72 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.4, 140.0, 129.9, 129.4, 129.0, 128.14, 128.06
 126.5, 126.4, 111.3, 52.1, 35.4.

The characterization data matched the reported values.⁷

tert-Butyl 1,2,3-triphenylcycloprop-2-ene-1-carboxylate (1b)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11b** (654 mg, 3.00 mmol, 1.00 equiv) and diphenyl acetylene (**12a**) (3.74 g, 21.0 mmol, 7.00 equiv) were dissolved in 30 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 2% Et₂O/hexane as eluent to afford the title compound **1a** (200 mg, 0.54 mmol, 18%) as colorless sticky solid. (*See Spectra*)

• TLC (Et₂O/Hexane, 1:9 v/v): $R_f = 0.50$, UV, KMnO₄.

- ¹H NMR (400 MHz, CDCl₃): δ 7.79 7.74 (m, 4H, ArH), 7.50 7.44 (m, 6H, ArH), 7.41 7.36 (m, 2H, ArH), 7.29 7.23 (m, 2H, ArH), 7.21 7.14 (m, 1H, ArH), 1.42 (s, 9H, CO₂^tBu).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.1, 140.7, 129.8, 129.1, 128.9, 128.0, 127.9, 127.0, 126.1, 111.8, 80.5, 36.7, 28.1.
- IR (Neat, cm⁻¹): υ 2949 (m), 2918 (w), 2858 (m), 1725 (s), 1488 (m), 1448 (m), 1263 (s), 756 (m), 698 (m).
- HRMS (ESI): Calcd. for C₂₆H₂₄O₂Na⁺ [M+Na]⁺ 391.1674; found: 391.1676

Methyl-2,3-diphenyl-1-(*o*-tolyl)cycloprop-2-ene-1-carboxylate (1c)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11c** (570 mg, 3.00 mmol, 1.00 equiv) and diphenyl acetylene (**12a**) (3.74 g, 21.0 mmol, 7.00 equiv) were dissolved in 30 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 3% Et₂O/hexane as eluent to afford the tittled compound **1c** (600 mg, 1.76 mmol, 59%) as sticky solid. (*See Spectra*)

- TLC (Et₂O/Hexane, 2:8 v/v): $R_f = 0.40$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.82 7.77 (m, 4H, ArH), 7.49 (t, J = 7.5 Hz, 4H, ArH), 7.43 7.38 (m, 2H, ArH), 7.24 7.13 (m, 3H, ArH), 7.04 (td, J = 7.4, 1.7 Hz, 1H, ArH), 3.76 (s, 3H, CO₂CH₃), 2.57 (s, 3H, ArCH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.9, 139.5, 137.2, 130.4, 129.6, 129.3, 128.9, 128.2, 127.3, 127.1, 125.9, 113.8, 52.3, 36.2, 20.6.
- IR (Neat, cm⁻¹): v 2953 (s), 2922 (s), 2854 (m), 1721 (s), 1490 (m), 1452 (m), 1263 (s), 758 (s), 689 (m).
- **HRMS (ESI):** Calcd. for C₂₄H₂₀O₂Na⁺ [M+Na]⁺ 363.1361; found: 363.1366

Methyl-2,3-diphenyl-1-(2-(trifluoromethyl)phenyl)cycloprop-2-ene-1-carboxylate (1d)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11d** (1.22 g, 5.00 mmol, 1.00 equiv) and diphenyl acetylene (**12a**) (6.23 g, 35.0 mmol, 7.00 equiv) were dissolved in 50 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 3% Et₂O/hexane as eluent to afford the title compound **1d** (1.10 g, 2.80 mmol, 56%) as brown solid. (*See Spectra*)

- **Melting point:** 126 128 °C.
- TLC (Et₂O/Hexane, 2:8 v/v): $R_f = 0.40$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.82 7.77 (m, 4H, ArH), 7.66 (dd, J = 5.6, 3.7 Hz, 1H, ArH), 7.53 7.47 (m, 4H, ArH), 7.46 7.41 (m, 3H, ArH), 7.39 7.34 (m, 2H, ArH), 3.74 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174, 138.8, 131.8, 130.2, 129.55, 129.54 (q, J = 30.3 Hz), 129.5, 129.0, 127.4, 127.3 (q, J = 5.0 Hz), 126.9, 125.1 (q, 123.7, J = 275.7 Hz), 113.5, 52.1, 36.7.
- ¹⁹F NMR (377 MHz, CDCl₃) δ -56.65.
- IR (Neat, cm⁻¹): v 2954 (w), 2922 (w), 2856 (w), 1727 (s), 1491 (m), 1453 (m), 1264 (m), 759 (s), 691 (w).
- **HRMS (ESI):** Calcd. for C₂₄H₁₇F₃O₂Na⁺ [M+Na]⁺ 417.1078; found: 417.1078.

Methyl-1-(2-methoxyphenyl)-2,3-diphenylcycloprop-2-ene-1-carboxylate (1e)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11e** (1.03 g, 5.00 mmol, 1.00 equiv) and diphenyl acetylene (**12a**) (6.23 g, 35.0 mmol, 7.00 equiv) were dissolved in 50 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated

under vacuum and the residue was purified by flash chromatography using 3% Et_2O /hexane as eluent to afford the title compound **1e** (800 mg, 2.24 mmol, 45%) as sticky solid. (*See Spectra*)

- TLC (Et₂O/Hexane, 2:8 v/v): R_f = 0.50, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 7.5 Hz, 4H, ArH), 7.50 (t, J = 7.7 Hz, 4H, ArH), 7.41 (t, J = 7.5 Hz, 2H, ArH), 7.26 7.19 (m, 2H, ArH), 6.94 (d, J = 8.1 Hz, 1H, ArH), 6.82 (t, J = 7.5 Hz, 1H, ArH), 3.98 (s, 3H, ArOCH₃), 3.73 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.9, 158.4, 130.1, 130.0, 129.2, 128.8, 128.6, 128.2, 127.2, 120.6, 113, 110.7, 55.4, 52 3, 33.0.
- IR (Neat, cm⁻¹): υ 2953 (w), 2922 (m), 2852 (w), 1723 (s), 1490 (m), 1455 (m), 1260 (m), 754 (s), 690 (m).
- **HRMS (ESI):** Calcd. for C₂₄H₂₀O₃H⁺ [M+H]⁺ 357.1491; found: 357.1494.

Methyl-1-(2-chlorophenyl)-2,3-diphenylcycloprop-2-ene-1-carboxylate (1f)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11f** (630 mg, 3.00 mmol, 1.00 equiv) and diphenyl acetylene (**12a**) (3.74 g, 21.0 mmol, 7.00 equiv) were dissolved in 30 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 3% Et₂O/hexane as eluent to afford the title compound **1f** (550 mg, 1.53 mmol, 51%) as sticky solid. (*See Spectra*)

- TLC (Et₂O/Hexane, 2:8 v/v): R_f = 0.50, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 7.0 Hz, 4H, ArH), 7.50 (t, J = 7.6 Hz, 4H, ArH), 7.45-7.37 (m, 3H, ArH), 7.29 7.25 (m, 1H, ArH), 7.21 7.14 (m, 1H, ArH), 7.12 7.06 (m, 1H, ArH), 3.77 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.0, 139.2, 134.8, 129.9, 129.61, 129.55 129.5, 129.0, 128.4, 126.9, 126.6, 112.9, 52.4, 35.8.
- IR (Neat, cm⁻¹): v 3061 (w), 2922 (m), 2854 (w), 1724 (s), 1439 (m), 1287 (w), 1217 (s), 752 (s), 689 (m).

• **HRMS (ESI):** Calcd. for C₂₃H₁₇ClO₂Na⁺ [M+Na]⁺ 383.0815; found: 383.0813.

Methyl-1-(2-bromophenyl)-2,3-diphenylcycloprop-2-ene-1-carboxylate (1g)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11g** (510 mg , 2.00 mmol, 1.00 equiv) and diphenyl acetylene (12a) (2.50 g, 14.0 mmol, 7.00 equiv) were dissolved in 20 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 3% Et₂O/hexane as eluent to afford the title compound **1g** (450 mg, 1.11 mmol, 56%) as brown sticky solid. (*See Spectra*)

- TLC (Et₂O/Hexane, 2:8 v/v): $R_f = 0.40$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 7.7 Hz, 4H), 7.58 (d, J = 7.8 Hz, 1H), 7.52 7.46 (m, 4H, ArH)), 7.45-7.39 (m, 2H, ArH)), 7.27-7.24 (m, 1H, ArH)), 7.17 7.06 (m, 2H, ArH)), 3.78 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.8, 141.1, 133.03, 129.97, 129.8, 129.6, 129.0, 128.5, 127.5, 126.7, 125.0, 113.1, 52.4, 37.9.
- IR (Neat, cm⁻¹): v 3060 (w), 2921 (s), 2854 (m), 1727 (s), 1458 (m), 1286 (w), 1216 (m), 1057 (m), 689 (m).
- **HRMS (ESI):** calcd. for $C_{23}H_{17}BrO_2H^+$ [M+Na]⁺ 405.0490; found: 405.0492.

Methyl-2,3-diphenyl-1-(3-(trifluoromethyl)phenyl)cycloprop-2-ene-1-carboxylate (1h)

Following a slightly modified procedure,⁶ in a 100 mL sealed tube, the diazo compound **11h** (611 mg, 2.50 mmol, 1.00 equiv) and diphenyl acetylene (**12a**) (3.11 g, 17.5 mmol, 7.00 equiv) were dissolved in 25 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated

under vacuum and the residue was purified by flash chromatography using 3-5% Et_2O /hexane as eluent to afford the title compound **1h** (500 mg, 1.27 mmol, 50%) as colorless sticky solid. (*See Spectra*)

- TLC (Et₂O/Hexane, 2:8 v/v): $R_f = 0.40$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.87 (s, 1H, ArH), 7.77 (d, J = 7.6 Hz, 4H, ArH), 7.67 (d, J = 8.1 Hz, 1H, ArH), 7.56 7.36 (m, 8H, ArH), 3.74 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.8, 141.1, 131.4, 130.5, 130.2, 129.8, 129.7, 129.1, 128.5, 126.0, 124.9 (q, J = 4.0 Hz), 123.2 (q, J = 4.0 Hz), 110.5, 52.2, 34.9.
- ¹⁹F NMR (**377** MHz, CDCl₃) δ -62.39.
- IR (Neat, cm⁻¹): v 3064 (w), 2952 (w), 2345 (m), 1728 (s), 1443 (w), 1314 (s), 1214 (m), 1120 (s), 758 (s).
- **HRMS** (**ESI**): Calcd. for C₂₄H₁₇F₃O₂Na⁺ [M+Na]⁺ 417.1078; found: 417.1080.

Methyl-2-phenyl-1-(2-(trifluoromethyl)phenyl)cycloprop-2-ene-1-carboxylate (1i)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11d** (732 mg. 3.00 mmol, 1.00 equiv) and ethynylbenzene (**12b**) (3.06 g, 30.0 mmol, 10.0 equiv) were dissolved in 30 mL dry DCM under argon. The solution was stirred at an ambient temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 3% Et₂O/hexane as eluent to afford the title compound **1i** (610 mg, 1.92 mmol, 63%) as brown solid. (*See Spectra*)

- Melting point: 99-101 °C.
- TLC (Et₂O/Hexane, 2:8 v/v): $R_f = 0.40$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.71 7.62 (m, 3H, ArH), 7.55 7.33 (m, 6H, ArH), 7.30 (s, 1H, C=CH), 3.69 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.9, 140.4 (q, J = 1.8 Hz), 132.0, 131.1, 130.1, 129.6, 129.1 (q, J = 30.3 Hz), 129.0, 127.4, 126.6 (q, J = 5 Hz), 125.8, 124.7 (q, J = 274.7 Hz), 117.6, 103.7 (q, J = 3.6 Hz), 52.4, 32.7.
- ¹⁹F NMR (377 MHz, CDCl₃) δ -59.53.

- IR (Neat, cm⁻¹): v 2923 (s), 2855 (m), 2361 (w), 1748 (s), 1461 (w), 1295 (w), 755 (w), 656 (w).
- **HRMS (ESI):** Calcd. for C₁₈H₁₃F₃O₂Na⁺ [M+Na]⁺ 341.0765; found: 341.0765.

Methyl-2-(3-chlorophenyl)-1-(2-(trifluoromethyl)phenyl)cycloprop-2-ene-1carboxylatecarboxylate (1j)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11d** (732 mg. 3.00 mmol, 1.00 equiv) and 1-chloro-3-ethynylbenzene (**12c**) (4.1 g, 30 mmol, 10 equiv) were dissolved in 30 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 3% Et₂O/hexane as eluent to afford the title compound **1j** (550 mg, 1.56 mmol, 52%) as brown liquid. (*See Spectra*)

- TLC (Et₂O/Hexane, 2:8 v/v): $R_f = 0.40$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.66 7.63 (m, 2H, ArH), 7.58 7.53 (m, 1H, ArH), 7.48 7.35 (m, 6H, ArH), 3.69 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.5, 139.9, 135.0, 132.1, 131.0, 130.3, 130.2, 129.3, 129.1 (q, J = 30.3 Hz), 127.62, 127.58, 126.7 (q, J = 5 Hz), 124.6 (q, J = 274.7 Hz), 116.9, 105.5, 52.5, 33.1. One carbon was not resolved at 101 MHz.
- ¹⁹F NMR (**377** MHz, CDCl₃) δ -59.48.
- IR (Neat, cm⁻¹): v 3061 (w), 3022 (w), 2949 (w), 1720 (s), 1443 (w), 1215 (s), 756 (m), 690 (m).
- **HRMS (ESI):** Calcd. for C₁₈H₁₂F₃O₂Na⁺ [M+Na]⁺ 375.0376; found: 375.0373

Methyl-2-(m-tolyl)-1-(2-(trifluoromethyl)phenyl)cycloprop-2-ene-1-carboxylate (1k)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11d** (732 mg. 3.0 mmol, 1.0 equiv) and 1-ethynyl-3-methylbenzene (**12d**) (3.3 g, 30 mmol, 10 equiv) were dissolved in 30 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 4% Et₂O/hexane as eluent to afford the title compound **1k** (470 mg, 1.41 mmol, 47%) as brown liquid. (*See Spectra*)

- TLC (Et₂O/Hexane, 2:8 v/v): $R_f = 0.45$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 6.4 Hz, 1H, ArH), 7.60 7.47 (m, 3H, ArH), 7.47-7.34 (m, 3H, ArH), 7.33 7.24 (m, 2H, ArH), 3.72 (s, 3H, CO₂CH₃), 2.45 (s, 3H, ArCH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 175.0, 140.5, 138.8, 132.0, 131.1, 131.0, 130.1, 129.1 (q, J = 30.3 Hz), 128.9, 127.4, 126.7, 126.6 (q, J = 5 Hz), 125.7, 124.7 (q, J = 274.7 Hz), 117.6, 103.5 (q, J = 4 Hz), 52.4, 32.6, 21.3.
- ¹⁹F NMR (377 MHz, CDCl₃) δ -59.54.
- IR (Neat, cm⁻¹): v 2922 (s), 2854 (w), 1726 (s), 1443 (w), 1313 (s), 1211 (m), 1119 (s), 768 (m).
- **HRMS (ESI):** calcd. for C₁₉H₁₅F₃O₂Na⁺ [M+Na]⁺ 355.0922; found: 355.0922.

Methyl-2-(4-fluorophenyl)-1-(2-(trifluoromethyl)phenyl)cycloprop-2-ene-1-carboxylate (11)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11d** (488 mg. 2.00 mmol, 1.00 equiv) and 1-ethynyl-4-fluorobenzene (**12e**) (2.4 g, 20 mmol, 10 equiv) were dissolved in 20 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 3-5% Et₂O/hexane as eluent to afford the title compound **11** (390 mg, 1.16 mmol, 58%) as brown liquid. (*See Spectra*)

• TLC (Et₂O/Hexane, 2:8 v/v): $R_f = 0.50$, UV, KMnO₄.

- ¹H NMR (400 MHz, CDCl₃): δ 7.69 7.62 (m, 3H, ArH), 7.51 7.34 (m, 3H, ArH), 7.28 (s, 1H, C=CH), 7.21 7.14 (m, 2H, ArH), 3.69 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.8, 164.8, 162.3, 140.2, 132.0, 131.6, 131.5, 130.9, 129.1 (q, J = 30.3 Hz), 127.5, 126.7 (q, J = 5.0 Hz), 124.7 (q, J = 274.7 Hz), 122.1 (d, J = 3.3 Hz), 116.8, 116.3 (d, J = 22.2 Hz), 103.3, 52.4, 32.8.
- ¹⁹F NMR (**377** MHz, CDCl₃) δ -59.46, -108.89.
- IR (Neat, cm⁻¹): υ 2951 (w), 2920 (m), 2859 (w), 1720 (s), 1444 (m), 1263 (m), 1214 (s), 1123 (w), 755 (s).
- **HRMS (ESI):** Calcd. for C₁₈H₁₂F₄O₂H⁺ [M+H]⁺ 337.0852; found: 337.0850.

Methyl-2-(4-ethoxyphenyl)-1-(2-(trifluoromethyl)phenyl)cycloprop-2-ene-1-carboxylate (1m)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11d** (488 mg. 2.00 mmol, 1.00 equiv) and 1-ethoxy-4-ethynylbenzene (**12f**) (2.93 g, 20.0 mmol, 10.0 equiv) were dissolved in 20 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 4-7% Et₂O/hexane as eluent to afford the title compound **1m** (370 mg, 1.00 mmol, 50%) as brown liquid. (*See Spectra*)

- **TLC (Et2O/Hexane, 2:8 v/v):** $R_f = 0.30$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.66 7.58 (m, 3H, ArH), 7.55 7.51 (m, 1H, ArH), 7.43 7.32 (m, 2H, ArH), 7.13 (s, 1H, C=CH), 6.98 (d, J = 8.8 Hz, 2H, ArH), 4.09 (q, J = 7.0 Hz, 2H, ArOCH₂CH₃), 3.68 (s, 3H, CO₂CH₃), 1.45 (t, J = 7.0 Hz, 3H, ArOCH₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 175.1, 160.4, 140.8, 132.0, 131.2, 131.0, 129.1 (q, J = 30.3 Hz), 127.3, 126.6 (q, J = 5 Hz), 124.7 (q, J = 274.7 Hz), 118.1, 117.3, 115.0, 100.8, 63.6, 52.3, 32.5, 14.7.
- ¹⁹F NMR (**377** MHz, CDCl₃) δ -59.51.

- IR (Neat, cm⁻¹): v 2983 (w), 2946 (w), 1724 (s), 1604 (s), 1441 (s), 1245 (s), 1210 (s), 1115 (m), 768 (m).
- **HRMS (ESI):** Calcd. for $C_{20}H_{17}F_3O_3H [M+H]^+$ 363.1208; found: 363.1209.

Ethyl-2,3-diphenyl-1-(2-(trifluoromethyl)phenyl)cycloprop-2-ene-1-carboxylate (1n)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11i** (774 mg, 3.00 mmol, 1.00 equiv) and diphenyl acetylene (**12a**) (3.74 g, 21.0 mmol, 7.00 equiv) were dissolved in 30 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 4% Et₂O/hexane as eluent to afford the title compound **1n** (700 g, 1.71 mmol, 57%) as colorless sticky solid. (*See Spectra*)

- TLC (Et₂O/Hexane, 2:8 v/v): R_f = 0.35, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 7.6 Hz, 4H, ArH), 7.64 (dd, J = 5.7, 3.6 Hz, 1H, ArH), 7.50 (t, J = 7.5 Hz, 4H, ArH), 7.42 (dd, J = 8.8, 6.2 Hz, 3H, ArH), 7.38 7.33 (m, 2H, ArH), 4.22 (q, J = 7.1 Hz, 2H, CO₂CH₂CH₃), 1.21 (t, J = 7.1 Hz, 3H, CO₂CH₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.4, 138.8, 131.8, 130.3, 129.53 (q, J = 31.3 Hz), 129.47, 128.9, 127.3, 127.2 (q, J = 5 Hz), 127.0, 125.1 (q, J = 274.7 Hz), 113.6, 61.0, 36.9, 14.1.
- ¹⁹F NMR (377 MHz, CDCl₃) δ -56.40.
- IR (Neat, cm⁻¹): v 2922 (m), 2855 (w), 1723 (s), 1447 (w), 1314 (s), 1252 (m), 1210 (m), 1119 (s), 759 (s), 689 (m).
- **HRMS (ESI):** Calcd. for C₂₅H₁₉F₃O₂Na⁺ [M+Na]⁺ 431.1235; found: 431.1235.

Dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (10)

Following a slightly modified procedure,⁸ dimethyl 2-diazomalonate (**111**) (506 mg, 3.20 mmol, 1.00 equiv.) was dissolved in DCM (0.5 M) and the resulting solution was added via syringe pump to a suspension of $Rh_2(OAc)_4$ (0.01 equiv) and phenyl acetylene (**12b**) (980 mg, 9.6 mmol, 3.0 equiv) in DCM (0.8 M) at room temperature over 10 h. After the addition was complete, the reaction mixture was allowed to stir for another 10 h. The reaction mixture was then filtered through a small pad of silica eluting with CH_2Cl_2 , and the filtrate was concentrated under reduced pressure. After 20 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 10-20% Et₂O/hexane as eluent to afford the title compound **10** (435 mg, 1.87 mmol, 58%) as pale yellow solid.

- **TLC** (**Et₂O/Hexane**, **3:7** v/v): R_f = 0.40, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.65 7.58 (m, 2H, ArH), 7.46 7.39 (m, 3H, ArH), 6.89 (s, 1H, C=CH), 3.72 (s, 6H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 171.0, 130.5, 130.2, 128.8, 123.8, 112.1, 95.1, 52.3, 32.7.

The characterization data matched the reported value.⁸

2,3-Diphenyl-1-(o-tolyl)cycloprop-2-en-1-yl)methanol (1p)

Following a slightly modified procedure,⁹ a stirred solution of ester **1c** (340 mg, 1.00 mmol, 1.00 equiv) in THF (2 mL) was cooled to -78 °C. To this, DIBAL-H (2.2 mL, 2.2 mmol, 2.2 equiv) was added dropwise, and the mixture was allowed to stir for 2 h at -78 °C, and then the cold bath was removed, and the mixture was allowed to stir while it was warmed to rt over 1 h. Next, the mixture was quenched with saturated aqueous NaHCO₃ (1 mL) and stirred for 30 min. Then 5 mL 1M HCl was added to remove the alumina gel. Then, the reaction mixture was extracted with diethyl ether (3 × 10 mL). The combined organic layers were dried with Na₂SO₄ and then concentrated. The residue was purified by chromatography using 7-10% Et₂O/hexane to give the title compound **1p** (180 mg, 0.57 mmol, 57%) as a colorless oil. (*See Spectra*)

- TLC (Et₂O/Hexane, 3:7 v/v): $R_f = 0.30$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.89 7.75 (m, 3H, ArH), 7.49 (td, J = 7.4, 3.2 Hz, 4H, ArH), 7.43 7.33 (m, 3H, ArH), 7.28 7.24 (m, 1H, ArH), 7.18 7.04 (m, 3H, ArH), 4.30 (s, 2H, CCH₂OH), 2.58 (s, 3H, ArCH₃).

- ¹³C NMR (101 MHz, CDCl₃): δ 142.6, 136.5, 130.9, 129.8, 129.7, 129.2, 128.8, 128.7, 126.8, 126.0, 120.6, 67.3, 37.0, 21.6.
- IR (Neat, cm⁻¹): v 3323 (w), 2922 (s), 2854 (m), 1457 (w), 1377 (w), 1298 (w), 1184 (w), 1034 (w), 756 (w), 699 (m).
- **Mass:** Calcd. for C₂₃H₁₈ONa⁺ [M+Na]⁺ 335.1412; found: 335.1417.

2-Phenyl-1-(2-(trifluoromethyl)phenyl)cycloprop-2-en-1-yl)methanol (1q)

Following a slightly modified procedure,⁹ a stirred solution of ester **1i** (954 mg, 3.00 mmol, 1.00 equiv) in THF (6 mL) was cooled to -78 °C. To this, DIBAL-H (6.6 mL, 6.6 mmol, 2.2 equiv) was added dropwise, and the mixture was allowed to stir for 2 h at -78 °C, and the mixture was allowed to stir while it was warmed to rt over 1 h. Next, the mixture was quenched with saturated aqueous NaHCO₃ (3 mL) and stirred for 30 min. Then 15 mL 1M HCl was added to remove the alumina gel. Then, the reaction mixture was extracted with diethy ether (3 × 20 mL). The combined organic layers were dried with Na₂SO₄ and then concentrated. The residue was purified by chromatography using 7-10% Et₂O/hexane to give the title compound **1q** (600 mg, 2.00 mmol, 66%) as a brown liquid. (*See Spectra*)

- TLC (Et₂O/Hexane, 3:7 v/v): R_f = 0.25, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 7.6 Hz, 2H, ArH), 7.72 (d, J = 7.7 Hz, 1H, ArH), 7.66 (d, J = 7.9 Hz, 1H, ArH), 7.52-7.38 (m, 5H, ArH), 7.34 (t, J = 7.7 Hz, 1H, ArH), 4.27 (d, J = 11.4 Hz, 1H, CCH₂OH), 3.82 (d, J = 11.4 Hz, 1H, CCH₂OH), 1.66 1.58 (m, 1H, CCH₂OH).
- ¹³C NMR (101 MHz, CDCl₃): δ 143.5, 132.5, 132.0, 129.4, 129.3, 128.8, 128.7 (q, J = 20.2 Hz), 128.1, 126.9, 126.8, 126.7 (q, J = 4 Hz), 124.7 (q, J = 102.8 Hz), 109.0, 68.8, 33.7.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -59.14.
- **IR** (Neat, cm⁻¹): v 3409 (w), 2923 (w), 2853 (w), 1447 (w), 1313 (s), 1268 (w), 1117 (s), 1037 (m), 765 (m), 655 (m).
- **Mass:** Calcd. for C₁₇H₁₃F₃ONa⁺ [M+Na]⁺ 313.0816; found: 313.0812.

Methyl-1-(4-bromophenyl)-2,3-diphenylcycloprop-2-ene-1-carboxylate (1r)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11j** (510 mg, 2.00 mmol, 1.00 equiv) and diphenyl acetylene (**12a**) (2.5 g, 14 mmol, 7.0 equiv) were dissolved in 20 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 3-5% Et₂O/hexane as eluent to afford the title compound **1r** (500 mg, 1.24 mmol, 62%) as colorless sticky solid. (*See Spectra*)

- TLC (Et₂O/Hexane, 2:8 v/v): $R_f = 0.50$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.76 7.72 (m, 4H, ArH), 7.53 7.47 (m, 4H, ArH), 7.46 7.38 (m, 6H, ArH), 3.72 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.0, 139.1, 131.1, 129.9, 129.8, 129.6, 129.1, 126.1, 120.2, 110.7, 52.2, 34.7.
- IR (Neat, cm⁻¹): υ 2922 (m), 2854 (w), 1728 (s), 1444 (w), 1314 (s), 1252 (m), 1213 (m), 1120 (s), 760 (s), 689 (w).
- **HRMS (ESI):** calcd. for C₂₃H₁₇BrO₂H⁺ [M+H]⁺ 405.0490; found: 405.0493.

Methyl 1-(4-methoxyphenyl)-2,3-diphenylcycloprop-2-ene-1-carboxylate (1s)

Following a slightly modified procedure,⁷ in a 100 mL sealed tube, the diazo compound **11k** (412 mg, 2.00 mmol, 1.00 equiv) and diphenyl acetylene (**12a**) (2.5 g, 14 mmol, 7.0 equiv) were dissolved in 20 mL dry DCM under argon. The solution was stirred at room temperature with the irradiation of 440 nm blue LEDs (Kessil lamp). After 16 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 5-10% Et₂O/hexane as eluent to afford the title compound **1s** (420 mg, 1.17 mmol, 59%) as colorless sticky solid. (*See Spectra*)

- TLC (Et₂O/Hexane, 2:8 v/v): R_f = 0.30, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.83 7.78 (m, 4H, ArH), 7.56 7.38 (m, 8H, ArH), 6.87 (d, J = 8.7 Hz, 2H, ArH), 3.78 (s, 3H, ArOCH₃), 3.75 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.8, 158.3, 132.3, 130.0, 129.5, 129.4, 129.1, 126.7, 113.6, 111.7, 55.3, 52.2, 34.8.
- IR (Neat, cm⁻¹): v 2923 (m), 2855 (w), 1728 (s), 1445 (w), 1315 (s), 1250 (m), 1213 (m), 1120 (s), 759 (s), 689 (w).
- **HRMS (ESI):** Calcd. for C₂₄H₂₀O₃H⁺ [M+H]⁺ 357.1491; found: 357.1495.

Dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (1t)

Following a slightly modified procedure,⁸ diethyl 2-diazomalonate (**11m**) (931 mg, 5.00 mmol, 1.00 equiv.) was dissolved in DCM (0.5 M) and the resulting solution was added via syringe pump to a suspension of $Rh_2(OAc)_4$ (0.01 equiv) and phenyl acetylene (**12b**) (1.6 ml, 15.0 mmol, 3.00 equiv) in DCM (0.8 M) at room temperature over 10 h. After the addition was complete, the reaction mixture was allowed to stir for another 10 h. The reaction mixture was then filtered through a small pad of silica eluting with CH_2Cl_2 , and the filtrate was concentrated under reduced pressure. After 20 h, the solvent was evaporated under vacuum and the residue

was purified by flash chromatography using 10-20% Et_2O /hexane as eluent to afford the title compound **1t** (650 mg, 2.50 mmol, 50%) as pale-yellow liquid.

- **TLC** (Et₂O/Hexane, 1:1 v/v): $R_f = 0.50$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.67 7.57 (m, 2H, ArH), 7.46 7.34 (m, 3H, ArH), 6.89 (s, 1H, C=CH), 4.18 (td, J = 7.0, 1.3 Hz, 4H, CO₂CH₂CH₃), 1.31 1.12 (m, 6H, CO₂CH₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 170.8, 130.4, 130.3, 128.8, 124.1, 112.5, 95.4, 61.1, 33.2, 14.11.

The characterization data matched the reported value.⁸

Dimethyl 2-phenylcycloprop-2-ene-1,1-dicarboxylate (1u)

Following a slightly modified procedure,⁸ dimethyl 2-diazomalonate (**11**) (506 mg, 3.20 mmol, 1.00 equiv.) was dissolved in DCM (0.5 M) and the resulting solution was added via syringe pump to a suspension of $Rh_2(OAc)_4$ (0.01 equiv) and 1-ethynyl-4-fluorobenzene (**12e**) (1.15 g, 9.60 mmol, 3.00 equiv) in DCM (0.8 M) at room temperature over 10 h. After the addition was complete, the reaction mixture was allowed to stir for another 10 h. The reaction mixture was then filtered through a small pad of silica eluting with CH_2Cl_2 , and the filtrate was concentrated under reduced pressure. After 20 h, the solvent was evaporated under vacuum and the residue was purified by flash chromatography using 15-20% Et₂O/hexane as eluent to afford the title compound **1u** (385 mg, 1.54 mmol, 48%) as pale yellow solid.

- TLC (Et₂O/Hexane, 3:7 v/v): R_f = 0.40, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.62 (dd, J = 8.7, 5.4 Hz, 2H, ArH), 7.14 (t, J = 8.7 Hz, 2H, ArH), 6.86 (s, 1H, C=CH), 3.74 (s, 6H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 171.0, 165.2, 162.7, 132.4 (d, J = 8.8 Hz), 120.3 (d, J = 3.4 Hz), 116.3 (d, J = 22.2 Hz), 111.3, 94.8 (d, J = 2.7 Hz), 52.5, 32.9.
- ¹⁹F NMR (377 MHz, CDCl₃) δ -108.03.
 The characterization data matched the reported value.⁸

2.3 Procedures for the synthesis of Maleimides:

General Procedure:

Following a slightly modified procedure,¹⁰ in a 100 mL round bottom flask, maleic anhydride **13** (2.0 equiv) and primary amine **14** (1.0 equiv) were stirred in acetic acid (1.5 mL per mmol of amine) until maleic anhydride dissolved completely. The reaction mixture was refluxed for 12 h at 130 °C. After completion of the reaction, the reaction mixture was then allowed to cool down to room temperature and the whole reaction mixture was transferred to a 500 mL beaker. A saturated NaHCO₃ aqueous solution was added to the beaker containing the reaction mixture until the effervescence stops. The aqueous mixture was extracted with ethyl acetate (3x20 mL per 5 mmol of amine) and brine solution (30 mL per 5 mmol of amine), respectively. The solvent was removed under vacuum and the residue was purified by flash chromatography using EtOAc/hexane as eluent to afford the title compound **2** (Compounds **2i**, **2l**, **2n** were purchased at highest commercial quality and used as received).

1-(4-Fluorophenyl)-1*H*-pyrrole-2,5-dione (2b)

Following general procedure,¹⁰ in a 100 mL round bottom flask, maleic anhydride (**13**) (3.96 g, 20.0 mmol, 2.00 equiv) and 4-fluoroaniline (**14a**) (1.1 g, 10 mmol, 1.0 equiv) were stirred in acetic acid (15 mL) until maleic anhydride dissolved completely. The reaction mixture was refluxed for 12 h at 130 °C. After completion of the reaction, the reaction mixture was then allowed to cool down to room temperature and the whole reaction mixture was transferred to a 500 mL beaker. A saturated NaHCO₃ aqueous solution was added to the beaker containing the reaction mixture until the effervescence stops. The aqueous mixture was extracted with ethyl acetate (3x40 mL). The combined organic layers were washed with 1 M HCl (2x100 mL) and brine solution (60 mL), respectively. The solvent was removed under vacuum and the residue

was purified by flash chromatography using 20-30% EtOAc/hexane as eluent to afford the title compound **2b** (800 mg, 4.20 mmol, 42%) as yellow solid.

- TLC (EtOAc/Hexane, 3:7 v/v): R_f = 0.50, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.31 (dd, J = 8.8, 4.9 Hz, 2H, ArH)), 7.15 (t, J = 8.5 Hz, 2H, ArH)), 6.84 (s, 2H, C=CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 169.4, 160.5, 134.0, 127.6, 127.0, 116.0.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -113.12.

The characterization data matched the reported value.¹⁰

1-(4-Chlorophenyl)-1*H*-pyrrole-2,5-dione (2c)

Following general procedure,¹⁰ in a 100 mL round bottom flask, maleic anhydride (**13**) (3.96 g, 20.0 mmol, 2.00 equiv) and 4-chloroaniline (**14b**) (1.27 g, 10.0 mmol, 1.00 equiv) were stirred in acetic acid (15 mL) until maleic anhydride dissolved completely. The reaction mixture was refluxed for 12 h at 130 °C. After completion of the reaction, the reaction mixture was then allowed to cool down to room temperature and the whole reaction mixture was transferred to a 500 mL beaker. A saturated NaHCO₃ aqueous solution was added to the beaker containing the reaction mixture until the effervescence stops. The aqueous mixture was extracted with ethyl acetate (3x40 mL). The combined organic layers were washed with 1 M HCl (2x100 mL) and brine solution (60 mL), respectively. The excess solvent was removed under under vacuum and the residue was purified by flash chromatography using 15-30% EtOAc/hexane as eluent to afford the tittled compound **2c** (700 mg, 3.3 mmol, 33%) as yellow solid.

- TLC (EtOAc/Hexane, 3:7 v/v): $R_f = 0.45$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 8.6 Hz, 2H, ArH), 7.31 (d, J = 8.5 Hz, 2H, ArH), 6.85 (s, 2H, C=CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 169.1, 134.2, 133.6, 129.7, 129.3, 127.1.
 The characterization data matched the reported value.¹⁰

4-(2,5-Dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)benzonitrile (2d)

Following general procedure,¹⁰ in a 100 mL round bottom flask, maleic anhydride (**13**) (3.96 g, 20.0 mmol, 2.00 equiv) and 4-aminobenzonitrile (**14c**) (1.18 g, 10.0 mmol, 1.00 equiv) were stirred in acetic acid (15 mL) until maleic anhydride dissolved completely. The reaction mixture was refluxed for 12 h at 130 °C. After completion of the reaction, the reaction mixture was then allowed to cool down to room temperature and the whole reaction mixture was transferred to a 500 mL beaker. A saturated NaHCO₃ aqueous solution was added to the beaker containing the reaction mixture until the effervescence stops. The aqueous mixture was extracted with ethyl acetate (3x40 mL). The combined organic layers were washed with 1 M HCl (2x100 mL) and brine solution (60 mL) respectively. The solvent was removed under vacuum and the residue was purified by flash chromatography using 15-30% EtOAc/hexane as eluent to afford the title compound **2d** (650 mg, 3.30 mmol, 33%) as colorless solid.

- TLC (EtOAc/Hexane, 3:7 v/v): R_f = 0.50, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 8.5 Hz, 2H, ArH), 7.59 (d, J = 8.4 Hz, 2H, ArH), 6.90 (s, 2H, C=CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 168.5, 135.3, 134.5, 132.9, 125.6, 118.1, 111.0.
 The characterization data matched the reported value.¹¹

1-(3-Chlorophenyl)-1*H*-pyrrole-2,5-dione (2e)

Following general procedure,¹⁰ in a 100 mL round bottom flask, maleic anhydride (**13**) (3.96 g, 20.0 mmol, 2.00 equiv) and 3-chloroaniline (**14d**) (1.27 g, 10 mmol, 1.00 equiv) were stirred in acetic acid (15 mL) until maleic anhydride dissolved completely. The reaction mixture was refluxed for 12 h at 130 °C. After completion of the reaction, the reaction mixture was then allowed to cool down to room temperature and the whole reaction mixture was transferred to a

500 mL beaker. A saturated NaHCO₃ aqueous solution was added to the beaker containing the reaction mixture until the effervescence stops. The aqueous mixture was extracted with ethyl acetate (3x40 mL). The combined organic layers were washed with 1 M HCl (2x100 mL) and brine solution (60 mL), respectively. The solvent was removed under vacuum and the residue was purified by flash chromatography using 20-30% EtOAc/hexane as eluent to afford the title compound **2e** (1.1 g, 5.3 mmol, 53%) as colorless solid.

- TLC (EtOAc/Hexane, 3:7 v/v): $R_f = 0.40$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.28 (3H, m, ArH), 7.27-7.22 (1H, m, ArH), 6.82 (2H, s, C=CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 168.9, 134.4, 134.1, 132.2, 129.9, 127.8, 125.9, 123.8.

The characterization data matched the reported value.¹¹

1-(3-Bromophenyl)-1*H*-pyrrole-2,5-dione (2f)

Following general procedure,¹⁰ in a 100 mL round bottom flask, maleic anhydride (**13**) (3.96 g, 20.0 mmol, 2.00 equiv) and 3-bromoaniline (**14e**) (1.27 g, 10.0 mmol, 1.00 equiv) were stirred in acetic acid (15 mL) until maleic anhydride dissolved completely. The reaction mixture was refluxed for 12 h at 130 °C. After completion of the reaction, the reaction mixture was then allowed to cool down to room temperature and the whole reaction mixture was transferred to a 500 mL beaker. A saturated NaHCO₃ aqueous solution was added to the beaker containing the reaction mixture until the effervescence stops. The aqueous mixture was extracted with ethyl acetate (3x40 mL). The combined organic layers were washed with 1 M HCl (2x100 mL) and brine solution (60 mL), respectively. The excess solvent was removed under vacuum and the residue was purified by flash chromatography using 15-20% EtOAc/hexane as eluent to afford the title compound **2f** (750 mg, 3.00 mmol, 30%) as yellow solid.

• TLC (EtOAc/Hexane, 3:7 v/v): R_f = 0.30, UV, KMnO₄.

- ¹H NMR (400 MHz, CDCl₃): δ 7.53 (s, 1H, ArH), 7.49 7.46 (m, 1H, ArH), 7.34 7.28 (m, 2H, ArH), 6.83 (s, 2H, C=CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 168.9, 134.1, 132.3, 130.8, 130.2, 128.7, 124.3, 122.2.

The characterization data matched the reported value.¹²

1-(3-(Trifluoromethyl)phenyl)-1*H*-pyrrole-2,5-dione (2g)

Following general procedure,¹⁰ in a 100 mL round bottom flask, maleic anhydride (**13**) (3.96 g, 20.0 mmol, 2.00 equiv) and 3-(trifluoromethyl)aniline (**14f**) (1.61 g, 10 mmol, 1.00 equiv) were stirred in acetic acid (15 mL) until maleic anhydride dissolved completely. The reaction mixture was refluxed for 12 h at 130 °C. After completion of the reaction, the reaction mixture was then allowed to cool down to room temperature and the whole reaction mixture was transferred to a 500 mL beaker. A saturated NaHCO₃ aqueous solution was added to the beaker containing the reaction mixture until the effervescence stops. The aqueous mixture was extracted with ethyl acetate (3x40 mL). The combined organic layers were washed with 1 M HCl (2x100 mL) and brine solution (60 mL), respectively. The solvent was removed under vacuum and the residue was purified by flash chromatography using 15-25% EtOAc/hexane as eluent to afford the title compound **2g** (950 mg, 3.9 0mmol, 39%) as colorless semi-solid.

- TLC (EtOAc/Hexane, 3:7 v/v): $R_f = 0.50$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.66 (s, 1H, ArH), 7.62 7.54 (m, 3H, ArH), 6.84 (s, 2H, C=CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 168.9, 134.2, 131.8, 131.4 (q, J = 32.3 Hz), 129.6, 128.9, 124.3 (q, J = 4.0 Hz), 123.5 (q, J = 273.7 Hz), 122.6 (q, J = 4.0 Hz).
- ¹⁹F NMR (377 MHz, CDCl₃): δ -62.63.
 The characterization data matched the reported value.¹³

1-(4-Methoxyphenyl)-1H-pyrrole-2,5-dione (2h)

Following general procedure,¹⁰ in a 100 mL round bottom flask, maleic anhydride (**13**) (3.96 g, 20.0 mmol, 2.00 equiv) and 4-methoxyaniline (**14g**) (1.23 g, 10.0 mmol, 1.00 equiv) were stirred in acetic acid (15 mL) until maleic anhydride dissolved completely. The reaction mixture was refluxed for 12 h at 130 °C. After completion of the reaction, the reaction mixture was then allowed to cool down to room temperature and the whole reaction mixture was transferred to a 500 mL beaker. A saturated NaHCO₃ aqueous solution was added to the beaker containing the reaction mixture until the effervescence stops. The aqueous mixture was extracted with ethyl acetate (3x40 mL). The combined organic layers were washed with 1 M HCl (2x100 mL) and brine solution (60 mL), respectively. The solvent was removed under vacuum and the residue was purified by flash chromatography using 15-20% EtOAc/hexane as eluent to afford the title compound **2h** (850 mg, 4.20 mmol, 42%) as yellow solid.

- TLC (EtOAc/Hexane, 3:7 v/v): $R_f = 0.50$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.21 (d, J = 9.0 Hz, 2H, ArH), 6.97 (d, J = 8.9 Hz, 2H, ArH), 6.80 (s, 2H, C=CH), 3.81 (s, 3H, ArOCH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 169.8, 159.0, 134.0, 127.5, 123.6, 114.4, 55.4. The characterization data matched the reported value.¹⁰

1-Cyclopropyl-1*H*-pyrrole-2,5-dione (2j)

Following general procedure,¹⁰ in a 100 mL round bottom flask, maleic anhydride (**13**) (3.96 g, 20.0 mmol, 2.00 equiv) and cyclopropylamine (**14h**) (570 mg, 10.0 mmol, 1.00 equiv) were stirred in acetic acid (15 mL) until maleic anhydride dissolved completely. The reaction mixture was refluxed for 12 h at 130 °C. After completion of the reaction, the reaction mixture
was then allowed to cool down to room temperature and the whole reaction mixture was transferred to a 500 mL beaker. A saturated NaHCO₃ aqueous solution was added to the beaker containing the reaction mixture until the effervescence stops. The aqueous mixture was extracted with ethyl acetate (3x40 mL). The combined organic layers were further washed with 1 M HCl (2x100 mL) and brine solution (60 mL), respectively. The solvent was removed under vacuum and the residue was purified by flash chromatography using 10-20% EtOAc/hexane as eluent to afford the title compound **2j** (550 mg, 3.60 mmol, 36%) as colorless solid.

- TLC (EtOAc/Hexane, 3:7 v/v): $R_f = 0.60$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 6.54 (s, 2H, C=CH), 2.38 (tt, J = 7.3, 3.8 Hz, 1H), 0.88 0.54 (m, 4H).
- ¹³C NMR (101 MHz, CDCl₃): δ 170.9, 133.6, 19.9, 4.5. The characterization data matched the reported value.¹⁴

1-Cyclohexyl-1*H*-pyrrole-2,5-dione (2k)

Following general procedure,¹⁰ in a 100 mL round bottom flask, maleic anhydride (**13**) (3.96 g, 20.0 mmol, 2.00 equiv) and cyclohexylamine (**14i**) (990 mg, 10.0 mmol, 1.00 equiv) were stirred in acetic acid (15 mL) until maleic anhydride dissolved completely. The reaction mixture was refluxed for 12 h at 130 °C. After completion of the reaction, the reaction mixture was then allowed to cool down to room temperature and the whole reaction mixture was transferred to a 500 mL beaker. A saturated NaHCO₃ aqueous solution was added to the beaker containing the reaction mixture until the effervescence stops. The aqueous mixture was extracted with ethyl acetate (3x40 mL). The combined organic layers were washed with 1 M HCl (2x100 mL) and brine solution (60 mL), respectively. The solvent was removed under vacuum and the residue was purified by flash chromatography using 10-25% EtOAc/hexane as eluent to afford the title compound **2k** (750 mg, 4.20 mmol, 42%) as yellow solid.

• TLC (EtOAc/Hexane, 3:7 v/v): $R_f = 0.60$, UV, KMnO₄.

- ¹H NMR (400 MHz, CDCl₃): δ 6.59 (s, 2H, C=CH), 3.86 (tt, J = 12.5, 4.0 Hz, 1H), 2.00 (qd, J = 12.5, 3.5 Hz, 2H), 1.81 1.75 (m, 2H), 1.63 1.58 (m, 3H), 1.32 1.13 (m, 3H).
- ¹³C NMR (101 MHz, CDCl₃): δ 170.8, 133.8, 50.6, 29.8, 25.8, 24.9. The characterization data matched the reported value.¹⁰
- 2-(2,5-Dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)isoindoline-1,3-dione (2m)

Following general procedure,¹⁰ in a 100 mL round bottom flask, maleic anhydride (**13**) (1.98 g, 10.0 mmol, 2.00 equiv) and 2-aminoisoindoline-1,3-dione (**14j**) (0.81 g, 5.0 mmol, 1.0 equiv) were stirred in acetic acid (7.5 mL) until maleic anhydride dissolved completely. The reaction mixture was refluxed for 12 h at 130 °C. After completion of the reaction, the reaction mixture was then allowed to cool down to room temperature and the whole reaction mixture was transferred to a 250 mL beaker. A saturated NaHCO₃ aqueous solution was added to the beaker containing the reaction mixture until the effervescence stops. The aqueous mixture was extracted with ethyl acetate (3x20 mL). The combined organic layers were washed with 1 M HCl (2x50 mL) and brine solution (30 mL), respectively. The solvent was removed under vacuum and the residue was purified by flash chromatography using 25-30% EtOAc/hexane as eluent to afford the title compound **2m** (250 mg, 1.03 mmol, 20%) as colorless sticky solid. (*See Spectra*)

- TLC (EtOAc/Hexane, 4:6 v/v): R_f = 0.30, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.98-7.92 (m, 2H, ArH), 7.86-7.81 (m, 2H, ArH), 6.96 (s, 2H, C=CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 165.2, 163.3, 135.1, 133.9, 129.8, 124.4.
- IR (Neat, cm⁻¹): υ 2923 (w), 2854 (w), 1742 (s), 1464 (w), 1296 (m), 1152 (w), 1082 (w), 793 (w), 679 (w).
- **HRMS (ESI):** calcd. for $C_{12}H_6N_2O_4H^+$ [M+H]⁺ 243.0406; found: 243.0413.

2-(2,5-Dioxo-2,5-dihydro-1H-pyrrol-1-yl)isoindoline-1,3-dione (20)

Following slightly modified procedure,¹⁵ 2-*tert*-butylaniline (**14k**) (1.50 g, 10.0 mmol. 1.00 equiv) and maleic anhydride (**13**) (2.85 g, 29.0 mmol, 2.90 equiv) were mixed in a 50 mL sealed round-bottomed flask and heated to 120 °C for 16 h. After cooling to room temperature, the solid was taken up in EtOAc (100 mL) and the whole reaction mixture was transferred to a 500 mL beaker. A saturated NaHCO₃ aqueous solution was added to the beaker containing the reaction mixture until the effervescence stops. The aqueous mixture was extracted with ethyl acetate (3x40 mL). The combined organic layers were washed with M HCl (2x100 mL) and brine solution (60 mL), respectively. The solvent was removed under vacuum and the residue was purified by flash chromatography using 15-30% EtOAc/hexane as eluent to afford the title compound **20** (1.3 g, 5.6 mmol, 56%) as a colorless solid.

- TLC (EtOAc/Hexane, 4:6 v/v): $R_f = 0.30$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.1 Hz, 1H, ArH), 7.40 (t, J = 7.7 Hz, 1H, ArH), 7.28 (t, J = 7.6 Hz, 1H, ArH), 6.90 (d, J = 7.7 Hz, 1H, ArH), 6.87 (s, 2H, C=CH), 1.29 (s, 9H).
- ¹³C NMR (101 MHz, CDCl₃): δ 170.7, 149.4, 134.8, 131.2, 129.7, 129.1, 128.5, 127.1, 35.3, 31.4.

The characterization data matched the reported value.¹⁵

3. Optimization of Housane Synthesis:

CO₂Me CO₂Me CO₂Me PC (2.5 mol%) Þι CH₃CN (0.1 M) 440 nm, 20 °C, 20 h ò 2a 3a 3a' 1a PF₆ F₃C CI₂ ^tBu NC CN C N ij ^tBı F PC-1 PC-2 PC-3 PC-4

3.1 Screening of Photocatalysts

A flame-dried 5 mL Schlenk tube was charged with cyclopropene **1a** (32.6 mg, 0.100 mmol, 1.00 equiv), maleimide **2a** (34.6 mg, 0.200 mmol, 2.00 equiv), PC (2.5 mol%) and anhydrous CH₃CN (1.0 mL). The solution was irradiated using a 440 nm Kessil lamp for 20 h at 20 °C. Next, the reaction mixture was concentrated under reduced pressure and the crude product was submitted to ¹H-NMR. The yield and *dr* ratio of the crude product was calculated by ¹H-NMR using CH₂Br₂ (7.0 μ l, 0.10 mmol) as an internal standard.

Entry	Photocatalyst (PC)	<i>E</i> _{1/2} (M [*] /M ⁻) (V)	E _{1/2} (M ^{+.} /M [*]) (V)	E _T (Kcal/mol)	Yield (3a+3a') (%)
1	[Ru(bpy) ₃] Cl ₂	+0.77	-0.81	46.5	0
2	<i>fac</i> -[Ir(ppy) ₃]	+0.31	-1.73	58.1	25
3	[Ir[dF(CF ₃)ppy] ₂ (dtbbpy)]PF ₆	+1.21	-0.89	61.8	82
4	4-CzIPN	+1.35	-1.04	62	92
5	TXO*	+1.18	-1.11	65.3	82

* Using 405 nm.

3.2 Screening of Solvents

A flame-dried 5 mL Schlenk tube was charged with cyclopropene **1a** (32.6 mg, 0.100 mmol, 1.00 equiv), maleimide **2a** (34.6 mg, 0.200 mmol, 2.00 equiv), 4-CzIPN (2.0 mg, 2.5 mol%) and anhydrous solvent (1.0 mL). The solution was irradiated using a 440 nm Kessil lamp for 20 h at 20 °C. Next, the reaction mixture was concentrated under reduced pressure and the crude product was submitted to ¹H-NMR. The yield and *dr* ratio of the crude product was calculated by ¹H NMR using CH₂Br₂ (7.0 μ l, 0.10 mmol) as an internal standard.

Entry	Solvent	Yield (%)	dr
1	Acetonitrile	92	3:1
2	DCE	85	3:1
3	EtOAc	85	3:1
4	PhCF ₃	70	3:1
5	DCM	95	3:1

3.3 Screening of maleimide equivalency

A flame-dried 5 mL Schlenk tube was charged with cyclopropene **1a** (32.6 mg, 0.100 mmol, 1.00 equiv), maleimide **2a** (xx equiv), 4-CzIPN (2.0 mg, 2.5 mol%) and anhydrous DCM (1.0 mL). The solution was irradiated using a 440 nm Kessil lamp for 20 h at 20 °C. Next, the reaction mixture was concentrated under reduced pressure and the crude product was submitted

to ¹H-NMR. The yield and *dr* ratio of the crude product was calculated by ¹H NMR using CH₂Br₂ (7.0 μ l, 0.10 mmol) as an internal standard.

Entry	Equivalency of 2a	Yield (%)	dr
1	1.5	70	3:1
2	2.0	95	3:1

3.4 Steric effect

A flame-dried 5 mL Schlenk tube was charged with cyclopropene **1** (xx mg, 0.100 mmol, 1.00 equiv), maleimide **2a** (34.6 mg, 0.200 mmol, 2.00 equiv), 4-CzIPN (2.0 mg, 2.5 mol%) and anhydrous DCM (1.0 mL). The solution was irradiated using a 440 nm Kessil lamp for 20 h at 20 °C. Next, the reaction mixture was concentrated under reduced pressure and the crude product was submitted to ¹H-NMR. The yield and *dr* ratio of the crude product was calculated by ¹H NMR using CH₂Br₂ (7.0 μ l, 0.10 mmol) as an internal standard.

Entry	Cyclopropene (xx)	Yield (%)	dr
1	1a	95	3:1
2	1b	96	3:1
3	1c	94	>20:1

4.0. Scope of Diastereoselective Synthesis of Housane:

Photo reaction set-up:

General Procedure-1:

A flame-dried 25 mL Schlenk tube was charged with cyclopropene **1** (0.30 mmol, 1.0 equiv), maleimide **2** (0.60 mmol, 2.0 equiv), 4CzIPN (6.0 mg, 2.5 mol%) and anhydrous DCM (3.0 mL). The solution was irradiated using a 440 nm Kessil lamp for 20 h at 20 °C. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using Et_2O :hexane mixture as a mobile phase to afford compound **3**.

Methyl-6,8-dioxo-2,3,4,7-tetraphenyl-7-azatricyclo[3.3.0.02,4]octane-3-carboxylate (3a/3a')

Following the general procedure-1, using cyclopropene **1a** (98 mg, 0.30 mmol, 1.0 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 20-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3a+3a'** as a light yellow semi-solid (123 mg, 0.240 mmol, 82%, *dr* 3:1). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 1:1 v/v): R_f = 0.30, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃) for 3a: δ 7.75 (d, J = 7.8 Hz, 2H, ArH), 7.60 7.53 (m, 6H, ArH), 7.50 7.31 (m, 10H, ArH), 7.26 (d, J = 3.6 Hz, 2H, ArH), 3.23 (s, 2H, CH), 3.14 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃) for 3a: δ 173.7, 168.1, 132.8, 132.4, 131.6, 131.4, 129.6, 129.2, 129.0, 128.6, 128.4, 128.2, 128.1, 126.0, 53.3, 52.0, 51.6, 47.4.
- IR (Neat, cm⁻¹) for 3a: υ 2922 (m), 2854 (w), 1717 (s), 1378 (w), 1257 (w), 1198 (m), 757 (m), 697 (w).
- **HRMS (ESI) for 3a:** Calcd. for C₃₃H₂₅NO₄H⁺ [M+H]⁺ 500.1862; found: 500.1862.
- ¹H NMR (400 MHz, CDCl₃) for 3a': δ 7.42 (t, J = 7.6 Hz, 2H, ArH), 7.32 (dt, J = 6.5, 3.3 Hz, 5H, ArH), 7.28 7.22 (m, 8H, ArH), 7.03 6.97 (m, 1H, ArH), 6.90 (t, J = 7.6 Hz, 2H, ArH), 6.77 (d, J = 7.7 Hz, 2H, ArH), 3.92 (s, 3H, CO₂CH₃), 3.81 (s, 2H, CH).
- ¹³C NMR (101 MHz, CDCl₃) for 3a': δ 173.9, 169.4, 132.4, 132.1, 131.7, 130.5, 130.3, 129.1, 128.5, 128.1, 127.9, 127.4, 127.2, 126.0, 53.8, 52.8, 49.4, 47.6.
- IR (Neat, cm⁻¹) for 3a': v 2952 (m), 2856 (w), 1714 (s), 1376 (m), 1248 (m), 1200 (m), 748 (m), 700 (w).
- HRMS (ESI) for 3a': Calcd. for C₃₃H₂₅NO₄H⁺ [M+H]⁺ 500.1862; found: 500.1860.

tert-Butyl-6,8-dioxo-2,3,4,7-tetraphenyl-7-azatricyclo[3.3.0.02,4]octane-3-carboxylate (3b/3b')

Following the general procedure-1, using cyclopropene **1b** (110 mg, 0.30 mmol, 1.0 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 15-20% Et₂O:hexane mixture as a mobile phase to afford the pure product **3b+3b'** as a light yellow semi-solid (122 mg, 0.220 mmol, 75%, *dr* 3:1). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 4:6 v/v): $R_f = 0.40$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃) for both diastereomers: δ 7.81 7.76 (m, 1.5H, Ar*H*), 7.64 7.56 (m, 4.5H, Ar*H*), 7.52 7.45 (m, 2.2H, Ar*H*), 7.42 (td, *J* = 8.8, 7.9, 2.1 Hz, 4H, Ar*H*), 7.38 7.31 (m, 4.5H, Ar*H*), 7.29 7.23 (m, 2H, Ar*H*), 7.02 6.97 (m, 0.3H, Ar*H*), 6.91 (dd, *J* = 8.5, 6.9 Hz, 0.5H, Ar*H*), 6.84 6.80 (m, 0.5H, Ar*H*), 3.90 (s, 0.5H, *CH*), 3.20 (s, 1.5H, *CH*), 1.60 (s, 2.25H, CO₂^{*t*}*Bu*), 0.64 (s, 6.75H, CO₂^{*t*}*Bu*).
- ¹³C NMR (101 MHz, CDCl₃) for both diastereomers: δ 174.0, 173.8, 168.1, 167.2, 133.7, 133.0, 132.9, 132.5, 131.8, 131.4, 130.3, 130.2, 130.0, 129.2, 129.0, 128.9, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.7, 127.2, 126.8, 126.0, 125.9, 82.7, 81.9, 54.5, 53.3, 52.3, 49.5, 48.2, 47.5, 28.0, 26.7. One carbon was not resolved at 101 MHz.
- IR (Neat, cm⁻¹) for 3a: υ 2935 (w), 2855 (w), 1720 (s), 1378 (m), 1254 (w), 1165 (m), 848 (w), 758 (w).
- **HRMS (ESI) for 3a:** Calcd. for C₃₆H₃₁NO₄H⁺ [M+H]⁺ 542.2331 found: 542.2333.

Methyl-6,8-dioxo-2,4,7-triphenyl-3-(o-tolyl)-7-azatricyclo[3.3.0.02,4]octane-3carboxylate (3c)

Following the general procedure-1, using cyclopropene **1c** (102 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3c** as a paleyellow semi-solid (130 mg, 0.250 mmol, 84%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.30, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.78 7.74 (m, 1H, ArH), 7.67 7.56 (m, 4H, ArH), 7.40 (ddt, J = 23.3, 10.9, 7.7 Hz, 12H, ArH), 7.21 (dt, J = 8.1, 2.3 Hz, 2H, ArH), 3.39 3.34 (m, 1H, CH), 3.28 (s, 3H, CO₂CH₃), 3.12 3.07 (m, 1H, CH), 2.70 (s, 3H, ArCH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.7, 173.6, 167.6, 139.0, 132.5, 132.38, 132.37, 131.5, 130.21, 130.18, 129.0, 128.5, 128.4, 128.1, 128.0, 127.6, 127.4, 126.2, 125.9, 53.4, 52.0, 50.3, 48.8, 47.9, 45.3, 20.6. Two carbons were not resolved at 101 MHz.
- IR (Neat, cm⁻¹): υ 2922 (m), 2855 (w), 1719 (s), 1375 (m), 1260 (m), 1200 (m), 753 (m), 700 (w).
- **HRMS (ESI):** Calcd. for C₃₄H₂₇NO₄Na⁺ [M+Na]⁺ 536.1838; found: 536.1840.

Methyl-6,8-dioxo-2,4,7-triphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3d)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3d** as a pale yellow semi-solid (140 mg, 0.247 mmol, 82%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): $R_f = 0.30$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.91 (t, J = 9.0 Hz, 2H, ArH), 7.75 (t, J = 7.6 Hz, 1H, ArH), 7.67 (d, J = 7.4 Hz, 2H, ArH), 7.61 (t, J = 7.7 Hz, 1H, ArH), 7.50 (d, J = 7.2 Hz,

2H, Ar*H*), 7.45 – 7.30 (m, 9H, Ar*H*), 7.15 (d, *J* = 7.7 Hz, 2H, Ar*H*), 3.39 (d, *J* = 3.9 Hz, 1H, *CH*), 3.28 (s, 3H, CO₂*CH*₃), 3.18 (d, *J* = 3.9 Hz, 1H, *CH*).

- ¹³C NMR (101 MHz, CDCl₃): δ 173.6, 172.9, 167.2, 135.2, 132.0, 131.9, 131.6, 131.5, 130.9, 130.5, 130.2, 129.1, 128.9, 128.5, 128.4, 128.2, 127.8, 127.6 (q, *J* = 5 Hz), 127.1, 126.0, 124.2 (q, *J* = 274.7 Hz), 116.0, 53.4, 53.0, 52.2, 48.5, 48.0, 45.5.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -58.29.
- IR (Neat, cm⁻¹): υ 3059 (w), 2952 (w), 1714 (s), 1599 (w), 1444 (m), 1255 (m), 1171 (s), 1114 (s), 1034 (m), 733 (m), 697 (s).
- **HRMS (ESI):** Calcd. for C₃₄H₂₄F₃NO₄Na⁺ [M+Na]⁺ 590.1555; found: 590.1559.

Methyl-3-(2-methoxyphenyl)-6,8-dioxo-2,4,7-triphenyl-7-azatricyclo[3.3.0.02,4]octane-3carboxylate (3e)

Following the general procedure-1, using cyclopropene **1e** (107 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 20-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3e** as a paleyellow semi-solid (137 mg, 0.245 mmol, 86%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.35, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.79 7.67 (m, 3H, ArH), 7.60 7.53 (m, 2H, ArH), 7.50 7.46 (m, 3H, ArH), 7.45 7.32 (m, 8H, ArH), 7.31 7.26 (m, 1H, ArH), 7.20 (td, J = 7.3, 2.4 Hz, 1H, ArH), 7.14 (dd, J = 8.5, 2.6 Hz, 1H, ArH), 4.04 (s, 3H, ArOCH₃), 3.37 (t, J = 2.9 Hz, 1H, CH), 3.20 (s, 3H, CO₂CH₃), 3.03 (t, J = 3.0 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.1, 173.8, 168.0, 158.6, 133.3, 133.1, 132.9, 131.8, 130.1, 130.0, 129.9, 129.1, 128.4, 128.0, 127.8, 127.7, 127.5, 126.0, 121.0, 120.8, 111.3, 55.3, 52.6, 51.8, 50.1, 49.8, 48.1, 46.8.
- IR (Neat, cm⁻¹): υ 2925 (w), 2849 (w), 1717 (s), 1494 (m), 1455 (w), 1374 (m), 1242 (m), 1197 (w), 756 (m), 700 (m).

• **HRMS (ESI):** Calcd. for C₃₄H₂₇NO₅H⁺ [M+H]⁺ 530.1967; found: 530.1969.

Methyl-3-(2-chlorophenyl)-6,8-dioxo-2,4,7-triphenyl-7 azatricyclo[3.3.0.02,4]octane-3carboxylate (3f)

Following the general procedure-1, using cyclopropene **1f** (108 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 20-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3f** as a pale yellow semi-solid (119 mg, 0.222 mmol, 74%, *dr* 10:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.35, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.80 (dd, J = 7.5, 1.8 Hz, 1H, ArH), 7.74 (d, J = 7.4 Hz, 2H, ArH), 7.64 7.57 (m, 1H, ArH), 7.52 (d, J = 7.3 Hz, 2H, ArH), 7.40 (m, 11H, ArH), 7.20 (d, J = 7.8 Hz, 2H, ArH), 3.31 (m, 1H, CH), 3.29 (s, 3H, CO₂CH₃), 3.20 (d, J = 3.7 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.6, 173.2, 166.9, 136.0, 133.9, 132.2, 131.74, 131.67, 131.4, 130.9, 130.7, 130.1, 129.9, 129.1, 128.5, 128.2, 128.1, 127.8, 127.3, 127.2, 126.0, 52.8, 52.4, 52.1, 49.5, 48.1, 45.8.
- IR (Neat, cm⁻¹): υ 2922 (m), 2855 (w), 1718 (s), 1442 (m), 1375 (w), 1243 (m), 1199 (m), 754 (m), 698 (m).
- **HRMS (ESI):** Calcd. for C₃₃H₂₄ClNO₄H⁺ [M+H]⁺ 534.1472; found: 534.1470.

Methyl-3-(2-bromophenyl)-6,8-dioxo-2,4,7-triphenyl-7-azatricyclo[3.3.0.02,4]octane-3carboxylate (3g)

Following the general procedure-1, using cyclopropene **1g** (121 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3g** as a pale yellow semi-solid (118 mg, 0.204 mmol, 68%, *dr* 8:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.30, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.79 (t, J = 7.1 Hz, 4H, ArH), 7.50 (d, J = 7.6 Hz, 3H, ArH), 7.45 7.30 (m, 10H, ArH), 7.17 (d, J = 7.6 Hz, 2H, ArH), 3.32 (s, 3H, CO₂CH₃), 3.31-3.29 (m, 1H, CH), 3.23 (d, J = 3.8 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.5, 173.2, 166.8, 134.2, 134.0, 133.3, 132.0, 131.6, 131.5, 131.3, 130.2, 129.9, 129.1, 128.5, 128.3, 128.1, 127.8, 127.6, 127.0, 126.1, 126.0, 54.5, 52.4, 52.2, 49.3, 48.2, 45.7.
- IR (Neat, cm⁻¹): υ 3057 (w), 2951 (w), 1714 (s), 1597 (w), 1435 (m), 1240 (m), 1198 (s), 1071 (s), 1023 (w), 755 (m), 699 (w).
- **HRMS (ESI):** Calcd. for C₃₃H₂₄BrNO₄Na [M+Na] ⁺ 600.0786; found: 600.0784.

Methyl-6,8-dioxo-2,4,7-triphenyl-3-(3-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3h)

Following the general procedure-1, using cyclopropene **1h** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-25% Et₂O:hexane mixture as a mobile phase to afford the pure product **3h** as a pale yellow semi-solid (44.0 mg, 0.078 mmol, 25%, *dr* 5:1). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 1:1 v/v): $R_f = 0.35$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): For major diastereomer δ 7.97-7.93 (m, 2H, ArH), 7.80
 7.69 (m, 2H, ArH), 7.58 7.53 (m, 4H, ArH), 7.50 7.34 (m, 9H, ArH), 7.28-7.25 (m, 2H, ArH), 3.20-3.13 (m, 2H, CH), 3.16 (s, 3H, CO₂CH₃).

- ¹³C NMR (101 MHz, CDCl₃): For major diastereomer δ 173.2, 167.4, 134.9, 133.8, 132.3, 131.6 (q, J = 22.2 Hz), 131.6, 129.7, 129.6, 129.2, 128.7, 128.31, 128.28, 127.8 (d, J = 3.8 Hz), 126.0, 125.4 (d, J = 3.8 Hz), 123.8 (q, J = 181.8 Hz), 53.1, 52.1, 51.7, 47.3.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -62.32.
- IR (Neat, cm⁻¹): υ 2915 (w), 2855 (w), 1720 (s), 1441 (w), 1375 (m), 1237 (m), 1170 (m), 1027 (w), 754 (m), 699 (m).
- **HRMS (ESI):** Calcd. for C₃₄H₂₄F₃NO₄Na⁺ [M+Na]⁺ 590.1555; found: 590.1558.

Methyl-6,8-dioxo-2,7-diphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3i)

Following the general procedure-1, using cyclopropene **1i** (95.5 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 20-30% Et₂O:Hexane mixture as a mobile phase to afford the pure product **3i** as a pale yellow semi-solid (105 mg, 0.216 mmol, 72%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): $R_f = 0.35$, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 7.7 Hz, 1H, ArH), 7.84 (d, J = 7.9 Hz, 1H, ArH), 7.75 (t, J = 7.5 Hz, 1H, ArH), 7.58 (t, J = 7.7 Hz, 1H, ArH), 7.40 (m, 8H, ArH), 7.21 7.16 (m, 2H, ArH), 3.76 (d, J = 1.9 Hz, 1H, CH), 3.30 (dd, J = 3.5, 1.9 Hz, 1H, CH), 3.26 (s, 3H, CO₂CH₃), 2.73 (d, J = 3.5 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 175.1, 173.6, 168.3, 135.0, 132.1, 131.7, 131.5, 130.5 (q, J = 31.3 Hz), 130.3, 129.4, 129.1, 128.9, 128.7, 128.6, 128.5, 127.3 (q, J = 5 Hz), 126.1, 124.0 (q, J = 274.7 Hz), 52.4, 48.4, 47.8, 46.2, 40.3 (q, J = 2.2 Hz), 36.4.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -59.74.
- **IR** (Neat, cm⁻¹): v 2922 (m), 2855 (w), 1715 (s), 1496 (w), 1445 (m), 1243 (m), 1174 (s), 1117 (m), 1032 (w), 756 (w), 699 (m).
- **HRMS (ESI):** Calcd. for C₂₈H₂₀F₃NO₄Na⁺ [M+Na]⁺ 514.1242; found: 514.1245.

Methyl-2-(3-chlorophenyl)-6,8-dioxo-7-phenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3j)

Following the general procedure-1, using cyclopropene **1j** (106 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-35% Et₂O:Hexane mixture as a mobile phase to afford the pure product **3j** as a pale yellow semi-solid (85.0 mg, 0.162 mmol, 53%, dr > 20:1). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 3:2 v/v): $R_f = 0.30$, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.87-7.81 (m, 2H, ArH), 7.79 7.73 (m, 1H, ArH), 7.64 7.56 (m, 1H, ArH), 7.48-7.42 (m, 3H, ArH), 7.42 7.36 (m, 1H, ArH), 7.33 (s, 3H, ArH), 7.18 (dd, J = 8.4, 1.3 Hz, 2H, ArH), 3.74 (d, J = 1.9 Hz, 1H, CH), 3.32 (s, 3H, CO₂CH₃), 3.28 (dd, J = 3.6, 1.9 Hz, 1H, CH), 2.73 (d, J = 3.6 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.8, 173.4, 168.1, 134.8, 134.4, 133.9, 132.2, 131.4, 130.7, 130.4, 129.9, 129.8, 129.6, 129.1, 128.9, 128.8, 127.6, 127.5 (q, *J* = 5 Hz), 126.1, 124.0 (q, *J* = 274.7 Hz), 52.6, 48.5, 47.7, 45.5, 40.3, 36.6.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -59.77.
- IR (Neat, cm⁻¹): v 2922 (s), 2856 (m), 2346 (m), 1718 (s), 1256 (m), 1195 (m), 754 (s).
- **HRMS (ESI):** Calcd. for C₂₈H₁₉ClF₃NO₄H⁺ [M+H]⁺ 526.1033; found: 526.1035.

Methyl-6,8-dioxo-7-phenyl-2-(m-tolyl)-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3k)

Following the general procedure-1, using cyclopropene **1k** (100 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μmol, 0.025 equiv)

in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-30% Et₂O:Hexane mixture as a mobile phase to afford the pure product **3k** as a pale yellow semi-solid (100 mg, 0.198 mmol, 66%, dr > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 3:2 v/v): $R_f = 0.30$, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 7.6 Hz, 1H, ArH), 7.84 (d, J = 7.9 Hz, 1H, ArH), 7.76 (t, J = 7.6 Hz, 1H, ArH), 7.58 (t, J = 7.7 Hz, 1H, ArH), 7.45 (dd, J = 8.3, 6.7 Hz, 2H, ArH), 7.38 (t, J = 7.4 Hz, 1H, ArH), 7.32 7.18 (m, 5H, ArH), 7.15 (d, J = 7.4 Hz, 1H, ArH), 3.72 (d, J = 1.8 Hz, 1H, CH), 3.28 (s, 3H, CO₂CH₃), 3.27 3.24 (m, 1H, CH), 2.72 (d, J = 3.5 Hz, 1H, CH), 2.37 (s, 3H, ArCH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 175.1, 173.7, 168.4, 138.1, 135.0, 132.1, 131.7, 131.6, 130.7, 130.4, 130.1, 129.5, 129.2, 128.7, 128.4, 128.1, 127.4 (q, *J* = 5 Hz), 126.4, 126.1, 124.0 (q, *J* = 274.7 Hz), 52.4, 48.3, 47.9, 46.3, 40.3, 36.3, 21.3.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -59.77.
- IR (Neat, cm⁻¹): υ 2923 (m), 2855 (w), 1719 (s), 1378 (w), 1312 (w), 1266 (w), 1176 (m), 1126 (m), 713 (w).
- **HRMS (ESI):** Calcd. for C₂₉H₂₂F₃NO₄H⁺ [M+H]⁺ 506.1579; found: 506.1576.

Methyl-2-(4-fluorophenyl)-6,8-dioxo-7-phenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3l)

Following the general procedure-1, using cyclopropene **1l** (101 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-40% Et₂O:Hexane mixture as a mobile phase to afford the pure product **3l** as a pale yellow semi-solid (109 mg, 0.214 mmol, 71%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.30, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.85 (dd, J = 10.2, 7.8 Hz, 2H, ArH), 7.75 (t, J = 7.6 Hz, 1H, ArH), 7.59 (t, J = 7.7 Hz, 1H, ArH), 7.47 7.35 (m, 5H, ArH), 7.16 (d, J = 7.4

Hz, 2H, Ar*H*), 7.08 (t, *J* = 8.5 Hz, 2H, Ar*H*), 3.74 (d, *J* = 1.9 Hz, 1H, *CH*), 3.29 (s, 3H, CO₂*CH*₃), 3.28 - 3.25 (m, 1H, *CH*), 2.72 (d, *J* = 3.6 Hz, 1H, *CH*).

- ¹³C NMR (101 MHz, CDCl₃): δ 174.9, 173.6, 168.2, 163.9, 161.4, 134.8, 132.2, 131.5, 131.3 (d, J = 8.5 Hz), 130.6 (q, J = 31.3 Hz), 130.1, 129.2, 129.0 (d, J = 27.8 Hz), 127.7 (d, J = 3.3 Hz), 127.5 (q, J = 5 Hz), 126.1, 124.0 (q, J = 274.7 Hz), 115.6 (d, J = 21.8 Hz), 52.5, 48.5, 47.7, 45.4, 40.2, 36.6.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -59.80, -112.23.
- IR (Neat, cm⁻¹): v 2922 (w), 2855 (w), 1717 (s), 1379 (m), 1265 (m), 1175 (m), 1036 (w), 767 (w), 716 (w).
- **HRMS (ESI):** Calcd. for C₂₈H₁₉F₄NO₄H⁺ [M+H]⁺ 510.1328; found: 510.1328.

Methyl-2-(4-ethoxyphenyl)-6,8-dioxo-7-phenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3m)

Following the general procedure-1, using cyclopropene **1m** (108 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-40% Et₂O:Hexane mixture as a mobile phase to afford the pure product **3m** as a pale yellow semi-solid (106 mg, 0.200 mmol, 66%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 2:3 v/v): $R_f = 0.2$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 7.6 Hz, 1H, ArH), 7.85 7.80 (m, 1H, ArH), 7.76 7.74 (m, 1H, ArH), 7.57 (t, J = 7.7 Hz, 1H, ArH), 7.44 (t, J = 7.5 Hz, 2H, ArH), 7.39 7.31 (m, 3H, ArH), 7.19 (d, J = 7.2 Hz, 2H, ArH), 6.89 (d, J = 9.0 Hz, 2H, ArH), 4.02 (q, J = 7.0 Hz, 2H, ArOCH₂CH₃)), 3.71 (d, J = 1.9 Hz, 1H, CH), 3.28 (s, 3H, CO₂CH₃), 3.25 (m, 1H, CH), 2.70 (d, J = 3.6 Hz, 1H, CH), 1.41 (t, J = 7.0 Hz, 3H, ArOCH₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.8, 174.0, 167.1, 135.1, 131.9, 131.8, 131.5, 131.4, 130.8, 130.2 (q, J = 30.3 Hz), 130.0, 128.8, 128.3, 128.1, 127.7, 127.5 (q, J = 5.0 Hz),

126.9, 124.2 (q, *J* = 274.7 Hz), 53.1, 53.0, 52.2, 48.5, 47.9, 45.7, 25.0. One carbon was not resolved at 101 MHz.

- ¹⁹F NMR (377 MHz, CDCl₃): δ -59.78.
- IR (Neat, cm⁻¹): υ 2923 (m), 2855 (w), 1718 (s), 1378 (m), 1252 (m), 1174 (m), 1041 (w), 768 (w), 716 (w).
- **HRMS (ESI):** Calcd. for C₃₀H₂₄F₃NO₅Na⁺ [M+Na]⁺ 558.1504; found: 558.1509.

Ethyl-6,8-dioxo-2,4,7-triphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3n)

Following the general procedure-1, using cyclopropene **1n** (123 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3n** as a pale yellow solid (144 mg, 0.247 mmol, 82%, *dr* > 20:1). (*See Spectra*)

- Melting point: 221-223 °C.
- TLC (Et₂O:Hexane, 1:1 v/v): $R_f = 0.40$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.92 (dd, J = 14.4, 7.8 Hz, 2H, ArH), 7.75 (t, J = 7.7 Hz, 1H, ArH), 7.69 (d, J = 7.5 Hz, 2H, ArH), 7.61 (t, J = 7.7 Hz, 1H, ArH), 7.53 (d, J = 7.3 Hz, 2H, ArH), 7.38 (qd, J = 12.7, 10.8, 6.8 Hz, 9H, ArH), 7.17 (d, J = 7.8 Hz, 2H, ArH), 3.80 3.64 (m, 2H, CO₂CH₂CH₃), 3.40 (d, J = 3.9 Hz, 1H, CH), 3.19 (d, J = 3.8 Hz, 1H, CH), 0.71 (t, J = 7.1 Hz, 3H, CO₂CH₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.6, 172.9, 166.8, 135.1, 132.0, 131.9, 131.6, 131.5, 130.9, 130.3 (q, J = 30.3 Hz), 130.2, 129.1, 128.8, 128.5, 128.3, 128.1, 127.7, 127.5 (q, J = 5 Hz), 127.0, 125.9, 124.2 (q, J = 274.7 Hz), 61.2, 53.3, 53.1, 48.3, 48.1, 45.6, 13.2. One carbon was not resolved at 101 MHz.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -58.11.
- IR (Neat, cm⁻¹): v 2922 (m), 2855 (w), 1715 (s), 1447 (m), 1274 (m), 1242 (m), 1173 (s), 1032 (w), 758 (w), 699 (m).

• **HRMS (ESI):** Calcd. for C₃₅H₂₆F₃NO₄Na⁺ [M+Na]⁺ 604.1712; found: 604.1713.

Dimethyl-6,8-dioxo-2,7-diphenyl-7-azatricyclo[3.3.0.02,4]octane-3,3-dicarboxylatecarboxylate (30)

Following the general procedure-1, using cyclopropene **1o** (70 mg, 0.30 mmol, 1.0 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3o** as a pale yellow semi-solid (55.0 mg, 0.136 mmol, 45%). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 1:1 v/v): R_f = 0.2, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.48 7.43 (m, 2H, ArH), 7.41 7.36 (m, 1H, ArH), 7.33 (bs, 5H, ArH), 7.22 (d, J = 7.8 Hz, 2H, ArH), 3.93 (s, 3H, CO₂CH₃), 3.71 3.65 (m, 1H, CH), 3.45 (s, 3H, CO₂CH₃), 3.39 (d, J = 1.8 Hz, 1H, CH), 3.22 (d, J = 3.1 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.7, 172.9, 165.5, 165.4, 131.4, 130.7, 129.2, 129.1, 128.8, 128.4, 53.1, 52.8, 48.9, 47.9, 46.5, 40.7, 34.7. Two carbons were not resolved at 101 MHz.
- IR (Neat, cm⁻¹): υ 2920 (s), 2853 (m), 1718 (s), 1457 (m), 1381 (m), 1274 (m), 1197 (m), 699 (w).
- **HRMS (ESI):** Calcd. for C₂₃H₁₉NO₆Na [M+Na]⁺ 428.1110; found: 428.1108.

3-(Hydroxymethyl)-2,4,7-triphenyl-3-(o-tolyl)-7-azatricyclo[3.3.0.02,4]octane-6,8-dione (3p)

Following the general procedure-1, using cyclopropene **1p** (94 mg, 0.30 mmol, 1.0 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography

using 25-50% Et₂O:hexane mixture as a mobile phase to afford the pure product **3p** as a pale yellow solid (88 mg, 0.18 mmol, 60%, dr > 20:1). (*See Spectra*)

- Melting point: 201-203 °C.
- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.25, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 7.2 Hz, 1H, ArH), 7.45 (dd, J = 17.6, 7.4 Hz, 4H, ArH), 7.37 7.22 (m, 11H, ArH), 7.19 (s, 1H, ArH), 7.11 (d, J = 7.8 Hz, 2H, ArH), 3.69 3.57 (m, 2H, CCH₂OH), 3.20 (d, J = 3.9 Hz, 1H, CH)), 3.01 (d, J = 3.8 Hz, 1H, CH)), 2.58 (s, 3H, ArCH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.6, 174.3, 138.5, 133.2, 133.0, 132.6, 132.5, 131.8, 131.7, 130.4, 129.9, 129.1, 128.5, 128.4, 128.2, 128.2, 127.7, 126.5, 126.0, 64.4, 49.9, 47.4, 46.9, 46.3, 45.9, 20.4. One carbon was not resolved at 101 MHz.
- IR (Neat, cm⁻¹): v 2923 (m), 2855 (w), 2344 (m), 1375 (m), 1263 (m), 1199 (m), 753 (s), 702 (m).
- **HRMS (ESI):** Calcd. for C₃₃H₂₇NO₃Na⁺ [M+Na]⁺ 508.1889; found: 508.1888.

3-(hydroxymethyl)-2,7-diphenyl-3-(2-(trifluoromethyl)phenyl)-7-

azatricyclo[3.3.0.02,4]octane-6,8-dione (3q)

Following the general procedure-1, using cyclopropene **1q** (87 mg, 0.30 mmol, 1.0 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-50% Et₂O:hexane mixture as a mobile phase to afford the pure product **3q** as a pale yellow semi-solid (63 mg, 0.13 mmol, 45%, *dr* > 20:1). (*See Spectra*)

- Melting point: 177-177 °C.
- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.25, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.85 (dd, J = 10.5, 7.9 Hz, 2H, ArH), 7.71 (t, J = 7.6 Hz, 1H, ArH), 7.55 (t, J = 7.8 Hz, 2H, ArH), 7.45 (t, J = 7.2 Hz, 2H, ArH), 7.42-7.31 (m, 5H, ArH), 7.07 (d, J = 7.6 Hz, 2H, ArH), 4.02 (d, J = 12.3 Hz, 1H, CCH₂OH), 3.30 (d, J = 12.4 Hz, 1H, CCH₂OH), 3.12 (s, 1H, CH), 3.00 (s, 1H, CH), 2.86 (d, J = 3.5 Hz, 1H, CH).

- ¹³C NMR (101 MHz, CDCl₃): δ 175.9, 174.3, 135.3, 133.0, 132.7, 131.9, 131.6, 130.4 (q, J = 30.3 Hz), 129.1, 129.0, 128.99, 128.53, 128.51, 128.1 (q, J = 5 Hz), 126.2, 125.3, 124.4 (q, J = 274.7 Hz), 65.2 (q, J = 3.1 Hz), 47.5, 46.3, 43.2, 40.7 (q, J = 2.6 Hz), 32.2 (q, J = 3.3 Hz).
- ¹⁹F NMR (377 MHz, CDCl3): δ -57.51.
- IR (Neat, cm⁻¹): υ 2921 (s), 2853 (m), 1713 (s), 1496 (w), 1379 (m), 1266 (w), 1176 (m), 1043 (w), 769 (w), 698 (w).
- **HRMS (ESI):** Calcd. for $C_{27}H_{20}F_3NO_3H^+$ [M+H]⁺ 464.1474; found: 464.1471.

Methyl-7-(4-fluorophenyl)-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl) phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3r)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2b** (115 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-45% Et₂O:hexane mixture as a mobile phase to afford the pure product **3r** as a pale yellow semi-solid (124 mg, 0.212 mmol, 70%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.30, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.91 (t, J = 7.5 Hz, 2H, ArH), 7.75 (t, J = 7.6 Hz, 1H, ArH), 7.68-7.58 (m, 3H, ArH), 7.48 (d, J = 6.2 Hz, 2H, ArH), 7.43-7.29 (m, 6H, ArH), 7.16 7.06 (m, 4H, ArH), 3.39 (d, J = 3.8 Hz, 1H, CH), 3.28 (s, 3H, CO₂CH₃), 3.17 (d, J = 3.8 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.6, 172.8, 167.2, 163.3, 160.8, 135.1, 132.0, 131.7 (d, J = 16.5 Hz), 131.3, 130.8, 130.3 (q, J = 30.3 Hz), 130.1, 128.9, 128.4, 128.2, 127.9 (d, J = 3.2 Hz), 127.7, 127.6 (q, J = 5 Hz), 127.5 (d, J = 3.5 Hz), 127.1, 124.2 (q, J = 274.7 Hz), 116.1 (d, J = 23.0 Hz), 53.3, 53.0, 52.3, 48.4, 48.0, 45.4.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -58.28, -112.06.
- IR (Neat, cm⁻¹): υ 2922 (m), 2855 (w), 1717 (s), 1375 (m), 1243 (m), 1197 (m), 756 (w), 698 (w).

• **HRMS (ESI):** Calcd. for C₃₄H₂₃F₄NO₄Na⁺ [M+Na]⁺ 608.1461; found: 608.1465.

Methyl-7-(4-chlorophenyl)-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3s)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2c** (124 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 20-45% Et₂O:hexane mixture as a mobile phase to afford the pure product **3s** as a pale yellow semi-solid (125 mg, 0.208 mmol, 69%, *dr* > 20:1). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 1:1 v/v): $R_f = 0.35$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.90 (t, J = 6.8 Hz, 2H, ArH)), 7.75 (t, J = 7.6 Hz, 1H, ArH)), 7.66 7.58 (m, 3H, ArH)), 7.49 7.45 (m, 2H, ArH)), 7.43 7.29 (m, 8H, ArH)), 7.10 (d, J = 8.5 Hz, 2H, ArH)), 3.38 (d, J = 3.9 Hz, 1H, CH), 3.28 (s, 3H, CO₂CH₃), 3.17 (d, J = 3.8 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.4, 172.6, 167.2, 135.1, 134.3, 132.0, 131.7, 131.5, 131.3, 130.8, 130.3 (q, J = 30.3 Hz), 130.1, 130.0, 129.3, 128.9, 128.5, 128.2, 127.9, 127.6 (q, J = 5.0 Hz), 127.1, 127.0, 124.2 (q, J = 274.7 Hz), 53.3, 53.0, 52.3, 48.3, 48.0, 45.5.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -58.28.
- IR (Neat, cm⁻¹): υ 2919 (w), 2854 (w), 1722 (s), 1442 (m), 1376 (m), 1261 (m), 1175 (m), 1043 (w), 753 (s), 647 (m).
- **HRMS (ESI):** Calcd. for C₃₄H₂₃ClF₃NO₄Na⁺ [M+Na]⁺ 624.1165; found: 624.1163.

Methyl-7-(4-chlorophenyl)-3-(2-methoxyphenyl)-6,8-dioxo-2,4-diphenyl-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3t)

Following the general procedure-1, using cyclopropene **1e** (107 mg, 0.300 mmol, 1.00 equiv), maleimide **2c** (124 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3t** as a pale yellow semi-solid (136 mg, 0.241 mmol, 80%, *dr* > 20:1). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 1:1 v/v): $R_f = 0.25$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.70 7.63 (m, 3H, ArH), 7.54 7.44 (m, 3H, ArH), 7.43 7.29 (m, 8H, ArH), 7.24 7.19 (m, 2H, ArH), 7.16 (td, *J* = 7.5, 1.1 Hz, 1H, ArH), 7.13 7.08 (m, 1H, ArH), 4.01 (s, 3H, ArOCH₃), 3.33 (d, *J* = 3.8 Hz, 1H, CH), 3.16 (s, 3H, CO₂CH₃), 2.99 (d, *J* = 3.7 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.9, 173.6, 168.0, 158.6, 134.2, 133.2, 133.1, 132.8, 130.2, 130.1, 129.8, 129.3, 128.1, 127.9, 127.8, 127.6, 127.2, 120.90, 120.86, 120.8, 111.3, 55.3, 52.5, 51.8, 50.0, 49.8, 48.0, 46.8.
- IR (Neat, cm⁻¹): v 2922 (m), 2853 (w), 1717 (s), 1374 (m), 1267 (w), 1196 (m), 1090 (w), 1021 (m), 756 (m), 696 (m).
- **HRMS (ESI):** Calcd. for C₃₄H₂₆ClNO₅H [M+H]⁺ 564.1578; found: 564.1580.

Methyl-7-(4-cyanophenyl)-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3u)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2d** (119 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-50% Et₂O:hexane mixture as a mobile phase to afford the pure product **3u** as a pale yellow semi-solid (134 mg, 0.226 mmol, 75%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 3:2 v/v): R_f = 0.30, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.93 7.88 (m, 2H, ArH), 7.79 7.74 (m, 1H, ArH), 7.70 7.59 (m, 5H, ArH), 7.48 7.30 (m, 10H, ArH), 3.42 (d, J = 3.9 Hz, 1H, CH), 3.28 (s, 3H, CO₂CH₃), 3.20 (d, J = 3.9 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 172.9, 172.2, 167.0, 135.4, 135.0, 132.9, 132.1, 131.5, 131.4, 131.1, 130.7, 130.2 (q, *J* = 31.3 Hz), 130.0, 129.0, 128.5, 128.2, 127.9, 127.5 (q, *J* = 5.0 Hz), 127.1, 126.3, 124.2 (q, *J* = 274.7 Hz), 117.9, 112.0, 53.2, 52.9, 52.3, 48.1, 47.9, 45.5.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -58.27.
- IR (Neat, cm⁻¹): υ 2922 (m), 2855 (w), 1723 (s), 1371 (m), 1316 (m), 1256 (w), 1173 (m), 756 (w), 698 (w).
- **HRMS (ESI):** Calcd. for C₃₅H₂₃F₃N₂O₄Na⁺ [M+Na]⁺ 615.1508; found: 615.1506.

Methyl-7-(3-chlorophenyl)-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3v)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2e** (124 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 20-30% Et₂O:hexane mixture as a mobile phase to afford the pure product **3v** as a pale yellow semi-solid (141 mg, 0.235 mmol, 78%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): $R_f = 0.50$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.95 7.88 (m, 2H, ArH), 7.77 7.72 (m, 1H, ArH), 7.70 7.66 (m, 2H, ArH), 7.62 (t, J = 7.7 Hz, 1H, ArH), 7.52 7.47 (m, 2H, ArH), 7.46

– 7.31 (m, 8H, Ar*H*), 7.22-7.20 (m, 1H, Ar*H*), 7.09-7.03 (m, 1H, Ar*H*), 3.41 (d, *J* = 3.9 Hz, 1H, *CH*), 3.29 (s, 3H, CO₂*CH*₃), 3.19 (d, *J* = 3.9 Hz, 1H, *CH*).

- ¹³C NMR (101 MHz, CDCl₃): δ 173.2, 172.5, 167.1, 135.1, 134.5, 132.5, 132.0, 131.6, 131.5, 131.2, 130.8, 130.2 (q, J = 30.3 Hz), 130.0, 128.9, 128.7, 128.4, 128.2, 127.9, 127.5 (q, J = 5.0 Hz), 127.1, 126.1, 124.2 (q, J = 274.7 Hz), 124.0, 53.3, 52.9, 52.3, 48.3, 47.9, 45.4. One carbon was not resolved at 101 MHz.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -58.24.
- IR (Neat, cm⁻¹): v 2919 (w), 2856 (w), 1723 (s), 1482 (w), 1371 (w), 1261 (w), 1174 (m), 1039 (w), 756 (w), 701 (m).
- **HRMS (ESI):** Calcd. for C₃₄H₂₃ClF₃NO₄Na⁺ [M+Na]⁺ 624.1165; found: 624.1163.

Methyl-7-(3-chlorophenyl)-3-(2-methoxyphenyl)-6,8-dioxo-2,4-diphenyl-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3w)

Following the general procedure-1, using cyclopropene **1e** (107 mg, 0.300 mmol, 1.00 equiv), maleimide **2e** (124 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3w** as a pale yellow semi-solid (125 mg, 0.222 mmol, 74%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.25, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.69 7.65 (m, 3H, Ar*H*), 7.53 7.50 (m, 2H, Ar*H*), 7.47 (ddd, *J* = 8.2, 7.4, 1.7 Hz, 1H, Ar*H*), 7.40 7.36 (m, 5H, Ar*H*), 7.36 7.31 (m, 3H, Ar*H*), 7.29 (t, *J* = 1.9 Hz, 1H, Ar*H*), 7.19 7.15 (m, 2H, Ar*H*), 7.11 (dd, *J* = 8.4, 1.1 Hz, 1H, Ar*H*), 4.02 (s, 3H, ArOCH₃), 3.33 (d, *J* = 3.8 Hz, 1H, CH), 3.16 (s, 3H, CO₂CH₃), 2.99 (d, *J* = 3.8 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.7, 173.5, 168.0, 158.6, 134.6, 133.2, 133.1, 132.9, 130.1, 130.1, 130.0, 129.8, 128.6, 128.1, 128.0, 127.9, 127.8, 127.6, 126.3, 124.1, 120.93, 120.90, 111.3, 55.3, 52.5, 51.8, 50.0, 49.8, 48.0, 46.8.

- IR (Neat, cm⁻¹): υ 2923 (m), 2853 (w), 1719 (s), 1370 (w), 1267 (w), 1196 (m), 1025 (m), 759 (w), 700 (m).
- **HRMS (ESI):** Calcd. for C₃₄H₂₆ClNO₅H⁺ [M+H]⁺ 564.1578; found: 564.1574.

Methyl-7-(3-bromophenyl)-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3x)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2f** (151 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 20-30% Et₂O:hexane mixture as a mobile phase to afford the pure product **3x** as a pale yellow semi-solid (144 mg, 0.223 mmol, 74%, *dr* > 20:1). (*See Spectra*)

- **TLC (Et₂O:Hexane, 2:3 v/v):** R_f = 0.35, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.96 7.86 (m, 2H, ArH), 7.78-7.72 (m, 1H, ArH), 7.67 (d, J = 6.5 Hz, 2H, ArH), 7.62 (t, J = 7.7 Hz, 1H, ArH), 7.51-7.47 (m, 3H, ArH), 7.46 7.34 (m, 7H, ArH), 7.31 7.25 (m, 1H, ArH), 7.13-7.09 (m, 1H, ArH), 3.40 (d, J = 3.9 Hz, 1H, CH), 3.28 (s, 3H, CO₂CH₃), 3.19 (d, J = 3.9 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.2, 172.5, 167.1, 135.1, 132.7, 132.0, 131.7, 131.6, 131.5, 131.2, 130.8, 130.3, 130.2 (q, J = 31.3 Hz), 130.1, 128.9, 128.4, 128.2, 127.9, 127.7, 127.5 (q, J = 5.0 Hz), 127.1, 124.5, 124.2 (q, J = 274.7 Hz), 122.3, 53.3, 53.0, 52.3, 48.2, 47.9, 45.4.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -58.28.
- IR (Neat, cm⁻¹): υ 2922 (m), 2855 (w), 1721 (s), 1477 (w), 1442 (w), 1256 (w), 1172 (m), 767 (w), 700 (m).
- **HRMS (ESI):** Calcd. for C₃₄H₂₃BrF₃NO₄Na⁺ [M+Na]⁺ 668.0660; found: 668.0662.

Methyl-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7-(3-(trifluoromethyl)phenyl)-7-azatricyclo[3.3.0.02,4]octane-3-carboxylate (3y)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2g** (145 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 20-35% Et₂O:hexane mixture as a mobile phase to afford the pure product **3y** as a pale yellow semi-solid (140 mg, 0.220 mmol, 73%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 2:3 v/v): $R_f = 0.40$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.91 (t, J = 7.5 Hz, 2H, ArH), 7.77 (t, J = 7.6 Hz, 1H, ArH), 7.66 (d, J = 6.5 Hz, 2H, ArH), 7.61 (d, J = 11.0 Hz, 2H, ArH), 7.54 (t, J = 7.9 Hz, 1H, ArH), 7.48 (bs, 3H, ArH), 7.44 7.32 (m, 7H, ArH), 3.42 (d, J = 3.9 Hz, 1H, CH), 3.28 (s, 3H, CO₂CH₃), 3.20 (d, J = 3.9 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.2, 172.5, 167.1, 135.1, 132.1, 131.6 (q, J = 33.3 Hz), 131.5, 131.3, 130.8, 130.3 (q, J = 30.3 Hz), 130.1, 129.7, 129.1, 129.0, 128.5, 128.2, 128.0, 127.8, 127.6 (q, J = 5.0 Hz), 127.4, 127.2, 125.2, 124.2 (q, J = 274.7 Hz), 123.3 (q, J = 273.7 Hz), 122.9 (q, J = 3.8 Hz), 53.3, 53.1, 52.3, 48.2, 47.9, 45.5.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -58.33, -62.75.
- IR (Neat, cm⁻¹): v 2921 (m), 2856 (w), 1718 (s), 1374 (w), 1252 (m), 1197 (m), 1175 (m), 754 (s), 699 (w).
- **HRMS (ESI):** Calcd. for $C_{35}H_{23}F_6NO_4H^+$ [M+H]⁺ 636.1610; found: 636.1608.

Methyl-7-(4-methoxyphenyl)-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3z)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2h** (122 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 20-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3z** as a pale yellow semi-solid (76.0 mg, 0.127 mmol, 42%, dr > 20:1). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 1:1 v/v): $R_f = 0.35$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.90 (t, J = 8.6 Hz, 2H, ArH), 7.74 (t, J = 7.5 Hz, 1H, ArH), 7.68 7.57 (m, 3H, ArH), 7.50 7.45 (m, 2H, ArH), 7.43 7.29 (m, 6H, ArH), 7.05 (d, J = 9.0 Hz, 2H, ArH), 6.92 (d, J = 9.0 Hz, 2H, ArH), 3.78 (s, 3H, ArOCH₃), 3.36 (d, J = 3.9 Hz, 1H, CH), 3.27 (s, 3H, CO₂CH₃), 3.15 (d, J = 3.9 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.9, 173.1, 167.3, 159.4, 135.2, 132.0, 131.8, 131.7, 131.4, 130.9, 130.3 (q, J = 30.3 Hz), 130.2, 128.9, 128.4, 128.2, 127.8, 127.5 (q, J = 5.0 Hz), 127.2, 127.0, 124.2 (q, J = 274.7 Hz), 114.4, 55.4, 53.4, 52.9, 52.3, 48.5, 48.0, 45.4, 45.4.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -58.28.
- IR (Neat, cm⁻¹): υ 2923 (m), 2855 (w), 2348 (m), 1718 (s), 1375 (m), 1254 (m), 1197 (m), 1033 (w), 753 (s), 698 (w).
- **HRMS (ESI):** Calcd. for C₃₅H₂₆F₃NO₅Na [M+Na]⁺ 620.1661; found: 620.1664.

Methyl-7-methyl-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3aa)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2i** (67 mg, 0.60 mmol, 2.0 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 30-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3aa** as a pale yellow semi-solid (104 mg, 0.206 mmol, 68%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.30, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.3 Hz, 2H, ArH), 7.76 7.70 (m, 1H, ArH), 7.62 7.52 (m, 3H, ArH), 7.39 (bs, 5H, ArH), 7.35 7.28 (m, 3H, ArH), 3.25 (s, 3H, CO₂CH₃), 3.21 (d, J = 3.8 Hz, 1H, CH), 3.04 (d, J = 3.9 Hz, 1H, CH), 2.93 (s, 3H, -NCH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.8, 174.0, 167.1, 135.1, 131.9, 131.8, 131.5, 131.4, 130.8, 130.6 (q, J = 30.3 Hz), 130.0, 128.8, 128.3, 128.1, 127.7, 127.5 (q, J = 5.0 Hz), 126.9, 124.2 (q, J = 274.7 Hz), 53.1, 53.0, 52.2, 48.5, 47.9, 45.7, 25.0.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -58.32.
- IR (Neat, cm⁻¹): υ 2918 (w), 2535 (w), 1708 (s), 1493 (w), 1436 (m), 1317 (m), 1231 (m), 1178 (m), 760 (w), 702 (m).
- **HRMS (ESI):** Calcd. for C₂₉H₂₂F₃NO₄Na⁺ [M+Na]⁺ 528.1399; found: 528.1400.

Methyl-3-(2-methoxyphenyl)-7-methyl-6,8-dioxo-2,4-diphenyl-7-

azatricyclo[3.3.0.02,4]octane-3-carboxylate (3ab)

Following the general procedure-1, using cyclopropene **1e** (107 mg, 0.300 mmol, 1.00 equiv), maleimide **2i** (67 mg, 0.60 mmol, 2.0 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 20-30% Et₂O:hexane mixture as a mobile phase to afford the pure product **3ab** as a pale yellow semi-solid (111 mg, 0.238 mmol, 78%, *dr* > 20:1). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 1:1 v/v): $R_f = 0.45$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 1.7 Hz, 1H, ArH), 7.57 (d, J = 7.2 Hz, 2H, ArH), 7.47 7.40 (m, 3H, ArH), 7.39 7.20 (m, 6H, ArH), 7.14 (td, J = 7.4, 1.1 Hz,

1H, Ar*H*), 7.09 (dd, *J* = 8.4, 1.0 Hz, 1H, Ar*H*), 3.99 (s, 3H, ArO*CH*₃), 3.17 (d, *J* = 3.8 Hz, 1H, *CH*), 3.14 (s, 3H, CO₂*CH*₃), 3.00 (s, 3H, -N*CH*₃), 2.84 (d, *J* = 3.7 Hz, 1H, *CH*).

- ¹³C NMR (101 MHz, CDCl₃): δ 175.2, 175.0, 168.0, 158.5, 133.3, 133.1, 133.0, 130.0, 129.9, 129.7, 127.9, 127.8, 127.6, 127.5, 121.0, 120.8, 111.2, 55.3, 52.4, 51.7, 50.0, 49.8, 48.1, 46.9, 24.9.
- IR (Neat, cm⁻¹): v 2923 (m), 2854 (w), 1707 (s), 1457 (w), 1380 (m), 1239 (m), 1187 (w), 1023 (w), 759 (w), 699 (w).
- **HRMS (ESI):** Calcd. for C₂₉H₂₅NO₅Na⁺ [M+Na]⁺ 490.1630; found: 490.1633.

Methyl-7-cyclopropyl-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3ac)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2j** (82 mg, 0.60 mmol, 2.0 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3ac** as a pale yellow semi-solid (128 mg, 0.241 mmol, 84%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): $R_f = 0.30$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.88 7.83 (m, 2H, ArH), 7.74 7.68 (m, 1H, ArH), 7.62 7.51 (m, 3H, ArH), 7.43 7.28 (m, 8H, ArH), 3.24 (s, 3H, CO₂CH₃), 3.14 (d, J = 3.9 Hz, 1H, CH), 2.95 (d, J = 3.9 Hz, 1H, CH), 2.53 (tt, J = 6.9, 4.3 Hz, 1H, -NCH), 0.94-0.81 (m, 3H, -NCHCH₂), 0.69 0.59 (m, 1H, -NCHCH₂).
- ¹³C NMR (101 MHz, CDCl₃): δ 175.0, 174.3, 167.2, 135.1, 132.0, 131.9, 131.7, 131.4, 130.7, 130.3 (q, J = 30.3 Hz), 130.0, 128.8, 128.3, 128.1, 127.6, 127.5 (q, J = 5.0 Hz), 126.9, 124.2 (q, J = 182.8 Hz), 53.2, 53.0, 52.1, 48.3, 47.5, 45.0, 22.3, 4.9, 4.8.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -58.32.
- IR (Neat, cm⁻¹): v 2923 (w), 2855 (w), 1714 (s), 1397 (w), 1316 (m), 1232 (m), 1178 (m), 1038 (w), 759 (w), 700 (w).
- **HRMS (ESI):** Calcd. for C₃₁H₂₄F₃NO₄Na⁺ [M+Na]⁺ 554.1555; found: 554.1558.

Methyl-7-cyclohexyl-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3ad)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2k** (108 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 20-30% Et₂O:hexane mixture as a mobile phase to afford the pure product **3ad** as a pale yellow semi-solid (121 mg, 0.211 mmol, 70%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 2:3 v/v): $R_f = 0.30$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 4.7 Hz, 2H, ArH), 7.71 (t, J = 7.6 Hz, 1H, ArH), 7.58 (t, J = 7.9 Hz, 3H, ArH), 7.48 7.39 (m, 5H, ArH), 7.32 (d, J = 7.2 Hz, 3H, ArH), 3.95 3.82 (m, 1H, -NCH), 3.25 (s, 3H, CO₂CH₃), 3.13 (d, J = 3.9 Hz, 1H, CH), 2.96 (d, J = 3.9 Hz, 1H, CH), 2.04 (dqd, J = 51.6, 12.5, 3.5 Hz, 2H, -NCHCH₂), 1.77 (t, J = 11.1 Hz, 2H, -NCHCH₂), 1.64 1.42 (m, 3H, -NCHCH₂CH₂CH₂), 1.33 1.08 (m, 3H, -NCHCH₂CH₂CH₂).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.7, 173.9, 167.3, 135.1, 132.0, 131.9, 131.7, 131.5, 130.8, 130.3 (q, J = 31.3 Hz), 130.2, 128.7, 128.3, 128.0, 127.6, 127.4 (q, J = 5.0 Hz), 126.7, 124.2 (q, J = 274.7 Hz), 53.3, 52.9, 52.1, 51.6, 48.6, 47.6, 45.0, 28.5, 28.2, 25.6, 24.7. One carbon was not resolved at 101 MHz.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -58.29.
- IR (Neat, cm⁻¹): v 2922 (m), 2854 (w), 1706 (s), 1449 (w), 1368 (w), 1237 (m), 1180 (m), 1043 (w), 754 (s), 700 (m).
- **HRMS (ESI):** Calcd. for C₃₄H₃₀F₃NO₄Na [M+Na]⁺ 596.2025; found: 596.2025.

Methyl-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3ae)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00, equiv), maleimide **2l** (58 mg, 0.60 mmol, 2.0 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was not able to purify by column chromatography. The yield is calculated by using dibromomethane as an internal standard (68%, *dr* > 20:1). However, NMR of the subsequent Boc protected product **3ae-Boc** was given. (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): $R_f = 0.30$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.88 7.83 (m, 2H, ArH), 7.75 7.71 (m, 1H, ArH), 7.60 (dd, J = 8.3, 6.7 Hz, 3H, ArH), 7.48 7.46 (m, 2H, ArH), 7.38 (dddt, J = 8.9, 7.2, 5.6, 1.5 Hz, 3H, ArH), 7.35 7.28 (m, 3H, ArH), 3.24 (s, 3H, CO₂CH₃), 3.21 (d, J = 3.8 Hz, 1H, CH), 3.02 (d, J = 3.9 Hz, 1H, CH), 1.51 (s, 9H, -NCO₂C(CH₃)₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 170.7, 169.6, 167.1, 146.0, 135.2, 132.0, 131.5, 131.3, 131.2, 130.8, 130.3 (q, J = 20.2 Hz), 130.2, 129.0, 128.4, 128.2, 127.8, 127.5 (q, J = 5.0 Hz), 127.1, 124.2 (q, J = 183.8 Hz), 86.5, 53.1, 52.4, 52.2, 48.3, 48.2, 46.1, 27.6.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -58.34.
- IR (Neat, cm⁻¹): υ 2923 (w), 2855 (w), 1723 (s), 1585 (w), 1478 (w), 1314 (m), 1316 (m), 1174 (m), 1073 (m), 1038 (w), 766 (w), 700 (w).
- HRMS (ESI): Calcd. for C₂₈H₂₀F₃NO₄H⁺ [M+H]⁺ 492.1423; found: 492.1424 for 3ae Calcd. for C₃₃H₂₈F₃NO₆Na⁺ [M+Na]⁺ 614.1766; found: 614.1764 for 3ae-Boc.

Methyl-7-(1,3-dioxoisoindolin-2-yl)-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7-azatricyclo[3.3.0.02,4]octane-3-carboxylate (3af)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2m** (145 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3af** as a pale yellow semi-solid (121 mg, 0.211 mmol, 85%, *dr* > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 3:2 v/v): R_f = 0.30, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 7.6 Hz, 3H, ArH), 7.86 (d, J = 6.5 Hz, 1H, ArH), 7.81-7.70 (m, 7H, ArH), 7.64 (t, J = 7.7 Hz, 1H, ArH), 7.46 7.27 (m, 6H, ArH), 3.43 (d, J = 3.8 Hz, 1H, CH), 3.28 (s, 3H, CO₂CH₃), 3.27 3.25 (m, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 170.0, 168.9, 167.3, 162.8, 162.4, 135.2, 135.1, 135.0, 132.2, 131.4, 131.1, 131.0, 130.9, 130.5, 130.4 (q, *J* = 30.3 Hz), 129.8, 129.7, 129.1, 128.6, 128.4, 127.9, 127.7 (q, *J* = 5 Hz), 127.0, 124.4, 124.3, 124.2 (q, *J* = 274.7 Hz), 53.6, 52.3, 51.9, 49.0, 46.8, 44.3.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -58.29.
- IR (Neat, cm⁻¹): v 2919 (w), 2853 (w), 1749 (s), 1598 (w), 1441 (w), 1268 (m), 1177 (m), 1044 (w), 753 (s), 669 (m).
- **HRMS (ESI):** Calcd. for C₃₆H₂₃F₃N₂O₆Na⁺ [M+Na]⁺ 659.1406; found: 659.1407

Methyl-7-(4-(4-((1R,3R,4R,5S)-3-(methoxycarbonyl)-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7-azatricyclo[3.3.0.02,4]octan-7-yl)benzyl)phenyl)-6,8-dioxo-2,4-diphenyl-3-(2-(trifluoromethyl)phenyl)-7-azatricyclo[3.3.0.02,4]octane-3-carboxylate (3ag)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), maleimide **2n** (107.4 mg, 0.300 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was not able to purify by column chromatography. The yield is calculated by using dibromomethane as an internal standard (91%, *dr* > 20:1). (*See Spectra*)

- **TLC** (EtOAc: Hexane, 4:6 v/v): $R_f = 0.40$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.83 7.75 (m, 4H, Ar*H*), 7.65 7.61 (m, 2H, Ar*H*), 7.55 (dd, J = 7.4, 3.7 Hz, 4H, Ar*H*), 7.52 7.47 (m, 2H, Ar*H*), 7.40 7.36 (m, 4H, Ar*H*), 7.30 7.22 (m, 10H, Ar*H*), 7.21 7.19 (m, 2H, Ar*H*), 7.12 (d, J = 8.4 Hz, 2H, Ar*H*), 7.09 7.06 (m, 2H, Ar*H*), 6.98 6.93 (m, 4H, Ar*H*), 3.89 (s, 2H, Ar*CH*₂Ar), 3.26 (t, J = 4.2 Hz, 2H, *CH*), 3.16 (s, 6H, CO₂*CH*₃), 3.04 (dd, J = 4.7, 3.9 Hz, 2H, *CH*).
- ¹³C NMR (101 MHz, CDCl₃): δ 173.6, 172.9, 167.2, 141.0, 140.8, 140.1, 135.2, 132.0, 131.8, 131.6, 130.8, 130.3 (q, J = 20.2 Hz), 130.2, 129.7, 128.9, 128.3, 128.2, 127.8, 127.5 (q, J = 3.3 Hz), 127.0, 126.0, 124.2 (q, J = 182.8 Hz), 53.4, 53.0, 52.2, 48.4, 48.0, 45.5, 41.0.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -58.26.
- IR (Neat, cm⁻¹): υ 2922 (s), 2854 (w), 1718 (s), 1459 (w), 1377 (w), 1316 (w), 1175 (m), 699 (w).
- **HRMS (ESI):** Calcd. for $C_{69}H_{48}F_6N_2O_8H^+$ [M+H]⁺ 1147.3393; found: 1147.3392.

2-ethyl 5-methyl-1,4-diphenyl-5-(2-(trifluoromethyl)phenyl)bicyclo[2.1.0]pentane-2,5dicarboxylate (3ah)

Following the general procedure-1, using cyclopropene **1d** (118 mg, 0.300 mmol, 1.00 equiv), ethyl acrylate (300 mg, 3.00 mmol, 10.0 equiv), and $[Ir\{dF(CF_3)ppy\}_2(dtbpy)]PF_6$ (8.4 mg, 7.5 µmol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 7% Et₂O:hexane mixture as a mobile phase to afford the pure product **3ah** as a coluorless semi-solid (37 mg, 0.075 mmol, 25%, dr > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 3:7 v/v): $R_f = 0.35$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.90 7.83 (m, 1H, ArH), 7.79 (dd, J = 7.6, 1.6 Hz, 1H, ArH), 7.61 7.48 (m, 6H, ArH), 7.42 7.28 (m, 5H, ArH), 7.27 7.21 (m, 1H, ArH), 3.92 3.84 (m, 1H, CO₂CH₂CH₃), 3.69 (ddd, J = 12.0, 10.6, 6.4 Hz, 2H, CO₂CH₂CH₃, CH), 3.25 (s, 3H, CO₂CH₃), 2.65 (dd, J = 12.7, 10.3 Hz, 1H, CH), 2.29 (dd, J = 12.8, 5.7 Hz, 1H, CH), 1.04 (t, J = 7.1 Hz, 3H, CO₂CH₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 171.8, 169.2, 137.3, 136.8, 135.7, 133.1, 130.9, 130.5 (d, J = 1.9 Hz), 129.81, 129.8 (q, J = 31.3 Hz), 128.2, 128.1, 127.2, 127.1, 126.5, 124.3 (q, J = 274.7 Hz), 60.1, 51.9, 49.4, 48.8, 44.9, 43.4, 30.9, 13.6.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -58.5.
- IR (Neat, cm⁻¹): v 2933 (w), 2524 (w), 1745 (s), 1592 (m), 1440 (w), 1258 (m), 1190 (w), 1045 (w), 798 (s).
- **HRMS (ESI):** Calcd. for C₃₂H₂₅F₃O₂Na⁺ [M+Na]⁺ 521.1704; found: 521.1711

Methyl-7-(2-(*tert*-butyl)phenyl)-6,8-dioxo-2,3,4-triphenyl-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3ai)

Following the general procedure-1, using cyclopropene **1a** (98 mg, 0.30 mmol, 1.0 equiv), maleimide **2o** (137 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 15-25% Et₂O:hexane mixture as a mobile phase to afford the pure product **3ai** as a pale yellow semi-solid (109 mg, 0.196 mmol, 65%, *dr* 7:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): $R_f = 0.45$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): For both diastereomers δ 7.84 7.76 (m, 2H, ArH), 7.68 7.61 (m, 6H, ArH), 7.60 7.52 (m, 2H, ArH), 7.49 7.29 (m, 8H, ArH), 7.04 6.97 (m, 1H, ArH), 3.95 (s, 0.14H, CO₂CH₃), 3.90 (s, 0.05H, CH), 3.27 (d, J = 1.8 Hz, 1.95H, CH), 3.18 (s, 2.84H, CO₂CH₃), 1.33 (s, 0.6H, ArC(CH₃)₃), 1.22 (s, 8.4H, ArC(CH₃)₃).
- ¹³C NMR (101 MHz, CDCl₃): For both diastereomers δ 174.9, 174.8, 169.3, 167.9, 148.1, 148.0, 132.7, 132.3, 132.1, 131.3, 130.6, 130.1, 129.84, 129.76, 129.7, 129.6, 129.1, 129.0, 128.4, 128.0, 127.9, 127.8, 127.5, 127.4, 127.2, 53.9, 53.5, 52.7, 51.9, 51.5, 49.1, 47.6, 47.3, 35.8, 35.7, 31.6, 31.5. Twenty-one carbons were not resolved at 101 MHz.
- IR (Neat, cm⁻¹): v 2922 (w), 2857 (w), 1718 (s), 1490 (w), 1443 (m), 1238 (m), 1198 (m), 1075 (w), 756 (w), 700 (m).
- **HRMS (ESI):** Calcd. for C₃₇H₃₃NO₄H⁺ [M+H]⁺ 556.2488; found: 556.2488.

Methyl-3-(4-bromophenyl)-7-(2-(*tert*-butyl)phenyl)-6,8-dioxo-2,4-diphenyl-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3aj)

Following the general procedure-1, using cyclopropene **1r** (122 mg, 0.300 mmol, 1.00 equiv), maleimide **2o** (137 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was not able to purify by column chromatography (the compound got decomposed while purifying). The yield is calculated by using dibromomethane as an internal standard (48%, *dr* 7:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.40, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.77 7.72 (m, 6H, ArH), 7.65 7.61 (m, 4H, ArH), 7.51 (t, J = 7.8 Hz, 5H, ArH), 7.38 7.26 (m, 3H, ArH), 3.93 (s, 0.4H, CO₂CH₃), 3.85 (s, 0.24H, CH), 3.19 (s, 1.85H, CH), 3.17 (s, 2.6H, CO₂CH₃), 1.20 (s, 9H, ArC(CH₃)₃).
- IR (Neat, cm⁻¹): v 2955 (w), 2922 (m), 2858 (w), 1718 (s), 1491 (w), 1443 (w), 1374 (m), 1238 (m), 1198 (m), 756 (w), 700 (m).
- **HRMS (ESI):** Calcd. for C₃₇H₃₂BrNO₄H [M+H]⁺ 634.1593; found: 634.1592.

Methyl-7-(2-(*tert*-butyl)phenyl)-3-(4-methoxyphenyl)-6,8-dioxo-2,4-diphenyl-7azatricyclo[3.3.0.02,4]octane-3-carboxylate (3ak)

Following the general procedure-1, using cyclopropene **1s** (107 mg, 0.300 mmol, 1.00 equiv), maleimide **2o** (137 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 µmol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 20-35% Et₂O:hexane mixture as a mobile phase to afford the pure product **3ak** as a pale yellow semi-solid (50.0 mg, 0.085 mmol, 28%, *dr* 7:1). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 1:1 v/v): R_f = 0.4, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): For both diastereomers δ 7.65 (d, J = 8.6 Hz, 2H, ArH), 7.59 (d, J = 7.2 Hz, 4H, ArH), 7.54 (dd, J = 7.8, 1.9 Hz, 1H, ArH), 7.46 7.32 (m, 8H, ArH), 7.11 (d, J = 8.6 Hz, 2H, ArH), 6.97 6.93 (m, 1H, ArH), 3.92 (s, 2.8H, CH, ArOCH₃), 3.73 (s, 0.3H, CO₂CH₃), 3.51 (s, 0.3H, ArOCH₃), 3.21 (s, 1.9H, CH), 3.15 (s, 2.7H, CO₂CH₃), 1.40 (s, 1H, ArC(CH₃)₃), 1.18 (s, 8H, ArC(CH₃)₃).
- ¹³C NMR (101 MHz, CDCl₃): For both diastereomers δ 174.9, 168.3, 169.6, 159.5, 159.0, 147.6, 148.2, 143.5, 142.4, 137.8, 135.2, 134.3, 132.9, 132.5, 131.4, 132.1, 130.4, 130.0, 129.9, 129.7, 129.2, 128.7, 128.6, 128.3, 128.1, 127.9, 127.6, 127.5,

127.2, 126.3, 124.3, 117.7, 114.5, 113.2, 56.5, 55.3, 55.2, 53.0, 52.0, 51.9, 51.6, 50.3, 48.4, 47.4, 35.8, 35.7, 31.7, 31.6. Twelve carbons were not resolved at 101 MHz.

- IR (Neat, cm⁻¹): υ 2922 (s), 2855 (w), 1718 (s), 1374 (m), 1246 (m), 1198 (m), 1045 (w), 754 (m).
- **HRMS (ESI):** Calcd. for C₃₈H₃₅NO₅Na⁺ [M+Na]⁺ 608.2413; found: 608.2417.

Scale up:

Following the general procedure-1, using cyclopropene **1i** (636 mg, 2.00 mmol, 1.00 equiv), maleimide **2a** (692 mg, 4.00 mmol, 2.00 equiv), and 4CzIPN (40 mg, 0.05 mmol, 0.025 equiv) in anhydrous DCM (20 mL, 0.1 M). The crude product was purified by column chromatography using 20-30% Et₂O:Hexane mixture as a mobile phase to afford the pure product **3i** as a pale yellow semi-solid (770 mg, 1.56 mmol, 78%, dr > 20:1). (*See Spectra*)

5. Optimization of Spiro-Oxa-Housane Synthesis:

5.1 Screening of Solvents

A flame-dried 5 mL Schlenk tube was charged with cyclopropene **1o** (23.4 mg, 0.100 mmol, 1.00 equiv), benzoquinone **4a** (22 mg, 0.20 mmol, 2.0 equiv) and anhydrous solvent (2.0 mL). The solution was irradiated using a 440 nm Kessil lamp for 4 h at rt. Next, the reaction mixture was concentrated under reduced pressure and the crude product was submitted to ¹H-NMR. The yield of the crude product was calculated by ¹H NMR using CH_2Br_2 (7.0 µl, 0.10 mmol) as an internal standard.

Entry	Solvent	Yield (%)
1	Acetone	18
2	DCM	25
5	Acetonitile	30

5.2 Screening of Reaction Time

A flame-dried 5 mL Schlenk tube was charged with cyclopropene **1o** (23.4 mg, 0.100 mmol, 1.00 equiv), benzoquinone **4a** (22 mg, 0.20 mmol, 2.0 equiv) and anhydrous CH_3CN (1.0 mL). The solution was irradiated using a 440 nm Kessil lamp for xx h at rt. Next, the reaction mixture was concentrated under reduced pressure and the crude product was submitted to ¹H-NMR. The yield of the crude product was calculated by ¹H NMR using CH_2Br_2 (7.0 µl, 0.10 mmol) as an internal standard.

Entry	Time	Yield (%)

1	4	30
5	2.5	64

5.3 Scope of Spiro-Oxa- Housane:

General Procedure-2:

A flame-dried 25 mL Schlenk tube was charged with cyclopropene **1** (0.30 mmol, 1.0 equiv), benzoquinone **4** (0.60 mmol, 2.0 equiv) and anhydrous CH₃CN (6.0 mL). The solution was irradiated using a 440 nm Kessil lamp for 2.5 h at rt. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using Et₂O:hexane mixture as a mobile phase to afford compound **5**.

Dimethyl-4'-oxo-1-phenyl-3-oxaspiro[bicyclo[2.1.0]pentane-2,1'-cyclohexane]-2',5'diene-5,5-dicarboxylate (5a)

Following the general procedure-2, using cyclopropene **10** (70 mg, 0.30 mmol, 1.0 equiv), benzoquinone **4a** (65 mg, 0.60 mmol, 2.0 equiv), and in anhydrous CH₃CN (6.0 mL). The crude product was purified by column chromatography using 15-25% Et₂O:hexane mixture as a mobile phase to afford the pure product **5a** as a colorless semi-solid (53 mg, 0.156 mmol, 52%). (*See Spectra*)

• **TLC** (Et₂O:Hexane, 1:1 v/v): $R_f = 0.25$, UV, KMnO₄.

- ¹H NMR (400 MHz, CDCl₃): δ 7.26 (m, 5H, ArH), 7.10 (ddd, J = 10.5, 8.2, 3.1 Hz, 2H, C=CCH), 6.21 6.16 (m, 1H, C=CCH), 6.10 6.04 (m, 1H, C=CCH), 5.50 (s, 1H, OCH), 3.97 (s, 3H, CO₂CH₃), 3.40 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 184.5, 166.3, 165.0, 147.8, 140.9, 131.0, 130.6, 129.7, 129.6, 128.9, 128.4, 82.0, 69.9, 53.3, 52.7, 46.9, 45.5.
- IR (Neat, cm⁻¹): υ 2935 (w), 2525 (w), 2170 (s), 1710 (s), 1516 (m), 1246 (m), 1164 (m), 1084 (w), 841 (m).
- **HRMS (ESI):** Calcd. for C₁₉H₁₆O₆H⁺ [M+H]⁺ 341.1025; found: 341.1029.

Diethyl-4'-oxo-1-phenyl-3-oxaspiro[bicyclo[2.1.0]pentane-2,1'-cyclohexane]-2',5'-diene-5,5-dicarboxylate (5b)

Following the general procedure-2, using cyclopropene **1t** (83 mg, 0.30 mmol, 1.0 equiv), benzoquinone **4a** (65 mg, 0.60 mmol, 2.0 equiv), and in anhydrous CH_3CN (6.0 mL). The crude product was purified by column chromatography using 20-25% Et₂O:hexane mixture as a mobile phase to afford the pure product **5b** as a colorless semi-solid (71.0 mg, 0.193 mmol, 64%). (*See Spectra*)

- **TLC (Et₂O:Hexane, 1:1 v/v):** R_f = 0.4, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.31 7.23 (m, 5H, ArH), 7.21 (dd, J = 10.5, 3.1 Hz, 1H, C=CCH), 7.12 (dd, J = 10.2, 3.1 Hz, 1H, , C=CCH), 6.17 (dd, J = 10.5, 2.1 Hz, 1H, , C=CCH), 6.08 (dd, J = 10.1, 2.0 Hz, 1H, , C=CCH), 5.50 (s, 1H, OCH), 4.44 (tq, J = 7.1, 3.7 Hz, 2H, CO₂CH₂CH₃), 3.85 (qd, J = 7.1, 1.4 Hz, 2H, CO₂CH₂CH₃), 1.41 (t, J = 7.1 Hz, 3H, CO₂CH₂CH₃), 0.88 (t, J = 7.1 Hz, 3H, CO₂CH₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 184.5, 165.9, 164.7, 148.0, 141.3, 130.8, 130.6, 129.8, 129.7, 128.8, 128.3, 82.0, 69.8, 62.3, 61.9, 46.5, 45.7, 14.0, 13.5.
- IR (Neat, cm⁻¹): υ 2939 (w), 2538 (w), 2170 (s), 1708 (s), 1520 (m), 1250 (m), 1180 (m), 767 (m).
- **HRMS (ESI):** Calcd. for C₂₁H₂₀O₆H⁺ [M+H]⁺ 369.1338; found: 369.1342.

Dimethyl-1-(4-fluorophenyl)-4'-oxo-3-oxaspiro[bicyclo[2.1.0]pentane-2,1'-cyclohexane]-2',5'-diene-5,5-dicarboxylate (5c)

Following the general procedure-2, using cyclopropene **1u** (75 mg, 0.30 mmol, 1.0 equiv), benzoquinone **4a** (65 mg, 0.60 mmol, 2.0 equiv), and in anhydrous CH₃CN (6.0 mL). The crude product was purified by column chromatography using 15-25% Et₂O:hexane mixture as a mobile phase to afford the pure product **5c** as a colorless semi-solid (63.0 mg, 0.176 mmol, 58%). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.30, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.26 7.20 (m, 2H, ArH), 7.12 7.01 (m, 2H, C=CCH), 6.95 (t, J = 8.6 Hz, 2H, ArH), 6.18 (d, J = 10.4 Hz, 1H, C=CCH), 6.09 (d, J = 10.1 Hz, 1H, C=CCH), 5.47 (s, 1H, OCH), 3.96 (s, 3H, CO₂CH₃), 3.44 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 184.3, 166.2, 164.9, 163.9, 161.5, 147.7, 140.8, 131.5 (d, J = 8.6 Hz), 130.9 (d, J = 32.1 Hz), 125.5 (d, J = 3.3 Hz), 115.5 (d, J = 21.9 Hz), 81.9, 69.9, 53.3, 52.8, 46.0, 45.3.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -111.55.
- IR (Neat, cm⁻¹): υ 2938 (w), 2520 (w), 2168 (s), 1715 (s), 1498 (m), 1250 (m), 1158 (m), 1090 (w), 798 (m).
- **HRMS (ESI):** Calcd. for $C_{19}H_{15}FO_6H^+$ [M+H]⁺ 359.0931; found: 359.0930.

Dimethyl-3',5'-dichloro-4'-oxo-1-phenyl-3-oxaspiro[bicyclo[2.1.0]pentane-2,1'cyclohexane]-2',5'-diene-5,5-dicarboxylate (5d)

Following the general procedure-2, using cyclopropene **1o** (70 mg, 0.30 mmol, 1.0 equiv), benzoquinone **4b** (106 mg, 0.600 mmol, 2.00 equiv), and in anhydrous CH₃CN (6.0 mL). The crude product was purified by column chromatography using 10-20% Et₂O:hexane mixture as

a mobile phase to afford the pure product **5d** as a colorless semi-solid (82 mg, 0.20 mmol, 67%). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 1:1 v/v): R_f = 0.50, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 2.8 Hz, 1H, C=CCH), 7.35 7.27 (m, 6H, ArH, C=CCH), 5.51 (s, 1H, OCH), 4.00 (s, 3H, CO₂CH₃), 3.41 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 171.8, 165.8, 164.6, 144.1, 137.6, 134.2, 133.3, 129.6, 129.4, 129.0, 128.7, 83.2, 69.8, 53.5, 52.9, 46.5, 45.8.
- IR (Neat, cm⁻¹): υ 2934 (w), 2526 (w), 2171 (s), 1716 (s), 1519 (m), 1244 (m), 1171 (m), 1087 (w), 805 (w).
- **HRMS (ESI):** Calcd. for $C_{19}H_{14}Cl_2O_6H^+$ [M+H]⁺ 409.0246; found: 409.0244.

Diethyl-3',5'-dichloro-4'-oxo-1-phenyl-3-oxaspiro[bicyclo[2.1.0]pentane-2,1'cyclohexane]-2',5'-diene-5,5-dicarboxylate (5e)

Following the general procedure-2, using cyclopropene **1t** (83 mg, 0.30 mmol, 1.0 equiv), benzoquinone **4b** (106 mg, 0.600 mmol, 2.00 equiv), and in anhydrous CH₃CN (6.0 mL). The crude product was purified by column chromatography using 10-15% Et₂O:hexane mixture as a mobile phase to afford the pure product **5e** as a colourless semi-solid (65 mg, 0.15 mmol, 50%). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 1:1 v/v): $R_f = 0.50$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.51 (bs, 1H, C=CCH), 7.34-7.27 (m, 6H, ArH, C=CCH), 5.51 (s, 1H, OCH), 4.55 4.39 (m, 2H, CO₂CH₂CH₃), 3.86 (q, J = 7.0 Hz, 2H, CO₂CH₂CH₃), 1.43 (t, J = 7.1 Hz, 3H, CO₂CH₂CH₃), 0.88 (t, J = 7.1 Hz, 3H, CO₂CH₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 171.9, 165.3, 164.2, 144.3, 137.9, 134.0, 133.2, 129.7, 129.3, 129.0, 128.7, 83.2, 69.8, 62.7, 62.1, 46.2, 46.0, 14.0, 13.5.
- IR (Neat, cm⁻¹): υ 2938 (w), 2524 (w), 2170 (s), 1712 (s), 1520 (m), 1242 (m), 1178 (m), 1084 (w), 799 (w).
- **HRMS (ESI):** Calcd. for C₂₁H₁₈Cl₂O₆H⁺ [M+H]⁺ 437.0559; found: 437.0555.

Dimethyl-3',5'-dichloro-1-(4-fluorophenyl)-4'-oxo-3-oxaspiro[bicyclo[2.1.0]pentane-2,1'cyclohexane]-2',5'-diene-5,5-dicarboxylate (5f)

Following the general procedure-2, using cyclopropene **1u** (75 mg, 0.30 mmol, 1.0 equiv), benzoquinone **4b** (106 mg, 0.600 mmol, 2.00 equiv), and in anhydrous CH₃CN (6.0 mL). The crude product was purified by column chromatography using 10-15% Et₂O:hexane mixture as a mobile phase to afford the pure product **5f** as a colourless semi-solid (57 mg, 0.134 mmol, 44%). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): $R_f = 0.50$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 2.9 Hz, 1H, C=CCH), 7.29 7.26 (m, 3H, ArH), 7.01 (t, J = 8.6 Hz, 2H, ArH, C=CCH), 5.49 (s, 1H, OCH), 4.00 (s, 3H, CO₂CH₃), 3.45 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 171.8, 165.7, 164.5, 164.2, 161.8, 143.9, 137.4, 133.9
 (d, J = 87.6 Hz), 131.6 (d, J = 8.5 Hz), 124.8 (d, J = 3.6 Hz), 116.0 (d, J = 22.0 Hz), 83.1, 69.9, 53.6, 53.0, 45.8, 45.7.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -110.48.
- IR (Neat, cm⁻¹): υ 2938 (w), 2525 (w), 2172 (s), 1710 (s), 1518 (m), 1248 (m), 1168 (m), 1077 (w), 810 (w).
- **HRMS (ESI):** Calcd. for $C_{19}H_{13}Cl_2FO_6H^+$ [M+H]⁺ 427.0151; found: 427.0151.

Methyl-4'-oxo-1-(m-tolyl)-5-(2-(trifluoromethyl)phenyl)-3-

oxaspiro[bicyclo[2.1.0]pentane-2,1'-cyclohexane]-2',5'-diene-5-carboxylate (5g)

Following the general procedure-2, using cyclopropene **1k** (100 mg, 0.300 mmol, 1.00 equiv), benzoquinone **4a** (65 mg, 0.60 mmol, 2.0 equiv), and in anhydrous CH₃CN (6.0 mL). The crude product was purified by column chromatography using 10-15% Et₂O:hexane mixture as a

mobile phase to afford the pure product **5g** as a colourless semi-solid (66 mg, 0.15 mmol, 50%, dr > 20:1). (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): $R_f = 0.50$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, J = 7.7 Hz, 1H, ArH), 7.82 (d, J = 7.8 Hz, 1H, ArH), 7.74 (t, J = 7.6 Hz, 1H, ArH), 7.61 (t, J = 7.6 Hz, 1H, ArH), 7.20 (t, J = 7.8 Hz, 1H, ArH), 7.11 (d, J = 7.4 Hz, 3H), 7.06 (dd, J = 10.2, 3.0 Hz, 1H, C=CCH), 6.06 (dd, J = 10.5, 3.0 Hz, 1H, C=CCH), 5.99 (dd, J = 10.2, 2.0 Hz, 1H, C=CCH), 5.91 (dd, J = 10.5, 2.1 Hz, 1H, C=CCH), 5.79 (s, 1H, OCH), 3.26 (s, 3H, CO₂CH₃), 2.34 (s, 3H, ArCH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 184.7, 167.6, 149.3, 138.1, 136.7, 131.8 (d, J = 1.8 Hz), 131.3, 130.7, 130.4, 130.0, 129.9, 129.7, 129.4, 129.1, 129.0, 128.3, 127.0 (q, J = 5.5 Hz), 126.7, 124.0 (q, J = 274.7 Hz), 81.3, 70.8 (d, J = 2.5 Hz), 52.2, 46.8, 45.0, 21.4.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -59.75.
- IR (Neat, cm⁻¹): υ 2936 (w), 2520 (w), 2170 (s), 1715 (s), 1520 (m), 1250 (m), 1171 (m), 1087 (w), 810 (w).
- **HRMS (ESI):** Calcd. for $C_{25}H_{19}F_3O_4H^+$ [M+H]⁺ 441.1314; found: 441.1313.

Methyl-1-(4-fluorophenyl)-4'-oxo-5-(2-(trifluoromethyl)phenyl)-3-

oxaspiro[bicyclo[2.1.0]pentane-2,1'-cyclohexane]-2',5'-diene-5-carboxylate (5h)

Following the general procedure-2, using cyclopropene **1l** (101 mg, 0.300 mmol, 1.00 equiv), benzoquinone **4a** (65 mg, 0.60 mmol, 2.0 equiv), and in anhydrous CH₃CN (6.0 mL). The crude product was purified by column chromatography using 10-15% Et₂O:hexane mixture as a mobile phase to afford the pure product **5h** as a colourless solid (51.0 mg, 0.115 mmol, 38%, dr > 20:1). (*See Spectra*)

- Melting point: 195-198 °C.
- **TLC** (Et₂O:Hexane, 1:1 v/v): $R_f = 0.45$, UV, KMnO₄.

- ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 7.6 Hz, 1H, ArH), 7.82 (dd, J = 7.9, 1.4 Hz, 1H, ArH), 7.77 7.70 (m, 1H, ArH), 7.64 7.58 (m, 1H, ArH), 7.34 7.27 (m, 2H, ArH), 7.06 6.98 (m, 3H, ArH, C=CCH), 6.07 5.97 (m, 2H, C=CCH), 5.92 (dd, J = 10.5, 2.0 Hz, 1H, C=CCH), 5.78 (s, 1H, OCH), 3.28 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 184.5, 167.6, 163.8, 161.3, 149.1, 142.2, 136.6, 131.4 (d, *J* = 8.4 Hz), 131.3, 130.6 (q, *J* = 31.3 Hz), 130.1, 129.8, 129.3, 127.1 (q, *J* = 5.4 Hz), 126.8 (d, *J* = 3.5 Hz), 123.9 (q, *J* = 274.7 Hz), 115.6 (d, *J* = 21.8 Hz), 81.2, 71.0, 52.4, 46.2, 45.0.
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -59.78, -111.95.
- IR (Neat, cm⁻¹): υ 2928 (w), 2530 (w), 2169 (s), 1712 (s), 1518 (m), 1252 (m), 1168 (m), 1077 (w), 805 (w).
- **HRMS (ESI):** Calcd. for C₂₄H₁₆F₄O₄H⁺ [M+H]⁺ 445.1063; found: 445.1058.

Methyl-1-(3-chlorophenyl)-4'-oxo-5-(2-(trifluoromethyl)phenyl)-3oxaspiro[bicyclo[2.1.0]pentane-2,1'-cyclohexane]-2',5'-diene-5-carboxylate (5i)

Following the general procedure-2, using cyclopropene **1j** (106 mg, 0.300 mmol, 1.00 equiv), benzoquinone **4a** (65 mg, 0.60 mmol, 2.0 equiv), and in anhydrous CH₃CN (6.0 mL). The crude product was not able to purify by column chromatography (the compound got decomposed while purifying). The yield is calculated by using dibromomethane as an internal standard (30%, dr > 20:1). (*See Spectra*)

- **TLC** (Et₂O:Hexane, 1:1 v/v): $R_f = 0.50$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 7.7 Hz, 1H, ArH), 7.82 (d, J = 8.1 Hz, 1H, ArH), 7.74 (t, J = 7.5 Hz, 1H, ArH), 7.62 (t, J = 7.8 Hz, 2H, ArH), 7.29 (d, J = 1.7 Hz, 2H, ArH), 7.22 7.19 (m, 1H, ArH), 7.03 (dd, J = 10.2, 2.9 Hz, 1H, C=CCH), 6.03 (dd, J = 9.7, 2.3 Hz, 2H, C=CCH), 5.93 (dd, J = 10.5, 2.0 Hz, 1H, C=CCH), 5.78 (s, 1H, OCH), 3.31 (s, 3H, CO₂CH₃).
- ¹⁹F NMR (**377** MHz, CDCl₃): δ -59.77.
- **HRMS (ESI):** Calcd. for C₂₄H₁₆ClF₃O₄H⁺ [M+H]⁺ 461.0767; found: 461.0762.

6. Application of Housanes: Stereospecific Synthesis of Bicyclic imide derivatives

6.1 Screening of Temperature:

Step-1: Following the general procedure-1, using cyclopropene **1e** (36 mg, 0.10 mmol, 1.0 equiv), maleimide **2a** (35 mg, 0.20 mmol, 2.0 equiv), and 4CzIPN (2.0 mg, 2.5 mol%) in anhydrous DCM (1 mL, 0.1 M). The solution was irradiated using a 440 nm Kessil lamp for 20 h at 20 °C. Then, the solvent was removed via rotary evaporation and the crude product was used in the next step without further purification

Step-2: A flame-dried 25 mL sealed round bottom flask was charged with crude housane **3e** and anhydrous toluene (1.0 mL). The solution was refluxed at different temperatures for 24 h. Next, the reaction mixture was concentrated under reduced pressure and the crude product was submitted to ¹H-NMR analysis. The yield and *dr* of the crude product was calculated by ¹H-NMR using CH_2Br_2 (7.0 µl, 0.10 mmol) as an internal standard.

6.2 Screening of reaction time

Step-1: Following the general procedure-1, using cyclopropene **1e** (36 mg, 0.10 mmol, 1.0 equiv), malemide **2a** (35 mg, 0.20 mmol, 2.0 equiv), and 4CzIPN (2.0 mg, 2.5 mol%) in anhydrous DCM (1 mL, 0.1 M). The solution was irradiated using a 440 nm Kessil lamp for 20 h at 20 °C. Then, the solvent was removed via rotary evaporation and the crude product was used in the next step without further purification

Step-2: A flame-dried 25 mL sealed round bottom flask was charged with housane **3e** and anhydrous toluene (1.0 mL). The solution was refluxed at 180 °C for different times. Next, the

reaction mixture was concentrated under reduced pressure and the crude product was submitted to ¹H-NMR analysis. The yield and *dr* of the crude product was calculated by ¹H-NMR using CH₂Br₂ (7.0 μ l, 0.10 mmol) as an internal standard.

6.3 Screening of Concentration:

Step-1: Following the general procedure-1, using cyclopropene **1e** (36 mg, 0.10 mmol, 1.0 equiv), maleimide **2a** (35 mg, 0.20 mmol, 2.0 equiv), and 4CzIPN (2.0 mg, 2.5 mol%) in anhydrous DCM (1 mL, 0.1 M). The solution was irradiated using a 440 nm Kessil lamp for 20 h at 20 °C. Then the solvent was removed via rotary evaporation and the crude product was used in the next step without further purification

Step-2: A flame-dried 25 mL sealed round bottom flask was charged with housane **3e** and anhydrous toluene. The solution was refluxed at 180 °C for 60 h. Next, the reaction mixture was concentrated under reduced pressure and the crude product was submitted to ¹H-NMR analysis. The yield and *dr* of the crude product was calculated by ¹H-NMR using CH_2Br_2 (7.0 µl, 0.10 mmol) as an internal standard.

Entry	Concentration (M)	Yield (%)	dr
1	0.1	70	>20:1
2	0.05	85	>20:1

6.4 General Procedure-3: Synthesis of bicyclic imide derivatives

Step-1: Following the general procedure-1, using cyclopropene **1** (0.30 mmol, 1.0 equiv), maleimide **2** (0.60 mmol, 2.0 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). Then, the solvent was removed via rotary evaporation and the crude product was used in the next step without further purification

Step-2: A flame-dried 25 mL sealed round bottom flask was charged with housane **3** and anhydrous toluene (6.0 mL). The solution was refluxed at 180 °C for 60 h. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using Et_2O :hexane mixture as a mobile phase to afford the title compound **6**.

Methyl-5-(2-methoxyphenyl)-1,3-dioxo-2,4,6-triphenyl-1,2,3,3a,4,6ahexahydrocyclopenta[c]pyrrole-4-carboxylate (6a)

Step-1: Following the general procedure-1, using cyclopropene **1e** (107 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). Then, the solvent was removed via rotary evaporation and the crude product was used in the next step without further purification.

Step-2: A flame-dried 25 mL sealed round bottom flask was charged with housane **3e** and anhydrous toluene (6.0 mL). The solution was refluxed at 180 °C for 60 h. Next, the reaction

mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using 30-40% Et₂O:hexane mixture as a mobile phase to afford the title compound **6a** (135 mg, 0.250 mmol, 85%, dr > 20:1) as colorless semi-solid. (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.45, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.47 7.42 (m, 4H, ArH), 7.38 7.34 (m, 3H, ArH), 7.26 7.14 (m, 9H, ArH), 7.05 (dd, J = 7.7, 1.7 Hz, 1H, ArH), 6.83 (td, J = 7.5, 1.1 Hz, 1H, ArH), 6.61 (dd, J = 8.3, 1.1 Hz, 1H, ArH), 4.77 (d, J = 9.0 Hz, 1H, CH), 4.09 (d, J = 9.0 Hz, 1H, CH), 3.77 (s, 3H, CO₂CH₃), 3.18 (s, 3H, ArOCH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 175.6, 173.9, 172.7, 156.5, 141.8, 140.2, 137.0, 135.2, 132.1, 129.8, 129.5, 128.9, 128.4, 128.3, 128.1, 128.0, 127.7, 127.5, 127.0, 126.4, 124.4, 120.3, 111.4, 71.6, 55.4, 54.7, 54.3, 52.7.
- IR (Neat, cm⁻¹): v 2922 (m), 2854 (w), 1742 (s), 1494 (m), 1378 (m), 1247 (m), 1187 (m), 1058 (w), 738 (m), 696 (m).
- **HRMS (ESI):** Calcd. for C₃₄H₂₇NO₅H⁺ [M+H]⁺ 530.1967; found: 530.1965.

Methyl-2-(4-chlorophenyl)-5-(2-methoxyphenyl)-1,3-dioxo-4,6-diphenyl-1,2,3,3a,4,6ahexahydrocyclopenta[c]pyrrole-4-carboxylate (6b)

Step-1: Following the general procedure-1, using cyclopropene **1e** (107 mg, 0.300 mmol, 1.00 equiv), maleimide **2c** (124 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). Then the solvent was removed via rotary evaporation and the crude product was used in the next step without further purification.

Step-2: A flame-dried 25 mL sealed round bottom flask was charged with housane **3t** and anhydrous toluene (6.0 mL). The solution was refluxed at 180 °C for 60 h. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using 35-40% Et₂O:hexane mixture as a mobile phase to afford the title compound **6b** (142 mg, 0.250 mmol, 84%, dr > 20:1) as colorless semi-solid. (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.50, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.44 (dd, J = 13.9, 8.0 Hz, 4H, ArH), 7.35 (d, J = 8.4 Hz, 2H, ArH), 7.29 7.14 (m, 9H, ArH), 7.04 7.01 (m, 1H, ArH), 6.83 (t, J = 7.5 Hz,

1H, Ar*H*), 6.63 (d, *J* = 8.3 Hz, 1H, Ar*H*), 4.77 (d, *J* = 9.0 Hz, 1H, *CH*), 4.08 (d, *J* = 9.0 Hz, 1H, *CH*), 3.77 (s, 3H, CO₂*CH*₃), 3.20 (s, 3H, ArO*CH*₃).

- ¹³C NMR (101 MHz, CDCl₃): δ 175.5, 173.7, 172.8, 156.4, 141.8, 140.2, 136.9, 135.1, 134.1, 130.6, 129.7, 129.5, 129.1, 128.2, 128.05, 128.02, 127.8, 127.7, 127.6, 127.0, 124.2, 120.4, 111.4, 71.8, 55.5, 54.7, 54.3, 52.8.
- IR (Neat, cm⁻¹): v 2923 (m), 2854 (w), 1742 (s), 1492 (m), 1379 (m), 1248 (m), 1187 (m), 1091 (w), 754 (m), 698 (w).
- **HRMS (ESI):** Calcd. for C₃₄H₂₆ClNO₅Na⁺ [M+Na]⁺ 586.1397; found: 586.1398.

Methyl-2-(3-chlorophenyl)-5-(2-methoxyphenyl)-1,3-dioxo-4,6-diphenyl-1,2,3,3a,4,6ahexahydrocyclopenta[c]pyrrole-4-carboxylate (6c)

Step-1: Following the general procedure-1, using cyclopropene **1e** (107 mg, 0.300 mmol, 1.00 equiv), maleimide **2e** (124 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). Then, the solvent was removed via rotary evaporation and the crude productwas used in the next step without further purification.

Step-2: A flame-dried 25 mL sealed round bottom flask was charged with housane **3w** and anhydrous toluene (6.0 mL). The solution was refluxed at 180 °C for 60 h. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using 35-40% Et₂O:hexane mixture as a mobile phase to afford the title compound **6c** (136 mg, 0.240 mmol, 80%, dr > 20:1) as colorless solid. (*See Spectra*)

- Melting Point: 218-220 °C.
- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.50, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.46 7.42 (m, 3H, Ar*H*), 7.39 7.32 (m, 2H, Ar*H*), 7.30 (dt, *J* = 7.7, 1.6 Hz, 1H, Ar*H*), 7.26 7.23 (m, 2H, Ar*H*), 7.21 7.15 (m, 7H, Ar*H*), 7.02 (dd, *J* = 7.7, 1.7 Hz, 1H, Ar*H*), 6.82 (td, *J* = 7.5, 1.1 Hz, 1H, Ar*H*), 6.62 (dd, *J* = 8.4, 1.1 Hz, 1H, Ar*H*), 4.76 (d, *J* = 9.1 Hz, 1H, *CH*), 4.07 (d, *J* = 9.0 Hz, 1H, *CH*), 3.77 (s, 3H, CO₂*CH*₃), 3.19 (s, 3H, ArO*CH*₃).

- ¹³C NMR (101 MHz, CDCl₃): δ 175.3, 173.6, 172.8, 156.4, 141.8, 140.1, 136.9, 135.0, 134.5, 133.1, 129.9, 129.7, 129.5, 128.6, 128.2, 128.07, 128.05, 127.8, 127.6, 127.1, 126.7, 124.6, 124.2, 120.4, 111.4, 71.9, 55.5, 54.8, 54.3, 52.9.
- IR (Neat, cm⁻¹): υ 2920 (s), 2853 (m), 1740 (m), 1702 (s), 1457 (m), 1378 (w), 1268 (w), 1247 (m), 757 (w).
- **HRMS (ESI):** Calcd. for C₃₄H₂₆ClNO₅H⁺ [M+H]⁺ 564.1578; found: 564.1580.

Methyl-5-(2-methoxyphenyl)-2-methyl-1,3-dioxo-4,6-diphenyl-1,2,3,3a,4,6ahexahydrocyclopenta[c]pyrrole-4-carboxylate (6d)

Step-1: Following the general procedure-1, using cyclopropene **1e** (107 mg, 0.300 mmol, 1.00 equiv), maleimide **2k** (67 mg, 0.60 mmol, 2.0 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). Then, the solvent was removed via rotary evaporation and the crude product was used in the next step without further purification.

Step-2: A flame-dried 25 mL sealed round bottom flask was charged with housane **3ab** and anhydrous toluene (6.0 mL). The solution was refluxed at 180 °C for 60 h. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using 35-50% Et₂O:hexane mixture as a mobile phase to afford the title compound **6d** (121 mg, 0.260 mmol, 86%, dr > 20:1) as colorless semi-solid. (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.25, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 6.9 Hz, 2H, ArH), 7.27 7.13 (m, 9H, ArH), 7.06 7.02 (m, 1H, ArH), 6.82 (t, J = 7.6 Hz, 1H, ArH), 6.58 (d, J = 8.3 Hz, 1H, ArH), 4.65 (d, J = 8.7 Hz, 1H, CH), 3.97 (d, J = 8.7 Hz, 1H, CH), 3.77 (s, 3H, CO₂CH₃), 3.12 (s, 3H, ArOCH₃), 3.02 (s, 3H, -NCH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 176.7, 175.1, 172.4, 156.3, 141.6, 139.9, 136.6, 135.1, 129.7, 129.4, 128.1, 128.0, 127.8, 127.7, 127.5, 126.9, 124.2, 120.3, 111.2, 70.9, 55.2, 54.6, 54.3, 52.5, 24.9.
- IR (Neat, cm⁻¹): υ 2921 (s), 2853 (m), 1740 (m), 1702 (s), 1492 (w), 1378 (m), 1247 (m), 1190 (w), 1026 (w), 760 (w), 701 (w).
- **HRMS (ESI):** Calcd. for C₂₉H₂₅NO₅Na⁺ [M+Na]⁺ 490.1630; found: 490.1628.

Methyl-1,3-dioxo-2,4,6-triphenyl-5-(o-tolyl)-1,2,3,3a,4,6ahexahydrocyclopenta[c]pyrrole-4-carboxylate (6e)

Step-1: Following the general procedure-1, using cyclopropene **1c** (102 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). Then, the solvent was removed via rotary evaporation and the crude product was used in the next step without further purification.

Step-2: A flame-dried 25 mL sealed round bottom flask was charged with housane **3c** and anhydrous toluene (6.0 mL). The solution was refluxed at 180 °C for 60 h. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the title compound **6e** (131 mg, 0.25 mmol, 85%, dr > 20:1) as colorless semi-solid. (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.35, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 7.8 Hz, 1H, ArH), 7.45 (t, J = 7.6 Hz, 2H, ArH), 7.40 7.33 (m, 3H, ArH), 7.24 7.07 (m, 12H, ArH), 6.81 (d, J = 7.6 Hz, 1H, ArH), 4.95 (d, J = 8.5 Hz, 1H, CH), 4.56 (d, J = 8.5 Hz, 1H, CH), 3.82 (s, 3H, CO₂CH₃), 0.95 (s, 3H, ArCH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 175.5, 173.7, 172.4, 141.7, 138.9, 137.7, 137.3, 134.1, 133.7, 131.8, 130.3, 129.8, 129.2, 129.0, 128.6, 128.2, 128.0, 127.9, 127.7, 127.5, 127.4, 126.4, 125.6, 72.0, 53.7, 52.7, 51.7, 18.4.
- IR (Neat, cm⁻¹): υ 2919 (s), 2853 (m), 1715 (s), 1496 (w), 1378 (m), 1241 (w), 1192 (m), 1069 (w), 741 (w), 697 (w).
- **HRMS (ESI):** Calcd. for C₃₄H₂₇NO₄Na⁺ [M+Na]⁺ 536.1838; found: 536.1842.

Methyl-5-(2-chlorophenyl)-1,3-dioxo-2,4,6-triphenyl-1,2,3,3a,4,6ahexahydrocyclopenta[c]pyrrole-4-carboxylate (6f)

Step-1: Following the general procedure-1, using cyclopropene **1f** (108 mg, 0.300 mmol, 1.00 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). Then, the solvent was removed via rotary evaporation and the crude product was used in the next step without further purification.

Step-2: A flame-dried 25 mL sealed round bottom flask was charged with housane **3f** and anhydrous toluene (6.0 mL). The solution was refluxed at 180 °C for 60 h. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using 30-45% Et₂O:hexane mixture as a mobile phase to afford the title compound **6f** (128 mg, 0.240 mmol, 80%, *dr* 10:1) as colorless semi-solid. (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.40, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.46 (t, J = 7.6 Hz, 2H, ArH), 7.41 7.32 (m, 4H, ArH), 7.31 7.05 (m, 13H, ArH), 4.88 (bs, 1H, CH), 4.42 (bs, 1H, CH), 3.80 (s, 3H, CO₂CH₃)).
- ¹³C NMR (101 MHz, CDCl₃): δ 175.4, 173.6, 140.7, 138.5, 135.2, 134.0, 133.8, 132.0, 131.6, 130.1, 129.4, 129.2, 128.8, 128.7, 128.4, 127.7, 126.6, 71.9, 54.2, 52.9. Seven carbons were not resolved at 101 MHz.
- IR (Neat, cm⁻¹): v 2922 (m), 2854 (w), 1710 (s), 1495 (w), 1378 (m), 1241 (w), 1188 (m), 1066 (w), 735 (s), 694 (m).
- **HRMS (ESI):** Calcd. for C₃₃H₂₄ClNO₄H [M+H]⁺ 534.1472; found: 534.1470.

Methyl-1,3-dioxo-2,4,5,6-tetraphenyl-1,2,3,3a,4,6a-hexahydrocyclopenta[c]pyrrole-4-carboxylate (6g)

Following the general procedure-3 (second step), a flame-dried 25 mL sealed round bottom flask was charged with housane **3a** (74.9 mg, 0.150 mmol, 1.00 equiv) in anhydrous toluene (3.0 mL, 0.05 M). The solution was refluxed at 180 °C for 60 h. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using 20-25% Et₂O:hexane mixture as a mobile phase to afford the title compound **6g** (62 mg, 0.12 mmol, 82%, dr > 20:1) as colorless semi-solid. (*See Spectra*)

• TLC (Et₂O:Hexane, 4:6 v/v): R_f = 0.40, UV, KMnO₄

- ¹H NMR (400 MHz, CDCl₃): δ 7.52 7.44 (m, 4H, ArH), 7.41 7.30 (m, 8H, ArH), 7.29-7.22 (m, 3H, ArH), 7.12 (dt, J = 15.6, 7.3 Hz, 3H, ArH), 7.01 6.96 (m, 2H, ArH), 4.66 (d, J = 8.8 Hz, 1H, CH), 4.01 (d, J = 8.8 Hz, 1H, CH), 3.72 (s, 3H, CO₂CH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 175.2, 173.9, 172.1, 142.2, 141.9, 138.7, 134.8, 134.6, 131.9, 129.9, 129.7, 129.5, 129.0, 128.5, 128.3, 128.2, 128.1, 128.0, 127.8, 127.2, 126.4, 70.7, 55.6, 55.0, 52.8.
- IR (Neat, cm⁻¹): v 2921 (m), 2853 (w), 1742 (w), 1712 (s), 1495 (w), 1378 (m), 1240 (w), 1189 (m), 1069 (w), 765 (w), 698 (m).
- **HRMS (ESI):** Calcd. for C₃₃H₂₅NO₄H⁺ [M+H]⁺ 500.1862; found: 500.1862.

Methyl-2-methyl-1,3-dioxo-4,5,6-triphenyl-1,2,3,3a,4,6a-

hexahydrocyclopenta[c]pyrrole-4-carboxylate (6h)

Step-1: Following the general procedure-1, using cyclopropene **1a** (98 mg, 0.30 mmol, 1.0 equiv), maleimide **2i** (67 mg, 0.60 mmol, 2.0 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). The crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the pure product **3al** as a pale yellow semi-solid (79 mg, 0.18 mmol, 60% (major diastereomer), *dr* 3:1). We couldn't isolate the minor diastereomer. (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): $R_f = 0.40$, UV, KMnO₄.
- ¹H NMR (400 MHz, CDCl₃): For major diastereomer δ 7.70 (d, J = 7.7 Hz, 2H, ArH), 7.58 7.52 (m, 2H, ArH), 7.48 7.30 (m, 11H, ArH), 3.11 (s, 3H, CO₂CH₃), 3.07 (s, 2H, CH), 3.00 (s, 3H, -NCH₃).
- ¹³C NMR (101 MHz, CDCl₃): For major diastereomer δ 174.8, 168.0, 132.8, 132.5, 131.3, 129.5, 128.9, 128.3, 128.0, 127.9, 53.4, 51.9, 51.4, 47.4, 25.0.
- IR (Neat, cm⁻¹): v 2922 (m), 2856 (w), 1717 (s), 1456 (w), 1378 (m), 1239 (m), 1187 (w), 1040 (w), 759 (m), 700 (w).
- **HRMS (ESI):** Calcd. for C₂₈H₂₃NO₄H [M+H]+ 438.1705; found: 438.1708

Step-2: A flame-dried 25 mL sealed round bottom flask was charged with housane **3al** (65.5 mg, 0.150 mmol, 1.00 equiv) in anhydrous toluene (3.0 mL, 0.05 M). The solution was refluxed

at 180 °C for 60 h. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using 35% Et₂O:hexane mixture as a mobile phase to afford the title compound **6h** (49.5 mg, 0.110 mmol, 75%, dr > 20:1) as colorless semi-solid. (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.30, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 7.0 Hz, 2H, ArH), 7.36 7.21 (m, 8H, ArH), 7.16 7.04 (m, 3H, ArH), 6.91 (d, J = 7.1 Hz, 2H, ArH), 4.53 (d, J = 8.4 Hz, 1H, CH), 3.88 (d, J = 8.4 Hz, 1H, CH), 3.70 (s, 3H, CO₂CH₃), 3.03 (s, 3H, -NCH₃).
- ¹³C NMR (101 MHz, CDCl₃): δ 176.2, 175.0, 171.9, 142.0, 141.8, 138.4, 134.8, 134.6, 129.9, 129.4, 128.22, 128.17, 128.1, 128.04, 128.03, 127.7, 127.2, 70.0, 55.4, 55.0, 52.6, 25.0.
- IR (Neat, cm⁻¹): v 2922 (m), 2854 (w), 1778 (w), 1709 (s), 1493 (m), 1377 (m), 1246 (m), 1185 (m), 1058 (w), 737 (m), 696 (m).
- **HRMS (ESI):** Calcd. for $C_{28}H_{23}NO_4H^+$ [M+H]⁺ 438.1705; found: 438.1710.

Methyl-1,3-dioxo-2,6-diphenyl-1,2,3,3a,4,6a-hexahydrocyclopenta[c]pyrrole-5carboxylate (6i)

Step-1: Following the general procedure-1, using cyclopropene **1o** (70 mg, 0.30 mmol, 1.0 equiv), maleimide **2a** (104 mg, 0.600 mmol, 2.00 equiv), and 4CzIPN (6.0 mg, 7.5 μ mol, 0.025 equiv) in anhydrous DCM (3 mL, 0.1 M). Then, the solvent was removed via rotary evaporation and the product was used in the next step without further purification.

Step-2: A flame-dried 25 mL sealed round bottom flask was charged with housane **30** and anhydrous toluene (6.0 mL). The solution was refluxed at 180 °C for 60 h. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the title compound **6i** (38 mg, 0.11 mmol, 36%) as colorless sticky solid. (*See Spectra*)

- TLC (Et₂O:Hexane, 1:1 v/v): R_f = 0.30, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.53 (dd, J = 8.4, 1.3 Hz, 2H, ArH), 7.39 7.25 (m, 7H, ArH), 7.21 7.19 (m, 1H, ArH), 4.14 (d, J = 3.5 Hz, 1H, CH), 3.95 (d, J = 3.6 Hz, 1H, CH), 3.67 (s, 3H, CO₂CH₃), 3.59 3.50 (m, 2H, CH).

- ¹³C NMR (101 MHz, CDCl₃): δ 173.8, 173.5, 169.2, 144.0, 134.1, 131.9 (d, J = 6.0 Hz), 129.2, 129.0, 128.9, 128.5, 126.8, 126.6, 116.1, 52.4, 46.0, 45.4, 34.4.
- IR (Neat, cm⁻¹): υ 2922 (m), 2854 (w), 1713 (s), 1454 (w), 1378 (m), 1243 (w), 1191 (m), 1065 (w), 742 (w), 697 (w).
- **HRMS (ESI):** Calcd. for C₂₁H₁₇NO₄H⁺ [M+H]⁺ 348.1236; found: 348.1237.

5-(2-methoxyphenyl)-2-methyl-4,6-diphenyl-1,2,3,3a,4,6a-hexahydro-3,5cyclopenta[c]pyrrol-4-yl)methanol (6j)

Following a slightly modified procedure, a 10 mL Schlenk tube was charged with LiAlH₄ (23 mg, 0.60 mmol, 6.0 equiv) in Et₂O (0.5 mL, 0.2 M). Then, the solution of cyclopentene ester **6d** (47 mg, 0.10 mmol, 1.0 equiv) in CH₂Cl₂ (1.0 mL, 0.1 M) was added at 0 °C under nitrogen. The mixture was stirred at room temperature for 2 h, and H₂O (3 mL) was carefully added at 0 °C. The organic phase was extracted with EtOAc (2×5 mL), dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (7:3 v/v EtOAc: Hexane and then 100 mL 19:1 v/v EtOAc: Et₃N) to afford the title product **6j** as a colorless liquid (25 mg, 0.06 mmol, 60%). (*See Spectra*)

- TLC (EtOAc: Hexane, 8:2 v/v): R_f = 0.10, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.28 (dd, J = 8.5, 1.3 Hz, 2H, ArH), 7.16 (t, J = 7.7 Hz, 2H, ArH), 7.13 7.05 (m, 8H, ArH), 6.90 6.84 (m, 1H, ArH), 6.53 (d, J = 8.3 Hz,

1H, Ar*H*), 4.43 (d, *J* = 11.8 Hz, 1H, *CH*), 4.18 (d, *J* = 11.8 Hz, 1H, *CH*), 4.13 (td, *J* = 9.1, 2.1 Hz, 1H, *CH*), 3.49-3.35 (m, 2H, *CH*), 3.22 (s, 4H, *CH*, ArO*CH*₃), 2.94 – 2.90 (m, 1H, *CH*), 2.37 (s, 4H, *CH*, -N*CH*₃).

- ¹³C NMR (101 MHz, CDCl₃): δ 156.4, 147.4, 143.4, 137.9, 137.5, 131.1, 128.1, 128.0, 127.6, 127.5, 126.5, 126.4, 126.2, 125.8, 120.2, 110.9, 65.4, 64.3, 60.3, 58.6, 54.7, 53.7, 52.2, 40.8.
- IR (Neat, cm⁻¹): v 3057 (w), 2922 (s), 2852 (m), 2794 (w), 1684 (w), 1491 (m), 1249 (m), 1149 (w), 1029 (w), 756 (m), 700 (w).
- **HRMS (ESI):** Calcd. for C₂₈H₂₉NO₂H⁺ [M+H]⁺ 412.2277; found: 412.2277.

5-(2-methoxyphenyl)-2-methyl-4,6-diphenyl-1,2,3,3a,4,6a-hexahydro-3,5cyclopenta[c]pyrrol-4-yl)methanol (6k)

Following a slightly modified procedure, a 10 mL Schlenk tube was charged with LiAlH₄ (23 mg, 0.60 mmol, 6.0 equiv) in Et₂O (0.5 mL, 0.2 M). Then, the solution of cyclopentene ester **6e** (52 mg, 0.10 mmol, 1.0 equiv) in CH₂Cl₂ (1.0 mL, 0.1 M) was added at 0 °C under nitrogen. The mixture was stirred at room temperature for 2 h, and H₂O (3 mL) was carefully added at 0 °C. The organic phase was extracted with EtOAc (2×5 mL), dried over Na₂SO₄ and then concentrated via rotary evaporation. The crude product was purified by flash column chromatography (2:8 v/v Et₂O:Hexane) to afford the title product **6k** as a colorless sticky solid (30.0 mg, 0.065 mmol, 65%). (*See Spectra*)

- **TLC (Et₂O:Hexane, 1:1 v/v):** R_f = 0.30, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.47 7.37 (m, 2H, ArH), 7.2-7.20 (m, 5H, ArH), 7.18 7.13 (m, 2H, ArH), 7.12 7.08 (m, 3H, ArH), 6.97 (dd, J = 6.7, 3.1 Hz, 2H, ArH), 6.90 (d, J = 7.6 Hz, 1H, ArH), 6.86 6.77 (m, 4H, ArH), 4.45 (td, J = 8.2, 2.9 Hz, 1H, CH), 4.32 (s, 2H, CH), 3.88 (td, J = 10.2, 8.6, 6.0 Hz, 2H, CH), 3.74 (dt, J = 8.5, 4.5 Hz, 1H, CH), 3.60 (t, J = 9.4 Hz, 1H, CH), 3.31 (dd, J = 9.7, 2.7 Hz, 1H, CH), 2.83 (bs, 1H, CH₂OH), 1.14 (s, 3H, ArCH₃).

- ¹³C NMR (101 MHz, CDCl₃): δ 148.2, 143.4, 141.3, 140.6, 137.0, 136.3, 135.4, 130.4, 130.0, 129.1, 128.5, 128.2, 128.0, 127.9, 127.6, 127.2, 127.0, 126.6, 126.3, 125.3, 118.2, 114.4, 65.7, 63.6, 53.4, 51.0, 50.0, 48.7, 19.0.
- IR (Neat, cm⁻¹): υ 2922 (s), 2855 (m), 2347 (w), 1858 (w), 1459 (w), 1264 (w), 753 (w), 648 (w).
- **HRMS (ESI):** Calcd. for C₃₃H₃₁NOH⁺ [M+H]⁺ 458.2484; found: 458.2482.

3,6-Diphenyl-7-(1-(2-(trifluoromethyl)phenyl)vinyl)-3-azabicyclo[3.2.0]hept-6-ene-2,4-dione (7)

A flame-dried 25 mL Schlenk tube was charged with housane 3q (47 mg, 0.10 mmol, 1.0 equiv) and *p*-TsOH (43 mg, 0.25 mmol, 2.5 equiv) in anhydrous toluene (1.0 mL, 0.1 M). The solution was refluxed at 125 °C for 24 hours. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using 15-25% Et₂O:hexane mixture as a mobile phase to afford the title compound **7** (30 mg, 0.067 mmol, 67%) as colorless sticky solid. (*See Spectra*)

- **TLC** (Et₂O:Hexane, 1:1 v/v): R_f = 0.45, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 7.6 Hz, 1H, ArH), 7.52 7.27 (m, 8H, ArH), 7.11 (t, J = 7.3 Hz, 1H, ArH), 7.02 (t, J = 7.6 Hz, 2H, ArH), 6.91 (d, J = 7.7 Hz, 2H, ArH), 6.19 (s, 1H, C=CH), 5.51 (s, 1H, C=CH), 4.18 (d, J = 6.9 Hz, 2H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 174.0, 173.3, 140.1, 139.8, 138.7, 138.1 (q, J = 2.0 Hz), 132.0, 131.94, 131.87, 131.5, 129.0, 128.8, 128.5 (d, J = 2.3 Hz), 128.1, 128.0, 127.9, 127.6, 126.64, 126.57 (q, J = 5.0 Hz), 124.0 (q, J = 275.7 Hz), 123.4, 44.52, 44.49.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -58.05.
- IR (Neat, cm⁻¹): v 2923 (m), 2854 (w), 1714 (s), 1496 (w), 1379 (m), 1267 (w), 1172 (m), 1064 (w), 765 (w), 695 (w).
- **HRMS (ESI):** Calcd. for C₂₇H₁₈F₃NO₂Na [M+Na]⁺ 468.1187; found: 468.1185.

3-(hydroxymethyl)-2,7-diphenyl-3-(2-(trifluoromethyl)phenyl)-7azatricyclo[3.3.0.02,4]octane-6,8-dione (3q')

A flame-dried 25 mL Schlenk tube was charged with housane 3q (47 mg, 0.10 mmol, 1.0 equiv) in anhydrous toluene (1.0 mL, 0.1 M). The solution was refluxed at 125 °C for 24 h. Next, the reaction mixture was concentrated under reduced pressure, and the crude product was purified by column chromatography using 25-40% Et₂O:hexane mixture as a mobile phase to afford the titled compound 3q' (15 mg, 0.032 mmol, 32%) as colorless solid. (*See Spectra*)

- Melting Point: 187-189 °C.
- TLC (Et2O:Hexane, 6:4 v/v): R_f = 0.20, UV, KMnO₄
- ¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 7.7 Hz, 1H, ArH), 7.71 7.67 (m, 2H, ArH), 7.57 7.52 (m, 1H, ArH), 7.45 (d, J = 7.1 Hz, 2H, ArH), 7.41 7.29 (m, 6H, ArH), 6.98 6.95 (m, 2H, ArH), 3.91 (d, J = 12.2 Hz, 1H, CH), 3.23 (d, J = 12.2 Hz, 1H, CH), 3.13 (dd, J = 3.6, 1.7 Hz, 1H, CH), 2.99 (d, J = 1.7 Hz, 1H, CH), 2.81 (d, J = 3.6 Hz, 1H, CH).
- ¹³C NMR (101 MHz, CDCl₃): δ 176.6, 173.8, 136.0, 132.8, 132.4, 132.0, 131.6, 130.0 (q, J = 30.3 Hz), 129.5, 129.1, 128.6, 128.5, 128.4, 128.2, 127.7 (q, J = 5.0 Hz), 126.3, 124.4 (q, J = 274.7 Hz), 65.6 (q, J = 3.2 Hz), 48.5, 45.9, 45.7, 41.0, 29.0.
- ¹⁹F NMR (377 MHz, CDCl₃): δ -58.05.
- IR (Neat, cm⁻¹): υ 2922 (s), 2855 (m), 2782 (w), 1459 (w), 1375 (w), 1142 (w), 753 (w), 697 (w).
- **HRMS (ESI):** Calcd. for C₂₇H₂₀F₃NO₃H⁺ [M+H]⁺ 464.1474; found: 464.1476

7.0 Mechanistic investigations:

7.1 UV-Visible spectroscopy:

UV/vis absorption spectra were recorded on a Duetta spectrophotometer from HORIBA Scientific. The samples were measured in Starna® fluorescence quartz cuvettes.

Figure 1: UV-Vis absorbance spectra of compounds 1a, 2i in DCM (0.001 M) and 4CzIPN in DCM (0.0001M) and compounds 1o, 4a in CH₃CN (0.001 M).

7.2 Stern-Volmer Analysis:

Quenching studies were carried out on a Duetta spectrophotometer from HORIBA Scientific using Starna® fluorescence quartz cuvettes. luminescence quenching studies were carried out using a $(1 \cdot 10^{-4} \text{ M})$ solution of photocatalyst and variable concentrations of substrate in dry DCM at room temperature under an argon atmosphere. The samples were prepared in 0.5 mL quartz cuvettes inside an argon filled glove-box, and sealed with parafilm. The solutions were irradiated at 365 nm and the luminescence was measured at maximum emission wavelength of each photocatalyst. (I₀ = emission intensity of the photocatalyst in isolation at the specified wavelength; I = observed intensity as a function of the quencher concentration.

Figure 2: Luminescence quenching of the excited state of 4CzIPN using 1a, 1v and 2i in DCM.

7.3 Cyclic Voltammetry:

Redox potential measurements for 1a

Cyclic voltammogram (CV) was collected at room temperature using a CHI 400 A potentiostat. A 2 mm glassy carbon disc electrode, an Ag/AgCl (2 M LiCl in ethanol) electrode, and a platinum sheet electrode were used as the working, reference, and counter electrodes, respectively and were all supplied by Metrohm. The electrolyte solution contained 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) and 2 mM of the given substrate in MeCN. Before each measurement, the solution was purged with N₂ gas to avoid the interference of atmospheric oxygen. The scan rate was set at 0.1 V/s ($E_{step} = 0.002$ V) and 10 scans were taken for each compound in the potential window of 0.0 V to +1.6 V.

Figure 3: Cyclic voltammetry of **1a** and **1v** in 0.1 M TBAPF₆ (MeCN) using a 2 mm glassy carbon disk working electrode, Pt sheet counter electrode and an Ag/AgCl (2 M LiCl in ethanol) reference electrode. Set at 0.1 V/s scan rate.

7.4 Radical Trapping Experiment:

A flame-dried 5 mL Schlenk tube was charged with cyclopropene **1a** (33 mg, 0.10 mmol, 1.0 equiv), maleimide **2i** (22 mg, 0.20 mmol, 2.0 equiv), TEMPO (47 mg, 0.30 mmol, 3.0 equiv), 4-CzIPN (2.0 mg, 2.5 mol%) and anhydrous DCM (1.0 mL). The solution was irradiated using a 440 nm Kessil lamp for 20 h at 20 °C. Next, the reaction mixture was concentrated under reduced pressure and the crude product was submitted to ¹H-NMR. When the radical trapping agent 2,2,6,6-tetramethylpiperidin-1-yloxyl (TEMPO) was added to the standard reaction, product formation was entirely suppressed. The yield and *dr* ratio of the crude product was calculated by ¹H-NMR using CH₂Br₂ (7.0 µl, 0.10 mmol) as an internal standard. (*See Spectra*)

7.5 Reaction at 365 nm:

A flame-dried 5 mL vial was charged with cyclopropene **1a** (37 mg, 0.10 mmol, 1.0 equiv), maleimide **2i** (22 mg, 0.20 mmol, 2.0 equiv) and anhydrous DCM (1.0 mL). The solution was irradiated using a 365 nm lamp (using Photo-Cube by Thales Nano) for 20 h at 20 °C. Next, the reaction mixture was concentrated under reduced pressure and the crude product was submitted to ¹H-NMR. The yield and *dr* ratio of the crude product was calculated by ¹H NMR using CH₂Br₂ (7.0 μ l, 0.10 mmol) as an internal standard. (*See Spectra*)

8.0 Crystal Structures:

Suitable crystals of compound **3n** were obtained by slowly evaporating a mixture of petroleum ether and dichloromethane solution at ambient temperature. Good quality single crystals were selected under an optical microscope equipped with a polarizer. A single crystal was affixed to a MiTeGen advanced lithographic cryo-loop using NVH oil. A high-resolution data set of crystal 3m was collected in a Bruker D8 Quest diffractometer, equipped with a Photon II area detector with monochromated MoK_{α} radiation (λ = 0.71073 Å) at 120 K temperature. The X ray generator was operated at 45 kV and 30 mA. A preliminary set of cell constants and an orientation matrix were calculated from a set of fast scans (180 frames). Data was collected with ω scan width of 0.5° at different settings of φ and 2 θ with a frame time of 20 secs keeping the sample to detector distance fixed at 45 mm, and 3-axis goniometer with fixed Kappa/Chi axis (54.736°). The X-ray data collection was monitored by the APEX4 software (Bruker). All the data were corrected for Lorentzian, polarization, and absorption effects using SAINT and SADABS programs (Bruker). The structure was solved using the APEX4 (Bruker) program suite using direct methods with the SHELXS - 97 (Sheldrick, 2008) structure refinement program. Using Least Squares minimization, the model was refined with a version of SHELXL - 2019/1 (Sheldrick, 2019). An ORTEP view of the structure was shown with the 50% probability displacement ellipsoids and the packing diagram was made using Mercury software 2022.3.0.

 Table 1: Crystal Data of compound 3n

CCDC number	2404132
Identification code	3n
Empirical formula	$C_{35}H_{26}F_3NO_4$
Formula weight	581.5912
Temperature	120(2) K
Wavelength	Monoclinic
Space group	C/c
Unit cell dimensions	a = 23.2091(7) Å, b = 10.1744(3) Å, c =
	14.2246(5) Å, $\alpha = 90^{\circ}$, $\beta = 113.837(1)$, $\gamma = 90^{\circ}$
Volume	3072.45(17) Å ³
Z	4
Density (calc)(mg/m ³)	1.441
Absorption coefficient (mm ⁻¹)	0.272
F(000)	1376.0
Crystal size (mm ³)	0.498 x 0.244 x 0.132
Theta range for data collection	2.93 to 30.52°.
Index ranges	-33<=h<=33, -14<=k<=14, -20<=l<=20
Reflections collected	43797
Completeness to theta = 25.242°	99.6 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	8756 / 2 / 416
Goodness-of-fit on F ²	1.067

Final R indices [I>2sigma(I)]	R1 = 0.0550, wR2 = 0.1462
R indices (all data)	R1 = 0.0609, WR2 = 0.1503
Extinction coefficient	NA

Suitable crystals of compound **3p** were obtained by slowly evaporating a mixture of petroleum ether and dichloromethane solution at ambient temperature. Good quality single crystals were selected under an optical microscope equipped with a polarizer. A single crystal was affixed to a MiTeGen advanced lithographic cryo-loop using NVH oil. A high-resolution data set of crystal **3p** was collected in a Bruker D8 Quest diffractometer, equipped with a Photon II area detector with monochromated MoK_{α} radiation (λ = 0.71073 Å) at 120 K temperature. The X ray generator was operated at 45 kV and 30 mA. A preliminary set of cell constants and an orientation matrix were calculated from a set of fast scans (180 frames). Data was collected with ω scan width of 0.5° at different settings of φ and 2 θ with a frame time of 20 secs keeping the sample to detector distance fixed at 45 mm, and 3-axis goniometer with fixed Kappa/Chi axis (54.736°). The X-ray data collection was monitored by the APEX4 software (Bruker). All the data were corrected for Lorentzian, polarization, and absorption effects using SAINT and SADABS programs (Bruker). The structure was solved using the APEX4 (Bruker) program suite using direct methods with the SHELXS - 97 (Sheldrick, 2008) structure refinement program. Using Least Squares minimization, the model was refined with a version of SHELXL - 2019/1 (Sheldrick, 2019). An ORTEP view of the structure was shown with the 50% probability displacement ellipsoids and the packing diagram was made using Mercury software 2022.3.0.

Table 3: Crystal Data of compound 3p

CCDC number	2449293
Identification code	3р
Empirical formula	C ₃₃ H ₂₇ NO ₃
Formula weight	485.19
Temperature	120(2) K
Wavelength	Trigonal
Space group	R -3 :H
Unit cell dimensions	a = 35.3662(15) Å, b = 35.3662(15) Å, c = 9.9973(7) Å, α = 90.0, β = 90.0, γ = 120.0
Volume	10829.0(12) Å ³
Z	16
Density (calc)(mg/m ³)	1.336
Absorption coefficient (mm ⁻¹)	0.085
F(000)	4580
Crystal size (mm ³)	0.498 x 0.244 x 0.132
Theta range for data collection	2.692 to 27.265°.
Index ranges	-45<=h<=45, -45<=k<=45, -12<=l<=12
Reflections collected	91396
Completeness to theta = 25.242°	99.68 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	5391 / 0 / 351
Goodness-of-fit on F ²	0.993
Final R indices [I>2sigma(I)]	R1 = 0.0627, wR2 = 0.1518

R indices (all data)	R1 = 0.0766, wR2 = 0.1615
Extinction coefficient	NA

Suitable crystals of compound **3q** were obtained by slowly evaporating a mixture of petroleum ether and ethyl acetate solution at ambient temperature. Good quality single crystals were selected under an optical microscope equipped with a polarizer. A single crystal was affixed to a MiTeGen advanced lithographic cryo-loop using NVH oil. A high-resolution data set of crystal 3q was collected in a Bruker D8 Quest diffractometer, equipped with a Photon II area detector with monochromated MoK_{α} radiation (λ = 0.71073 Å) at 120 K temperature. The X ray generator was operated at 45 kV and 30 mA. A preliminary set of cell constants and an orientation matrix were calculated from a set of fast scans (180 frames). Data was collected with ω scan width of 0.5° at different settings of φ and 2 θ with a frame time of 20 secs keeping the sample to detector distance fixed at 45 mm, and 3-axis goniometer with fixed Kappa/Chi axis (54.736°). The X-ray data collection was monitored by the APEX4 software (Bruker). All the data were corrected for Lorentzian, polarization, and absorption effects using SAINT and SADABS programs (Bruker). The structure was solved using the APEX4 (Bruker) program suite using direct methods with the SHELXS - 97 (Sheldrick, 2008) structure refinement program. Using Least Squares minimization, the model was refined with a version of SHELXL - 2019/1 (Sheldrick, 2019). An ORTEP view of the structure was shown with the 50% probability displacement ellipsoids and the packing diagram was made using Mercury software 2022.3.0.

Table 3: Crystal Data of compound 3q

CCDC number	2451397
Identification code	3q
Empirical formula	C ₂₇ H ₂₀ F ₃ NO ₃
Formula weight	463.14
Temperature	120(2) K
Wavelength	Triclinic
Space group	P -1
Unit cell dimensions	a = 11.3001(7) Å, b = 13.4126(8) Å, c =
	16.3714(9) Å, $\alpha = 76.397(2)$, $\beta = 75.850(2)$, $\gamma =$
	67.123(2)
Volume	2189.3(2) Å ³
Z	2
Density (calc)(mg/m ³)	1.406
Absorption coefficient (mm ⁻¹)	0.109
F(000)	960.0
Crystal size (mm ³)	0.498 x 0.244 x 0.132
Theta range for data collection	2.7657 to 31.567°.
Index ranges	-16<=h<=16, -19<=k<=19, -24<=l<=24
Reflections collected	91255
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	14303 / 0 / 619
Goodness-of-fit on F ²	1.174

Final R indices [I>2sigma(I)]	R1 = 0.0829, WR2 = 0.1774
R indices (all data)	R1 = 0.1004, WR2 = 0.1858
	NT A
Extinction coefficient	NA

Suitable crystals of compound **3q**' were obtained by slowly evaporating a mixture of petroleum ether and dichloromethane solution at ambient temperature. Good quality single crystals were selected under an optical microscope equipped with a polarizer. A single crystal was affixed to a MiTeGen advanced lithographic cryo-loop using NVH oil. A high-resolution data set of crystal 3q' was collected in a Bruker D8 Quest diffractometer, equipped with a Photon II area detector with monochromated MoK_{α} radiation (λ = 0.71073 Å) at 120 K temperature. The X ray generator was operated at 45 kV and 30 mA. A preliminary set of cell constants and an orientation matrix were calculated from a set of fast scans (180 frames). Data was collected with ω scan width of 0.5° at different settings of φ and 2 θ with a frame time of 20 secs keeping the sample to detector distance fixed at 45 mm, and 3-axis goniometer with fixed Kappa/Chi axis (54.736°). The X-ray data collection was monitored by the APEX2 software (Bruker). All the data were corrected for Lorentzian, polarization, and absorption effects using SAINT and SADABS programs (Bruker). The structure was solved using the APEX2 (Bruker) program suite using direct methods with the SHELXS - 97 (Sheldrick, 2008) structure refinement program. Using Least Squares minimization, the model was refined with a version of SHELXL - 2019/1 (Sheldrick, 2019). An ORTEP view of the structure was shown with the 50% probability displacement ellipsoids and the packing diagram was made using Mercury software 2022.3.0.

Table 3: Crystal Data of compound 3q'

CCDC number	2448186
Identification code	3q'
Empirical formula	$C_{27}H_{20}F_{3}NO_{3}$
Formula weight	463.13
Temperature	120(2) K
Wavelength	Monoclinic
Space group	P 21
Unit cell dimensions	a = 11.8938(8) Å, b = 7.7392(5) Å, c =
	25.6881(18) Å, $\alpha = 90.0$, $\beta = 97.182(2)$, $\gamma = 90.0$
Volume	2346.0(3) Å ³
Z	4
Density (calc)(mg/m ³)	1.432
Absorption coefficient (mm ⁻¹)	0.218
F(000)	1044
Crystal size (mm ³)	0.498 x 0.244 x 0.132
Theta range for data collection	2.751 to 30.530°.
Index ranges	-17<=h<=17, -11<=k<=11, -36<=l<=36
Reflections collected	67605
Completeness to theta = 25.242°	99.6 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	13963 / 1 / 648
Goodness-of-fit on F ²	0.745
Final R indices [I>2sigma(I)]	R1 = 0.0572, $wR2 = 0.1638$

Suitable crystals of compound **5h** were obtained by slowly evaporating a mixture of petroleum ether and diethylether solution at ambient temperature. Good quality single crystals were selected under an optical microscope equipped with a polarizer. A single crystal was affixed to a MiTeGen advanced lithographic cryo-loop using NVH oil. A high-resolution data set of crystal 5h was collected in a Bruker D8 Quest diffractometer, equipped with a Photon II area detector with monochromated MoK_{α} radiation (λ = 0.71073 Å) at 120 K temperature. The X ray generator was operated at 45 kV and 30 mA. A preliminary set of cell constants and an orientation matrix were calculated from a set of fast scans (180 frames). Data was collected with ω scan width of 0.5° at different settings of φ and 2 θ with a frame time of 20 secs keeping the sample to detector distance fixed at 45 mm, and 3-axis goniometer with fixed Kappa/Chi axis (54.736°). The X-ray data collection was monitored by the APEX4 software (Bruker). All the data were corrected for Lorentzian, polarization, and absorption effects using SAINT and SADABS programs (Bruker). The structure was solved using the APEX4 (Bruker) program suite using direct methods with the SHELXS - 97 (Sheldrick, 2008) structure refinement program. Using Least Squares minimization, the model was refined with a version of SHELXL - 2019/1 (Sheldrick, 2019). An ORTEP view of the structure was shown with the 50% probability displacement ellipsoids and the packing diagram was made using Mercury software 2022.3.0.

CCDC number	2425129

Identification code	5h
Empirical formula	$C_{24}H_{16}F_4O_4$
Formula weight	444.37
Temperature	120(2) K
Wavelength	Triclinic
Space group	P -1
Unit cell dimensions	a = 8.5086(7) Å, b = 10.3951(9) Å, c = 11.770(1)
	Å, $\alpha = 94.161(3)$, $\beta = 106.191(3)$, $\gamma = 91.831(3)$
Volume	995.62(15) Å ³
Z	2
Density (calc)(mg/m ³)	1.482
Absorption coefficient (mm ⁻¹)	0.125
F(000)	456.0
Crystal size (mm ³)	0.498 x 0.244 x 0.132
Theta range for data collection	2.50 to 27.657 °.
Index ranges	-11<=h<=11, -13<=k<=13, -15<=l<=15
Reflections collected	35748
Completeness to theta = 25.242°	99.7 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	4545 / 0 / 290
Goodness-of-fit on F ²	1.038
Final R indices [I>2sigma(I)]	R1 = 0.0402, wR2 = 0.1053
R indices (all data)	R1 = 0.0437, wR2 = 0.1079

Suitable crystals of compound 6c were obtained by slowly evaporating a mixture of petroleum ether and dichloromethane solution at ambient temperature. Good quality single crystals were selected under an optical microscope equipped with a polarizer. A single crystal was affixed to a MiTeGen advanced lithographic cryo-loop using NVH oil. A high-resolution data set of crystal 6c was collected in a Bruker D8 Quest diffractometer, equipped with a Photon II area detector with monochromated MoK_{α} radiation (λ = 0.71073 Å) at 120 K temperature. The X ray generator was operated at 45 kV and 30 mA. A preliminary set of cell constants and an orientation matrix were calculated from a set of fast scans (180 frames). Data was collected with ω scan width of 0.5° at different settings of φ and 2 θ with a frame time of 20 secs keeping the sample to detector distance fixed at 45 mm, and 3-axis goniometer with fixed Kappa/Chi axis (54.736°). The X-ray data collection was monitored by the APEX4 software (Bruker). All the data were corrected for Lorentzian, polarization, and absorption effects using SAINT and SADABS programs (Bruker). The structure was solved using the APEX3 (Bruker) program suite using direct methods with the SHELXT 2019/2 (Sheldrick, 2018) structure refinement program. Using Least Squares minimization, the model was refined with a version of SHELXL - 2019/2 (Sheldrick, 2019). An ORTEP view of the structure was shown with the 50% probability displacement ellipsoids and the packing diagram was made using Mercury software 2022.3.0. Table 2: Crystal Data of compound 6c

CCDC number	2409070
Identification code	6с
Empirical formula	C ₃₄ H ₂₆ ClNO5

Formula weight	564.01	
Temperature	120(2) K	
Wavelength	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 12.0072(7) Å, b = 11.2445(9) Å, c = 20.5394(16)	
	Å $\alpha = 90^{\circ}, \beta = 91.189(3)^{\circ}, \gamma = 90^{\circ}$	
Volume	2772.5(3) Å ³	
Z	4	
Density (calc)(mg/m ³)	1.351	
Absorption coefficient (mm ⁻¹)	0.182	
F(000)	1148.0	
Crystal size (mm ³)	0.498 x 0.244 x 0.132	
Theta range for data collection	3.2 to 27.7°	
Index ranges	-15<=h<=15, -14<=k<=14, -26<=l<=26	
Reflections collected	17518	
Completeness to theta = 25.242°	97.5 %	
Absorption correction	Semi-empirical from equivalents	
Refinement method	Full-matrix least-squares on F2	
Data / restraints / parameters	6282 / 0 / 438	
Goodness-of-fit on F ²	1.093	
Final R indices [I>2sigma(I)]	R1 = 0.1115, wR2 = 0.2520	
R indices (all data)	R1 = 0.1466, wR2 = 0.2710	
Extinction coefficient	NA	

9.0 DFT Analysis:

All calculations were carried out with the DFT method using the Gaussian16 program.¹⁶ The structures were optimized with solvent effects of dichloromethane by using the SMD model¹⁷ at the (U)M06/6-31+G(d,p) level of theory.¹⁸ Harmonic analyses were performed at the same level of theory to verify all the stationary points as minima or first-order saddle points, and to obtain the thermodynamic contributions to enthalpy and free energy at 298 K and 1 atm pressure. The connection of every TS to its respective reactant and product was verified by intrinsic reaction coordinate (IRC) analysis.¹⁹ To obtain more accurate values, single point calculations were performed at SMD(Dichloromethane)/(U)M06/6-311+G(d,p) (for 2+2 cycloaddition) and SMD(Toluene)/(U)M06/6-311+g(d,p)//(U)M06/6-31+g(d,p) (for 1,2-ester migration) level. The Gibbs Free Energy corrections obtained at 298 K and 1 atm were added to the calculated single-point energies. The optimized structures were generated using CYLview software.²⁰

Figure 4: (A and B) The free energy profile for [2+2] cycloaddition of maleimide **2i** and cyclopropene **1d** and **1a**. (C) The free energy profile for 1,2-ester migration of **3al**. (Note: Distances in Å).

New Coordinates

2i

Cartesian Coordinates

			³ 2i
Н	-0.565270	2.404280	0.889415
Н	-0.564790	2.404816	-0.889281
Н	0.986302	2.392208	0.000435
Н	-1.313145	-2.479952	0.000085
Н	1.401581	-2.431175	0.000095
С	-0.045965	2.034960	0.000095
0	-2.284302	0.167425	0.000056
0	2.282798	0.239865	0.000059
Ν	-0.009820	0.590259	-0.000304
C	-1.139204	-0.222608	-0.000041
С	-0.637519	-1.633292	0.000029
С	0.695625	-1.609601	0.000037
С	1.149745	-0.182845	-0.000045

Number of imaginary frequencies: 0	
Electronic energy: HF=-398.42942	274
Zero-point correction=	0.091323 (Hartree/Particle)
Thermal correction to Energy=	0.099218
Thermal correction to Enthalpy=	0.100162
Thermal correction to Gibbs Free Energ	gy= 0.058023
Sum of electronic and zero-point Energ	gies= -398.338105
Sum of electronic and thermal Energies	s= -398.330209
Sum of electronic and thermal Enthalpi	ies= -398.329265
Sum of electronic and thermal Free Ene	ergies= -398.371405

Cartesian Coordinates

.....

.....

•••	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••
	С	1.200621	-0.200960	0.000108
	С	0.780292	-1.577533	0.000008
	С	-0.711990	-1.608387	-0.000021
	С	-1.183904	-0.249515	0.000064
	Ν	-0.008906	0.541757	0.000027
	0	2.314856	0.295410	0.000017
	0	-2.314220	0.211314	-0.000066
	С	-0.055199	1.976952	-0.000054
	Η	1.455480	-2.423607	-0.000060
	Η	-1.351494	-2.481697	-0.000161
	Η	0.970164	2.352181	-0.000307
	Η	-0.598119	2.331778	-0.883902
	Η	-0.597693	2.331910	0.884005

•••••

1a

Number of imaginary frequencies: 0 Electronic energy: HF=-1036.9971713 Zero-point correction= 0.341944 (Hartree/Particle) Thermal correction to Energy= 0.363387 Thermal correction to Enthalpy= 0.364331 S116

Sum of electronic and zero-point Energies= -1036.655227	/
Sum of electronic and thermal Energies= -1036.633784	
Sum of electronic and thermal Enthalpies= -1036.632840)
Sum of electronic and thermal Free Energies= -1036.70837	'2

Cartesian Coordinates

Н	-0.684520	2.546478	-3.790323
Н	-5.234282	-0.185501	-0.073308
С	-0.198970	2.617512	-2.819518
С	-4.383947	-0.851656	-0.197354
С	-0.408106	1.621497	-1.869693
Н	-5.597419	-2.569985	-0.661942
Н	-2.920640	0.680083	0.230589
Н	0.790950	4.478498	-3.269647
С	0.625830	3.699976	-2.528557
С	-3.094109	-0.364708	-0.025477
С	-4.587542	-2.189808	-0.528068
Η	-1.514602	1.722382	3.927701
Н	-1.476054	3.426708	3.363105
С	-0.935923	2.479624	3.389984
C C	-0.935923 0.197815	2.479624 1.690780	3.389984 -0.613757
C C O	-0.935923 0.197815 -0.750258	2.4796241.6907802.096103	3.389984 -0.613757 2.028967
C C O C	-0.935923 0.197815 -0.750258 -3.495199	2.479624 1.690780 2.096103 -3.042911	3.389984 -0.613757 2.028967 -0.686479
C C O C C	-0.935923 0.197815 -0.750258 -3.495199 -1.991630	2.479624 1.690780 2.096103 -3.042911 -1.216114	3.389984 -0.613757 2.028967 -0.686479 -0.183583
C C O C C C	-0.935923 0.197815 -0.750258 -3.495199 -1.991630 -0.081937	2.479624 1.690780 2.096103 -3.042911 -1.216114 0.943525	3.389984 -0.613757 2.028967 -0.686479 -0.183583 1.840390
C C C C C C	-0.935923 0.197815 -0.750258 -3.495199 -1.991630 -0.081937 1.241492	2.479624 1.690780 2.096103 -3.042911 -1.216114 0.943525 3.776412	3.389984 -0.613757 2.028967 -0.686479 -0.183583 1.840390 -1.281211
C C C C C C C C	-0.935923 0.197815 -0.750258 -3.495199 -1.991630 -0.081937 1.241492 0.029055	2.479624 1.690780 2.096103 -3.042911 -1.216114 0.943525 3.776412 0.582129	3.389984 -0.613757 2.028967 -0.686479 -0.183583 1.840390 -1.281211 0.384733
C O C C C C C O	-0.935923 0.197815 -0.750258 -3.495199 -1.991630 -0.081937 1.241492 0.029055 0.327878	2.479624 1.690780 2.096103 -3.042911 -1.216114 0.943525 3.776412 0.582129 0.259916	3.389984 -0.613757 2.028967 -0.686479 -0.183583 1.840390 -1.281211 0.384733 2.752000
C O C C C C C C O C	-0.935923 0.197815 -0.750258 -3.495199 -1.991630 -0.081937 1.241492 0.029055 0.327878 -2.204467	2.479624 1.690780 2.096103 -3.042911 -1.216114 0.943525 3.776412 0.582129 0.259916 -2.561988	3.389984 -0.613757 2.028967 -0.686479 -0.183583 1.840390 -1.281211 0.384733 2.752000 -0.515810
C O C C C C C C C C C C C C	-0.935923 0.197815 -0.750258 -3.495199 -1.991630 -0.081937 1.241492 0.029055 0.327878 -2.204467 -0.664754	2.479624 1.690780 2.096103 -3.042911 -1.216114 0.943525 3.776412 0.582129 0.259916 -2.561988 -0.699446	3.389984 -0.613757 2.028967 -0.686479 -0.183583 1.840390 -1.281211 0.384733 2.752000 -0.515810 0.009178
C C C C C C C C C C C C C C C C C C C	-0.935923 0.197815 -0.750258 -3.495199 -1.991630 -0.081937 1.241492 0.029055 0.327878 -2.204467 -0.664754 1.028814	2.479624 1.690780 2.096103 -3.042911 -1.216114 0.943525 3.776412 0.582129 0.259916 -2.561988 -0.699446 2.780242	3.389984 -0.613757 2.028967 -0.686479 -0.183583 1.840390 -1.281211 0.384733 2.752000 -0.515810 0.009178 -0.334951

Η	-3.653593	-4.087841	-0.942378
Η	1.893475	4.614562	-1.045030
С	0.632424	-0.766704	0.098092
Н	-1.347419	-3.222564	-0.632757
Н	-1.048763	0.773141	-2.108382
С	1.915271	-1.403938	0.015100
С	2.036406	-2.734012	-0.412398
С	3.066366	-0.686661	0.364436
С	3.286421	-3.332469	-0.485142
С	4.428010	-2.611770	-0.134324
С	4.315330	-1.289313	0.290141
Η	1.140672	-3.288649	-0.685927
Η	3.374507	-4.364448	-0.816280
Н	2.962305	0.343601	0.699902
Η	5.204673	-0.727740	0.565417
Η	5.406333	-3.082934	-0.191978
Н	1.514467	2.851461	0.638044

³1a

Number of imaginary frequencies: 0				
Electronic energy: HF=-1036.9164	4485			
Zero-point correction=	0.337691 (Hartree/Part	icle)		
Thermal correction to Energy=	0.359799	to de		
Thermal correction to Enthalpy=	0.360743	A 25		
Thermal correction to Gibbs Free Energ	gy= 0.282002			
Sum of electronic and zero-point Energ	gies= -1036.57875	8 4 4 1		
Sum of electronic and thermal Energies	s= -1036.556650	AIVY		
Sum of electronic and thermal Enthalpi	les= -1036.55570			
Sum of electronic and thermal Free Ene	ergies= -1036.6344	46		
		9		
Cartesian Coordinates				

Н -0.236656 2.681149 -3.772195

Η	-5.231780	-0.105216	-0.465809
С	0.177469	2.689003	-2.766561
С	-4.376963	-0.777750	-0.479127
С	-0.168653	1.680279	-1.871385
Н	-5.573099	-2.530295	-0.915172
Н	-2.952817	0.778901	-0.048739
Н	1.309869	4.495783	-3.074162
С	1.043117	3.706107	-2.375853
С	-3.114675	-0.279889	-0.246947
С	-4.572451	-2.146541	-0.733357
Н	-1.969621	1.544824	3.752917
Н	-2.329552	3.139934	3.010793
С	-1.570342	2.371310	3.157652
С	0.353621	1.676616	-0.577958
0	-1.213652	1.919202	1.850972
С	-3.470656	-3.017007	-0.748731
С	-1.975931	-1.150916	-0.264381
С	-0.261990	0.973896	1.809009
С	1.565787	3.708665	-1.083906
С	0.028106	0.568537	0.383896
0	0.268501	0.505800	2.788310
С	-2.197503	-2.542986	-0.519474
С	-0.708770	-0.646541	-0.065462
С	1.225966	2.697962	-0.192221
Н	-0.697901	2.787521	3.670211
Η	-3.624340	-4.076777	-0.939648
Н	2.242433	4.500330	-0.770317
С	0.673655	-0.758076	0.177820
Η	-1.341863	-3.215347	-0.522270
Н	-0.850954	0.887047	-2.174099
С	1.889152	-1.400975	0.115017
С	2.003288	-2.743238	-0.370322
С	3.081819	-0.740471	0.551758
С	3.229645	-3.369934	-0.410899

С	4.387523	-2.703278	0.020065
С	4.296645	-1.385270	0.500006
Η	1.104227	-3.253684	-0.710325
Η	3.301789	-4.389610	-0.782750
Η	2.999575	0.274313	0.936247
Η	5.194035	-0.872331	0.838361
Η	5.350982	-3.205442	-0.015917
Н	1.639712	2.701872	0.816775

³TS3al

Number of imaginary frequencies: 1 (-196.3563 cm-1) HF=-1435.4557252 Electronic energy: Zero-point correction= 0.435290 (Hartree/Particle) 0.465102 Thermal correction to Energy= 0.466047 Thermal correction to Enthalpy= 0.370899 Thermal correction to Gibbs Free Energy= 2.44 Sum of electronic and zero-point Energies= -1435.020435 Sum of electronic and thermal Energies= -1434.990623 Sum of electronic and thermal Enthalpies= -1434.989679 Sum of electronic and thermal Free Energies= -1435.084826

Cartesian Coordinates

Η	0.075684	-4.229125	3.479238
С	0.636749	-3.501129	2.898275
Н	2.559292	-4.322858	3.440643
Н	-3.156243	-3.746724	-1.798842
С	2.035956	-3.549950	2.883388
Н	-1.121749	-2.464578	2.220044
С	-0.035417	-2.526789	2.187218
С	-3.070771	-2.663468	-1.757881
Н	-1.792519	-2.687616	-0.024229
С	-2.313368	-2.067294	-0.752292

Η	-4.286083	-2.337777	-3.506169
С	-3.702513	-1.874416	-2.714331
С	2.760376	-2.603130	2.150745
С	0.682729	-1.559841	1.432416
Н	3.846493	-2.645882	2.132528
С	2.102513	-1.620860	1.437569
С	-2.183550	-0.680174	-0.691125
0	-1.644083	0.581326	2.694926
С	-3.582213	-0.486903	-2.654884
С	0.004616	-0.591095	0.691579
0	2.566745	-2.443558	-1.782842
С	-1.345441	-0.050758	0.388819
С	-2.078136	0.551519	1.567373
С	-2.831715	0.105738	-1.645362
Η	-4.180100	1.037758	3.066713
Н	-4.073791	0.135631	-3.398924
С	2.044318	-1.354197	-1.926738
Н	2.659904	-0.896282	0.846226
0	-3.250966	1.087086	1.204449
С	-3.971338	1.737958	2.252983
С	0.649182	-1.020427	-2.258627
Η	-0.104968	-1.777605	-2.439188
Н	4.530890	-0.973236	-1.324988
С	-0.049039	0.683153	0.093956
Η	-2.740902	1.189857	-1.596108
Н	4.318441	0.707341	-0.734505
С	4.131296	0.016246	-1.564047
Ν	2.713862	-0.125734	-1.788271
Η	2.262160	1.357344	1.271385
Н	-3.389769	2.577161	2.647280
С	0.513712	0.340357	-2.252370
Η	-4.899428	2.090420	1.802413
С	1.656362	2.217626	0.991947
С	1.858073	0.939482	-2.064756

С	0.396473	2.001512	0.398608
Η	4.633905	0.407349	-2.455489
С	2.106929	3.505916	1.228177
0	2.195211	2.106033	-2.124951
Η	-0.333122	0.936182	-2.572659
Н	3.078276	3.663702	1.690012
С	-0.395237	3.116639	0.052816
Η	-1.367036	2.950409	-0.411104
С	1.318104	4.600034	0.871918
С	0.064339	4.400330	0.286487
Н	1.678547	5.610152	1.049939
Η	-0.548090	5.254960	0.009863

³TS3al'

Cartesian Coordinates

Н	-1.068274	-4.750671	-2.115695
С	-1.321308	-3.695789	-2.040098
Η	-3.026916	-3.856829	-3.356673
Η	5.773548	-0.403571	0.706999
С	-2.424534	-3.192730	-2.741997
Η	0.299279	-3.241601	-0.690892

С	-0.555000	-2.862807	-1.249326
С	4.889659	-0.510571	0.082457
Η	3.533554	-0.340546	1.744129
С	3.627709	-0.482415	0.668551
Η	6.008127	-0.688369	-1.750842
С	5.021492	-0.668471	-1.294412
С	-2.755480	-1.836439	-2.645174
С	-0.876212	-1.481176	-1.141053
Н	-3.618490	-1.448719	-3.181184
С	-1.999546	-0.988449	-1.860564
С	2.481117	-0.621250	-0.118595
0	1.281591	-0.536148	2.913706
С	3.881782	-0.798933	-2.083262
С	-0.101031	-0.640639	-0.344006
0	-3.847636	-1.131400	0.897969
С	1.107946	-0.558687	0.504345
С	1.078574	-1.152380	1.892775
С	2.619460	-0.778050	-1.499846
Η	1.867438	-3.019803	3.583957
Η	3.973410	-0.921818	-3.159854
С	-3.066997	-0.238705	1.172082
Η	-2.261468	0.064366	-1.766388
0	0.864107	-2.471663	1.844945
С	0.892583	-3.147897	3.104666
С	-1.884522	-0.266308	2.046520
Η	-1.600147	-1.155771	2.596427
Η	-3.785035	2.159490	-0.989901
С	0.251605	0.630700	0.155709
Η	1.731599	-0.883304	-2.121847
Η	-4.895698	2.201598	0.394455
С	-4.203902	1.566024	-0.169733
Ν	-3.143141	1.070410	0.671308
Η	-0.846123	1.868274	-1.961211
Η	0.116232	-2.753905	3.768038

С	-1.276634	0.959808	2.009957
Н	0.706937	-4.198674	2.883192
С	-0.122815	2.483224	-1.427185
С	-2.131899	1.869219	1.206441
С	0.551829	1.937177	-0.317025
Н	-4.747035	0.703346	-0.566273
С	0.138162	3.781701	-1.833190
0	-2.017721	3.064366	1.014196
Н	-0.458243	1.322237	2.621485
Н	-0.384552	4.197591	-2.690803
С	1.492287	2.729742	0.374074
Н	2.002840	2.302369	1.236753
С	1.064339	4.558456	-1.136311
С	1.740984	4.027615	-0.033379
Н	1.259424	5.580874	-1.450520
Н	2.460977	4.637509	0.506421

³Int3al

Number of imaginary frequencies: 0 Electronic energy: HF=-1435.50007	
Zero-point correction=).438987 (Hartree/Particle)
Thermal correction to Energy=	0.468075
Thermal correction to Enthalpy=	0.469020
Thermal correction to Gibbs Free Energ	$y = 0.376813$ $\gamma = 100000000000000000000000000000000000$
Sum of electronic and zero-point Energie	es= -1435.061090
Sum of electronic and thermal Energies=	-1435.032002
Sum of electronic and thermal Enthalpie	s= -1435.031058
Sum of electronic and thermal Free Ener	-1435.123264

Cartesian Coordinates

•••••	•••••		
Н	-4.133937	-1.666697	-2.889979
0	-0.531956	-2.289730	-2.388449

S124

С	-3.408217	-1.946186	-2.120389
С	-1.020088	-1.203671	-2.160859
Η	-2.936175	-2.898035	-2.374799
Η	-3.931956	-2.031507	-1.162179
N	-2.371349	-0.943984	-2.032269
Η	0.441959	0.303511	-2.693849
С	-0.267721	0.102530	-1.879599
Η	2.585598	0.603966	-2.172249
С	-2.650301	0.424595	-1.846289
Η	0.308589	5.339351	-0.834839
0	-3.774302	0.881223	-1.744949
Η	4.744861	-0.537450	-2.542999
С	-0.185859	4.509780	-0.334339
С	-1.367392	1.100308	-1.833899
С	2.790460	-0.342724	-1.670799
Η	-1.280815	2.173928	-1.949499
С	4.011852	-0.975112	-1.869009
Η	-2.030831	5.585197	-0.034409
С	-1.498669	4.648978	0.115511
С	0.493593	3.309742	-0.155879
Η	1.511773	3.195003	-0.520809
С	0.540830	-0.155178	-0.575229
С	1.834471	-0.888166	-0.807819
С	-2.126087	3.582546	0.752121
С	-0.134865	2.229190	0.473561
С	4.296504	-2.164641	-1.199909
С	-0.193090	-0.344130	0.668361
С	-1.445825	2.381908	0.934191
С	0.553968	0.902342	0.603601
Η	-3.153207	3.675964	1.095421
Η	-1.148495	-2.764162	-0.011949
Η	5.250225	-2.663489	-1.355389
С	2.132154	-2.072815	-0.135849
С	3.355895	-2.707963	-0.331009

С	-1.401916	-2.457622	1.002831
С	-0.938238	-1.203991	1.484211
Η	-1.949913	1.539387	1.405611
0	2.783396	1.675826	0.805971
С	1.854618	0.898674	1.379381
Н	1.404094	-2.495257	0.553851
С	-2.156794	-3.284164	1.816551
Н	-2.503852	-4.241724	1.434481
С	-1.252349	-0.837032	2.818911
Н	3.571217	-3.632773	0.198651
Н	-0.866821	0.104429	3.206401
Н	4.714125	2.274500	0.811731
С	4.087917	1.588889	1.383411
0	2.048739	0.247775	2.377941
С	-2.469495	-2.900044	3.124261
С	-2.007467	-1.675573	3.618421
Н	4.462489	0.563109	1.294891
Н	4.064706	1.874688	2.438641
Н	-3.062753	-3.554785	3.757871
Η	-2.235798	-1.382824	4.640581

Cartesian Coordinates

•••••	•••••		
Н	3.390253	-0.475168	4.814205
Н	3.204111	1.656477	3.547833
С	2.748212	-0.415739	3.938815
С	2.644315	0.781516	3.224438
Н	-2.683460	3.727983	1.816795
С	2.020104	-1.536384	3.524457
Н	-4.058148	-0.967203	2.851670
Н	2.097415	-2.468425	4.079627
С	1.829136	0.867876	2.108639
С	-2.585803	3.145637	0.903596
Н	1.744593	1.805879	1.560789
Н	-0.763610	2.185062	1.539559
С	-3.773579	-1.167445	1.821315
Н	-5.761933	-1.724860	1.206235
С	-1.504630	2.282463	0.747750
Н	-4.386393	3.930880	0.021266
С	-4.726580	-1.592608	0.900954
С	1.203451	-1.468764	2.410739
С	-3.538571	3.261508	-0.103772
С	1.088695	-0.262408	1.670398
Н	-1.710897	-0.657665	2.152247
С	-2.449777	-0.997511	1.428116
С	-4.344516	-1.848307	-0.413512
Н	0.641912	-2.339311	2.076858
С	-1.364996	1.532510	-0.417731
С	-2.061003	-1.239080	0.108137
Н	3.994500	2.775681	-0.154073
С	-3.404255	2.515544	-1.273457
С	0.247491	-0.204715	0.551752
Н	4.581995	1.123192	0.215767
Н	-5.081702	-2.181727	-1.140468
С	-3.023212	-1.671613	-0.810412

С	4.222972	1.792916	-0.572867
0	3.946747	-0.649661	-2.073782
С	-0.246076	0.546525	-0.592092
С	-2.321063	1.658917	-1.428188
С	-0.638720	-0.971146	-0.312105
С	2.975906	0.057119	-1.872322
Ν	3.010546	1.265332	-1.156022
Н	-4.149839	2.594427	-2.061154
С	1.600516	-0.118022	-2.301882
С	1.776607	1.891056	-1.096460
Н	-2.731368	-1.863779	-1.839697
Н	4.999724	1.879949	-1.338396
0	1.562216	2.966790	-0.582201
С	0.745693	0.947136	-1.722780
Н	-2.229050	1.053055	-2.331084
С	-0.057666	-2.036882	-1.207351
0	1.036325	-2.590893	-0.672069
Н	1.306743	-0.842390	-3.052299
Н	0.174445	1.483762	-2.493638
0	-0.518230	-2.364812	-2.279644
С	1.692505	-3.580110	-1.470732
Н	2.518728	-3.949171	-0.863613
Н	1.000180	-4.387024	-1.725896
Н	2.080576	-3.128287	-2.389457

¹Int3al

Sum of electronic and thermal Energies=	-1435.000915
Sum of electronic and thermal Enthalpies=	-1434.999971
Sum of electronic and thermal Free Energies=	-1435.091569

.....

Cartesian Coordinates

Η	-1.905232	-1.830273	4.635449
Η	-2.497815	-4.058338	3.704525
С	-1.673535	-2.064870	3.599139
С	-2.003736	-3.320107	3.077579
Η	-0.763303	-0.151502	3.215037
С	-1.044565	-1.121084	2.807921
0	2.090676	0.319743	2.343956
С	-1.687652	-3.625740	1.750222
Η	3.906515	2.157272	2.458296
С	-0.727611	-1.409843	1.454591
Η	-1.932612	-4.605553	1.346065
С	3.935888	1.935870	1.387866
С	1.794695	0.997847	1.389444
С	-1.057605	-2.693589	0.943753
Η	4.422742	0.966573	1.233283
Η	-2.110188	1.112073	1.378541
Η	1.691990	-2.410333	0.342394
Η	3.960208	-3.275980	-0.135715
С	-0.108624	-0.439663	0.655757
0	2.615792	1.904312	0.840705
С	-1.710378	2.055396	1.008754
С	0.480943	0.890845	0.644307
Η	4.465649	2.719828	0.845789
С	3.634219	-2.342208	-0.587325
С	2.354661	-1.860305	-0.322691
Η	-3.586526	3.084204	1.199224
С	-2.543515	3.165764	0.904358
С	-0.374070	2.123915	0.601865

Η	-0.803966	-2.936510	-0.087770
С	0.556308	-0.099520	-0.589939
С	1.915910	-0.667752	-0.895774
С	4.489802	-1.635351	-1.425953
С	-2.045869	4.365393	0.406754
С	0.121347	3.338149	0.110781
Η	5.487318	-2.014575	-1.635176
С	-0.709638	4.448678	0.015713
Η	-2.695962	5.232455	0.319361
С	2.786574	0.042365	-1.729230
С	4.063532	-0.436208	-1.995569
Η	1.157521	3.400482	-0.212153
Η	-3.361011	-2.641929	-1.259317
С	-0.303650	0.140130	-1.875015
С	-1.425505	1.108141	-1.834655
С	-2.693492	0.405371	-1.874589
С	-1.020632	-1.184468	-2.150777
Η	-0.314632	5.383764	-0.375202
Ν	-2.376830	-0.961576	-2.039085
0	-3.827728	0.841175	-1.807621
0	-0.507686	-2.261642	-2.370009
С	-3.367396	-2.007215	-2.152759
Η	2.467959	0.996255	-2.151752
Η	4.729118	0.128615	-2.644481
Η	-1.362439	2.185864	-1.927938
Η	-4.345191	-1.530949	-2.254707
Η	0.391717	0.359120	-2.696750
Η	-3.150915	-2.627873	-3.026818

¹Int3al'

Number of imaginary frequencies: 0

Electronic energy: HF=-1435.4787621

Zero-point correction= 0.438459 (Hartree/Particle)

S130

Thermal correction to Energy=	0.467651	
Thermal correction to Enthalpy=	0.468595	ATT
Thermal correction to Gibbs Free Energy=	0.377039	
Sum of electronic and zero-point Energies=	-1435.040303	
Sum of electronic and thermal Energies=	-1435.011112	
Sum of electronic and thermal Enthalpies=	-1435.010167	× 41
Sum of electronic and thermal Free Energie	es= -1435.101723	3
		•

Cartesian Coordinates

Н	2.949464	2.169304	4.685410	
Н	2.814623	3.439617	2.552765	
C	2.393446	1.763665	3.843680	
С	2.317547	2.476335	2.643744	
Н	-2.891394	4.056664	-0.284896	
С	1.749177	0.527475	3.958286	
Н	-4.183070	0.273016	2.857421	
Н	1.805312	-0.029640	4.890641	
С	1.609389	1.971441	1.565755	
С	-2.733548	3.108557	-0.793547	
Н	1.555201	2.530116	0.632844	
Н	-0.918276	2.667595	0.283617	
С	-3.826332	-0.367532	2.054176	
Н	-5.747862	-1.276062	1.700079	
С	-1.622420	2.331581	-0.475607	
Н	-4.510368	3.276581	-1.998264	
С	-4.701319	-1.234445	1.407304	
C	1.041469	0.006507	2.890583	
C	-3.639387	2.672631	-1.755142	
C	0.952865	0.716637	1.664585	
Н	-1.813107	0.373797	2.181101	
C	-2.488251	-0.315332	1.676072	
С	-4.226270	-2.048893	0.382530	
Н	0.545109	-0.958925	2.970845	

С	-1.405613	1.116756	-1.121521
С	-2.005176	-1.121929	0.642176
Η	4.265226	1.504493	-0.219256
С	-3.428421	1.457736	-2.405511
С	0.211104	0.173612	0.604161
Η	5.106815	0.336509	-1.283668
Η	-4.901905	-2.730107	-0.129919
С	-2.890481	-1.993542	-0.000621
С	4.318207	1.090470	-1.232335
0	3.854553	-1.729848	-1.791573
С	-0.238588	0.239295	-0.768534
С	-2.315314	0.687808	-2.091473
С	-0.572907	-0.984130	0.196946
С	2.936074	-0.931369	-1.827364
Ν	3.069249	0.448370	-1.572808
Η	-4.137411	1.106284	-3.151420
С	1.533831	-1.149367	-2.134241
С	1.882772	1.134998	-1.735995
Η	-2.526206	-2.628934	-0.803027
Η	4.524455	1.903509	-1.934507
0	1.757793	2.338522	-1.658108
С	0.777953	0.106018	-1.963431
Η	-2.161364	-0.274972	-2.581480
С	0.141992	-2.295618	-0.036875
0	1.338005	-2.318956	0.567384
Η	1.154943	-2.086779	-2.525320
Η	0.212930	0.366590	-2.868830
0	-0.300754	-3.227055	-0.671758
С	2.104715	-3.515465	0.384453
Н	3.007051	-3.379344	0.980382
Н	1.535620	-4.385261	0.723596
Н	2.373619	-3.637334	-0.669536

Number of imaginary frequencies: 0 Electronic energy: HF=-1435.5812458 Zero-point correction= 0.443120 (Hartree/Particle) Thermal correction to Energy= 0.471579 Thermal correction to Enthalpy= 0.472523 0.381966 Thermal correction to Gibbs Free Energy= -1435.138125 Sum of electronic and zero-point Energies= Sum of electronic and thermal Energies= -1435.109667 Sum of electronic and thermal Enthalpies= -1435.108723 Sum of electronic and thermal Free Energies= -1435.199280

3al

Cartesian Coordinates

Н	-4.987837	-0.618039	-2.167074
Н	-0.484788	4.916376	-1.848104
С	-4.279732	-1.115537	-1.508491
С	-0.157094	4.228514	-1.072288
С	-3.180138	-0.417102	-1.021519
Н	0.521928	5.787321	0.252930
Н	-0.726651	2.485757	-2.192738
Н	-5.335375	-2.994014	-1.532342
С	-0.300121	2.859167	-1.263454
С	-4.475804	-2.448140	-1.150865
С	0.408281	4.716214	0.103367
Н	-3.127545	1.492501	3.370674
С	-2.828292	2.113701	2.521699
Н	-3.665836	2.716786	2.170675
С	-2.261063	-1.044834	-0.177772
0	-2.441379	1.301141	1.413594
С	0.120885	1.953579	-0.283202

С	0.836145	3.822761	1.081240
С	-1.446273	0.437463	1.653001
С	-3.569120	-3.078517	-0.303262
0	-0.937138	0.287259	2.737824
С	-1.087654	-0.294047	0.379924
С	0.697744	2.450549	0.891337
С	-0.123150	0.508064	-0.503129
С	-2.467181	-2.378320	0.180231
Η	1.287658	4.191799	1.999431
Η	-1.993612	2.756109	2.821750
Η	-3.717761	-4.117358	-0.018462
С	0.336042	-0.764255	0.229173
Η	1.034256	1.765070	1.666643
Η	-1.752082	-2.869410	0.840761
С	1.846505	-1.730974	-1.581166
С	1.184440	0.216836	-2.671597
N	2.217736	-0.672321	-2.408660
0	2.558931	-2.663672	-1.292060
0	1.270002	1.152311	-3.436064
С	3.529686	-0.543127	-3.005065
Η	3.460687	-0.609901	-4.094984
Н	4.151773	-1.353441	-2.618855
Η	3.963000	0.426617	-2.743021
С	0.426658	-1.490353	-1.133353
С	-0.020296	-0.204059	-1.858981
Η	-0.163888	-2.407356	-1.232625
Н	-0.918728	-0.219595	-2.486586
С	1.338212	-1.007948	1.297771
С	1.093092	-1.951483	2.296764
С	2.587375	-0.385281	1.247367
С	3.568314	-0.689075	2.187031
С	2.071992	-2.260842	3.232410
С	3.312303	-1.628135	3.181167
Н	2.792168	0.347582	0.466313

Η	0.117039	-2.430759	2.350141
Н	1.865254	-2.994075	4.008280
Н	4.534887	-0.193125	2.138560
Н	4.077773	-1.868091	3.915325
Η	-3.030348	0.630282	-1.282462

3al'

Number of imaginary frequencies: 0

Electronic energy: HF=-1435.580	4366
Zero-point correction=	0.443624 (Hartree/Particle)
Thermal correction to Energy=	0.471889
Thermal correction to Enthalpy=	0.472833
Thermal correction to Gibbs Free Ener	gy= 0.383614
Sum of electronic and zero-point Energ	gies= -1435.136813
Sum of electronic and thermal Energie	es= -1435.108548
Sum of electronic and thermal Enthalp	ies= -1435.107604
Sum of electronic and thermal Free En	ergies= -1435.196823

Cartesian Coordinates

Η	5.10419	0.98255	0.22084
Η	1.26437	5.16843	-0.01906
С	4.34445	0.24701	-0.03206
С	1.20013	4.18286	-0.47390
С	3.08350	0.33252	0.54358
Η	2.20389	4.77194	-2.28799
Н	0.17296	3.33100	1.20962
Н	5.61060	-0.83611	-1.40004
С	0.58733	3.14555	0.22087
С	4.62757	-0.77229	-0.93926
С	1.72441	3.96137	-1.74424
Η	2.01455	-2.29630	4.20859
С	1.02950	-2.60209	3.84469

Η	0.96016	-3.68865	3.79216
С	2.08584	-0.59520	0.21933
0	0.82406	-2.13128	2.51045
С	0.48995	1.86833	-0.34190
С	1.62870	2.69497	-2.31497
С	0.89471	-0.80091	2.35017
С	3.64952	-1.71234	-1.24730
0	1.08262	-0.02307	3.25740
С	0.75150	-0.43551	0.89568
С	1.01770	1.65628	-1.62057
С	-0.08096	0.77966	0.48632
С	2.38662	-1.63169	-0.66401
Η	2.03757	2.50873	-3.30539
Η	0.26314	-2.20022	4.51456
Η	3.86678	-2.51795	-1.94483
С	-0.56176	-0.65405	0.19185
Η	0.97646	0.66656	-2.07072
Η	1.63280	-2.37337	-0.91182
С	-3.04512	-0.36324	0.64313
С	-2.34837	1.82630	1.01309
Ν	-3.31966	0.98967	0.47417
0	-3.78940	-1.26665	0.33806
0	-2.44840	3.03171	1.06218
С	-4.54507	1.49378	-0.10766
Н	-5.12265	2.04399	0.64132
Н	-5.11934	0.63805	-0.46874
Н	-4.31243	2.17176	-0.93362
С	-1.67081	-0.48075	1.25476
С	-1.20602	0.97019	1.51465
Н	-1.68063	-1.21906	2.06535
Η	-0.90121	1.27676	2.52077
С	-0.83557	-1.43568	-1.03877
С	-0.81758	-2.83255	-0.96531
С	-1.25178	-0.82334	-2.22112

С	-1.17304	-3.60176	-2.06570
С	-1.60371	-1.59435	-3.32723
С	-1.56034	-2.98254	-3.25356
Н	-0.52366	-3.30845	-0.02914
Н	-1.15517	-4.68688	-1.99659
Н	-1.83907	-3.58360	-4.11575
Н	-1.30808	0.26326	-2.27238
Н	-1.92057	-1.10602	-4.24576
Н	2.85406	1.13712	1.24144

1d

Number of imaginary frequencies: 0 Electronic energy: HF=-1373.9510688 0.347522 (Hartree/Particle) Zero-point correction= 0.372231 Thermal correction to Energy= 0.373175 Thermal correction to Enthalpy= 0.291393 Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= -1373.603547 Sum of electronic and thermal Energies= -1373.578838 -1373.577894 Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= -1373.659675

Cartesian Coordinates

Н	0.34078	-3.42821	-3.20919
Н	5.01515	-2.54531	0.57954
С	-0.31836	-2.87810	-2.54186
С	4.65939	-1.57041	0.25517
С	0.22208	-2.02042	-1.59178
Н	6.63117	-0.81969	-0.17952
Н	2.58336	-2.04522	0.60123
Н	-2.13551	-3.69689	-3.36870
С	-1.69635	-3.02961	-2.63192

S137

С	3.29776	-1.29368	0.26602
С	5.56611	-0.60135	-0.16875
Н	0.43650	-2.20638	3.88319
Н	-0.66620	-3.48684	3.27215
С	-0.45980	-2.41620	3.29204
С	-0.57620	-1.29175	-0.70607
0	-0.27179	-2.02677	1.93273
С	5.10660	0.65055	-0.57702
С	2.82775	-0.03851	-0.14494
С	-0.00238	-0.72341	1.74470
С	-2.51446	-2.31031	-1.77139
С	0.11100	-0.38111	0.28539
0	0.17894	0.05976	2.64823
С	3.74775	0.93327	-0.56460
С	1.42006	0.25553	-0.09595
С	-1.97008	-1.45262	-0.81386
Н	-1.30532	-1.87176	3.72545
Н	5.81331	1.40966	-0.90355
Н	-3.59364	-2.41107	-1.84231
С	0.39981	1.06203	-0.05030
Н	3.38386	1.91138	-0.87299
Н	1.30228	-1.90564	-1.53429
С	-2.95252	-0.64411	-0.01399
F	-4.14441	-1.25356	0.09024
F	-3.18490	0.54797	-0.59612
F	-2.55485	-0.38153	1.24407
С	-0.17023	2.38193	-0.13478
С	0.44850	3.35494	-0.93330
С	-1.31736	2.71903	0.59347
С	-0.07304	4.63966	-1.00266
С	-1.21283	4.96934	-0.27082
С	-1.82983	4.00814	0.52723
Η	1.33090	3.08523	-1.51118
Н	0.40811	5.38640	-1.62981

Н	-1.78765	1.96699	1.22097
Н	-2.71675	4.26438	1.10138
Н	-1.62051	5.97605	-0.32399

³1d

Number of imaginary frequencies: 0				
Electronic energy: HF= -1373.871	2684			•
Zero-point correction=	0.34385	53 (Hartree/Partic	cle)	hope -
Thermal correction to Energy=	0.3	68795	-	1 m
Thermal correction to Enthalpy=	0.3	869739	20	X Z
Thermal correction to Gibbs Free Ener	·gy=	0.286692	17	
Sum of electronic and zero-point Energy	gies=	-1373.527415	5	IT
Sum of electronic and thermal Energie	s=	-1373.502473	8	\sim
Sum of electronic and thermal Enthalp	ies=	-1373.501529)	9
Sum of electronic and thermal Free En	ergies=	-1373.58457	17	

Cartesian Coordinates

Н	0.52783	-0.87434	4.35339
Н	-4.75781	-2.88365	0.82432
С	0.98697	-0.89532	3.36809
С	-4.51056	-1.85234	0.58315
С	0.21389	-0.63652	2.24446
Η	-6.57867	-1.22431	0.47180
Η	-2.38716	-2.19365	0.63193
Η	2.95510	-1.40180	4.09635
С	2.33854	-1.18858	3.22741
С	-3.19008	-1.47373	0.47442
С	-5.53946	-0.91789	0.38367
Η	-0.70568	-3.56687	-2.57388
Η	0.67214	-4.32989	-1.70486
С	0.28241	-3.40611	-2.13336
С	0.75348	-0.65244	0.95288

0	0.20592	-2.47686	-1.05157
С	-5.22246	0.41030	0.06328
С	-2.84598	-0.12302	0.15696
С	-0.22988	-1.25089	-1.38097
С	2.89684	-1.20470	1.95762
С	-0.17151	-0.33046	-0.18960
0	-0.64724	-0.94876	-2.47115
С	-3.90749	0.80995	-0.05255
С	-1.52054	0.27018	0.09764
С	2.12591	-0.93090	0.82578
Η	0.96185	-3.02644	-2.90353
Η	-6.02071	1.12983	-0.10415
Η	3.95331	-1.43025	1.83267
С	-0.51235	1.11434	-0.40586
Η	-3.65657	1.83491	-0.31861
Η	-0.84642	-0.41704	2.35650
С	2.87865	-1.01439	-0.47320
F	3.18477	-2.28590	-0.78979
F	4.05054	-0.35521	-0.39480
F	2.23038	-0.49751	-1.52823
С	0.05204	2.37948	-0.34397
С	-0.75656	3.50110	0.01647
С	1.42298	2.61679	-0.66351
С	-0.22327	4.77307	0.04436
С	1.12474	4.98494	-0.27563
С	1.93724	3.89496	-0.62524
Η	-1.79967	3.32829	0.27533
Η	-0.85230	5.61582	0.32203
Н	2.04920	1.77642	-0.95112
Н	2.98344	4.05936	-0.87247
Н	1.53991	5.98936	-0.25244

³TS3aa

Number of imaginary frequencies: 1 (-294.2836 cm-1) HF=-1772.4104837 Electronic energy: Zero-point correction= 0.441159 (Hartree/Particle) Thermal correction to Energy= 0.474063 Thermal correction to Enthalpy= 0.475007 Thermal correction to Gibbs Free Energy= 0.374350 Sum of electronic and zero-point Energies= -1771.969325 Sum of electronic and thermal Energies= -1771.936420 Sum of electronic and thermal Enthalpies= -1771.935476 Sum of electronic and thermal Free Energies= -1772.036133

Cartesian Coordinates

•••••	•••••	•••••	•••••	
	Н	0.744005	-4.622585	0.165803
	С	1.290848	-3.690926	0.049163
	Н	1.838171	5.001044	-0.925865
	Н	3.034508	-4.607375	-0.825999
	С	0.921907	4.439968	-0.759666
	Н	-0.305951	-2.515079	0.855855
	С	2.560658	-3.681799	-0.510780
	Н	-0.349480	6.180195	-0.871222
	С	0.698849	-2.495485	0.440082
	С	-0.308312	5.103277	-0.725858
	0	-2.552351	1.180624	-2.414736
	Н	1.937674	2.559830	-0.584094
	С	0.980972	3.071166	-0.572001
	Н	0.255225	0.925161	-2.720354
	С	-1.481037	4.383780	-0.499457
	С	-1.850471	0.187715	-2.357942
	С	-0.197331	2.327290	-0.346630
	С	-0.360735	0.088419	-2.413081
	С	3.223048	-2.471094	-0.679165
	С	1.337716	-1.267470	0.273076
	С	-1.430620	3.011931	-0.314613

Η	-2.438746	4.896823	-0.467371
С	-0.167973	0.903884	-0.191954
Η	2.952446	-0.571803	4.389320
0	1.862447	-0.256696	2.718664
С	2.626513	-1.271874	-0.291256
Η	3.104397	1.082328	3.707775
Η	4.213724	-2.453879	-1.123329
Η	-3.920072	-1.933326	-1.121582
С	0.621645	-0.017107	0.733109
С	2.417595	0.259536	3.929465
N	-2.316873	-1.112281	-2.199500
С	1.151307	0.625031	1.999410
Η	-2.344045	2.453313	-0.138069
С	-3.704032	-1.497748	-2.104099
С	-0.035824	-1.242415	-2.427810
Η	-4.312468	-0.601459	-2.251110
Η	0.935949	-1.702909	-2.560504
С	-0.866369	0.010772	0.654325
С	-1.258881	-2.033345	-2.229478
0	0.920105	1.753469	2.358596
Η	1.626791	0.624952	4.591070
С	3.360252	-0.002287	-0.601818
Η	-3.942757	-2.237276	-2.874800
F	4.646331	-0.210295	-0.910034
F	3.351735	0.881930	0.413640
F	2.812645	0.632636	-1.661180
Η	-3.401826	0.617947	0.004480
0	-1.398064	-3.238437	-2.127385
С	-2.009401	-0.340102	1.370738
С	-3.307050	0.040585	0.923683
С	-1.908834	-1.117490	2.559928
Η	-0.920616	-1.401887	2.919919
С	-4.430039	-0.339530	1.632787
Н	-5.414423	-0.043376	1.277304

С	-3.043099	-1.487155	3.255333
С	-4.310982	-1.104316	2.799491
Н	-2.949738	-2.075098	4.165285
Н	-5.200067	-1.398960	3.351166

³TS3aa'

Number of imaginary frequencies: 1 (-	241.231′	7 cm-1)			
Electronic energy: HF=-1772.404	9385			L	۵
Zero-point correction=	0.44120	06 (Hartree/Particle	e) 💡		
Thermal correction to Energy=	0.47	73990		31 L	
Thermal correction to Enthalpy=	0.4	74934			1
Thermal correction to Gibbs Free Ener	gy=	0.375195	2.40	S.	7-
Sum of electronic and zero-point Energy	gies=	-1771.963732	<u>s</u>	S	•
Sum of electronic and thermal Energie	s=	-1771.930948	<u> </u>		
Sum of electronic and thermal Enthalp	ies=	-1771.930004	3	4	
Sum of electronic and thermal Free En	ergies=	-1772.029744		33	
			•••••		

Cartesian Coordinates

 •••••	•••••			
F	-3.293216	-1.984669	-2.522077	
Η	-4.941325	-0.831390	-1.530124	
С	-2.391469	-1.496113	-1.655500	
F	-1.540419	-0.753297	-2.383421	
Η	2.091342	-4.682743	-0.956218	
F	-1.709528	-2.550247	-1.184107	
С	-4.411146	-0.472123	-0.654207	
С	2.092406	-3.614025	-1.157334	
С	-3.040295	-0.715297	-0.544848	
Η	3.790558	-3.715969	-2.490176	
Η	0.406336	-3.226561	0.120668	
Η	-6.170738	0.382749	0.231722	
С	1.147481	-2.807646	-0.553647	
С	-5.104255	0.204867	0.339178	

С	3.050194	-3.071929	-2.022762
Н	0.642421	-2.514753	3.928309
С	-0.308457	-2.829641	3.488154
Н	-0.304068	-3.903317	3.301604
С	-2.332001	-0.257759	0.581510
0	-0.494947	-2.212518	2.210480
С	1.143280	-1.407210	-0.790436
С	3.056361	-1.697176	-2.274215
С	-0.559329	-0.878962	2.215598
С	-4.420349	0.639816	1.466852
0	-0.468253	-0.200900	3.213624
С	-0.833278	-0.352594	0.821120
С	2.125853	-0.874515	-1.669871
С	0.203120	-0.541031	-0.218483
С	-3.055982	0.410285	1.576940
Η	3.802196	-1.268049	-2.939913
Η	-1.123656	-2.557749	4.164466
Η	-4.943101	1.165130	2.262277
С	-0.022332	0.784620	0.230745
Η	2.136725	0.198328	-1.854502
Η	-2.525129	0.764671	2.458162
С	2.544796	2.059161	0.764599
С	3.520228	-0.007248	1.065050
N	3.557315	1.197496	0.347441
0	2.387136	3.192390	0.355101
0	4.300768	-0.927857	0.921375
С	4.538293	1.529757	-0.654403
Η	5.147520	0.638929	-0.829573
Η	5.177420	2.353855	-0.319818
Η	4.045248	1.833977	-1.585427
С	1.747151	1.302324	1.769584
С	2.378449	0.109021	1.987291
Η	0.993301	1.776104	2.386733
Н	2.145743	-0.662712	2.711223
С	-0.393138	2.046797	-0.320127
---	-----------	----------	-----------
С	-1.099253	2.987409	0.458821
С	0.015171	2.410599	-1.619030
С	-1.383162	4.243084	-0.046257
С	-0.279026	3.667838	-2.121189
С	-0.973485	4.588983	-1.337348
Η	-1.396968	2.717255	1.470843
Η	-1.918760	4.964969	0.565231
Η	-1.192997	5.579225	-1.728930
Η	0.554425	1.685578	-2.226142
Η	0.038172	3.937239	-3.125413

³Int3aa

Number of imaginary frequencies: 0		
Electronic energy: HF=-1772.451	4859	o. 🔍
Zero-point correction=	0.444469 (Hartree/Particle)	and a
Thermal correction to Energy=	0.476930	
Thermal correction to Enthalpy=	0.477874	
Thermal correction to Gibbs Free Ener	gy= 0.378788	1 Port
Sum of electronic and zero-point Energy	gies= -1772.007017	The Pro-
Sum of electronic and thermal Energie	s= -1771.974556	
Sum of electronic and thermal Enthalp	ies= -1771.973612	in the
Sum of electronic and thermal Free En	ergies= -1772.072698	

Cartesian Coordinates

F	2.839128	-0.336909	-1.780346
Н	4.488343	2.255139	-0.378003
С	3.349076	-0.128441	-0.542320
F	4.674637	-0.018694	-0.695250
Н	1.211702	-4.655237	-2.329171
F	3.134929	-1.259553	0.145048
С	3.476509	2.277714	0.015712

С	0.416631	-4.136869	-1.798083
С	2.738901	1.096697	0.076313
Н	-0.805741	-5.897255	-1.573593
Н	1.427977	-2.241949	-1.858323
Η	3.510580	4.396370	0.378349
С	0.534334	-2.775882	-1.539469
С	2.926216	3.482531	0.440611
С	-0.711566	-4.832689	-1.372217
Н	1.437676	-1.921483	4.147403
С	2.266598	-1.459901	3.602854
Н	2.873628	-0.847148	4.269911
С	1.418147	1.107528	0.563834
0	1.777083	-0.573298	2.596282
С	-0.468458	-2.096563	-0.845887
С	-1.717637	-4.158053	-0.687098
С	0.991541	-1.150689	1.668366
С	1.627466	3.505025	0.931247
0	0.641878	-2.302512	1.721594
С	0.553417	-0.122024	0.648515
С	-1.595746	-2.798260	-0.425921
С	-0.316524	-0.620478	-0.582547
С	0.893794	2.326418	0.998475
Η	-2.603026	-4.692668	-0.351199
Η	2.873868	-2.248101	3.146324
Η	1.175492	4.439759	1.252037
С	-0.908832	0.008051	0.578900
Η	-2.380016	-2.282516	0.122957
Η	-0.129780	2.352048	1.367363
С	-0.904094	2.551203	-1.993597
С	-1.819962	0.427933	-2.236124
Ν	-2.072182	1.785636	-2.178661
0	-0.877061	3.767480	-1.948642
0	-2.660770	-0.418744	-2.447717
С	-3.386837	2.357705	-2.358513

Η	-3.872547	1.898054	-3.223723
Н	-3.265654	3.432275	-2.513242
Н	-4.008497	2.184839	-1.472785
С	0.186744	1.599532	-1.898764
С	-0.336608	0.209176	-1.909981
Н	1.220487	1.906954	-2.002752
Н	0.130985	-0.401788	-2.693841
С	-2.028039	0.233693	1.392760
С	-1.856572	0.637862	2.742599
С	-3.350480	0.091042	0.894511
С	-4.436272	0.348299	1.712973
С	-2.953793	0.887080	3.547738
С	-4.249048	0.748079	3.040018
Н	-3.497914	-0.223791	-0.138396
Н	-0.845781	0.736762	3.137890
Н	-2.805765	1.189260	4.581855
Η	-5.443395	0.233494	1.318740
Н	-5.108061	0.946228	3.676186

³Int3aa'

Number of imaginary frequencies: 0				
Electronic energy: HF=-1772.4508	8255			1
Zero-point correction=	0.4445	28 (Hartree/Particl	e) 🔓	~~~~
Thermal correction to Energy=	0.4	76915	~~~	
Thermal correction to Enthalpy=	0.4	77860	22	
Thermal correction to Gibbs Free Energ	gy=	0.379315	11	1 - S.P
Sum of electronic and zero-point Energ	jies=	-1772.006298	• Y	П
Sum of electronic and thermal Energies	5=	-1771.973910	A	<u>n</u>
Sum of electronic and thermal Enthalpi	es=	-1771.972966	J	Ţ
Sum of electronic and thermal Free Ene	ergies=	-1772.071511		

Cartesian Coordinates

S147

F	-3.220606	-2.848679	-1.762459
Н	-4.834145	-1.332872	-1.189021
С	-2.288434	-2.060627	-1.202183
F	-1.581888	-1.538095	-2.220321
Н	2.832323	-4.134705	-1.252016
F	-1.465484	-2.871400	-0.519537
С	-4.268680	-0.773696	-0.450042
С	2.641158	-3.077205	-1.418347
С	-2.899627	-1.011822	-0.315653
Η	4.312721	-2.832767	-2.761432
Η	0.932541	-3.031790	-0.109297
Η	-5.977029	0.334027	0.231992
С	1.573970	-2.468269	-0.779136
С	-4.912414	0.154966	0.356331
С	3.475733	-2.346193	-2.266995
Η	1.098782	-2.480183	3.812297
С	0.231085	-2.926611	3.316041
Η	0.431477	-3.967966	3.065020
С	-2.148737	-0.291285	0.627341
0	-0.026582	-2.268003	2.072009
С	1.325120	-1.087956	-0.962515
С	3.230158	-0.987216	-2.478002
С	-0.335816	-0.971806	2.158206
С	-4.188581	0.834331	1.329253
0	-0.394770	-0.360825	3.202881
С	-0.646028	-0.368767	0.809371
С	2.172631	-0.363314	-1.838905
С	0.281623	-0.387152	-0.315118
С	-2.826365	0.604760	1.459668
Н	3.869434	-0.415889	-3.147731
Η	-0.636856	-2.846934	3.976243
Н	-4.679210	1.552948	1.980900
С	0.156212	0.911066	0.348758
Н	1.970751	0.694740	-2.011676

Η	-2.254784	1.142545	2.212707
С	2.354368	2.165398	0.303705
С	3.598021	0.389799	1.146460
N	3.586796	1.540503	0.340819
0	2.117488	3.163593	-0.339509
0	4.564025	-0.330912	1.314242
С	4.714435	1.982470	-0.444737
Η	5.509364	1.241896	-0.329366
Η	5.062103	2.962640	-0.103911
Η	4.423814	2.064905	-1.497713
С	1.382676	1.360188	1.182860
С	2.263957	0.280084	1.706227
Η	1.030864	2.005234	2.004749
Η	2.038195	-0.437189	2.485598
С	-0.661389	2.018290	-0.245006
С	-1.011948	3.139804	0.510234
С	-1.156227	1.903907	-1.544795
С	-1.848686	4.116535	-0.014950
С	-2.002299	2.876102	-2.070721
С	-2.353330	3.984766	-1.306945
Η	-0.634976	3.254932	1.525717
Η	-2.108598	4.984121	0.587160
Η	-3.010926	4.747178	-1.717717
Η	-0.885952	1.033930	-2.142970
Н	-2.382461	2.767157	-3.083823

¹Int3aa

Number of imaginary frequencies: 0		
Electronic energy: HF=-1772.4522	2366	۹ ۹
Zero-point correction=	0.444578 (Hartree/Particle)	Vor 2
Thermal correction to Energy=	0.476894	
Thermal correction to Enthalpy=	0.477839	
Thermal correction to Gibbs Free Energy	gy= 0.380848 (
	S149	
	9	$\mathcal{A} \mathcal{A}$
		1

Sum of electronic and zero-point Energies=	-1772.007659
Sum of electronic and thermal Energies=	-1771.975342
Sum of electronic and thermal Enthalpies=	-1771.974398
Sum of electronic and thermal Free Energies=	-1772.071389

	•••••	•••••		
F	-2.857699	0.378945	-1.708729	
Н	-4.519912	-2.164292	-0.191528	
С	-3.344136	0.192843	-0.457135	
F	-4.673393	0.094818	-0.581742	
Н	-1.158869	4.649305	-2.387014	
F	-3.104999	1.331976	0.208634	
С	-3.493733	-2.196947	0.162186	
C	-0.354990	4.121696	-1.878801	
C	-2.733656	-1.029913	0.166708	
Н	0.922028	5.852838	-1.749771	
Н	-1.416860	2.253829	-1.849495	
Н	-3.550848	-4.306960	0.571811	
С	-0.496818	2.770945	-1.582680	
С	-2.947978	-3.403316	0.590572	
С	0.808740	4.796199	-1.518758	
Н	-1.289084	2.056878	4.126719	
С	-2.137276	1.595863	3.612130	
Н	-2.738093	1.008642	4.307177	
C	-1.394424	-1.054720	0.604569	
0	-1.684514	0.678373	2.616184	
C	0.516905	2.080918	-0.915930	
C	1.825406	4.110487	-0.861068	
C	-0.912842	1.221358	1.656860	
С	-1.631094	-3.440721	1.026264	
0	-0.543838	2.368465	1.673291	
С	-0.512271	0.165063	0.651193	
C	1.679169	2.760788	-0.560993	

С	0.337128	0.617208	-0.605299
С	-0.873967	-2.274285	1.040227
Η	2.738389	4.628315	-0.576657
Η	-2.742765	2.382811	3.151042
Η	-1.182366	-4.377713	1.344948
С	0.946382	0.014855	0.552653
Η	2.472813	2.236489	-0.034212
Η	0.161929	-2.310287	1.372243
С	0.664570	-2.618344	-1.996553
С	1.753818	-0.579875	-2.234728
N	1.898545	-1.950176	-2.139593
0	0.540670	-3.828755	-1.958324
0	2.659641	0.195576	-2.452261
С	3.169680	-2.624133	-2.270356
Η	3.691867	-2.263685	-3.161300
Η	2.972053	-3.695371	-2.352088
Η	3.797570	-2.431382	-1.393029
С	-0.345756	-1.579191	-1.934562
С	0.290097	-0.243766	-1.932590
Η	-1.399947	-1.797681	-2.054324
Η	-0.125965	0.410074	-2.709757
С	2.075903	-0.222303	1.350734
С	1.915233	-0.587607	2.712738
С	3.393198	-0.128755	0.828479
С	4.484518	-0.393870	1.637551
С	3.018046	-0.843616	3.508217
С	4.308204	-0.752090	2.977650
Η	3.532740	0.149704	-0.215719
Η	0.908560	-0.651751	3.125234
Η	2.878203	-1.114781	4.552023
Η	5.487791	-0.317775	1.224619
Η	5.171762	-0.955523	3.605982

¹Int3aa'

Number of imaginary frequencies: 0 Electronic energy: HF=-1772.4505179 0.444433 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.476853 0.477797 Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= 0.380127 Sum of electronic and zero-point Energies= -1772.006085 -1771.973665 Sum of electronic and thermal Energies= -1771.972721 Sum of electronic and thermal Enthalpies= -1772.070391 Sum of electronic and thermal Free Energies=

Cartesian Coordinates

F	-3.221339	-2.826776	-1.800212	
Н	-4.829382	-1.342927	-1.171884	
С	-2.285574	-2.047600	-1.232967	
F	-1.604257	-1.487357	-2.248329	
Η	2.865859	-4.136386	-1.210919	
F	-1.442341	-2.872903	-0.594834	
С	-4.263453	-0.801673	-0.420155	
С	2.663858	-3.082883	-1.389310	
С	-2.891320	-1.032996	-0.302686	
Н	4.339637	-2.833803	-2.725532	
Η	0.947395	-3.042105	-0.090024	
Η	-5.977171	0.270355	0.303734	
С	1.586724	-2.478589	-0.761817	
С	-4.910292	0.097221	0.416471	
С	3.494443	-2.351442	-2.240990	
Η	1.216976	-2.362320	3.865400	
С	0.372760	-2.860144	3.377732	
Η	0.624167	-3.895158	3.147383	
С	-2.139558	-0.334560	0.657437	
0	0.083959	-2.239751	2.120933	

С	1.323625	-1.104153	-0.962048
С	3.234693	-0.998082	-2.468672
С	-0.290010	-0.959294	2.180552
С	-4.185341	0.754858	1.402978
0	-0.373346	-0.331973	3.214065
С	-0.633590	-0.392364	0.822730
С	2.166849	-0.379430	-1.841156
С	0.277534	-0.406782	-0.315061
С	-2.820513	0.533094	1.517437
Η	3.871095	-0.426963	-3.141249
Н	-0.498648	-2.809489	4.036235
Η	-4.676753	1.451495	2.077530
С	0.143886	0.895684	0.335589
Η	1.954171	0.674482	-2.025725
Η	-2.248680	1.055488	2.280853
С	2.320895	2.185170	0.244192
С	3.609496	0.465571	1.133400
N	3.568512	1.592431	0.295472
0	2.056667	3.156438	-0.428825
0	4.592832	-0.227290	1.317158
С	4.682192	2.037305	-0.508100
Η	5.489825	1.311690	-0.386136
Η	5.017854	3.028896	-0.188812
Η	4.380839	2.095981	-1.559590
С	1.372314	1.382836	1.151334
С	2.280952	0.341963	1.703514
Η	1.010463	2.042396	1.956886
Η	2.075025	-0.355126	2.506187
С	-0.699611	1.987353	-0.250459
С	-1.080304	3.090926	0.516736
С	-1.185518	1.876968	-1.553680
С	-1.937011	4.054377	-0.000647
С	-2.051813	2.835542	-2.071745
С	-2.432251	3.926439	-1.296609

Η	-0.713603	3.201087	1.536634
Н	-2.220957	4.907651	0.610992
Η	-3.105759	4.678010	-1.701527
Η	-0.891250	1.021609	-2.161018
Η	-2.424514	2.730168	-3.087995

3aa

Number of imaginary frequencies: 0

Electronic energy: HF=-1772.5337582 0.449051 (Hartree/Particle) Zero-point correction= Thermal correction to Energy= 0.480587 Thermal correction to Enthalpy= 0.481531 Thermal correction to Gibbs Free Energy= 0.385549 Sum of electronic and zero-point Energies= -1772.084708 Sum of electronic and thermal Energies= -1772.053171 Sum of electronic and thermal Enthalpies= -1772.052227 Sum of electronic and thermal Free Energies= -1772.148209

Cartesian Coordinates

F	-2.818177	2.123772	-0.583950
Н	-5.006417	-0.036485	-1.542022
С	-3.248170	1.036250	0.092794
F	-4.545552	1.250495	0.356523
Η	-0.154570	4.848732	1.877041
F	-2.611582	1.030671	1.269826
С	-4.092932	-0.623985	-1.524584
С	0.345867	3.884441	1.920090
С	-3.037640	-0.219988	-0.705037
Η	1.636228	4.437219	3.555227
Η	-0.780084	3.086715	0.279912
Η	-4.824002	-2.074092	-2.931095
С	-0.013786	2.884833	1.024268

С	-3.993306	-1.770916	-2.299714
С	1.350242	3.654882	2.855822
Н	-1.112968	-3.062560	3.339834
С	-1.985112	-2.454585	3.078181
Н	-2.885567	-3.068061	3.040084
С	-1.839742	-0.952533	-0.669648
0	-1.831793	-1.907563	1.767700
С	0.614194	1.634761	1.054702
С	1.990233	2.419401	2.886218
С	-0.762691	-1.109521	1.611986
С	-2.829041	-2.528550	-2.246270
0	0.013140	-0.868482	2.503911
С	-0.649541	-0.619848	0.192612
С	1.626258	1.416256	1.994109
С	0.235303	0.632241	0.020304
С	-1.775673	-2.117467	-1.440350
Н	2.775895	2.228056	3.613501
Н	-2.093756	-1.655076	3.816477
Η	-2.738092	-3.441005	-2.830305
С	0.770384	-0.750726	-0.361866
Η	2.112950	0.447830	2.049111
Η	-0.869013	-2.719308	-1.397670
С	2.116876	-0.048058	-2.406259
С	1.202149	2.028487	-1.890389
Ν	2.321556	1.324860	-2.325698
0	2.909912	-0.842500	-2.857379
0	1.122291	3.234562	-1.880308
С	3.530174	1.985254	-2.770401
Η	3.323956	2.608418	-3.645958
Η	4.258318	1.212590	-3.026446
Η	3.915811	2.624937	-1.971485
С	0.744642	-0.348146	-1.848983
С	0.153531	1.022466	-1.471747
Н	0.208552	-1.009160	-2.537769

Η	-0.830732	1.317365	-1.849265
С	1.800991	-1.662149	0.202051
С	1.479681	-2.978953	0.541150
С	3.127658	-1.242367	0.329283
С	4.106275	-2.113662	0.793972
С	2.456280	-3.853524	1.005508
С	3.773143	-3.421712	1.134485
Η	3.397408	-0.219690	0.066393
Η	0.448620	-3.322781	0.451693
Η	2.187144	-4.873822	1.268337
Η	5.133018	-1.768942	0.889050
Η	4.538318	-4.102971	1.498560

3aa'

Number of imaginary frequencies: 0

Cartesian Coordinates

F	4.320637	0.112923	1.128243
Η	4.512857	-0.605271	-1.470508
С	3.255608	0.553530	0.424938
F	3.707844	1.540437	-0.363429
Н	1.474374	4.534841	-1.614837
F	2.430267	1.117902	1.318822

С	3.543168	-1.080422	-1.341643
С	1.156751	3.508725	-1.782162
С	2.666370	-0.574634	-0.382684
Η	1.693222	3.504591	-3.869259
Н	0.538973	3.240130	0.253655
Η	3.890317	-2.550938	-2.871132
С	0.631732	2.774595	-0.724544
С	3.199431	-2.175561	-2.121071
С	1.278200	2.932780	-3.042693
Η	2.824390	-0.860932	3.955506
С	2.410596	-1.812826	3.607550
Η	3.201784	-2.553654	3.491389
С	1.396096	-1.154064	-0.194901
0	1.839158	-1.651098	2.308241
С	0.212144	1.452048	-0.905991
С	0.861224	1.618886	-3.238312
С	0.844006	-0.754983	2.225259
С	1.974907	-2.793023	-1.906048
0	0.393945	-0.196762	3.200409
С	0.402146	-0.582736	0.791493
С	0.329727	0.886821	-2.182468
С	-0.300984	0.709650	0.277096
С	1.098164	-2.289005	-0.951619
Н	0.949472	1.155644	-4.218379
Н	1.657436	-2.158100	4.321340
Н	1.692269	-3.672568	-2.479333
С	-1.094628	-0.574794	0.455902
Н	0.022832	-0.141688	-2.356472
Н	0.148254	-2.789625	-0.805785
С	-3.290925	0.402109	1.232657
С	-2.109241	2.385379	0.939460
Ν	-3.322121	1.721465	0.791994
0	-4.250321	-0.333257	1.283909
0	-1.961024	3.568516	0.729072

С	-4.524482	2.389445	0.342323
Η	-4.814102	3.171353	1.051099
Η	-5.315323	1.639870	0.270376
Н	-4.347590	2.852577	-0.632348
С	-1.868670	0.080902	1.623849
С	-1.076741	1.386922	1.419752
Н	-1.841974	-0.425001	2.591869
Н	-0.490634	1.796508	2.246327
С	-1.844539	-1.495837	-0.436963
С	-2.135930	-2.783173	0.026751
С	-2.404842	-1.065085	-1.638777
С	-2.936382	-3.638804	-0.717718
С	-3.206101	-1.924255	-2.388853
С	-3.467958	-3.212205	-1.934483
Н	-1.726324	-3.107500	0.984331
Н	-3.154772	-4.637069	-0.346146
Η	-4.096824	-3.879795	-2.518439
Н	-2.225325	-0.047683	-1.982753
Н	-3.634345	-1.578807	-3.326828

10

Number of imaginary frequencies : 0 E	ectronic energy :	HF=-802.9688	699
Zero-point correction=	0.222984 (Hartre	e/Particle)	
Thermal correction to Energy=	0.239395		
Thermal correction to Enthalpy=	0.240339		
Thermal correction to Gibbs Free Ener	y= 0.17718	6	
Sum of electronic and zero-point Energy	es= -802.7	45886	
Sum of electronic and thermal Energie	-802.72	29475	·)→<(
Sum of electronic and thermal Enthalp	es= -802.7	28531	-4 1
Sum of electronic and thermal Free En	rgies= -802.	791684	

С	-0.470900	-0.276845	-1.950060
С	0.358123	-0.159798	-0.969285
С	-1.092397	-0.331430	-0.583184
Н	-0.748489	-0.333482	-2.989505
С	1.678703	-0.009952	-0.403551
С	1.855512	0.570619	0.857141
С	2.798628	-0.427180	-1.134046
С	3.133235	0.730754	1.380152
Н	0.985493	0.919222	1.411271
С	4.072941	-0.271104	-0.605076
Н	2.654333	-0.882686	-2.111372
С	4.242500	0.306679	0.652340
Н	3.264387	1.188469	2.357477
Н	4.938300	-0.603735	-1.172887
Н	5.241236	0.426849	1.064848
С	-1.917020	0.822898	-0.115438
С	-1.590316	-1.718182	-0.194465
С	-1.322101	-1.208677	2.160251
Н	-0.379967	-0.692153	1.940993
Н	-2.113281	-0.484166	2.371534
Н	-1.169489	-1.857021	3.024897
С	-2.169433	3.149927	-0.138162
Н	-3.160545	3.097069	-0.598105
Н	-2.288329	3.220136	0.947119
Н	-1.616180	4.008833	-0.518715
0	-1.394889	2.002390	-0.485987
0	-2.951942	0.716654	0.506321
0	-1.703827	-2.067311	1.094311
0	-1.833382	-2.535931	-1.048051

³10

.....

S159

Number of imaginary frequencies : 0 Ele	E 💦 💦	
Zero-point correction= 0	.220912 (Hartree/Partic	a 🖌 🖌 🚺 🍾
Thermal correction to Energy=	0.237256	
Thermal correction to Enthalpy=	0.238201	
Thermal correction to Gibbs Free Energy	= 0.175314	
Sum of electronic and zero-point Energie	s= -802.656654	
Sum of electronic and thermal Energies=	-802.640310	J 5
Sum of electronic and thermal Enthalpies	-802.639366	
Sum of electronic and thermal Free Energ	gies= -802.702252	

Cartesian Coordinates

С	-0.688049	-0.300894	-1.968478	
С	0.085877	-0.750501	-0.841042	
С	-1.231283	-0.090711	-0.590066	
Н	-1.241013	-0.886511	-2.700613	
С	1.398677	-0.596331	-0.370728	
С	1.704515	-0.351627	0.995340	
С	2.477151	-0.723235	-1.287249	
С	3.017316	-0.243931	1.411551	
Н	0.892810	-0.235091	1.711369	
С	3.786579	-0.621480	-0.854067	
Н	2.247130	-0.903268	-2.335351	
С	4.067674	-0.383763	0.494972	
Н	3.236072	-0.047817	2.458619	
Н	4.600770	-0.721678	-1.567900	
Н	5.098117	-0.304586	0.832133	
С	-1.174242	1.238016	0.105622	
С	-2.526927	-0.861546	-0.321251	
С	-1.591300	-1.649820	1.768177	
Н	-0.679333	-2.089991	1.349790	
Н	-1.396150	-0.653067	2.177182	
Н	-1.975342	-2.296607	2.558197	
С	-0.153527	3.337499	0.153032	

Н	-1.103391	3.860365	0.293541
Н	0.312285	3.168104	1.129113
Н	0.510662	3.911325	-0.492891
0	-0.361419	2.091329	-0.515806
0	-1.767143	1.478421	1.133885
0	-2.626153	-1.595135	0.789811
0	-3.437457	-0.826020	-1.106398

1v

Number of imaginary frequencies : 0 Electronic energy : HF=-575.1983676 Zero-point correction= 0.179452 (Hartree/Particle) Thermal correction to Energy= 0.191362 0.192306 Thermal correction to Enthalpy= 0.140250 Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= -575.018915 Sum of electronic and thermal Energies= -575.007006 Sum of electronic and thermal Enthalpies= -575.006061 Sum of electronic and thermal Free Energies= -575.058117

Cartesian Coordinates

.....

С	-0.858268	2.165113	0.898144
С	-0.876689	2.294268	-0.381024
С	-0.627696	0.895852	0.119892
Н	-0.934368	2.549745	1.902757
Η	-0.999711	2.878008	-1.280496
С	0.749847	0.301706	0.058116
С	1.695504	0.794555	-0.840500
С	1.130229	-0.715948	0.937590
С	2.989072	0.280203	-0.871759
Η	1.415188	1.595978	-1.523509
С	2.421167	-1.231173	0.912978

Н	0.403174	-1.110174	1.646259
С	3.355756	-0.735520	0.005607
Η	3.711303	0.674728	-1.583020
Η	2.700752	-2.021438	1.606230
Н	4.365800	-1.138111	-0.014081
С	-1.815358	-0.024238	0.036841
0	-1.496639	-1.242848	-0.425495
0	-2.946321	0.301149	0.324200
С	-2.589045	-2.149310	-0.564822
Η	-3.079891	-2.312291	0.399368
Η	-3.326386	-1.756494	-1.271369
Н	-2.159302	-3.079399	-0.938160

³1v

Number of imaginary frequencies : 0 El	lectronic energy :	HF=-575.0957887	
Zero-point correction=	0.177585 (Hartree/Pa	Particle)	
Thermal correction to Energy=	0.189711	%	
Thermal correction to Enthalpy=	0.190655		
Thermal correction to Gibbs Free Energ	gy= 0.136372		
Sum of electronic and zero-point Energy	ies= -574.91820	204	0
Sum of electronic and thermal Energies	-574.90607		
Sum of electronic and thermal Enthalpie	es= -574.90513	134	l
Sum of electronic and thermal Free Ene	ergies= -574.9594	9417	

Cartesian Coordinates

.....

С	-0.809571	2.108052	0.904316
С	-0.829084	2.236252	-0.559942
С	-0.651749	0.884931	0.051158
Н	-1.631275	2.279490	1.598131
Н	-1.683566	2.518962	-1.173378
С	0.754967	0.356826	0.023952

С	1.489956	0.359694	-1.162687
С	1.337360	-0.138867	1.193117
С	2.786169	-0.146139	-1.184834
Η	1.035281	0.758716	-2.067762
С	2.630202	-0.647526	1.170695
Η	0.762777	-0.127119	2.118140
С	3.356807	-0.650993	-0.019281
Η	3.352606	-0.144219	-2.113115
Н	3.075994	-1.037104	2.082861
Н	4.370514	-1.044463	-0.036238
С	-1.815097	-0.042544	-0.021825
0	-1.446399	-1.326064	-0.124618
0	-2.971237	0.325753	0.009588
С	-2.518142	-2.266112	-0.199799
Н	-3.140711	-2.210761	0.698062
Н	-3.143135	-2.065871	-1.075019
Н	-2.048303	-3.246597	-0.280661

¹3al*

Cartesian Coordinates

.....

S163

Η	-0.23516	-4.04539	-2.66533
Н	-5.44551	1.40727	-1.82304
С	-0.19981	-3.71100	-1.63123
С	-4.78890	0.69563	-1.32794
С	-0.14553	-2.35243	-1.34806
Н	-6.37681	-0.68662	-0.84291
Н	-3.06849	1.90689	-1.64690
Н	-0.25375	-5.70425	-0.80895
С	-3.43508	0.96826	-1.24199
С	-0.20975	-4.63959	-0.59290
С	-5.31295	-0.47297	-0.77397
Н	-0.60488	0.30089	4.20717
С	-1.46103	0.27531	3.52748
Н	-2.28216	-0.29613	3.96044
С	-0.10645	-1.89011	-0.02991
0	-1.11921	-0.39700	2.31017
С	-2.53363	0.07645	-0.59878
С	-4.45394	-1.35909	-0.12102
С	-0.13544	0.16658	1.60336
С	-0.15829	-4.19149	0.72260
0	0.51626	1.10796	2.00014
С	-0.02617	-0.37662	0.16603
С	-3.09839	-1.09677	-0.02887
С	-1.14269	0.38094	-0.56258
С	-0.10599	-2.82761	1.00258
Н	-4.84847	-2.27003	0.32353
Н	-1.77900	1.29935	3.30784
Н	-0.15989	-4.90555	1.54307
С	1.23900	0.18648	-0.47779
Н	-2.46313	-1.80532	0.49053
Н	-0.08225	-2.50108	2.03907
С	1.57262	2.66403	-0.74009

-0.68834	2.84585	-0.25938
0.56833	3.40056	-0.12453
2.73396	2.99444	-0.79010
-1.69396	3.27759	0.25766
0.82665	4.53829	0.73265
0.10708	5.33189	0.51751
1.84510	4.88081	0.53987
0.72744	4.23764	1.78131
0.93474	1.39976	-1.31496
-0.56884	1.62024	-1.17328
1.26597	1.28489	-2.35824
-1.04942	1.87632	-2.12758
2.55473	-0.33541	-0.31633
3.60892	0.08367	-1.16676
2.87691	-1.27979	0.69001
4.16055	-1.77994	0.82332
4.88850	-0.42759	-1.03177
5.17644	-1.36553	-0.03966
2.11241	-1.60901	1.38674
3.41912	0.83244	-1.93017
5.67291	-0.08642	-1.70324
4.37520	-2.49730	1.61214
6.18297	-1.76297	0.06590
-0.14100	-1.62952	-2.16453
	-0.68834 0.56833 2.73396 -1.69396 0.82665 0.10708 1.84510 0.72744 0.93474 -0.56884 1.26597 -1.04942 2.55473 3.60892 2.87691 4.16055 4.88850 5.17644 2.11241 3.41912 5.67291 4.37520 6.18297 -0.14100	-0.68834 2.84585 0.56833 3.40056 2.73396 2.99444 -1.69396 3.27759 0.82665 4.53829 0.10708 5.33189 1.84510 4.88081 0.72744 4.23764 0.93474 1.39976 -0.56884 1.62024 1.26597 1.28489 -1.04942 1.87632 2.55473 -0.33541 3.60892 0.08367 2.87691 -1.27979 4.16055 -1.77994 4.88850 -0.42759 5.17644 -1.36553 2.11241 -1.60901 3.41912 0.83244 5.67291 -0.08642 4.37520 -2.49730 6.18297 -1.76297 -0.14100 -1.62952

¹TS6h

Thermal confection to Globs Free Energy – 0.38197	19
Sum of electronic and zero-point Energies= -1435	.068036
Sum of electronic and thermal Energies= -1435.	040165
Sum of electronic and thermal Enthalpies= -1435.	.039221
Sum of electronic and thermal Free Energies= -143.	5.126239

 •••••		•••••	
Н	-0.65134	-4.06832	-2.79701
Н	-5.40833	1.85042	-1.27842
С	-0.49121	-3.74657	-1.77077
С	-4.77347	1.03178	-0.94705
С	-0.35179	-2.39530	-1.48570
Н	-6.41803	-0.32376	-0.59204
Н	-2.99693	2.19231	-1.15131
Н	-0.54557	-5.74371	-0.95759
С	-3.40210	1.21685	-0.89729
С	-0.42995	-4.68452	-0.74106
С	-5.34083	-0.18104	-0.55754
Н	-0.99138	0.50302	3.93917
С	-1.74831	0.19808	3.21143
Н	-2.45885	-0.49904	3.65719
С	-0.14761	-1.95521	-0.17365
0	-1.15169	-0.50452	2.11718
С	-2.52683	0.18442	-0.47100
С	-4.50425	-1.20568	-0.11544
С	-0.29096	0.22857	1.39553
С	-0.21994	-4.25521	0.56436
0	0.27885	1.22015	1.81333
С	0.00396	-0.45900	-0.00049
С	-3.12965	-1.03719	-0.07291
С	-1.11513	0.42543	-0.46048

С	-0.07571	-2.89799	0.84903
Η	-4.92867	-2.15782	0.19566
Η	-2.27018	1.08573	2.83324
Η	-0.17181	-4.97825	1.37533
С	1.27240	0.06608	-0.51609
Η	-2.51522	-1.86096	0.27297
Η	0.05662	-2.57991	1.87935
С	1.74703	2.55184	-0.80448
С	-0.47715	2.91231	-0.25368
Ν	0.82000	3.39161	-0.21805
0	2.93056	2.78044	-0.90014
0	-1.42547	3.46176	0.25647
С	1.17959	4.56295	0.55192
Η	2.23332	4.77938	0.36626
Η	1.01797	4.36082	1.61637
Η	0.55612	5.40899	0.25219
С	1.00651	1.31246	-1.32185
С	-0.48254	1.63463	-1.09707
Η	1.30532	1.17647	-2.37499
Η	-1.00922	1.88690	-2.02847
С	2.56449	-0.43014	-0.21221
С	2.80404	-1.26162	0.91129
С	3.67437	-0.11289	-1.03702
С	4.92591	-0.64310	-0.78238
С	4.06290	-1.77655	1.16383
С	5.13069	-1.48130	0.31513
Η	3.53875	0.55031	-1.88587
Η	1.99785	-1.46082	1.61059
Η	4.22085	-2.40011	2.04055
Н	5.75538	-0.39460	-1.43983
Н	6.11916	-1.88565	0.51826
Н	-0.42061	-1.65769	-2.28605

¹TS6h'

Н	-1.15066	-4.74661	-0.47658	
Н	-5.42595	-0.56394	-1.55532	
С	-0.65497	-3.86522	-0.87674	
С	-4.69621	-0.61872	-0.75133	
С	-0.62754	-2.70568	-0.12130	
Н	-6.08329	-1.45675	0.67383	
Н	-3.13504	0.20560	-1.95398	
Н	-0.09615	-4.81828	-2.73292	
С	-3.40090	-0.18435	-0.97574	
С	-0.06407	-3.90721	-2.14119	
С	-5.06419	-1.12198	0.49651	
Н	1.72836	-0.82423	3.99991	
С	1.14811	-1.67458	3.63151	
Н	1.69882	-2.60525	3.76788	
С	0.02199	-1.55089	-0.60262	
0	0.93256	-1.55345	2.22243	
С	-2.42137	-0.24956	0.03962	

С	-4.11794	-1.18080	1.51655
С	0.28924	-0.44975	1.83689
С	0.59182	-2.77734	-2.62062
0	-0.15424	0.37881	2.60068
С	0.20549	-0.29331	0.33413
С	-2.81530	-0.75397	1.29693
С	-1.06964	0.14063	-0.27590
С	0.66935	-1.62342	-1.85127
Н	-4.39890	-1.55061	2.49999
Н	0.19140	-1.71114	4.16114
Н	1.08610	-2.80107	-3.58895
С	1.29869	0.56939	-0.12889
Н	-2.11350	-0.76426	2.12469
Н	1.25593	-0.78273	-2.21331
С	0.53872	2.97869	-0.15916
С	-1.58541	2.47824	-0.94617
Ν	-0.80087	3.33305	-0.18746
0	1.41062	3.63149	0.36535
0	-2.72587	2.69789	-1.28171
С	-1.28213	4.58456	0.36041
Н	-2.36326	4.62215	0.21397
Н	-0.80650	5.42985	-0.14631
Н	-1.03760	4.63097	1.42477
С	0.69716	1.67427	-0.94337
С	-0.74732	1.24233	-1.27404
Н	1.29641	1.91197	-1.83552
Н	-0.94003	0.95679	-2.31882
С	2.68369	0.26559	-0.12616
С	3.19094	-1.02504	0.18424
С	3.62705	1.25770	-0.50855
С	4.97967	0.97674	-0.56575
С	4.55098	-1.29000	0.12179

С	5.45717	-0.29891	-0.25141
Н	3.28007	2.27061	-0.70269
Н	2.50750	-1.82112	0.46323
Н	4.90771	-2.29052	0.35765
Н	5.67642	1.76360	-0.84654
Н	6.52172	-0.51465	-0.29712
Н	-1.11656	-2.69409	0.84886

6h

Н	-0.43612	-3.91455	2.98777
Н	-2.93551	-3.47395	-2.57576
С	0.06564	-3.59478	2.07750
С	-3.09697	-2.48793	-2.14609
С	-0.15923	-2.31187	1.58648
Н	-5.13106	-2.33807	-2.83657
Н	-1.10938	-2.38590	-1.35542
Н	1.09399	-5.46672	1.79362
С	-2.05900	-1.86718	-1.44984
С	0.92260	-4.46371	1.41046

С	-4.32303	-1.85335	-2.29358
Н	-2.27046	0.07118	3.75768
С	-2.99049	0.47600	3.03892
Н	-3.98467	0.06569	3.21560
С	0.47580	-1.86680	0.42094
0	-2.64044	0.08631	1.70846
С	-2.23549	-0.60459	-0.88634
С	-4.50517	-0.58345	-1.74664
С	-1.45286	0.51236	1.28957
С	1.55244	-4.03948	0.24198
0	-0.67760	1.12901	1.98863
С	0.25670	-0.51533	-0.13697
С	-3.47210	0.03356	-1.05533
С	-1.12198	0.15262	-0.17261
С	1.32927	-2.75915	-0.24607
Н	-5.45664	-0.06925	-1.86223
Н	-3.00055	1.56739	3.11607
Н	2.21692	-4.71131	-0.29628
С	1.23191	0.28937	-0.60659
Н	-3.62106	1.02970	-0.63783
Н	1.81410	-2.43983	-1.16698
С	1.12847	2.82728	-0.42417
С	-1.17722	2.75239	-0.17982
Ν	-0.01816	3.46659	0.04460
0	2.25439	3.23826	-0.27875
0	-2.28211	3.09075	0.19276
С	0.00935	4.65174	0.87449
Н	-0.69035	5.39538	0.48444
Н	1.02813	5.04412	0.86502
Н	-0.28203	4.39107	1.89766
С	0.68229	1.57307	-1.16495
С	-0.82390	1.49265	-0.94424

Η	0.96725	1.70889	-2.21919
Н	-1.39589	1.49122	-1.87745
С	2.68628	0.06168	-0.54917
С	3.29702	-0.26932	0.66519
С	3.48259	0.21076	-1.68871
С	4.85583	0.00137	-1.62412
С	4.67042	-0.46876	0.73183
С	5.45305	-0.34076	-0.41360
Н	3.02248	0.48405	-2.63757
Н	2.68152	-0.35854	1.55916
Н	5.13307	-0.71944	1.68350
Н	5.46221	0.11261	-2.51998
Н	6.52791	-0.49708	-0.36071
Н	-0.83390	-1.65775	2.13329

6h'

Cartesian Coordinates

.....

Н	-3.49574	-4.03001	0.71385
Н	-4.78374	1.69168	1.56905
С	-2.92888	-3.50121	-0.04898

S172

С	-3.71303	1.52602	1.66200
С	-2.40467	-2.24449	0.23867
Н	-3.52037	2.68163	3.47297
Н	-3.61524	0.34656	-0.12713
Н	-3.14386	-5.05666	-1.52729
С	-3.05379	0.75924	0.70885
С	-2.72990	-4.07730	-1.29959
С	-3.00513	2.08408	2.72444
Н	2.19079	-3.69055	1.97663
С	1.54746	-3.93195	1.12387
Н	2.04162	-4.64179	0.46049
С	-1.67355	-1.52971	-0.71726
0	1.30837	-2.76444	0.33724
С	-1.67503	0.53231	0.79526
С	-1.63440	1.87061	2.81898
С	0.68335	-1.76712	0.97416
С	-1.98656	-3.38880	-2.25265
0	0.31523	-1.82757	2.12691
С	0.46714	-0.60812	0.06866
С	-0.97623	1.10138	1.86180
С	-0.95826	-0.23002	-0.32669
С	-1.45784	-2.13590	-1.95851
Н	-1.06804	2.29706	3.64345
Н	0.60133	-4.34059	1.49240
Н	-1.80634	-3.82982	-3.23026
С	1.42038	0.17109	-0.46729
Н	0.09544	0.94024	1.96103
Н	-0.84498	-1.64898	-2.71392
С	0.71328	2.59275	-0.84200
С	-1.44365	2.04546	-1.51302
Ν	-0.59662	3.02547	-1.00724
0	1.61326	3.24957	-0.37284

0	-2.58451	2.24491	-1.86333
С	-1.06851	4.34090	-0.63129
Н	-1.52496	4.83669	-1.49252
Н	-0.21124	4.91399	-0.27203
Н	-1.81816	4.24974	0.16231
С	0.78630	1.17298	-1.39315
С	-0.67445	0.74398	-1.54134
Н	1.30814	1.23336	-2.35936
Н	-0.88669	0.24780	-2.49090
С	2.86235	0.13689	-0.19967
С	3.78490	0.50441	-1.18648
С	3.34852	-0.24847	1.05778
С	4.71434	-0.29736	1.30666
С	5.15111	0.45112	-0.93902
С	5.62133	0.04639	0.30731
Н	2.64974	-0.48113	1.86049
Н	3.43443	0.83056	-2.16350
Н	5.85142	0.73423	-1.72110
Н	5.07140	-0.59017	2.29114
Н	6.69019	0.01317	0.50381
Н	-2.55700	-1.82011	1.22809

Single point energy calculations at SMD(Dichloromethane)/UM06/6-311+G(d,p) $\label{eq:single}$

Species	Single Point Energy ΔE (a.u.)
2i	-398.6227537
³ 2i	-398.5288155
1 a	-1037.215116
³ 1a	-1037.1330291
³ TS3al	-1435.7649938

³ TS3al'	-1435.7663178
³ Int3al	-1435.8058293
³ Int3al'	-1435.8053741
¹ Int3al	-1435.8050794
¹ Int3al'	-1435.8053859
3al	-1435.8863857
3al'	-1435.8845932
1d	-1374.2459826
³ 1d	-1374.1656031
³ TS3aa	-1772.792852
³ TS3aa'	-1772.7896325
³ Int3aa	-1772.8348218
³ Int3aa'	-1772.8340364
¹ Int3aa	-1772.835189
¹ Int3aa'	-1772.8336867
3 aa	-1772.9175311
3aa'	-1772.9093138
10	-803.1525181
³ 10	-803.0575995
1v	-575.3277278
³ 1v	-575.2203514

Single point energy calculations at SMD(Toluene)/(U)M06/6-311+G(d,p) $\label{eq:single}$

Species	Single Point Energy ΔE (a.u.)
---------	-------------------------------

3al	-1435.8778977
¹ 3al*	-1435.8473502
¹ TS6h	-1435.8275633
¹ TS6h'	-1435.8162343
6h	-1435.9128188
6h'	-1435.9078284

10. References:

- (1) Kadam, G. A.; Singha, T.; Rawat, S.; Hari, D. P, ACS Catal., 2024, 14, 12225-12233.
- (2) S. I. Lee, G.-S. Hwang and D. H. Ryu, J. Am. Chem. Soc., 2013, 135, 7126-7129.
- (3) Keipour, H.; Jalba, A.; Delage-Laurin, L.; Ollevier, T, J. Org. Chem., 2017, 82, 3000-3010.
- (4) Yu, W.-Y.; Tsoi, Y.-T.; Zhou, Z.; Chan, A. S. C, Org. Lett. 2009, 11, 469-472.
- (5) Zhang, J.; Lu, B.; Ge, Z.; Wang, L.; Wang, X, Org. Lett. 2022, 24, 8423-8428.
- (6) Fu, L.; Wang, H.; Davies, H. M. L, Org. Lett. 2014, 16, 3036-3039.
- (7) Hommelsheim, R.; Guo, Y.; Yang, Z.; Empel, C.; Koenigs, R. M, Angew. Chem. Int. Ed. 2019, **58**, 1203-1207.
- (8) Muriel, B.; Waser, J, Angew. Chem. Int. Ed. 2021, 60, 4075-4079.
- (9) Liao, L.-a.; Zhang, F.; Yan, N.; Golen, J. A.; Fox, J. M, Tetrahedron 2004, 60, 1803-1816.
- (10) Hwang, J. Y.; Ji, A. Y.; Lee, S. H.; Kang, E. J, Org. Lett. 2020, 22, 16-21.
- (11) Skolia, E.; Kokotos, C. G, Eur. J. Org. Chem. 2024, 27, e202400105.
- (12) Matuszak, N.; Muccioli, G. G.; Labar, G.; Lambert, D. M, *J. Med. Chem.* 2009, **52**, 7410-7420.
- (13) Mandal, T.; Das, S.; Maji, R.; De Sarkar, S, Org. Lett. 2023, 25, 7727-7732.
- (14) Xiao, L.; Liu, X.-G.; Bao, M.-Z.; Song, J.-L.; Chen, S.-Y.; Zheng, Y.-C.; Liu, Y.-Z.; Zhang, S.-S, *Org. Lett.* 2023, **25**, 5185-5190.
- (15) Wang, Z.-H.; Liu, J.-H.; Zhang, Y.-P.; Zhao, J.-Q.; You, Y.; Zhou, M.-Q.; Han, W.-Y.; Yuan, W.-C, *Org. Lett.* 2022, **24**, 4052-4057.
- (16) Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; ; Cheeseman, J. R.
- S., G.; Barone, V .; Petersson, G. A.; Nakatsuji, H.; Li, ; X.; Caricato, M. M., A. V.; Bloino,
- J.; Janesko, B. G.; Gomperts, R.; ; Mennucci, B. H., H. P; Ortiz, J. V; Izmaylov, A. F.;
- Sonnenberg, J. L.; ; Williams-Y oung, D. D., F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.;

; Petrone, A. H., T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, ; N.; Zheng, G. L., W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, ; J.;; Ishida, M. N., T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; ; S60; et al. Gaussian 16, Revision C.01. *Gaussian, Inc.: Wallingford* **CT**, **2019**.

(17) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G, J. Phys. Chem. B 2009, 113, 6378-6396.

(18) Ha, S.; Lee, Y.; Kwak, Y.; Mishra, A.; Yu, E.; Ryou, B.; Park, C.-M, *Nat. Commun.* 2020, **11**, 2509.

(19) Fukui, K, Acc. Chem. Res. 1981, 14, 363-368.

(20) CYLview, 1.0b; Legault, C. Y, Université de Sherbrooke, 2009.

11. Spectra for new compounds:

¹H-NMR (400 MHz, CDCl₃) of compound 1b (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 1b

¹H-NMR (400 MHz, CDCl₃) of compound 1c (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 1c

¹³C-NMR (101 MHz, CDCl₃) of compound 1d

¹⁹F-NMR (377 MHz, CDCl₃) of compound 1d

¹H-NMR (400 MHz, CDCl₃) of compound 1e (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 1e

¹H-NMR (400 MHz, CDCl₃) of compound 1f (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 1f

¹H-NMR (400 MHz, CDCl₃) of compound 1g (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 1g

¹H-NMR (400 MHz, CDCl₃) of compound 1h (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 1h

¹⁹F-NMR (377 MHz, CDCl₃) of compound 1h

¹³C-NMR (101 MHz, CDCl₃) of compound 1i

¹⁹F-NMR (377 MHz, CDCl₃) of compound 1i

¹³C-NMR (101 MHz, CDCl₃) of compound 1j

¹⁹F-NMR (377 MHz, CDCl₃) of compound 1j

¹³C-NMR (101 MHz, CDCl₃) of compound 1k

¹⁹F-NMR (377 MHz, CDCl₃) of compound 1k

¹³C-NMR (101 MHz, CDCl₃) of compound 11

¹⁹F-NMR (377 MHz, CDCl₃) of compound 11

¹H-NMR (400 MHz, CDCl₃) of compound 1m (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 1m

¹⁹F-NMR (377 MHz, CDCl₃) of compound 1m

¹³C-NMR (101 MHz, CDCl₃) of compound 1n

¹⁹F-NMR (377 MHz, CDCl₃) of compound 1n

¹H-NMR (400 MHz, CDCl₃) of compound 1p (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 1p

¹H-NMR (400 MHz, CDCl₃) of compound 1q (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 1q

¹⁹F-NMR (377 MHz, CDCl₃) of compound 1q

¹H-NMR (400 MHz, CDCl₃) of compound 1r (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 1r

¹H-NMR (400 MHz, CDCl₃) of compound 1s (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 1s

¹³C-NMR (101 MHz, CDCl₃) of compound 2m

¹H-NMR (400 MHz, CDCl₃) of compound 3a (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3a

NOESY of compound 3a

¹H-NMR (400 MHz, CDCl₃) of compound 3a' (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3a'

COSY of compound 3a'

NOESY of compound 3a'

Housanes	¹ H-NMR
F ₃ C H H Ph Ph 3c	 3.39 (d, J = 3.9 Hz, 1H, CH), 3.18 (d, J = 3.9 Hz, 1H, CH), 3.28 (s, 3H, CO₂CH₃).
F ₃ C H H O N O Sh	 3.30 (dd, J = 3.5 Hz, 1H, CH), 3.26 (s, 3H, CO₂CH₃), 2.73 (d, J = 3.5 Hz, 1H, CH).
Ph MeO ₂ C H H J ^{III} CO ₂ Me H H J ^{III} Ph Ph Ph A 3a 3a'	 Major: 3.23 (s, 2H, CH), 3.14 (s, 3H, CO₂CH₃). Minor: 3.92 (s, 3H, CO₂CH₃), 3.81 (s, 2H, CH).

We have compared the NMR data of **3c** and **3h** with **3a** (all are major diastereomers) and assigned the stereochemistry.

¹H-NMR (400 MHz, CDCl₃) of compound 3b/3b' (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3b/3b'

¹³C-NMR (101 MHz, CDCl₃) of compound 3c

¹H-NMR (400 MHz, CDCl₃) of compound 3d (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3d

HMBC of compound 3d

COSY of compound 3d

NOESY of compound 3d

¹H-NMR (400 MHz, CDCl₃) of compound 3e (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3e

¹H-NMR (400 MHz, CDCl₃) of compound 3f (see procedure)

¹H-NMR (400 MHz, CDCl₃) of compound 3g (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3g

¹H-NMR (400 MHz, CDCl₃) of crude compound 3h (see procedure)

¹H-NMR (400 MHz, CDCl₃) of compound 3h (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3h

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3h

¹H-NMR (400 MHz, CDCl₃) of compound 3i (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3i

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3i

¹H-NMR (400 MHz, CDCl₃) of compound 3j (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3j

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3j

¹H-NMR (400 MHz, CDCl₃) of compound 3k (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3k

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3k

¹H-NMR (400 MHz, CDCl₃) of compound 3l (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 31

¹⁹F-NMR (377 MHz, CDCl₃) of compound 31

¹H-NMR (400 MHz, CDCl₃) of compound 3m (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3m

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3m

¹H-NMR (400 MHz, CDCl₃) of compound 3n (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3n

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3n

4.0 ppm

4.5

3.5

3.0

2.5

1.5

2.0

1.0

0.5

¹H-NMR (400 MHz, CDCl₃) of compound 30 (Crude) (see procedure)

¹H-NMR (400 MHz, CDCl₃) of compound 30 (see procedure)

5.5

5.0

8.0

7.5

7.0

6.5

6.0

¹³C-NMR (101 MHz, CDCl₃) of compound 3o

¹H-NMR (400 MHz, CDCl₃) of compound 3p (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3p

HMBC of compound 3p

NOESY of compound 3p

¹H-NMR (400 MHz, CDCl₃) of compound 3q (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3q

HSQC of compound 3q

COSY of compound 3q

NOESY of compound 3q

¹H-NMR (400 MHz, CDCl₃) of compound 3r (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3r

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3r

¹H-NMR (400 MHz, CDCl₃) of compound 3s (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3s

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3s

¹H-NMR (400 MHz, CDCl₃) of compound 3t (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3t

¹H-NMR (400MHz, CDCl₃) of compound 3u (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3u

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3u

¹H-NMR (400 MHz, CDCl₃) of compound 3v (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3v

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3v

¹H-NMR (400 MHz, CDCl₃) of compound 3w (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3w

¹H-NMR (400 MHz, CDCl₃) of compound 3x (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3x

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3x

¹H-NMR (400 MHz, CDCl₃) of compound 3y (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3y

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3y

¹H-NMR (400 MHz, CDCl₃) of compound 3z (Crude) (see procedure)

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3z (Crude)

¹H-NMR (400 MHz, CDCl₃) of compound 3z (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3z

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3z

¹H-NMR (400 MHz, CDCl₃) of compound 3aa (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3aa

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3aa

¹H-NMR (400 MHz, CDCl₃) of compound 3ab (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3ab

¹H-NMR (400 MHz, CDCl₃) of compound 3ac (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3ac

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3ac

¹H-NMR (400 MHz, CDCl₃) of compound 3ad (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3ad

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3ad

¹H-NMR (400 MHz, CDCl₃) of compound 3ae (Crude) (see procedure)

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3ae

¹H-NMR (400 MHz, CDCl₃) of compound 3ae-Boc (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3ae-Boc

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3ae-Boc

¹H-NMR (400 MHz, CDCl₃) of compound 3af (see procedure)

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3af

¹H-NMR (400 MHz, CDCl₃) of compound 3ag (Crude) (see procedure)

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3ag (crude)

¹H-NMR (400 MHz, CDCl₃) of impure compound 3ag (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of impure compound 3ag

¹H-NMR (400 MHz, CDCl₃) of compound 3ah (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3ah

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3ah

HSQC of compound 3ah

HMBC of compound 3ah

NOESY of compound 3ah

¹H-NMR (400 MHz, CDCl₃) of compound 3ai (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3ai

¹H-NMR (400 MHz, CDCl₃) of compound 3aj crude (see procedure)

¹H-NMR (400 MHz, CDCl₃) of compound 3ak (crude) (see procedure)

¹H-NMR (400 MHz, CDCl₃) of compound 3ak (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3ak

¹H-NMR (400 MHz, CDCl₃) of compound 5a (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 5a

¹H-NMR (400 MHz, CDCl₃) of compound 5b (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 5b

¹H-NMR (400 MHz, CDCl₃) of compound 5c (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 5c

¹⁹F-NMR (377 MHz, CDCl₃) of compound 5c

¹³C-NMR (101 MHz, CDCl₃) of compound 5d

¹H-NMR (400 MHz, CDCl₃) of compound 5e (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 5e

¹³C-NMR (101 MHz, CDCl₃) of compound 5f

¹⁹F-NMR (377 MHz, CDCl₃) of compound 5f

¹H-NMR (400 MHz, CDCl₃) of compound 5g (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 5g

¹⁹F-NMR (377 MHz, CDCl₃) of compound 5g

¹H-NMR (400 MHz, CDCl₃) of compound 5h (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 5h

¹⁹F-NMR (377 MHz, CDCl₃) of compound 5h

¹H-NMR (400 MHz, CDCl₃) of compound 5i (see procedure)

¹⁹F-NMR (377 MHz, CDCl₃) of compound 5i

¹H-NMR (400 MHz, CDCl₃) of compound 6a (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 6a

¹H-NMR (400 MHz, CDCl₃) of compound 6b (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 6b

¹H-NMR (400 MHz, CDCl₃) of compound 6c (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 6c

¹H-NMR (400 MHz, CDCl₃) of compound 6d (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 6d

¹³C-NMR (101 MHz, CDCl₃) of compound 6e

¹H-NMR (400 MHz, CDCl₃) of compound 6f (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 6f

¹H-NMR (400 MHz, CDCl₃) of compound 6g (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 6g

¹H-NMR (400 MHz, CDCl₃) of compound 3al (see procedure) (major diastereomer)

¹³C-NMR (101 MHz, CDCl₃) of compound 3al (major diastereomer)

¹H-NMR (400 MHz, CDCl₃) of compound 6h (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 6h

¹H-NMR (400 MHz, CDCl₃) of compound 6i (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 6i

¹H-NMR (400 MHz, CDCl₃) of compound 6j (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 6j

¹H-NMR (400 MHz, CDCl₃) of compound 6k (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 6k

¹H-NMR (400 MHz, CDCl₃) of compound 7 (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 7

¹⁹F-NMR (377 MHz, CDCl₃) of compound 7

¹H-NMR (400 MHz, CDCl₃) of compound 3q' (see procedure)

¹³C-NMR (101 MHz, CDCl₃) of compound 3q'

¹⁹F-NMR (377 MHz, CDCl₃) of compound 3q'

HSQC of compound 3q'

HMBC of compound 3q'

HMBC of compound 3q'

HMBC of compound 3q'

COSY of compound 3q'

NOESY of compound 3q'

NOESY of compound 3q'

¹H-NMR (400 MHz, CDCl₃) of TEMPO reaction (see procedure)

¹H-NMR (400 MHz, CDCl₃) of UV-365 reaction (see procedure)

¹H-NMR (400 MHz, CDCl₃) of compound 8

¹³C-NMR (101 MHz, CDCl₃) of compound 8

