Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Table of Contents

2. Reaction optimization S3 3. Synthesis of the starting materials S6 4. List of the starting materials S14 5. Scale-up and derivatization S15 6. Investigation of reaction mechanism. S17 7. Cyclic Voltammograms S18 8. Characterization of Products S19 9. Copy of NMR Spectrum S45 10. References S211	1. General information	S2
4. List of the starting materials \$14 5. Scale-up and derivatization \$15 6. Investigation of reaction mechanism. \$17 7. Cyclic Voltammograms \$18 8. Characterization of Products \$19 9. Copy of NMR Spectrum \$45	2. Reaction optimization	S3
5. Scale-up and derivatization S15 6. Investigation of reaction mechanism. S17 7. Cyclic Voltammograms S18 8. Characterization of Products S19 9. Copy of NMR Spectrum S45	3. Synthesis of the starting materials	S6
 6. Investigation of reaction mechanism. 7. Cyclic Voltammograms . 8. Characterization of Products . 9. Copy of NMR Spectrum. S45 	4. List of the starting materials	S14
7. Cyclic Voltammograms . S18 8. Characterization of Products . S19 9. Copy of NMR Spectrum . S45	5. Scale-up and derivatization	S15
8. Characterization of Products	6. Investigation of reaction mechanism.	S17
9. Copy of NMR Spectrum	7. Cyclic Voltammograms .	S18
	8. Characterization of Products	S19
10. References	9. Copy of NMR Spectrum	S45
	10. References	S211

1. General Information

Unless otherwise noted, all reactions were carried out under a carbon monoxide or nitrogen atmosphere. All reagents were from commercial sources, all solvents are extra dry solvents and used as received without further purification. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (b.p. 60-90 °C) and ethyl acetate as the eluents. ¹H and ¹³C NMR spectra were taken on Bruker AVANCE III 400 MHz or 700 MHz spectrometers and spectral data were reported in ppm relative to tetramethylsilane (TMS) as the internal standard and CDCl₃ or DMSO-D₆ as solvent. All coupling constants (J) are reported in Hz with the following abbreviations: s = singlet, d = doublet, dd = double doublet, t = triplet, dt = double triplet, q = quatriplet, m = multiplet, br = broad. Gas chromatography (GC) analyses were performed on an Agilent HP-7890A instrument with a FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, 30 m, 0.32 mm i.d. 0.25 µm film thickness) using argon as carrier gas. Gas chromatography mass spectrometer (GC-MS) analyses were performed on a Shimadzu QP2020 NX instrument. High resolution mass spectra (HRMS) were recorded on Agilent 8890-7250 and Agilent Q-TOF 6540. DFT calculation was carried out by Gaussian 09. Because of the high toxicity of carbon monoxide, all of the reactions should be performed in an autoclave. The laboratory should be well-equipped with a CO detector and alarm system.

2. Reaction Optimization

A 4 mL screw-cap vial was charged with **1a** (0.2 mmol), **2a** (0.4 mmol), photocatalyst (2 mol%), base (0.3 mmol), and solvent (2 mL) under N₂ atmosphere. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. The closed autoclave was flushed two times with N₂ (~ 5 bar), and a pressure of 40 bar CO were charged. The autoclave was then placed on a magnetic stirrer. The reaction mixture was stirred while being irradiated with 15 W blue light at room temperature for 20 h. After irradiation, the light was turned off and the pressure was released carefully. The mixture was concentrated under vacuum. The crude product was purified by column chromatography (PE/EA =10/1 to 5/1) on silica gel to afford the corresponding products. Note: Because of the high toxicity of carbon monoxide, all the reactions should be performed in an autoclave. The laboratory should be well-equipped with a CO detector and alarm system.

COOMe 1a	+ Br	+ 000 // C(2 mol%), Na, / // // // // // // // // // // // // /		
PC1: 4CZIPN	PC2:	ACZPN PC3:		PC4: 3DPAFIPN
PC5: fac-lr(ppy) ₃	HO Br	Вr соон Соон Бозіп Y РС7: Rh	CI- COOH CI- CI- CI- CI- CI- CI- CI- CI- CI- CI-	2C8: Ru(bpy) ₃ (PF ₆) ₂
entry	PC	base	solvent	3a (%) ^a
1	PC1	Na ₂ HPO ₄	CH ₃ CN	91 (86)
2	PC2	Na ₂ HPO ₄	CH ₃ CN	58
3	PC3	Na ₂ HPO ₄	CH ₃ CN	69
4	PC4	Na ₂ HPO ₄	CH ₃ CN	77
5	PC5	Na ₂ HPO ₄	CH ₃ CN	82
6	PC6	Na ₂ HPO ₄	CH ₃ CN	24
			CH ₃ CN	6
7	PC7	Na ₂ HPO ₄	CHI3CIN	0

Supplementary Table 1. Screening of photocatalyst

[a] yields were determined by GC-FID analysis using n-hexadecane as internal standard. Isolated yields given in brackets.

Supplementary Table 2. Screening of base

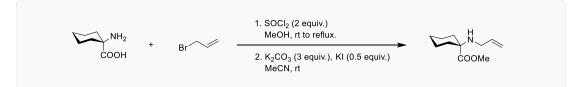
COOMe 1a	+ Br , - + + + + + + 2a	4CzIPN (2 mol%)		CF ₂ COOEt
entry	PC	base	solvent	3a (%) ^{<i>a</i>}
1	PC1	NaHCO ₃	CH ₃ CN	83
2	PC1	Na ₂ CO ₃	CH ₃ CN	76
3	PC1	K_2CO_3	CH ₃ CN	71
4	PC1	Cs_2CO_3	CH ₃ CN	63
5	PC1	Et ₃ N	CH ₃ CN	86
6	PC1	DBU	CH ₃ CN	35

[a] yields were determined by GC-FID analysis using n-hexadecane as internal standard.

H COOMe 1a	+ Br + + + + + - + - + - + +	<u> </u>	Na ₂ HPO ₄ (1.5 eq.)	GF ₂ COOEt
entry	PC	base	solvent	3a (%) ^{<i>a</i>}
1	PC1	Na ₂ HPO ₄	THF	46
2	PC1	Na ₂ HPO ₄	DMF	70
3	PC1	Na ₂ HPO ₄	DCE	50
4	PC1	Na ₂ HPO ₄	Toluene	63
5	PC1	Na ₂ HPO ₄	Acetone	82
6	PC1	Na ₂ HPO ₄	MeOH	7

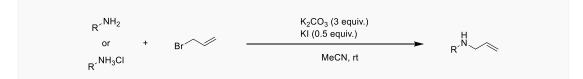
Supplementary Table 3. Screening of solvents

[a] yields were determined by GC-FID analysis using n-hexadecane as internal standard.

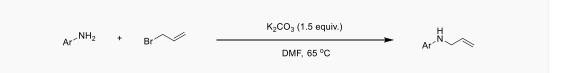

Supplementary Table 4. Screening of the pressure of CO

COOM 1a	+ le	FF	<u> </u>	%), Ne ₂ HPO ₄ (1.5 eq.)	CF ₂ COOEt
entry	PC	base	solvent	pressure of CO	3a (%) ^{<i>a</i>}
1	PC1	Na ₂ HPO ₄	CH ₃ CN	30 bar	75
2	PC1	Na ₂ HPO ₄	CH ₃ CN	20 bar	58
3	PC1	Na ₂ HPO ₄	CH ₃ CN	10 bar	36

[a] yields were determined by GC-FID analysis using n-hexadecane as internal standard.


3. Synthesis of the starting materials

General Procedure A:


To a stirred solution of 1-aminocyclohexanecarboxylic acid (5 mmol, 1.0 equiv.) in MeOH (15 mL) was added SOCl₂ (10 mmol, 2.0 equiv.) slowly at ambient temperature (*note: this addition was very exothermic*). The solution was heated to reflux and stirred for another 2 h at this temperature. Methanol was removed in vacuo and the crude material was dissolved in MeCN (15 mL), K_2CO_3 (15 mmol, 3.0 equiv.) and KI (2.5 mmol, 0.5 equiv.) were added. Then, allyl bromide (5 mmol, 1.0 equiv.) was added at room temperature and stirred overnight. The reaction mixture was then filtered and washed with DCM. The filtrate was then concentrated at reduced pressure. The aimed allylamine was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 10:1).

General Procedure B:

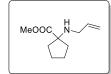
To a solution of amine or amine hydrochloride (5 mmol, 1 equiv.), K_2CO_3 (15 mmol, 3.0 equiv.) and KI (2.5 mmol, 0.5 equiv.) in MeCN (15 mL). Allyl bromide (5 mmol, 1.0 equiv.) was added at room temperature and stirred overnight. The reaction mixture was then filtered and washed with DCM. The filtrate was then concentrated at reduced pressure. The aimed allylamine was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 10:1 to 1:1).

General Procedure C:

To a solution of aniline (6 mmol, 2.0 equiv) in DMF (15 mL) was added K_2CO_3 (4.5 mmol, 1.2 equiv) and allyl bromide (3 mmol, 1.0 equiv). The reaction mixture was stirred at 65 °C overnight and then cooled to room temperature. The reaction was quenched with H₂O (10 mL). The mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layer was washed with brine (15 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography to afford aimed allylamine.

Methyl 1-(allylamino)cyclohexane-1-carboxylate (1a)

ĊOOMe


1a was prepared according to the GP1 in 74% yield.
¹H NMR (400 MHz, CDCl₃) δ 5.93 – 5.83 (m, 1H), 5.22 – 5.00 (m, 2H), 3.71 (s, 3H), 3.09 – 3.03 (m, 2H), 1.98 – 1.88 (m, 2H), 1.72 – 1.65 (m, 2H), 1.56 – 1.36 (m, 7H).
¹³C NMR (101 MHz, CDCl₃) δ 176.6, 136.9, 115.7, 61.7, 51.6, 46.2, 33.4, 25.7, 22.0.
HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₁H₂₀NO₂ 198.1489; found: 198.1497.

Methyl 4-(allylamino)tetrahydro-2H-pyran-4-carboxylate (1b)

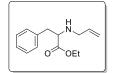
1b was prepared according to the GP2 in 87% yield.

¹H NMR (400 MHz, CDCl₃) δ 5.97 – 5.77 (m, 1H), 5.24 – 5.03 (m, 2H), 3.93 – 3.84 (m, 2H), 3.74 (s, 3H), 3.61 - 3.54 (m, 2H), 3.09 - 3.05 (m, 2H), 2.09 - 2.01 (m, 2H), 1.68 - 1.62 (m, 2H), 1.52 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 136.6, 115.8, 63.7, 59.3, 51.8, 46.0, 33.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₁H₁₈NO₃ 200.1281; found: 200.1289.

Methyl 1-(allylamino)cyclopentane-1-carboxylate (1c)

1c was prepared according to the GP2 in 84% yield.

¹H NMR (400 MHz, CDCl₃) δ 5.94 – 5.81 (m, 1H), 5.21 – 5.01 (m, 2H), 3.71 (s, 3H), 3.08 (d, J = 6.0 Hz, 2H), 2.08 – 1.99 (m, 2H), 1.83 – 1.65 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 136.8, 115.7, 70.0, 51.8, 48.0, 36.6, 24.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₀H₁₈NO₂ 184.1332; found: 184.1338.

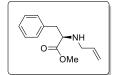

Methyl 1-(allylamino)cyclopropane-1-carboxylate (1d)

1d was prepared according to the GP2 in 65% yield.

¹H NMR (400 MHz, CDCl₃) δ 5.99 – 5.77 (m, 1H), 5.22 – 5.01 (m, 2H), 3.69 (s, 3H), 3.34 (dd, J = 6.0, 1.2 Hz, 2H), 2.14 (s, 1H), 1.30 – 1.19 (m, 2H), 1.05 – 0.96 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 136.8, 115.7, 51.9, 50.4, 40.7, 17.5.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₈H₁₄NO₂ 156.1019; found: 156.1017.

Ethyl allylphenylalaninate (1e)


1e was prepared according to the GP2 in 79% yield.

¹**H NMR (400 MHz, CDCl₃)** δ 7.30 – 7.25 (m, 2H), 7.23 – 7.17 (m, 3H), 5.88 – 5.74 (m, 1H), 5.16 – 5.03 (m, 2H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.53 (t, *J* = 6.9 Hz, 1H), 3.31 – 3.23 (m, 1H), 3.15 – 3.08 (m, 1H), 3.01 – 2.89 (m, 2H), 1.63 (s, 1H), 1.15 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 174.6, 137.3, 136.2, 129.2, 128.4, 126.7, 116.4, 62.1, 60.6, 50.6, 39.8, 14.2.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₂₀NO₂ 234.1489; found: 234.1496.

Methyl allyl-D-phenylalaninate (1f)

1f was prepared according to the GP2 in 76% yield.

¹**H NMR (400 MHz, CDCl**₃) δ 7.30 – 7.25 (m, 2H), 7.23 – 7.15 (m, 3H), 5.86 – 5.73 (m, 1H), 5.16 – 5.00 (m, 2H), 3.63 (s, 3H), 3.55 (t, *J* = 6.8 Hz, 1H), 3.29 – 3.20 (m, 1H), 3.15 – 3.06 (m, 1H), 2.95 (d, *J* = 6.9 Hz, 2H), 1.64 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 175.0, 137.2, 136.1, 129.2, 128.4, 126.7, 116.4, 62.1, 51.6, 50.6, 39.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₁₈NO₂ 220.1332; found: 220.1340.

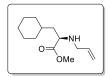
Methyl (S)-2-(allylamino)-3,3-dimethylbutanoate (1g)

1g was prepared according to the GP2 in 91% yield.

¹**H NMR (400 MHz, CDCl**₃) δ 5.91 – 5.75 (m, 1H), 5.21 – 5.02 (m, 2H), 3.71 (s, 3H), 3.28 – 3.20 (m, 1H), 3.05 – 2.97 (m, 1H), 2.91 (s, 1H), 1.64 (s, 1H), 0.96 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 175.7, 136.7, 116.2, 69.6, 51.5, 51.0, 33.9, 26.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₀H₂₀NO₂ 186.1489; found: 186.1492.

Methyl allyl-*L*-valinate (1h)

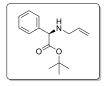


1h was prepared according to the GP2 in 82% yield.

¹**H NMR (400 MHz, CDCl**₃) δ 5.91 – 5.78 (m, 1H), 5.20 – 5.05 (m, 2H), 3.72 (s, 3H), 3.27 (dd, *J* = 13.9, 5.8 Hz, 1H), 3.11 – 2.97 (m, 2H), 1.97 – 1.85 (m, 1H), 1.61 (s, 1H), 0.99 – 0.90 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 175.7, 136.6, 116.2, 66.4, 51.4, 51.2, 31.6, 19.2, 18.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₁₈NO₂ 172.1332; found: 172.1335.

Methyl (R)-2-(allylamino)-3-cyclohexylpropanoate (1i)

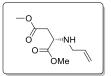

1i was prepared according to the GP2 in 75% yield.

¹**H NMR (400 MHz, CDCl**₃) δ 5.90 – 5.77 (m, 1H), 5.22 – 5.02 (m, 2H), 3.77 – 3.65 (m, 3H), 3.36 – 3.29 (m, 1H), 3.29 – 3.20 (m, 1H), 3.14 – 3.05 (m, 1H), 1.75 – 1.56 (m, 6H), 1.50 – 1.36 (m, 3H), 1.28 – 1.10 (m, 3H), 0.96 – 0.83 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 176.5, 136.4, 116.3, 58.4, 51.5, 50.8, 41.4, 34.2, 33.4, 33.0, 26.5, 26.2, 26.1.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₂₄NO₂ 226.1802; found: 226.1807.

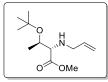
tert-Butyl (R)-2-(allylamino)-2-phenylacetate (1j)



1j was prepared according to the GP2 in 72% yield.

¹**H NMR (400 MHz, CDCl**₃) δ 7.38 – 7.23 (m, 5H), 5.95 – 5.83 (m, 1H), 5.20 – 5.06 (m, 2H), 4.27 (s, 1H), 3.25 – 3.12 (m, 2H), 2.08 (s, 1H), 1.39 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 172.3, 138.7, 136.3, 128.5, 127.7, 127.3, 116.5, 81.4, 65.1, 50.2, 27.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₂₂NO₂ 248.1645; found: 248.1652.


Dimethyl allyl-L-aspartate (1k)

1k was prepared according to the GP2 in 65% yield.

¹H NMR (400 MHz, CDCl₃) δ 5.93 – 5.73 (m, 1H), 5.24 – 5.04 (m, 2H), 3.75 (s, 3H), 3.69 (s, 3H), 3.68 – 3.64 (m, 1H), 3.36 – 3.28 (m, 1H), 3.22 – 3.15 (m, 1H), 2.79 – 2.62 (m, 2H), 1.92 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 171.3, 136.1, 116.6, 56.6, 52.1, 51.8, 50.6, 37.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₁₆NO₄ 202.1074; found: 202.1080.

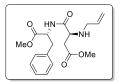
Methyl N-allyl-O-(tert-butyl)-L-threoninate (11)

11 was prepared according to the GP2 in 85% yield.

¹**H NMR** (**400 MHz, CDCl**₃) δ 5.93 – 5.77 (m, 1H), 5.24 – 5.02 (m, 2H), 4.01 – 3.91 (m, 1H), 3.72 (s, 3H), 3.34 (dd, *J* = 13.9, 5.6 Hz, 1H), 3.14 (d, *J* = 4.0 Hz, 1H), 3.07 (dd, *J* = 13.9, 6.4 Hz, 1H), 1.91 (s, 1H), 1.23 (d, *J* = 6.2 Hz, 3H), 1.14 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 174.2, 136.7, 116.1, 73.7, 68.4, 66.1, 51.5, 51.0, 28.3, 20.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₂H₂₄NO₃ 230.1751; found: 230.1758.

Methyl (S)-2-(allylamino)-3-((tert-butoxycarbonyl)amino)propanoate (1m)

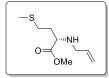

1m was prepared according to the GP2 in 68% yield.

¹**H NMR (400 MHz, CDCl**₃) δ 5.90 – 5.76 (m, 1H), 5.25 – 5.07 (m, 3H), 3.74 (s, 3H), 3.50 – 3.34 (m, 2H), 3.34 – 3.23 (m, 2H), 3.16 (dd, *J* = 13.9, 5.9 Hz, 1H), 1.86 (s, 1H), 1.44 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 173.8, 155.8, 136.0, 116.6, 79.4, 60.0, 52.1, 50.5, 42.5, 28.3.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₂H₂₃N₂O₄ 259.1652; found: 259.1655.

Methyl (S)-3-(allylamino)-4-(((R)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-4-oxobutanoate (1n)

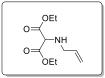

1n was prepared according to the GP1 in 73% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, J = 8.3 Hz, 1H), 7.31 – 7.21 (m, 3H), 7.14 (d, J = 6.8 Hz, 2H), 5.84 – 5.71 (m, 1H), 5.18 – 5.01 (m, 2H), 4.92 – 4.78 (m, 1H), 3.69 (d, J = 16.7 Hz, 6H), 3.45 (dd, J = 8.0, 4.1 Hz, 1H), 3.19 – 3.04 (m, 4H), 2.73 (dd, J = 16.6, 4.1 Hz, 1H), 2.55 (dd, J = 16.6, 8.0 Hz, 1H), 1.82 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 172.4, 172.0, 171.8, 136.0, 135.8, 129.3, 128.6, 127.1, 116.5, 58.0, 52.7, 52.3, 51.9, 50.3, 38.0, 35.8.

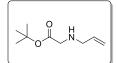
HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₈H₂₅N₂O₅ 349.1758; found: 349.1762.

Methyl allyl-L-methioninate (10)



10 was prepared according to the GP2 in 82% yield.

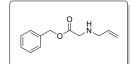
¹**H NMR (400 MHz, CDCl₃)** δ 5.90 – 5.78 (m, 1H), 5.22 – 5.05 (m, 2H), 3.74 (s, 3H), 3.40 (dd, *J* = 7.6, 5.7 Hz, 1H), 3.32 – 3.23 (m, 1H), 3.15 – 3.07 (m, 1H), 2.64 – 2.53 (m, 2H), 2.10 (s, 3H), 2.01 – 1.77 (m, 2H), 1.68 (s, 1H).


¹³C NMR (101 MHz, CDCl₃) δ 175.6, 136.3, 116.4, 59.4, 51.8, 50.7, 32.9, 30.5, 15.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₁₈NO₂S 204.1053; found: 204.1055.

Diethyl 2-(allylamino)malonate (1p)

1p was prepared according to the **GP2** in 80% yield. **¹H NMR (400 MHz, CDCl₃)** δ 5.93 – 5.79 (m, 1H), 5.28 – 5.08 (m, 2H), 4.32 – 4.15 (m, 4H), 4.06 (s, 1H), 3.27 (d, J = 6.1 Hz, 2H), 2.19 (s, 1H), 1.29 (t, J = 7.1 Hz, 6H). **¹³C NMR (101 MHz, CDCl₃)** δ 168.6, 135.4, 117.3, 64.0, 61.8, 50.3, 14.1. **HRMS (ESI-TOF) m/z**: [M+H]⁺ Calcd. for C₁₀H₁₈NO₄ 216.1230; found: 216.1234.

tert-Butyl allylglycinate (1q)


1q was prepared according to the GP2 in 55% yield.

¹**H NMR (400 MHz, CDCl**₃) δ 5.96 – 5.77 (m, 1H), 5.23 – 5.06 (m, 2H), 3.30 (s, 2H), 3.26 (d, *J* = 6.0 Hz, 2H), 1.76 (s, 1H), 1.47 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.7, 136.2, 116.5, 81.2, 51.8, 50.8, 28.1.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₉H₁₈NO₂ 172.1331; found: 172.1334.

Benzyl allylglycinate (1r)

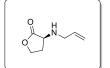
1r was prepared according to the GP2 in 61% yield.

¹**H NMR (400 MHz, CDCl**₃) δ 7.40 – 7.30 (m, 5H), 5.92 – 5.79 (m, 1H), 5.25 – 5.00 (m, 4H), 3.45 (s, 2H), 3.26 (d, *J* = 6.0 Hz, 2H), 1.78 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 172.4, 136.1, 135.6, 128.6, 128.4, 128.4, 116.6, 66.5, 51.8, 50.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₂H₁₆NO₂ 206.1176; found: 206.1180.

Methyl 2-(allylamino)-2-methylpropanoate (1s)

MeOOC Me Me

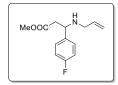

1s was prepared according to the GP2 in 78% yield.

¹**H NMR (400 MHz, CDCl**₃) δ 5.98 – 5.82 (m, 1H), 5.25 – 5.03 (m, 2H), 3.71 (s, 3H), 3.18 – 3.07 (m, 2H), 1.84 (s, 1H), 1.33 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 177.4, 136.6, 116.0, 58.9, 51.9, 47.3, 25.3.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₈H₁₆NO₂ 158.1176; found: 158.1176.

(S)-3-(Allylamino)dihydrofuran-2(3H)-one (1t)


1t was prepared according to the GP2 in 67% yield.

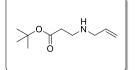
¹**H NMR (400 MHz, CDCl**₃) δ 5.94 – 5.82 (m, 1H), 5.29 – 5.10 (m, 2H), 4.41 (t, *J* = 8.9 Hz, 1H), 4.27 – 4.14 (m, 1H), 3.64 – 3.55 (m, 1H), 3.37 (d, *J* = 6.0 Hz, 2H), 2.58 – 2.45 (m, 1H), 2.18 – 2.02 (m, 1H), 1.93 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 177.4, 135.8, 116.8, 65.7, 55.5, 50.5, 30.5.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₇H₁₂NO₂ 142.0863; found: 142.0870.

Methyl 3-(allylamino)-3-(4-fluorophenyl)propanoate (1u)

1u was prepared according to the GP2 in 56% yield.


¹**H NMR (400 MHz, CDCl**₃) δ 7.30 (dd, J = 8.6, 5.5 Hz, 2H), 7.07 – 6.98 (m, 2H), 5.92 – 5.78 (m, 1H), 5.18 – 5.01 (m, 2H), 4.12 (dd, J = 8.3, 5.6 Hz, 1H), 3.64 (s, 3H), 3.13 – 2.96 (m, 2H), 2.70 (dd, J = 15.6, 8.4 Hz, 1H), 2.59 (dd, J = 15.6, 5.5 Hz, 1H), 1.81 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 172.0, 162.1 (d, *J* = 245.2 Hz), 138.2 (d, *J* = 3.1 Hz), 136.5, 128.6 (d, *J* = 8.0 Hz), 116.0, 115.4 (d, *J* = 21.3 Hz), 58.0, 51.6, 49.7, 42.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -115.23.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₁₇FNO₂ 238.1238; found: 238.1246.

tert-Butyl 3-(allylamino)propanoate (1v)

1v was prepared according to the GP2 in 51% yield.

¹**H NMR (400 MHz, CDCl**₃) δ 5.96 – 5.82 (m, 1H), 5.24 – 5.04 (m, 2H), 3.31 – 3.20 (m, 2H), 2.84 (t, *J* = 6.5 Hz, 2H), 2.44 (t, *J* = 6.5 Hz, 2H), 1.81 (s, 1H), 1.45 (s, 9H).

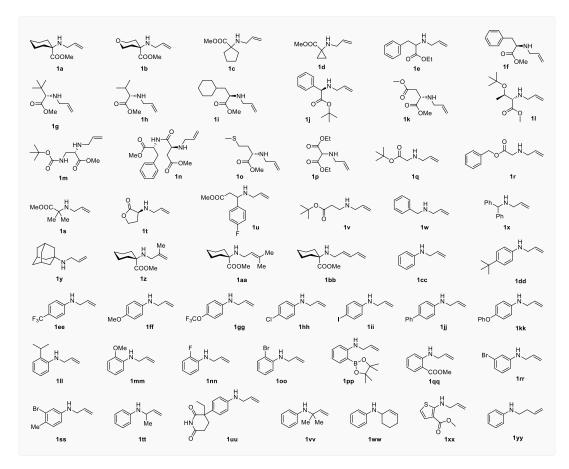
¹³C NMR (101 MHz, CDCl₃) δ 172.2, 136.7, 115.9, 80.5, 52.2, 44.6, 35.8, 28.1.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₀H₂₀NO₂ 186.1489; found: 186.1493.

Methyl 1-((2-methylallyl)amino)cyclohexane-1-carboxylate (1z)

1z was prepared according to the **GP1** in 82% yield. **¹H NMR (400 MHz, CDCl₃)** δ 4.89 (s, 1H), 4.79 (s, 1H), 3.70 (s, 3H), 2.95 (s, 2H), 1.96 – 1.82 (m, 2H), 1.79 – 1.64 (m, 5H), 1.61 – 1.52 (m, 2H), 1.49 – 1.35 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 144.5, 110.4, 61.6, 51.5, 49.3, 33.4, 25.8, 21.9, 21.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₂H₂₂NO₂ 212.1645; found: 212.1648.

Methyl 1-((3-methylbut-2-en-1-yl)amino)cyclohexane-1-carboxylate (1aa)


, H Me └OOMe [│]Me

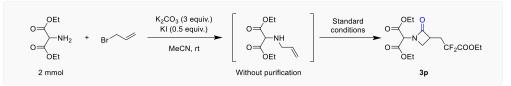
1aa was prepared according to the GP1 in 59% yield.

¹H NMR (400 MHz, CDCl₃) δ 5.26 – 5.18 (m, 1H), 3.71 (s, 3H), 2.99 (d, J = 6.9 Hz, 2H), 1.99 – 1.88 (m, 2H), 1.75 – 1.63 (m, 5H), 1.61 (s, 3H), 1.57 – 1.48 (m, 2H), 1.46 – 1.35 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 176.7, 134.6, 122.7, 61.9, 51.6, 41.1, 33.4, 25.7, 25.7, 22.1, 17.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₂₄NO₂ 226.1802; found: 226.1804.

4. List of the starting materials

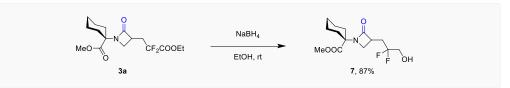
1a, 1k, 1n, 1z, 1aa, 1bb were synthesized according to $GP1^1$. 1b-1j, 1l, 1m, 1o-1y were synthesized according to $GP2^2$. 1cc-1xx were synthesized according to $GP3^3$ and the resultant data are matched with the literature.

Supplementary Figure 1. List of the starting materials.


5. Scale-up and derivatization

5.1 Reaction scalep-up

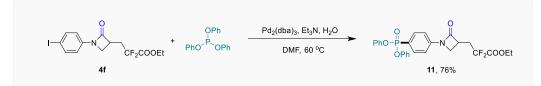
A 25 mL round-bottom flask was charged with **1a** (2 mmol), **2a** (4 mmol), photocatalyst (2 mol%), base (3 mmol), and solvent (15mL) under N₂ atmosphere. The flask was closed with a rubber stopper and connected to the atmosphere via a needle. The closed autoclave was flushed two times with N₂ (~ 5 bar), and a pressure of 40 bar CO were charged. The autoclave was then placed on a magnetic stirrer. The reaction mixture was stirred while being irradiated with 15 W blue light at room temperature for 24 h. After irradiation, the light was turned off and the pressure was released carefully. The mixture was concentrated under vacuum. The crude product was purified by column chromatography (PE/EA =10/1 to 5/1) on silica gel to afford the corresponding products **3a** (0.49 g, 71% yield).


5.2 One-pot allylation and carbonylative annulation to β -lactams **3p**


To a solution of amine (2 mmol, 1.0 equiv.) and potassium carbonate (6 mmol, 3.0 equiv.) in MeCN (15 mL), drops of allyl bromide (2 mmol, 1.0 equiv.) was added at room temperature and stirred overnight. The reaction mixture was was directly used for the following process without purification.

2a (2.0 equiv.), photocatalyst (2 mol%) was added into above mixture under N₂ atmosphere. The vial was then placed into autoclave. The closed autoclave was flushed two times with N₂ (~ 5 bar), and a pressure of 40 bar CO were charged. The autoclave was then placed on a magnetic stirrer. The reaction mixture was stirred while being irradiated with 15 W blue light at room temperature for 24 h. After irradiation, the light was turned off and the pressure was released carefully. The mixture was concentrated under vacuum. The crude product was purified by column chromatography (PE/EA = 5/1) on silica gel to afford the corresponding products **3p** (0.37g, 51%).

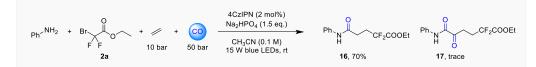
5.2 Transformations of compounds 3a



⁴To a solution of **3a** (0.3 mmol, 1 equiv) in ethanol (4 mL) at room temperature was added NaBH₄ (0.33 mmol, 12 mg, 1.1 equiv). The mixture was stirred for 0.5 h. After stirring for 0.5 h, the solution was diluted with ethyl acetate and washed with H₂O and brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated. The residue was purified with flash column chromatography (PE/EA = 2/1) to give **7** as a colorless oil (79.4 mg, 87% yield).

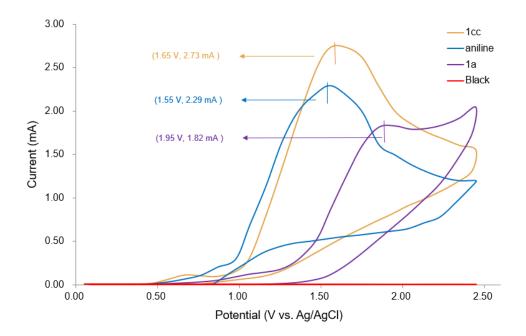
⁵To a stirred cold suspension (ice bath) of **3a** (0.3 mmol) in dry THF (1 mL) was added LiAlH₄ (0.6 mL, 1.0 mol/L in THF) slowly under N₂. The mixture was slowly warmed to the refluxing temperature for 4 h. The mixture was then cooled down to room temperature and quenched by addition of MeOH (1 mL) followed by addition of aq. solution of NaOH (10%, 1.0 mL). After the mixture was filtered through a pad of celite, THF was evaporated from the filtrate in vacuum. The resultant mixture was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layers were washed with brine (2 × 5 mL) and dried over MgSO₄. The solvent was removed in vacuum and the residue was purified by flash chromatography afford the desired product **8** (66.2 mg, 84%).

5.3 Transformations of compounds 4f



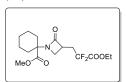
⁶Pure **4f** (0.2 mmol) and Pd₂(dba)₃ (4.6 mg, 5.0 mol%) were added into a 25 mL Schlenk tube. Then DMF (0.5 mL), H₂O (7.5 μ L, 0.4 mmol), Et₃N (58 μ L, 0.4 mmol) and triphenyl phosphite (56 μ L, 0.2 mmol) were sequentially added under N₂ atmosphere. After the addition of all substances, the tube was heated at 60 °C for 2 h. Then 3 mL of water was added in the reaction mixture and extracted three times with ethyl acetate (3×4 mL). The organic layers were combined and washed with brine, dried over Na₂SO₄, and evaporated under vacuum. Pure **11** was obtained by flash chromatography (78.3 mg, 76%).

6. Control experiments


A 4 mL screw-cap vial was charged with **1a** (0.2 mmol), **2a** (0.4 mmol), photocatalyst (2 mol%), base (0.3 mmol), TEMPO (0.4 mmol) or 1,1-Diphenylethylene (0.4 mmol) and solvent (2 mL) under N₂ atmosphere. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. The closed autoclave was flushed two times with N₂ (~ 5 bar), and a pressure of 40 bar CO were charged. The autoclave was then placed on a magnetic stirrer. The reaction mixture was stirred while being irradiated with 15 W blue light at room temperature for 24 h. After irradiation, the light was turned off and the pressure was released carefully. After completion of the reaction, the solvent was concentrated under vacuum. After the reaction was completed, yields were determined by GC-FID analysis using n-hexadecane as internal standard.

A 4 mL screw-cap vial was charged with aniline (0.2 mmol), **2a** (0.4 mmol), photocatalyst (2 mol%), base (0.3 mmol) and solvent (2 mL) under N₂ atmosphere. The vial was closed with a Teflon septum and cap and connected to the atmosphere via a needle. The closed autoclave was flushed two times with N₂ (~ 5 bar), and a pressure of 10 bar CO ethylene 50 bar CO were charged. The autoclave was then placed on a magnetic stirrer. The reaction mixture was stirred while being irradiated with 15 W blue light at room temperature for 24 h. After the reaction was completed, mixture was analyzed by GC-MS. Product **16** (38.1 mg, 70%) was afforded by flash chromatography.

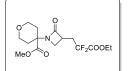
7. Cyclic Voltammograms


The cyclic voltammetry was carried out with an Admiral Squidsta Plus - SUI v2.0 Beat workstation. All CV measurements were conducted in CH₃CN using Ag/AgCl as a reference and 1 mM nBu₄NBF₄ supporting electrolyte. The scan rate was 100 mV/s.

Supplementary Figure 2. Cyclic Voltammogram Curves.

8. Characterization of Products.

Methyl-1-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl) cyclohexane-1-carboxylate (3a)


59.5 mg, colorless oil, yield: 86%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR (400 MHz, CDCl**₃) δ 4.34 (q, *J* = 7.1 Hz, 2H), 3.73 (s, 1H), 3.49 (t, *J* = 5.5 Hz, 1H), 3.40 – 3.34 (m, 1H), 3.20 – 3.12 (m, 1H), 2.77 – 2.61 (m, 1H), 2.44 – 2.24 (m, 2H), 2.13 – 2.04 (m, 1H), 1.88 – 1.75 (m, 2H), 1.72 – 1.59 (m, 3H), 1.50 – 1.27 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 168.9, 163.6 (t, *J* = 32.4 Hz), 115.3 (t, *J* = 251.1 Hz), 63.3, 63.2, 52.6, 44.3, 41.4, 33.9 (t, *J* = 23.8 Hz), 31.2, 31.2, 24.7, 21.8, 21.7, 13.9.

¹⁹F NMR (**376 MHz, CDCl**₃) δ -104.47 (d, J = 260.8 Hz, 1F), -106.94 (d, J = 260.8 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₆H₂₄F₂NO₅ 348.1617; found: 348.1620.

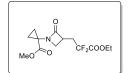
Methyl-4-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)tetrahydro-2H-pyran-4-carb oxylate (3b)

63.3 mg, colorless oil, yield: 91%. Eluent: pentane/ethyl acetate = 2/1.

¹**H** NMR (400 MHz, CDCl₃) δ 4.34 (q, J = 6.6 Hz, 2H), 3.90 – 3.81 (m, 2H), 3.81 – 3.76 (m, 3H), 3.60 (dd, J = 25.4, 11.9 Hz, 2H), 3.54 – 3.47 (m, 1H), 3.45 – 3.38 (m, 1H), 3.22 – 3.15 (m, 1H), 2.78 – 2.60 (m, 1H), 2.48 – 2.29 (m, 1H), 2.25 (d, J = 13.8 Hz, 1H), 2.22 – 2.09 (m, 2H), 2.04 (d, J = 14.0 Hz, 1H), 1.39 – 1.34 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.1, 169.2, 163.5 (t, *J* = 32.3 Hz), 115.2 (t, *J* = 250.9 Hz), 63.5, 63.4, 63.2, 60.8, 52.9, 44.5, 41.6, 33.7 (t, *J* = 23.9 Hz), 31.1, 31.0, 13.9.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -104.5 (d, J = 261.6 Hz, 1F), -106.9 (d, J = 261.6 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₂₂F₂NO₆ 350.1410; found: 350.1417.


Methyl-1-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)cyclopentane-1-carboxylate (3c)

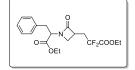
47.2 mg, colorless oil, yield: 71%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR (400 MHz, CDCl₃)** δ 4.38 – 4.28 (m, 2H), 3.74 (s, 3H), 3.52 – 3.43 (m, 1H), 3.37 – 3.29 (m, 1H), 3.18 – 3.11 (m, 1H), 2.75 – 2.59 (m, 1H), 2.45 – 2.21 (m, 3H), 2.14 – 1.98 (m, 2H), 1.89 – 1.68 (m, 4H), 1.36 (td, *J* = 7.1, 2.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 168.6, 163.6 (t, J = 32.6 Hz), 115.3 (t, J = 250.8 Hz),69.0, 63.2, 52.7, 44.9, 41.2 (t, J = 3.3 Hz), 35.4, 35.2, 33.8 (t, J = 23.9 Hz), 24.1, 24.1, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.5 (d, J = 260.8 Hz, 1F), -107.0 (d, J = 260.7 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₂₂F₂N₂O₆ 334.1461; found: 334.1468.

Methyl-1-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)cyclopropane-1-carboxylate (3d)

39.5 mg, colorless oil, yield: 65%. Eluent: pentane/ethyl acetate = 10/1.


¹**H NMR (400 MHz, CDCl**₃) δ 4.39 – 4.30 (m, 2H), 3.73 (s, 3H), 3.54 (t, *J* = 5.5 Hz, 1H), 3.42 – 3.35 (m, 1H), 3.27 – 3.22 (m, 1H), 2.75 – 2.58 (m, 1H), 2.45 – 2.27 (m, 1H), 1.58 – 1.47 (m, 2H), 1.43 – 1.29 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 171.7, 168.7, 163.5 (t, *J* = 32.4 Hz), 115.2 (t, *J* = 250.9 Hz), 63.2, 52.7, 46.6, 42.7, 34.8, 33.6 (t, *J* = 24.0 Hz), 16.8, 16.3, 13.9.

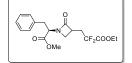
¹⁹**F** NMR (**376** MHz, CDCl₃) δ -104.6 (d, J = 261.0 Hz, 1F), -106.9 (d, J = 261.0 Hz, 1F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₁₈F₂NO₅ 306.1148; found: 306.1151.

Ethyl - 3 - (1 - (1 - ethoxy - 1 - oxo - 3 - phenyl propan - 2 - yl) - 2 - oxo azetidin - 3 - yl) - 2, 2 - difluor opropanoate (3e)

53.8 mg, colorless oil, yield: 70%. Eluent: pentane/ethyl acetate = 10/1.

Inseparable mixture of diastereomers. dr = 1:1.


¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 2H), 7.26 (t, *J* = 3.1 Hz, 1H), 7.22 (dd, *J* = 13.0, 4.9 Hz, 2H), 4.73 – 4.61 (m, 1H), 4.36 – 4.27 (m, 2H), 4.25 – 4.17 (m, 2H), 3.61 (t, *J* = 5.5 Hz, 0.5H), 3.44 (t, *J* = 5.4 Hz, 0.5H), 3.34 – 3.22 (m, 2.5H), 3.08 – 2.96 (m, 1.5H), 2.68 – 2.52 (m, 0.5H), 2.50 – 2.19 (m, 1H), 1.88 – 1.70 (m, 0.5H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.30 – 1.23 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.9, 169.8, 168.9, 168.0, 163.6 (t, *J* = 32.5 Hz), 136.2, 136.0, 128.8, 128.8, 128.7, 128.6, 127.23, 127.21, 115.1 (t, *J* = 249.3 Hz), 63.2, 63.1, 61.7, 61.7, 55.1, 54.7, 45.3, 45.1, 42.8, 42.6, 35.9, 35.6, 33.7 (t, *J* = 23.9 Hz), 14.1, 13.9.

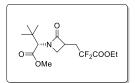
¹⁹F NMR (376 MHz, CDCl₃) δ -104.2 - -107.4 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₂₄F₂NO₅ 384.1617; found: 384.1620.

Ethyl-2,2-difluoro-3-(1-((*R*)-1-methoxy-1-oxo-3-phenylpropan-2-yl)-2-oxoazetidin-3-yl)propanoat e (3f)

49.9 mg, colorless oil, yield: 68%. Eluent: pentane/ethyl acetate = 5/1.

Inseparable mixture of diastereomers. dr = 1:1.


¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.15 (m, 5H), 4.77 – 4.62 (m, 1H), 4.40 – 4.24 (m, 2H), 3.76 (s, 3H), 3.59 (t, *J* = 5.5 Hz, 0.5H), 3.44 (t, *J* = 5.7 Hz, 0.5H), 3.35 – 3.21 (m, 2.5H), 3.10 – 2.96 (m, 1.5H), 2.68 – 2.52 (m, 0.5H), 2.49 – 2.19 (m, 1H), 1.87 – 1.74 (m, 0.5H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.4, 170.3, 168.2, 168.0, 163.5 (t, *J* = 32.4 Hz), 136.1, 136.0, 128.8, 128.8, 128.6, 127.3, 127.2, 115.1 (t, *J* = 250.9 Hz), 63.2, 63.1, 55.1, 54.6, 52.6, 52.5, 45.3, 45.1, 42.8, 42.6, 35.8, 35.6, 33.7 (t, *J* = 23.4 Hz), 13.9.

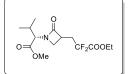
¹⁹F NMR (**376** MHz, CDCl₃) δ -104.2 - -107.4 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₈H₂₂F₂NO₅ 370.1461; found: 370.1466.

Methyl-(2S)-2-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)-3,3-dimethylbutanoate (3g)

55.2 mg, colorless oil, yield: 82%. Eluent: pentane/ethyl acetate = 5/1.

Inseparable mixture of diastereomers. dr = 1.5:1.


¹**H** NMR (400 MHz, CDCl₃) δ 4.34 (q, J = 7.1 Hz, 2H), 4.28 (s, 1H), 4.01 (t, J = 5.9 Hz, 0.4H), 3.80 – 3.71 (m, 3.6H), 3.69 – 3.63 (m, 0.6H), 3.53 – 3.39 (m, 1.4H), 2.82 – 2.56 (m, 1H), 2.42 – 2.23 (m, 1H), 1.36 (t, J = 7.1 Hz, 3H), 1.04 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.8, 169.6, 168.7, 168.4, 163.6 (t, *J* = 32.4 Hz), 115.1 (t, *J* = 250.9 Hz), 63.2, 63.2, 61.9, 61.7, 51.8, 51.7, 48.5, 48.3, 43.3, 43.1, 35.4, 35.4, 34.1 (t, *J* = 24.0 Hz), 33.6 (t, *J* = 23.9 Hz)27.4, 27.4, 13.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -104.1 – -107.3 (m, 2F).

HRMS (**ESI-TOF**) **m/z:** [M+H]⁺ Calcd. for C₁₈H₂₂F₂NO₅ 336.1676; found: 336.1672.

Methyl-(2S)-2-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)-3-methylbutanoate (3h)

42.6 mg, colorless oil, yield: 66%. Eluent: pentane/ethyl acetate = 5/1.

Inseparable mixture of diastereomers. dr = 1:1.

¹**H NMR (400 MHz, CDCl**₃) δ 4.34 (q, J = 7.1 Hz, 2H), 4.18 (t, J = 7.8 Hz, 1H), 3.83 (t, J = 5.7 Hz, 0.5H), 3.77 – 3.72 (m, 3H), 3.62 (t, J = 5.5 Hz, 0.5H), 3.53 – 3.43 (m, 1.5H), 3.26 (dd, J = 6.0, 1.7 Hz, 0.5H), 2.79 – 2.56 (m, 1H), 2.43 – 2.25 (m, 1H), 2.24 – 2.13 (m, 1H), 1.36 (t, J = 7.1 Hz, 3H), 1.01 – 0.95 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 170.5, 170.3, 168.5, 168.2, 163.6 (t, *J* = 32.4 Hz), 115.1 (t, *J* = 250.9 Hz), 63.2, 63.2, 59.5, 52.1, 52.0, 46.3, 46.2, 43.0 (t, *J* = 7.1 Hz), 34.1 (t, *J* = 24.0 Hz), 33.7 (t, *J* = 24.0 Hz), 29.4, 19.2, 19.2, 19.2, 13.9.

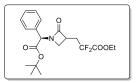
¹⁹F NMR (376 MHz, CDCl₃) δ -104.1 – -107.3 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₂₂F₂NO₅ 322.1461; found: 322.1465.

Ethyl-3-(1-((R)-3-cyclohexyl-1-methoxy-1-oxopropan-2-yl)-2-oxoazetidin-3-yl)-2,2-difluoropropa noate (3i)

54.5 mg, colorless oil, yield: 72%. Eluent: pentane/ethyl acetate = 5/1.

Inseparable mixture of diastereomers. dr = 1:1.


¹**H NMR (400 MHz, CDCl**₃) δ 4.53 – 4.42 (m, 1H), 4.35 (q, *J* = 6.9 Hz, 2H), 3.77 – 3.67 (m, 3.5H), 3.51 (t, *J* = 5.3 Hz, 0.5H), 3.48 – 3.35 (m, 1.5H), 3.16 (d, *J* = 5.7 Hz, 0.5H), 2.78 – 2.61 (m, 1H), 2.47 – 2.19 (m, 1H), 1.81 (d, *J* = 12.6 Hz, 1H), 1.76 – 1.60 (m, 6H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.29 – 1.15 (m, 4H), 1.06 – 0.85 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 171.5, 171.4, 168.3, 168.0, 163.6 (t, *J* = 32.4 Hz), 115.2 (t, *J* = 250.8 Hz), 63.21, 63.16, 52.3, 51.5, 51.3, 44.7, 44.5, 42.6, 42.5, 36.7, 36.5, 34.5, 34.4, 33.9 (t, *J* = 24.0 Hz), 33.7 (t, *J* = 23.9 Hz), 33.5, 33.4, 31.9, 31.8, 26.3, 26.1, 25.9, 25.8, 13.9.

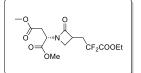
¹⁹F NMR (376 MHz, CDCl₃) δ -104.1 – -107.3 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₂₂F₂NO₅ 376.1930; found: 376.1937.

 $\label{eq:constraint} Ethyl-3-(1-((R)-2-(tert-butoxy)-2-oxo-1-phenylethyl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (3j)$

48.6 mg, colorless oil, yield: 61%. Eluent: pentane/ethyl acetate = 5/1.

Inseparable mixture of diastereomers. dr = 1:1.

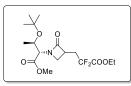

¹**H NMR (400 MHz, CDCl**₃) δ 7.46 – 7.32 (m, 3H), 7.30 – 7.23 (m, 2H), 5.47 (s, 1H), 4.36 – 4.24 (m, 2H), 3.85 (t, J = 5.6 Hz, 0.5H), 3.55 – 3.41 (m, 1H), 3.35 – 3.23 (m, 1H), 2.90 (dd, J = 5.9, 2.2 Hz, 0.5H), 2.80 – 2.52 (m, 1H), 2.50 – 2.34 (m, 0.5H), 2.24 – 2.06 (m, 0.5H), 1.45 (s, 9H), 1.38 – 1.30 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.44, 168.40, 167.6, 167.5, 163.6 (t, *J* = 32.4 Hz),133.8, 133.7, 129.12, 129.07, 128.7, 128.6, 128.04, 127.98, 115.2 (t, *J* = 250.9 Hz), 82.9, 82.8, 63.2, 58.2, 58.1, 45.3, 45.2, 42.5, 42.5, 33.8 (t, *J* = 24.0 Hz), 33.6 (t, *J* = 23.9 Hz), 27.93, 27.92, 13.91, 13.88.

¹⁹F NMR (376 MHz, CDCl₃) δ -104.3 – -107.3 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₀H₂₆F₂NO₅ 398.1774; found: 398.1772.

Dimethyl-(2S)-2-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)succinate (3k)


50.1 mg, colorless oil, yield: 71%. Eluent: pentane/ethyl acetate = 5/1. Inseparable mixture of diastereomers. dr = 1:1.

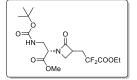
¹**H NMR (400 MHz, CDCl**₃) δ 4.77 – 4.67 (m, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 3H), 3.72 (s, 3H), 3.69 (t, *J* = 5.6 Hz, 0.5H), 3.55 (t, *J* = 5.5 Hz, 0.5H), 3.51 – 3.39 (m, 1H), 3.37 (d, *J* = 5.7 Hz, 0.5H), 3.25 – 3.19 (m, 0.5H), 3.00 – 2.84 (m, 2H), 2.74 – 2.58 (m, 1H), 2.45 – 2.24 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.4, 169.3, 169.24, 168.21, 168.0, 163.5 (t, J = 32.3 Hz), 115.1 (t, J = 251.0 Hz), 63.2, 52.9, 52.3, 52.2, 50.8, 50.6, 46.0, 46.0, 43.1, 34.6, 34.5, 33.6 (t, J = 23.9 Hz), 13.91. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.2 - -107.3 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₂₀F₂NO₇ 352.1202; found: 352.1206.

Methyl-(2*S*,3*R*)-3-(tert-butoxy)-2-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)buta noate (3l)

68.4 mg, colorless oil, yield: 90%. Eluent: pentane/ethyl acetate = 3/1. Inseparable mixture of diastereomers. dr = 1:1.


¹**H NMR (400 MHz, CDCl**₃) δ 4.39 – 4.26 (m, 4H), 4.00 (t, *J* = 5.9 Hz, 0.4H), 3.81 – 3.75 (m, 0.4H), 3.72 (s, 3H), 3.67 – 3.62 (m, 0.6H), 3.51 – 3.41 (m, 1.4H), 2.79 – 2.59 (m, 1H), 2.50 – 2.26 (m, 1H), 1.42 – 1.33 (m, 3H), 1.20 (s, 3H), 1.11 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.8, 169.6, 169.4, 163.7 (t, J = 32.5 Hz), 115.3 (t, J = 250.7 Hz), 74.1, 74.1, 68.24, 68.16, 63.2, 63.1, 59.0, 58.9, 52.1, 48.6, 48.5, 43.6, 43.5, 34.3 (t, J = 24.0 Hz), 33.9 (t, J = 24.0 Hz), 28.4, 21.2, 13.9.

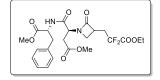
¹⁹F NMR (**376** MHz, CDCl₃) δ -104.5 – -107.2 (m, 2F).

HRMS (**ESI-TOF**) **m/z:** [M+H]⁺ Calcd. for C₁₇H₂₈F₂NO₆ 380.1879; found: 380.1885.

Ethyl-3-(1-((S)-3-((tert-butoxycarbonyl)amino)-1-methoxy-1-oxopropan-2-yl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (3m)

62.8 mg, colorless oil, yield: 77%. Eluent: pentane/ethyl acetate = 3/1.

Inseparable mixture of diastereomers. dr = 1:1.


¹**H NMR (400 MHz, CDCl**₃) δ 5.24 (d, J = 29.8 Hz, 1H), 4.42 – 4.29 (m, 3H), 3.77 (s, 3H), 3.72 – 3.55 (m, 3H), 3.45 (s, 1H), 3.33 (dd, J = 19.9, 4.7 Hz, 1H), 2.74 – 2.56 (m, 1H), 2.51 – 2.28 (m, 1H), 1.43 (s, 9H), 1.36 (t, J = 7.1 Hz, 3H).

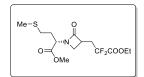
¹³C NMR (101 MHz, CDCl₃) δ 168.85, 168.83, 168.64, 168.58, 163.5 (t, *J* = 32.4 Hz), 155.8, 115.1 (t, *J* = 251.0 Hz), 79.8, 63.2, 63.2, 55.9, 55.6, 52.7, 52.7, 45.9, 45.8, 43.1, 40.1, 39.9, 33.6 (t, *J* = 24.0 Hz), 33.5 (t, *J* = 23.9 Hz), 28.3, 28.2, 13.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -104.3 – -107.2 (m, 2F).

HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd. for C₁₇H₂₆F₂N₂O₇Na 431.1600; found: 431.1607.

Methyl-(3*S*)-3-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)-4-(((*R*)-1-methoxy-1-ox o-3-phenylpropan-2-yl)amino)-4-oxobutanoate (3n)

72.1 mg, colorless oil, yield: 72%. Eluent: pentane/ethyl acetate = 3/1.


Inseparable mixture of diastereomers. dr = 1:1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 3H), 7.21 – 7.12 (m, 2H), 6.79 (dd, *J* = 16.9, 6.7 Hz, 1H), 4.87 – 4.77 (m, 1H), 4.61 (dd, *J* = 7.7, 6.6 Hz, 1H), 4.34 (q, *J* = 7.2 Hz, 2H), 3.75 (s, 3H), 3.67 (d, *J* = 3.9 Hz, 3H), 3.45 (t, *J* = 5.6 Hz, 0.5H), 3.40 – 3.33 (m, 0.5H), 3.30 – 3.17 (m, 0.5H), 3.12 – 2.95 (m, 2.5H), 2.94 – 2.83 (m, 1H), 2.81 – 2.67 (m, 1H), 2.66 – 2.47 (m, 1H), 2.33 – 2.06 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H).

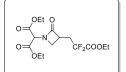
¹³C NMR (101 MHz, CDCl₃) δ 171.5, 170.7, 170.6, 168.22, 168.21, 168.1, 167.8, 163.5 (t, J = 32.4 Hz), 135.8, 135.7, 129.18, 129.16, 128.70, 128.66, 127.3, 115.0 (t, J = 251.4 Hz), 63.3, 53.4, 53.2, 52.54, 52.52, 52.3, 52.21, 52.17, 45.5, 45.1, 42.9, 37.6, 37.5, 33.6, 33.4 (t, J = 23.9 Hz), 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.1 – -107.0 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₃H₂₉F₂N₂O₈ 499.1886; found: 499.1892.

Methyl-(2S)-2-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)-4-(methylthio)butanoat e (30)

43.4 mg, colorless oil, yield: 61%. Eluent: pentane/ethyl acetate = 10/1.

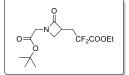
Inseparable mixture of diastereomers. dr = 1:1.


¹**H** NMR (400 MHz, CDCl₃) δ 4.59 – 4.45 (m, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 3.76 (s, 3H), 3.68 (t, *J* = 5.5 Hz, 0.5H), 3.54 (t, *J* = 5.4 Hz, 0.5H), 3.51 – 3.41 (m, 1H), 3.37 (d, *J* = 5.5 Hz, 0.5H), 3.21 (d, *J* = 4.2 Hz, 0.5H), 2.77 – 2.45 (m, 3H), 2.44 – 2.29 (m, 1H), 2.24 – 2.15 (m, 1H), 2.11 (s, 3H), 2.10 – 1.93 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.6, 170.5, 168.5, 168.3, 163.5 (t, J = 32.3 Hz), 115.1 (t, J = 251.0 Hz), 63.3, 63.2, 53.4, 53.0, 52.6, 45.2, 45.0, 42.9, 42.8, 33.8 (t, J = 23.9 Hz), 33.7 (t, J = 23.9 Hz), 30.7, 29.0, 28.8, 15.50, 15.46, 13.9.

¹⁹F NMR (**376** MHz, CDCl₃) δ -104.1 – -107.3 (m, 2F).

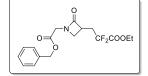
HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₂₂F₂NO₅S 354.1181; found: 354.1173.


Diethyl 2-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)malonate (3p)

59.7 mg, colorless oil, yield: 82%. Eluent: pentane/ethyl acetate = 5/1.

¹H NMR (400 MHz, CDCl₃) δ 5.18 (s, 1H), 4.41 – 4.20 (m, 6H), 3.82 (t, J = 5.8 Hz, 1H), 3.57 – 3.47 (m, 2H), 2.78 – 2.60 (m, 1H), 2.50 – 2.30 (m, 1H), 1.40 – 1.28 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.1, 164.9, 164.7, 163.5 (t, J = 32.3 Hz), 115.0 (t, J = 251.1 Hz), 63.2, 62.6, 62.6, 56.7, 46.4, 43.7 (t, J = 3.4 Hz), 33.7 (t, J = 24.0 Hz), 14.0, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.7 (d, J = 261.9 Hz, 1F), -106.8 (d, J = 261.7 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₂₂F₂NO₇ 366.1359; found: 366.1369.

Mthyl-3-(1-(2-(tert-butoxy)-2-oxoethyl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (3q)


38.6 mg, colorless oil, yield: 60%. Eluent: pentane/ethyl acetate = 5/1.

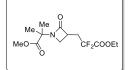
¹**H NMR** (400 MHz, CDCl₃) δ 4.41 – 4.23 (m, 2H), 3.94 (dd, J = 17.9, 3.1 Hz, 1H), 3.80 (dd, J = 17.9, 3.0 Hz, 1H), 3.65 – 3.56 (m, 1H), 3.54 – 3.43 (m, 1H), 3.31 (s, 1H), 2.78 – 2.60 (m, 1H), 2.51 – 2.28 (m, 1H), 1.47 (d, J = 3.0 Hz, 9H), 1.39 – 1.32 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.2, 167.0, 163.5 (t, J = 32.2 Hz), 115.1 (t, J = 250.8 Hz), 82.6, 63.2, 46.9, 43.9, 43.7, 33.8 (t, J = 24.0 Hz), 28.0, 13.9.

¹⁹F NMR (**376 MHz, CDCl**₃) δ -104.7 (d, J = 261.1 Hz, 1F), -106.9 (d, J = 260.9 Hz, 1F). HRMS (**ESI-TOF**) m/z: $[M+H]^+$ Calcd. for C₁₄H₂₂F₂NO₅ 322.1461; found: 322.1462.

Mthyl-3-(1-(2-(benzyloxy)-2-oxoethyl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (3r)

44.3 mg, colorless oil, yield: 62%. Eluent: pentane/ethyl acetate = 5/1.

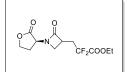

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.30 (m, 5H), 5.17 (s, 2H), 4.33 (q, J = 7.1 Hz, 2H), 4.09 (d, J = 18.1 Hz, 1H), 3.95 (d, J = 18.1 Hz, 1H), 3.61 (t, J = 5.4 Hz, 1H), 3.54 – 3.44 (m, 1H), 3.30 (dd, J = 5.5, 2.2 Hz, 1H), 2.76 – 2.57 (m, 1H), 2.43 – 2.24 (m, 1H), 1.35 (t, J = 7.1 Hz, 3H).. ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 167.8, 163.5 (t, J = 32.4 Hz), 134.9, 128.7, 128.7, 128.5, 115.1

(t, J = 250.9 Hz), 67.4, 63.2, 47.0, 44.1 (t, J = 3.4 Hz), 43.0, 33.7 (t, J = 24.0 Hz), 13.9.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -104.6 (d, J = 261.3 Hz, 1F), -106.9 (d, J = 261.5 Hz, 1F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₂₀F₂NO₅ 356.1304; found: 356.1295.

Ethyl-2,2-difluoro-3-(1-(1-methoxy-2-methyl-1-oxopropan-2-yl)-2-oxoazetidin-3-yl)propanoate (3s)


42.4 mg, colorless oil, yield: 69%. Eluent: pentane/ethyl acetate = 5/1.

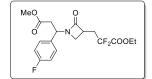
¹**H NMR (400 MHz, CDCl₃)** δ 4.34 (q, J = 7.1 Hz, 2H), 3.75 (s, 3H), 3.52 (t, J = 5.5 Hz, 1H), 3.38 – 3.29 (m, 1H), 3.19 (dd, J = 5.4, 1.9 Hz, 1H), 2.76 – 2.53 (m, 1H), 2.45 – 2.25 (m, 1H), 1.60 (s, 3H), 1.53 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 167.9, 163.6 (t, *J* = 32.5 Hz), 115.3 (t, *J* = 251.2 Hz), 63.2, 59.2, 52.7, 44.6, 41.4 (t, *J* = 3.3 Hz), 33.7 (t, *J* = 23.9 Hz), 24.1, 24.0, 13.9.

¹⁹F NMR (**376** MHz, CDCl₃) δ -104.5 (d, J = 260.7 Hz, 1F), -107.0 (d, J = 260.7 Hz, 1F). HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd. for $C_{13}H_{20}F_2NO_5$ 308.1304; found: 308.1297.

Ethyl-2,2-difluoro-3-(2-oxo-1-((S)-2-oxotetrahydrofuran-3-yl)azetidin-3-yl)propanoate (3t)

40.5 mg, colorless oil, yield: 70%. Eluent: pentane/ethyl acetate = 1/1.


Inseparable mixture of diastereomers. dr = 1:1.

¹H NMR (400 MHz, CDCl₃) δ 4.67 – 4.51 (m, 1H), 4.51 – 4.43 (m, 1H), 4.38 – 4.23 (m, 3H), 3.66 – 3.44 (m, 2H), 3.31 - 3.22 (m, 1H), 2.76 - 2.51 (m, 2H), 2.50 - 2.28 (m, 2H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 172.2, 168.4, 168.3, 163.5 (t, J = 32.3 Hz), 115.0 (t, J = 251.1 Hz), 65.6, 65.6, 63.30, 63.28, 50.5, 50.2, 44.6, 44.4, 43.4, 33.7 (t, J = 24.0 Hz), 33.6 (t, J = 24.0 Hz), 26.9, 26.8, 13.9.

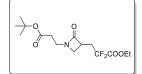
¹⁹F NMR (376 MHz, CDCl₃) δ -104.1 - -107.2 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₂H₁₆F₂NO₅ 292.0991; found: 292.0989.

Ethyl-2,2-difluoro-3-(1-(1-(4-fluorophenyl)-3-methoxy-3-oxopropyl)-2-oxoazetidin-3-yl)propanoa te (3u)

38.5 mg, colorless oil, yield: 50%. Eluent: pentane/ethyl acetate = 5/1.

Inseparable mixture of diastereomers. dr = 1:1.

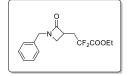

¹**H NMR (400 MHz, CDCl**₃) δ 7.29 – 7.25 (m, 2H), 7.06 (t, *J* = 8.6 Hz, 2H), 5.06 – 4.90 (m, 1H), 4.37 – 4.25 (m, 2H), 3.69 (d, *J* = 1.0 Hz, 3H), 3.46 – 3.32 (m, 2H), 3.31 – 3.17 (m, 1H), 3.10 (d, *J* = 3.3 Hz, 0.5H), 3.00 (dd, *J* = 5.6, 1.9 Hz, 0.5H), 2.88 – 2.79 (m, 1H), 2.72 – 2.55 (m, 1H), 2.34 – 2.13 (m, 1H), 1.38 – 1.31 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.68, 170.66, 167.4, 163.5 (t, *J* = 32.1 Hz), 162.5 (d, *J* = 247.5 Hz), 134.1 (d, *J* = 3.3 Hz), 134.0 (d, *J* = 3.3 Hz), 128.70 (d, *J* = 8.2 Hz), 128.69 (d, *J* = 8.2 Hz), 116.0 (d, *J* = 21.6 Hz), 115.1 (t, *J* = 252.1 Hz), 63.2, 54.2, 53.7, 52.08, 52.06, 45,0, 44.6, 42.3, 42.3, 38.0, 37.9, 33.7 (t, *J* = 24.0 Hz), 33.6 (t, *J* = 24.0 Hz), 13.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -104.2 - -107.3 (m, 2F), -113.5 (s, 1F).

HRMS (**ESI-TOF**) m/z: [M+H]⁺ Calcd. for C₁₈H₂₁F₃NO₅ 388.1366; found: 388.1372.

Mthyl-3-(1-(3-(tert-butoxy)-3-oxopropyl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (3v)

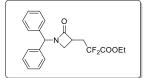

28.2 mg, colorless oil, yield: 42%. Eluent: pentane/ethyl acetate = 5/1.

¹**H** NMR (400 MHz, CDCl₃) δ 4.33 (q, J = 7.1 Hz, 2H), 3.53 – 3.43 (m, 3H), 3.41 – 3.33 (m, 1H), 3.15 (dd, J = 5.9, 1.7 Hz, 1H), 2.73 – 2.57 (m, 1H), 2.48 (t, J = 6.5 Hz, 2H), 2.37 – 2.21 (m, 1H), 1.46 (s, 9H), 1.36 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.5, 167.7, 163.6 (t, *J* = 32.5 Hz), 115.2 (t, *J* = 252.4 Hz), 81.3, 63.2, 46.6, 43.1, 37.8, 34.2, 33.8 (t, *J* = 24.0 Hz), 28.0, 13.9.

¹⁹F NMR (**376** MHz, CDCl₃) δ -104.6 (d, J = 261.0 Hz, 1F), -106.9 (d, J = 261.1 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for $C_{15}H_{24}F_2NO_5$ 336.1617; found: 336.1609.

Mthyl-3-(1-benzyl-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (3w)


22.3 mg, colorless oil, yield: 38%. Eluent: pentane/ethyl acetate = 10/1.

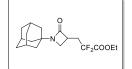
¹**H NMR (400 MHz, CDCl₃)** δ 7.39 – 7.29 (m, 3H), 7.25 – 7.21 (m, 2H), 4.38 (s, 2H), 4.32 (q, *J* = 7.1 Hz, 2H), 3.47 – 3.40 (m, 1H), 3.40 – 3.34 (m, 1H), 3.01 (dd, *J* = 6.0, 2.0 Hz, 1H), 2.78 – 2.61 (m, 1H), 2.39 – 2.18 (m, 1H), 1.34 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.7, 163.6 (t, *J* = 32.5 Hz), 135.2, 128.9, 128.2, 127.9, 115.2 (t, *J* = 251.0 Hz), 63.2, 46.1, 45.6, 43.2, 33.8 (t, *J* = 24.0 Hz), 13.9.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -104.5 (d, J = 261.4 Hz, 1F), -106.8 (d, J = 261.4 Hz, 1F). **HRMS (ESI-TOF) m/z:** [M+H]⁺ Calcd. for C₁₅H₁₈F₂NO₃ 298.1249; found: 298.1250.

Ethyl-3-(1-benzhydryl-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (3x)

40.5 mg, colorless oil, yield: 54%. Eluent: pentane/ethyl acetate = 5/1.

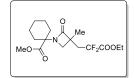

¹**H NMR (400 MHz, CDCl**₃) δ 7.41 – 7.27 (m, 6H), 7.22 – 7.14 (m, 4H), 6.15 (s, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 3.52 – 3.39 (m, 2H), 3.07 (d, *J* = 4.4 Hz, 1H), 2.85 – 2.56 (m, 1H), 2.47 – 2.16 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.7, 163.6 (t, *J* = 32.4 Hz), 138.5, 138.4, 128.81, 128.75, 128.1, 128.0, 127.9, 127.8, 115.2 (t, *J* = 251.4 Hz), 63.2, 59.2, 45.1, 42.3, 33.9 (t, *J* = 24.0 Hz), 13.9.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -104.5 (d, J = 261.5 Hz, 1F), -107.0 (d, J = 261.5 Hz, 1F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₁H₂₂F₂NO₃ 374.1562; found: 374.1559.

Ethyl-3-(1-((3s,5s,7s)-adamantan-1-yl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (3y)

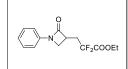

38.4 mg, colorless oil, yield: 56%. Eluent: pentane/ethyl acetate = 5/1.

¹**H NMR (400 MHz, CDCl₃)** δ 4.33 (q, J = 7.2 Hz, 2H), 3.40 (t, J = 5.5 Hz, 1H), 3.24 – 3.15 (m, 1H), 3.09 – 2.98 (m, 1H), 2.74 – 2.54 (m, 1H), 2.33 – 2.14 (m, 1H), 2.09 (s, 3H), 1.95 (d, J = 2.9 Hz, 6H), 1.73 – 1.62 (m, 6H), 1.36 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 163.7 (t, *J* = 32.5 Hz), 115.2 (t, *J* = 251.4 Hz), 63.2, 53.9, 41.8, 40.7, 36.1, 34.0 (t, *J* = 23.8 Hz), 29.0, 14.0.

¹⁹F NMR (**376 MHz, CDCl**₃) δ -104.5 (d, J = 260.0 Hz, 1F), -107.0 (d, J = 259.9 Hz, 1F). HRMS (**ESI-TOF**) m/z: $[M+H]^+$ Calcd. for $C_{18}H_{26}F_2NO_3$ 342.1875; found: 342.1872.

Methyl-1-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-3-methyl-2-oxoazetidin-1-yl)cyclohexane-1-carb oxylate (3z)

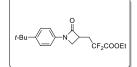

19.7 mg, colorless oil, yield: 27%. Eluent: pentane/ethyl acetate = 5/1.

¹**H NMR** (400 MHz, CDCl₃) δ 4.34 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 3.41 (d, J = 5.5 Hz, 1H), 3.12 (d, J = 5.5 Hz, 1H), 2.60 – 2.36 (m, 2H), 2.27 – 2.11 (m, 2H), 1.86 – 1.74 (m, 2H), 1.70 – 1.63 (m, 3H), 1.47 – 1.42 (m, 4H), 1.39 – 1.24 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 173.6, 172.0, 163.9 (t, J = 32.5 Hz), 115.9 (t, J = 251.4 Hz), 63.2, 62.9, 52.5, 50.8, 48.7, 37.8 (t, J = 22.8 Hz), 31.3, 24.74, 21.73, 19.3, 13.9.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -102.3 (d, J = 263.6 Hz, 1F), -103.5 (d, J = 263.6 Hz, 1F). HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd. for $C_{17}H_{26}F_2NO_5$ 362.1774; found: 362.1777.

Ethyl-2,2-difluoro-3-(2-oxo-1-phenylazetidin-3-yl)propanoate (4a)

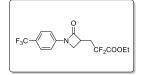

28.9 mg, colorless oil, yield: 51%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.38 – 7.31 (m, 4H), 7.15 – 7.07 (m, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.87 (t, *J* = 5.9 Hz, 1H), 3.63 – 3.56 (m, 1H), 3.52 (dd, *J* = 6.2, 2.6 Hz, 1H), 2.85 – 2.68 (m, 1H), 2.50 – 2.33 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.7, 163.5 (t, *J* = 32.3 Hz), 138.0, 129.2, 124.3, 116.4, 115.2 (t, *J* = 250.8 Hz), 63.3, 45.1, 42.3, 33.8 (t, *J* = 23.9 Hz), 14.0.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -104.4 (d, J = 261.9 Hz, 1F), -106.8 (d, J = 262.1 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₁₆F₂NO₃ 284.1093; found: 284.1099.

Ethyl-3-(1-(4-(tert-butyl)phenyl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (4b)

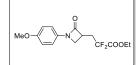

44.1 mg, colorless oil, yield: 65%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR** (**400 MHz, CDCl**₃) δ 7.38 – 7.34 (m, 2H), 7.30 – 7.26 (m, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.85 (t, *J* = 5.8 Hz, 1H), 3.62 – 3.53 (m, 1H), 3.49 (dd, *J* = 6.1, 2.4 Hz, 1H), 2.84 – 2.67 (m, 1H), 2.48 – 2.30 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 164.4, 163.5 (t, *J* = 32.4 Hz), 147.3, 135.6, 126.0, 116.1, 115.2, (t, *J* = 250.6 Hz), 63.3, 45.1, 42.3, 34.4, 33.9 (t, *J* = 24.0 Hz), 31.4, 14.0.

¹⁹F NMR (**376 MHz, CDCl**₃) δ -104.44 (d, J = 261.9 Hz, 1F), -106.83 (d, J = 262.0 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₈H₂₄F₂NO₃ 340.1719; found: 340.1720.

Ethyl-2,2-difluoro-3-(2-oxo-1-(4-(trifluoromethyl)phenyl)azetidin-3-yl)propanoate (4c)


34.3 mg, colorless oil, yield: 49%. Eluent: pentane/ethyl acetate = 50/1.

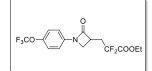
¹**H NMR (400 MHz, CDCl**₃) δ 7.60 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 3.92 (t, J = 6.0 Hz, 1H), 3.70 – 3.62 (m, 1H), 3.58 (dd, J = 6.2, 2.7 Hz, 1H), 2.86 – 2.67 (m, 1H), 2.53 – 2.37 (m, 1H), 1.38 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.05, 163.40 (t, *J* = 32.3 Hz), 140.60, 126.57 (q, *J* = 3.8 Hz), 126.05 (q, *J* = 32.9 Hz), 123.99 (q, *J* = 271.6 Hz), 116.27, 115.0 (t, *J* = 250. Hz), 63.39, 45.25, 42.78, 33.67 (t, *J* = 24.0 Hz), 13.93.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -62.10 (s, 3F), -104.4 (d, *J* = 263.0 Hz, 1F), -106.8 (d, *J* = 263.0 Hz, 1F). **HRMS (ESI-TOF) m/z:** [M+H]⁺ Calcd. for C₁₅H₁₅F₅NO₃ 352.0967; found: 352.0971.

Ethyl-2,2-difluoro-3-(1-(4-methoxyphenyl)-2-oxoazetidin-3-yl)propanoate (4d)

29.9 mg, colorless oil, yield: 48%. Eluent: pentane/ethyl acetate = 10/1.

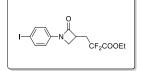

¹**H NMR (400 MHz, CDCl**₃) δ 7.31 – 7.27 (m, 2H), 6.91 – 6.84 (m, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.83 (t, *J* = 5.8 Hz, 1H), 3.79 (s, 3H), 3.61 – 3.53 (m, 1H), 3.48 (dd, *J* = 6.1, 2.3 Hz, 1H), 2.84 – 2.69 (m, 1H), 2.49 – 2.33 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.1, 163.5 (t, *J* = 32.4 Hz), 156.3, 131.7, 117.6, 115.2(t, *J* = 250.7 Hz), 114.4, 63.3, 55.5, 45.2, 42.3, 42.3, 33.9 (t, *J* = 24.0 Hz), 14.0.

¹⁹**F NMR** (**376 MHz, CDCl**₃) δ -104.5 (d, *J* = 261.8 Hz, 1F), -106.9 (d, *J* = 261.8 Hz, 1F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₁₈F₂NO₄ 314.1198; found: 314.1204.

Ethyl-2,2-difluoro-3-(2-oxo-1-(4-(trifluoromethoxy)phenyl)azetidin-3-yl)propanoate (4e)

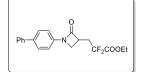


40.6 mg, colorless oil, yield: 55%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.39 – 7.35 (m, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.88 (t, *J* = 5.9 Hz, 1H), 3.67 – 3.59 (m, 1H), 3.54 (dd, *J* = 6.1, 2.6 Hz, 1H), 2.85 – 2.68 (m, 1H), 2.51 – 2.35 (m, 1H), 1.38 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.6, 163.4 (t, J = 32.3 Hz), 145.2 (q, J = 2.0 Hz), 136.7, 122.2, 117.4, 120.5 (q, J = 257.0 Hz), 115.1 (t, J = 250.8 Hz), 63.4, 45.3, 42.7 (t, J = 3.4 Hz), 33.7 (t, J = 24.0 Hz), 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.2 (s, 3F), -104.4 (d, J = 262.6 Hz, 1F), -106.8 (d, J = 262.6 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₁₅F₅NO₄ 368.0916; found: 368.0921.

Ethyl-2,2-difluoro-3-(1-(4-iodophenyl)-2-oxoazetidin-3-yl)propanoate (4f)


48 mg, colorless oil, yield: 59%. Eluent: pentane/ethyl acetate = 10/1.

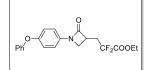
¹**H NMR (400 MHz, CDCl**₃) δ 7.64 (d, J = 8.7 Hz, 2H), 7.11 (d, J = 8.7 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 3.85 (t, J = 5.9 Hz, 1H), 3.64 – 3.57 (m, 1H), 3.50 (dd, J = 6.2, 2.6 Hz, 1H), 2.83 – 2.67 (m, 1H), 2.51 – 2.34 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.7, 163.4 (t, *J* = 32.4 Hz), 138.1, 137.6, 118.2, 115.1 (t, *J* = 250.8 Hz), 87.3, 63.4, 45.1, 42.7 (t, *J* = 3.4 Hz), 33.7 (t, *J* = 24.0 Hz), 14.0.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -104.4 (d, J = 262.6 Hz, 1F), -106.8 (d, J = 262.5 Hz, 1F). **HRMS (ESI-TOF) m/z:** [M+H]⁺ Calcd. for C₁₄H₁₅F₂INO₃ 410.0059; found: 410.0052.

Ethyl-3-(1-([1,1'-biphenyl]-4-yl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (4g)

38.1 mg, colorless oil, yield: 53%. Eluent: pentane/ethyl acetate = 10/1.

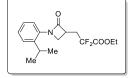

¹**H NMR (400 MHz, CDCl**₃) δ 7.56 (t, *J* = 7.6 Hz, 4H), 7.45 – 7.39 (m, 4H), 7.33 (t, *J* = 7.3 Hz, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.89 (t, *J* = 5.8 Hz, 1H), 3.66 – 3.58 (m, 1H), 3.55 (dd, *J* = 6.1, 2.3 Hz, 1H), 2.87 – 2.70 (m, 1H), 2.52 – 2.36 (m, 1H), 1.38 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.7, 163.5 (t, *J* = 32.3 Hz), 140.3, 137.25, 137.18, 128.9, 127.9, 127.3, 126.8, 116.8, 115.2 (t, *J* = 250.7 Hz), 63.4, 45.2, 42.5, 33.8 (t, *J* = 24.0 Hz), 14.0.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -104.4 (d, J = 262.1 Hz, 1F), -106.8 (d, J = 262.1 Hz, 1F).

HRMS (**ESI-TOF**) m/z: [M+H]⁺ Calcd. for C₂₀H₂₀F₂NO₃ 360.1406; found: 360.1403.

Ethyl-2,2-difluoro-3-(2-oxo-1-(4-phenoxyphenyl)azetidin-3-yl)propanoate (4h)

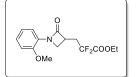

37.0 mg, colorless oil, yield: 50%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.35 – 7.29 (m, 4H), 7.09 (t, *J* = 7.4 Hz, 1H), 7.03 – 6.94 (m, 4H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.86 (t, *J* = 5.8 Hz, 1H), 3.64 – 3.56 (m, 1H), 3.51 (dd, *J* = 6.1, 2.4 Hz, 1H), 2.85 – 2.68 (m, 1H), 2.53 – 2.32 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.3, 163.5 (t, *J* = 32.3 Hz), 157.5, 153.4, 133.9, 129.8, 123.2, 120.0, 118.4, 117.8, 115.2, 63.3, 45.3, 42.5, 33.8 (t, *J* = 23.9 Hz), 14.0.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -104.4 (d, J = 262.1 Hz, 1F), -106.8 (d, J = 262.2 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₀H₂₀F₂NO₄ 376.1355; found: 376.1364.

Ethyl-2,2-difluoro-3-(1-(2-isopropylphenyl)-2-oxoazetidin-3-yl)propanoate (4i)

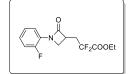


41.5 mg, colorless oil, yield: 65%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.31 (m, 1H), 7.28 – 7.23 (m, 2H), 7.22 – 7.17 (m, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.92 (t, *J* = 5.8 Hz, 1H), 3.65 – 3.58 (m, 2H), 3.25 – 3.12 (m, 1H), 2.89 – 2.72 (m, 1H), 2.53 – 2.36 (m, 1H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.25 (t, *J* = 6.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4, 163.6 (t, J = 32.4 Hz), 143.6, 134.3, 127.7, 126.6, 126.5, 124.5, 115.2 (t, J = 251.1 Hz), 63.3, 49.6, 42.7 (t, J = 3.4 Hz), 34.0 (t, J = 23.9 Hz), 28.4, 23.6, 23.6, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, J = 261.8 Hz, 1F), -106.8 (d, J = 261.8 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₂₂F₂NO₃ 326.1562; found: 326.1559.

Ethyl-2,2-difluoro-3-(1-(2-methoxyphenyl)-2-oxoazetidin-3-yl)propanoate (4j)

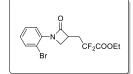

32.6 mg, colorless oil, yield: 52%. Eluent: pentane/ethyl acetate = 5/1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 7.9, 1.6 Hz, 1H), 7.13 – 7.05 (m, 1H), 6.97 – 6.86 (m, 2H), 4.36 (q, J = 7.1 Hz, 2H), 4.14 (dd, J = 7.0, 5.6 Hz, 1H), 3.85 – 3.78 (m, 4H), 3.60 – 3.53 (m, 1H), 2.86 – 2.68 (m, 1H), 2.52 – 2.33 (m, 1H), 1.38 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4, 163.6 (t, *J* = 32.4 Hz), 150.2, 126.8, 125.5, 122.1, 121.0, 115.3 (t, *J* = 251.1 Hz), 111.8, 63.2, 55.6, 50.3, 43.9, 34.0 (t, *J* = 23.9 Hz), 14.0.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -104.4 (d, J = 260.8 Hz, 1F), -106.9 (d, J = 260.8 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₁₈F₂NO₄ 314.1198; found: 314.1196.

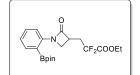
Ethyl-2,2-difluoro-3-(1-(2-fluorophenyl)-2-oxoazetidin-3-yl)propanoate (4k)


27.1 mg, colorless oil, yield: 45%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR (400 MHz, CDCl**₃) δ 8.01 – 7.95 (m, 1H), 7.13 – 7.04 (m, 3H), 4.36 (q, *J* = 7.1 Hz, 2H), 4.17 – 4.11 (m, 1H), 3.84 – 3.78 (m, 1H), 3.69 – 3.62 (m, 1H), 2.84 – 2.69 (m, 1H), 2.53 – 2.37 (m, 1H), 1.38 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.8, 163.5 (t, *J* = 32.3 Hz), 152.2 (d, *J* = 245.4 Hz), 125.9 (d, *J* = 10.4 Hz), 125.1 (d, *J* = 7.4 Hz), 124.7 (d, *J* = 3.5 Hz), 121.6 (d, *J* = 2.3 Hz), 116.3 (d, *J* = 19.4 Hz), 115.1 (t, *J* = 251.8 Hz), 63.3, 49.2 (d, *J* = 6.6 Hz), 44.4, 33.8 (t, *J* = 24.0 Hz), 13.9.

¹⁹F NMR (376 MHz, CDCl₃) δ -104.5 (d, J = 262.2 Hz, 1F), -106.7 (d, J = 262.2 Hz, 1F), -129.9 (S, 3F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₁₅F₃NO₃ 302.0999; found: 302.0999.

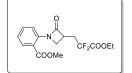

Ethyl-3-(1-(2-bromophenyl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (41)

39.4 mg, colorless oil, yield: 55%. Eluent: pentane/ethyl acetate = 10/1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.75 (dd, J = 8.1, 1.4 Hz, 1H), 7.55 (dd, J = 8.1, 1.1 Hz, 1H), 7.34 – 7.27 (m, 1H), 7.12 – 7.04 (m, 1H), 4.37 (q, J = 7.1 Hz, 2H), 4.23 (t, J = 6.0 Hz, 1H), 3.93 (dd, J = 6.4, 2.6 Hz, 1H), 3.69 – 3.56 (m, 1H), 2.88 – 2.70 (m, 1H), 2.56 – 2.39 (m, 1H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 163.5 (t, J = 32.3 Hz), 135.9, 134.1, 128.2, 127.5, 125.4, 115.1 (t, J = 251.2 Hz), 114.5, 63.3, 50.1, 43.6 (t, J = 3.4 Hz), 33.9 (t, J = 24.0 Hz), 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, J = 262.1 Hz, 1F), -106.7 (d, J = 262.0 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₁₅BrF₂NO₃ 362.0198; found: 362.0198.

Ethyl-2,2-difluoro-3-(2-oxo-1-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)azetidin-3-yl)propanoate (4m)

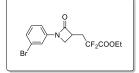
35.2 mg, colorless oil, yield: 43%. Eluent: pentane/ethyl acetate = 10/1.


¹**H NMR (400 MHz, CDCl**₃) δ 7.73 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.29 (d, *J* = 7.7 Hz, 1H), 7.23 – 7.18 (m, 1H), 4.36 (q, *J* = 7.1 Hz, 2H), 3.96 (t, *J* = 5.6 Hz, 1H), 3.72 (dd, *J* = 5.8, 2.3 Hz, 1H), 3.58 – 3.49 (m, 1H), 2.85 – 2.68 (m, 1H), 2.61 – 2.45 (m, 1H), 1.41 – 1.32 (m, 15H).

¹³C NMR (101 MHz, CDCl₃) δ 166.2, 163.7 (t, *J* = 32.5 Hz), 140.6, 136.1, 131.6, 125.6, 121.5, 115.4 (t, *J* = 249.7 Hz), 84.1, 63.2, 48.2, 42.5, 33.7 (t, *J* = 23.9 Hz), 25.1, 25.0, 14.0.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -104.4 (d, *J* = 260.8 Hz, 1F), -107.0 (d, *J* = 260.8 Hz, 1F).

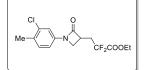
HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₀H₂₇BF₂NO₅ 410.1945; found: 410.1953.


Methyl-2-(3-(3-ethoxy-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)benzoate (4n)

27.2 mg, colorless oil, yield: 40%. Eluent: pentane/ethyl acetate = 10/1.

¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.74 (m, 1H), 7.53 – 7.48 (m, 1H), 7.45 – 7.41 (m, 1H), 7.27 – 7.21 (m, 1H), 4.36 (q, J = 7.1 Hz, 2H), 3.96 (t, J = 5.8 Hz, 1H), 3.90 (s, 3H), 3.66 (dd, J = 5.9, 2.7 Hz, 1H), 3.63 - 3.57 (m, 1H), 2.83 - 2.69 (m, 1H), 2.58 - 2.40 (m, 1H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 165.9, 163.6 (t, J = 32.4 Hz), 135.6, 132.5, 130.7, 125.5, 124.2, 122.0, 115.2 (t, J = 251.0 Hz), 63.3, 52.5, 47.9, 42.8 (t, J = 3.4 Hz), 33.6 (t, J = 24.0 Hz), 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.5 (d, J = 261.6 Hz, 1F), -106.8 (d, J = 261.6 Hz, 1F). **HRMS** (**ESI-TOF**) **m/z:** [M+H]⁺ Calcd. for C₁₆H₁₈F₂NO₅ 342.1148; found: 342.1152.

Ethyl-3-(1-(3-bromophenyl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (40)

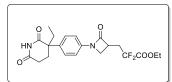

38.5 mg, colorless oil. yield: 54%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.49 (t, J = 1.8 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.26 – 7.17 (m, 2H), 4.36 (q, 2H), 4. J = 7.1 Hz, 2H), 3.87 (t, J = 5.9 Hz, 1H), 3.67 – 3.58 (m, 1H), 3.52 (dd, J = 6.2, 2.6 Hz, 1H), 2.84 – 2.68 (m, 1H), 2.51 - 2.33 (m, 1H), 1.38 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.8, 163.4 (t, *J* = 32.3 Hz), 139.1, 130.6, 127.2, 123.0, 119.3, 115.0 (t, J = 251.3 Hz), 115.0, 63.4, 45.3, 42.6 (t, J = 3.5 Hz), 33.7 (t, J = 24.0 Hz), 14.0.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -104.4 (d, J = 262.7 Hz, 1F), -106.8 (d, J = 262.8 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₁₅BrF₂NO₃ 362.0198; found: 362.0198.

Ethyl-3-(1-(3-chloro-4-methylphenyl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (4p)

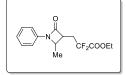

36.2 mg, colorless oil. yield: 55%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.33 (d, J = 1.4 Hz, 1H), 7.20 – 7.14 (m, 2H), 4.36 (q, J = 7.1 Hz, 2H), 3.84 (t, J = 5.9 Hz, 1H), 3.64 - 3.56 (m, 1H), 3.50 (dd, J = 6.1, 2.6 Hz, 1H), 2.84 - 2.68 (m, 1H), 2.51 -2.37 (m, 1H), 2.33 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.6, 163.5 (t, *J* = 32.3 Hz), 136.8, 134.8, 131.9, 131.3, 116.9, 115.1 (t, *J* = 251.8 Hz), 114.7, 63.3, 45.2, 42.5 (t, *J* = 3.4 Hz), 33.8 (t, *J* = 24.0 Hz), 19.5, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.5 (d, J = 262.5 Hz, 1F), -106.8 (d, J = 262.4 Hz, 1F).

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd. for $C_{15}H_{17}ClF_2NO_3$ 332.0860; found: 332.0862.

Ethyl-3-(1-(4-(3-ethyl-2,6-dioxopiperidin-3-yl)phenyl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (4q)



37.6 mg, colorless oil, yield: 44%. Eluent: pentane/ethyl acetate = 10/1.

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.35 (d, J = 8.7 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 3.88 (t, J = 5.9 Hz, 1H), 3.65 – 3.59 (m, 1H), 3.53 (d, J = 5.9 Hz, 1H), 2.85 – 2.69 (m, 1H), 2.65 – 2.57 (m, 1H), 2.50 – 2.32 (m, 3H), 2.27 – 2.17 (m, 1H), 2.08 – 1.97 (m, 1H), 1.95 – 1.85 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 175.0, 172.1, 164.7, 163.5 (t, J = 32.4 Hz), 137.3, 134.5, 127.2, 116.9, 115.1 (t, J = 251.3 Hz), 63.4, 50.7, 45.1, 42.6, 33.8 (t, J = 23.9 Hz), 32.9, 29.2, 27.0, 14.0, 9.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (dd, J = 262.5, 4.1 Hz, 1F), -106.8 (d, J = 262.5 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₁H₂₅F₂N₂O₅ 423.1726; found: 423.1724.

Ethyl-2,2-difluoro-3-(2-methyl-4-oxo-1-phenylazetidin-3-yl)propanoate (4r)

29.6 mg, colorless oil, yield: 50%. Eluent: pentane/ethyl acetate = 10/1.

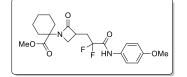
Inseparable mixture of diastereomers. dr = 1.5:1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.39 – 7.31 (m, 4H), 7.14 – 7.08 (m, 1H), 4.43 – 4.30 (m, 2.4H), 4.06 – 3.99 (m, 0.6H), 3.72 – 3.65 (m, 0.4H), 3.16 – 3.07 (m, 0.6H), 2.77 – 2.55 (m, 1H), 2.54 – 2.33 (m, 1H), 1.55 (d, *J* = 6.1 Hz, 1.8H), 1.46 (s, 1.2H), 1.41 – 1.34 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.9, 164.6, 137.2, 137.1, 129.3, 124.1, 124.2, 117.1, 115.3 (t, *J* = 251.7 Hz), 63.3, 54.8, 50.7, 50.2, 45.5, 17.7, 13.9, 163.5 (t, *J* = 32.4 Hz), 33.4 (t, *J* = 23.9 Hz), 29.0 (t, *J* = 24.3 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -103.2 - -107.4 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₅H₁₈F₂NO₃ 298.1249; found: 298.1251.

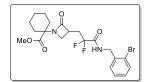

Methyl-1-(3-(3-(cyclopropylamino)-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)cyclohexane-1-c arboxylate (5a)

50.6 mg, colorless oil, yield: 71%. Eluent: pentane/ethyl acetate = 3/1.

¹**H NMR (400 MHz, CDCl**₃) δ 6.73 (s, 1H), 3.73 (s, 3H), 3.47 (t, *J* = 5.5 Hz, 1H), 3.34 (dd, *J* = 6.7, 4.2 Hz, 1H), 3.15 (dd, *J* = 5.5, 2.2 Hz, 1H), 2.83 – 2.74 (m, 1H), 2.67 – 2.52 (m, 1H), 2.52 – 2.36 (m, 1H), 2.24 (d, *J* = 13.8 Hz, 1H), 2.12 (d, *J* = 14.0 Hz, 1H), 1.87 – 1.76 (m, 2H), 1.66 (d, *J* = 9.4 Hz, 3H), 1.48 – 1.26 (m, 3H), 0.88 – 0.81 (m, 2H), 0.64 – 0.58 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 169.0, 165.0 (t, J = 28.4 Hz), 117.0 (t, J = 253.2 Hz), 63.2, 52.6, 44.4, 41.6 (t, J = 3.6 Hz), 33.6 (t, J = 24.3 Hz), 31.2, 31.2, 24.7, 22.6, 21.74, 21.69, 6.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.0 (d, J = 255.2 Hz, 1F), -105.8 (d, J = 255.2 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₂₅F₂N₂O₄ 359.1777; found: 359.1786.

Methyl-1-(3-(2,2-difluoro-3-((4-methoxyphenyl)amino)-3-oxopropyl)-2-oxoazetidin-1-yl)cyclohex ane-1-carboxylate (5b)

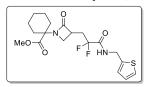


67.3 mg, colorless oil, yield: 79%. Eluent: pentane/ethyl acetate = 3/1.

¹**H NMR (400 MHz, CDCl**₃) δ 8.27 (s, 1H), 7.53 – 7.45 (m, 2H), 6.93 – 6.85 (m, 2H), 3.80 (s, 3H), 3.73 (s, 3H), 3.50 (t, J = 5.5 Hz, 1H), 3.44 – 3.36 (m, 1H), 3.17 (dd, J = 5.5, 2.3 Hz, 1H), 2.78 – 2.45 (m, 2H), 2.25 (d, J = 13.8 Hz, 1H), 2.13 (d, J = 14.2 Hz, 1H), 1.88 – 1.76 (m, 2H), 1.66 (d, J = 9.3 Hz, 3H), 1.48 – 1.26 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 169.0, 161.3 (t, J = 28.3 Hz), 157.3, 129.0, 122.0, 117.2 (t, J = 254.1 Hz), 114.3, 63.3, 55.5, 52.7, 44.4, 41.6, 33.9 (t, J = 24.5 Hz), 31.24, 31.21, 24.7, 21.8, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.0 (d, J = 253.9 Hz, 1F), -104.8 (d, J = 253.9 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₁H₂₇F₂N₂O₅ 425.1883; found: 425.1892.

Methyl-1-(3-(3-((2-bromobenzyl)amino)-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)cyclohexan e-1-carboxylate (5c)


64.5 mg, colorless oil, yield: 66%. Eluent: pentane/ethyl acetate = 3/1.

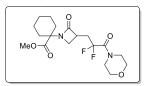
¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, J = 7.9 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.30 (dd, J = 12.5, 5.0 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 7.03 (s, 1H), 4.57 (d, J = 6.0 Hz, 2H), 3.72 (s, 3H), 3.39 – 3.25 (m, 2H), 3.05 (d, J = 3.1 Hz, 1H), 2.71 – 2.54 (m, 1H), 2.52 – 2.34 (m, 1H), 2.22 (d, J = 13.8 Hz, 1H), 2.06 (d, J = 13.8 Hz, 1H), 1.84 – 1.71 (m, 2H), 1.70 – 1.58 (m, 3H), 1.49 – 1.24 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 168.9, 163.6 (t, *J* = 28.8 Hz), 135.8, 133.0, 130.6, 129.8, 127.9, 123.8, 117.1 (t, *J* = 253.1 Hz), 63.2, 52.6, 44.2, 43.8, 41.6, 41.5, 33.7 (t, *J* = 24.2 Hz), 31.21, 31.17, 24.7, 21.74, 21.68.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -105.3 (d, J = 255.2 Hz, 1F), -106.0 (d, J = 254.9 Hz, 1F). **HRMS (ESI-TOF) m/z:** $[M+H]^+$ Calcd. for C₂₁H₂₆BrF₂N₂O₄ 487.1039; found: 487.1044.

Methyl-1-(3-(2,2-difluoro-3-oxo-3-((thiophen-2-ylmethyl)amino)propyl)-2-oxoazetidin-1-yl)cycloh exane-1-carboxylate (5d)

58.2 mg, colorless oil, yield: 70%. Eluent: pentane/ethyl acetate = 3/1.

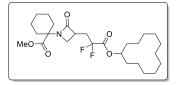

¹**H NMR (400 MHz, CDCl**₃) δ 7.27 – 7.25 (m, 1H), 7.03 – 7.00 (m, 1H), 6.99 – 6.95 (m, 1H), 6.88 (s, 1H), 4.67 (d, *J* = 5.8 Hz, 2H), 3.73 (s, 3H), 3.41 (t, *J* = 5.5 Hz, 1H), 3.37 – 3.31 (m, 1H), 3.11 (dd, *J* = 5.5, 2.3 Hz, 1H), 2.70 – 2.54 (m, 1H), 2.54 – 2.37 (m, 1H), 2.24 (d, *J* = 13.7 Hz, 1H), 2.10 (d, *J* = 13.9 Hz, 1H), 1.84 – 1.75 (m, 2H), 1.71 – 1.61 (m, 3H), 1.47 – 1.25 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 168.9, 163.4 (t, *J* = 28.9 Hz), 138.9, 127.1, 126.9, 125.8, 117.1 (t, *J* = 253.1 Hz), 63.3, 52.6, 44.3, 41.6, 38.2, 33.7 (t, *J* = 24.2 Hz), 31.2, 31.2, 24.7, 21.8, 21.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -105.6 (d, J = 7.7 Hz, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₂₅F₂N₂O₄S 415.1498; found: 415.1506.

Methyl-1-(3-(2,2-difluoro-3-morpholino-3-oxopropyl)-2-oxoazetidin-1-yl)cyclohexane-1-carboxyl ate (5e)

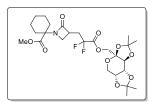

60.3 mg, colorless oil, yield: 78%. Eluent: pentane/ethyl acetate = 2/1.

¹**H NMR (400 MHz, CDCl**₃) δ 3.79 – 3.68 (m, 9H), 3.68 – 3.62 (m, 2H), 3.48 (dd, *J* = 6.5, 4.3 Hz, 1H), 3.45 – 3.36 (m, 1H), 3.23 – 3.14 (m, 1H), 2.74 (dd, *J* = 36.9, 15.9 Hz, 1H), 2.60 – 2.41 (m, 1H), 2.27 (d, *J* = 13.5 Hz, 1H), 2.14 (d, *J* = 13.7 Hz, 1H), 1.88 – 1.76 (m, 2H), 1.66 (d, *J* = 10.8 Hz, 3H), 1.50 – 1.27 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.6, 169.3, 161.4 (t, *J* = 29.1 Hz), 118.9 (t, *J* = 255.0 Hz), 66.7, 66.6, 63.2, 52.6, 46.4 (t, *J* = 6.1 Hz), 44.7, 43.3, 41.8, 41.7, 34.1 (t, *J* = 23.6 Hz), 31.22, 31.21, 24.7, 21.74, 21.68.

¹⁹F NMR (**376 MHz, CDCl**₃) δ -98.3 (d, J = 281.8 Hz, 1F), -99.1 (d, J = 282.0 Hz, 1F). HRMS (**ESI-TOF**) m/z: [M+H]⁺ Calcd. for $C_{18}H_{27}F_2N_2O_5$ 389.1883; found: 389.1893.

(1R,2R,5R)-2-isopropyl-5-methylcyclohexyl(2r,4S)-6-oxo-7-(2,2,2-trifluoroethyl)-5-oxaspiro[3.4]oc tane-2-carboxylate (5f)



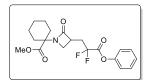
73.5 mg, colorless oil, yield: 76%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR (400 MHz, CDCl**₃) δ 5.20 – 5.08 (m, 1H), 3.73 (s, 3H), 3.49 (t, *J* = 5.4 Hz, 1H), 3.42 – 3.28 (m, 1H), 3.17 (d, *J* = 5.3 Hz, 1H), 2.77 – 2.56 (m, 1H), 2.43 – 2.22 (m, 2H), 2.09 (d, *J* = 13.8 Hz, 1H), 1.89 – 1.76 (m, 4H), 1.73 – 1.53 (m, 5H), 1.46 – 1.28 (m, 21H).

¹³C NMR (101 MHz, CDCl₃) δ 173.4, 168.9, 163.3 (t, *J* = 32.1 Hz), 115.4 (t, *J* = 250.9 Hz), 76.2, 63.3, 52.6, 44.3, 41.41, 41.38, 33.8 (t, *J* = 23.9 Hz), 31.2, 28.8, 28.7, 24.7, 24.0, 23.8, 23.2, 23.2, 23.1, 23.0, 21.8, 21.7, 20.7.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -104.7 (d, J = 259.4 Hz, 1F), -107.0 (d, J = 259.4 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₆H₄₂F₂NO₅ 486.3026; found: 486.3032. Methyl-1-(3-(2,2-difluoro-3-oxo-3-(((3a*S*,5a*R*,8a*R*,8b*S*)-2,2,7,7-tetramethyltetrahydro-3a*H*-bis([1, 3]dioxolo)[4,5-*b*:4',5'-*d*]pyran-3a-yl)methoxy)propyl)-2-oxoazetidin-1-yl)cyclohexane-1-carboxyla te (5g)

95.4 mg, colorless oil, yield: 85%. Eluent: pentane/ethyl acetate = 3/1. Inseparable mixture of diastereomers. dr = 1:1.


¹**H NMR (400 MHz, CDCl₃)** δ 4.63 (d, J = 7.9 Hz, 1H), 4.57 – 4.49 (m, 1H), 4.33 (d, J = 2.4 Hz, 1H), 4.27 – 4.15 (m, 2H), 3.93 (d, J = 12.8 Hz, 1H), 3.77 (d, J = 13.0 Hz, 1H), 3.73 (s, 3H), 3.51 – 3.45 (m, 1H), 3.44 – 3.34 (m, 1H), 3.19 – 3.10 (m, 1H), 2.80 – 2.59 (m, 1H), 2.49 – 2.34 (m, 1H), 2.29 (d, J = 13.8 Hz, 1H), 2.08 (d, J = 13.9 Hz, 1H), 1.87 – 1.76 (m, 2H), 1.66 (d, J = 9.9 Hz, 3H), 1.55 (s, 3H), 1.51 – 1.26 (m, 12H).

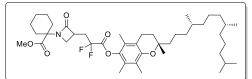
¹³C NMR (101 MHz, CDCl₃) δ 173.4, 168.7, 163.1 (t, *J* = 32.8 Hz), 115.4 (t, *J* = 251.8 Hz), 109.3, 109.2, 100.8, 70.7, 70.2, 70.2, 69.9, 66.6, 63.3, 61.4, 52.6, 44.3, 44.2, 41.4, 34.0 (t, *J* = 23.9 Hz), 31.2, 26.5, 25.9, 25.0, 24.7, 24.0, 21.8, 21.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -104.2 - -106.5 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₆H₃₈F₂NO₁₀ 562.2458; found: 562.2460.

Methyl-1-(3-(2,2-difluoro-3-oxo-3-phenoxypropyl)-2-oxoazetidin-1-yl)cyclohexane-1-carboxylate (5h)

49.3 mg, colorless oil, yield: 62%. Eluent: pentane/ethyl acetate = 5/1.

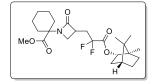

¹**H NMR (400 MHz, CDCl**₃) δ 7.43 (t, *J* = 7.9 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 1H), 7.18 (d, *J* = 7.9 Hz, 2H), 3.74 (s, 3H), 3.54 (t, *J* = 5.5 Hz, 1H), 3.51 – 3.42 (m, 1H), 3.23 (dd, *J* = 5.4, 1.9 Hz, 1H), 2.98 – 2.75 (m, 1H), 2.61 – 2.43 (m, 1H), 2.32 (d, *J* = 13.7 Hz, 1H), 2.09 (d, *J* = 13.9 Hz, 1H), 1.90 – 1.76 (m, 2H), 1.67 (d, *J* = 9.8 Hz, 3H), 1.51 – 1.26 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 168.7, 162.1 (t, *J* = 33.6 Hz), 149.7, 129.8, 126.9, 120.8, 115.4 (t, *J* = 251.2 Hz), 63.4, 52.7, 44.3, 41.4, 34.0 (t, *J* = 23.7 Hz), 31.3, 31.2, 24.7, 21.8, 21.7.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -104.0 (d, J = 262.6 Hz, 1F), -106.4 (d, J = 262.6 Hz, 1F).

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd. for $C_{20}H_{24}F_2NO_5$ 396.1617; found: 396.1617.

Methyl-1-(3-(2,2-difluoro-3-oxo-3-(((S)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)ch roman-6-yl)oxy) propyl)-2-oxoazetidin-1-yl) cyclohexane-1-carboxylate (5i)


89.3 mg, colorless oil, yield: 61%. Eluent: pentane/ethyl acetate = 5/1.

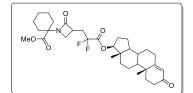
¹**H NMR (400 MHz, CDCl₃)** δ 3.74 (s, 3H), 3.59 – 3.47 (m, 2H), 3.27 (d, *J* = 3.9 Hz, 1H), 2.96 – 2.79 (m, 1H), 2.64 – 2.46 (m, 3H), 2.32 (d, *J* = 13.7 Hz, 1H), 2.14 – 2.07 (m, 4H), 2.02 (s, 3H), 1.98 (s, 3H), 1.88 – 1.75 (m, 4H), 1.67 (d, *J* = 10.0 Hz, 3H), 1.57 – 1.24 (m, 21H), 1.16 – 1.04 (m, 6H), 0.89 – 0.82 (m, 13H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 168.9, 162.3 (t, *J* = 32.7 Hz), 150.1, 139.5, 126.1, 124.5, 123.6, 117.8, 115.8 (t, *J* = 251.4 Hz), 75.3, 63.4, 52.6, 44.6, 41.4, 39.4, 37.5, 37.44, 37.42, 37.3, 33.84 (t, *J* = 23.4 Hz), 32.81, 32.7, 31.28, 31.26, 31.0, 28.0, 24.8, 24.7, 24.4, 22.7, 22.6, 21.8, 21.7, 21.0, 20.6, 19.8, 19.7, 12.8, 11.9, 11.8.

¹⁹**F** NMR (**376** MHz, CDCl₃) δ -103.9 (d, J = 264.3 Hz, 1F), -106.4 (d, J = 264.3 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₄₃H₆₈F₂NO₆ 732.5009; found: 732.5013.

Methyl-1-(3-(2,2-difluoro-3-oxo-3-(((1*R*,2*R*,4*R*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)prop yl)-2-oxoazetidin-1-yl)cyclohexane-1-carboxylate (5j)

71.2 mg, colorless oil, yield: 78%. Eluent: pentane/ethyl acetate = 10/1. Inseparable mixture of diastereomers. dr = 1:1.


¹**H NMR (400 MHz, CDCl₃)** δ 4.81 (d, *J* = 4.5 Hz, 1H), 3.73 (s, 3H), 3.48 (t, *J* = 5.2 Hz, 1H), 3.40 – 3.30 (m, 1H), 2.72 – 2.56 (m, 1H), 2.42 – 2.24 (m, 2H), 2.09 (d, *J* = 13.8 Hz, 1H), 1.88 – 1.77 (m, 5H), 1.74 – 1.57 (m, 5H), 1.49 – 1.26 (m, 3H), 1.21 – 1.09 (m, 2H), 0.99 (s, 3H), 0.88 (s, 3H), 0.86 (s, 3H).

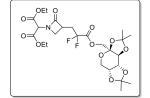
¹³C NMR (101 MHz, CDCl₃) δ 173.5, 168.9, 163.2 (t, *J* = 32.3 Hz), 115.4 (t, *J* = 251.8 Hz), 84.1, 84.0, 63.3, 52.6, 49.1, 49.1, 47.0, 45.0, 44.4, 41.4, 38.4, 38.3, 33.8 (t, *J* = 23.9 Hz), 33.4, 31.2, 26.9, 24.7, 21.8, 21.7, 20.0, 19.7, 11.3, 11.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -104.3 – -107.6 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₄H₃₆F₂NO₅ 456.2556; found: 456.2548.

Methyl-1-(3-(3-(((10*R*,13*S*,17*S*)-10,13-dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradeca hydro-1H-cyclopenta[a]phenanthren-17-yl)oxy)-2,2-difluoro-3-oxopropyl)-2-oxoazetidin-1-yl)cycl ohexane-1-carboxylate (5k)

66.9 mg, colorless oil, yield: 57%. Eluent: pentane/ethyl acetate = 5/1.


Inseparable mixture of diastereomers. dr = 1:1.

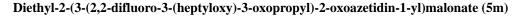
¹H NMR (400 MHz, CDCl₃) δ 5.73 (s, 1H), 4.81 – 4.70 (m, 1H), 3.74 (s, 3H), 3.52 – 3.45 (m, 1H), 3.41 – 3.31 (m, 1H), 3.18 – 3.14 (m, 1H), 2.75 – 2.59 (m, 1H), 2.44 – 2.21 (m, 7H), 2.12 – 2.00 (m, 2H), 1.90 – 1.79 (m, 4H), 1.73 – 1.57 (m, 8H), 1.49 – 1.28 (m, 6H), 1.20 (s, 3H), 1.16 – 1.03 (m, 2H), 1.00 – 0.91 (m, 1H), 0.89 (s, 3H).

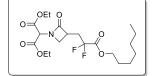
¹³C NMR (101 MHz, CDCl₃) δ 199.3, 173.4, 170.6, 168.9, 163.6 (t, *J* = 32.4 Hz), 124.0, 115.4 (t, *J* = 250.9 Hz), 85.3, 85.2, 63.3, 53.6, 52.6, 50.1, 44.3, 42.9, 42.8, 41.4, 38.6, 36.5, 35.7, 35.3, 33.9, 33.8 (t, *J*

= 23.7 Hz), 32.6, 31.4, 31.2, 27.20, 27.17, 24.7, 23.4, 21.8, 21.7, 20.4, 17.4, 12.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.0 – -107.3 (m, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₃₃H₄₆F₂NO₆ 590.3288; found: 590.3290.

 $\label{eq:linear} Diethyl-2-(3-(2,2-difluoro-3-oxo-3-(((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methoxy)propyl)-2-oxoazetidin-1-yl)malonate (5l)$

87.1 mg, colorless oil, yield: 75%. Eluent: pentane/ethyl acetate = 5/1.

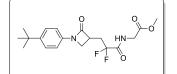

Inseparable mixture of diastereomers. dr = 1:1.


¹**H NMR (400 MHz, CDCl**₃) δ 5.18 (s, 1H), 4.63 (dd, *J* = 7.9, 2.5 Hz, 1H), 4.53 (dd, *J* = 11.5, 6.9 Hz, 1H), 4.35 – 4.14 (m, 7H), 3.93 (dd, *J* = 12.9, 1.3 Hz, 1H), 3.86 – 3.73 (m, 2H), 3.58 – 3.47 (m, 2H), 2.79 – 2.62 (m, 1H), 2.51 – 2.35 (m, 1H), 1.55 (s, 3H), 1.48 (s, 3H), 1.41 (s, 3H), 1.36 – 1.29 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 168.1, 164.8, 164.8, 163.0 (t, *J* = 32.6 Hz), 115.1 (t, *J* = 251.2 Hz), 109.3, 109.2, 100.8, 70.7, 70.2, 69.9, 66.7, 66.65, 62.62, 62.56, 61.4, 56.7, 46.4, 43.7, 33.8 (t, *J* = 23.9 Hz), 26.5, 25.8, 25.0, 24.0, 14.0.

¹⁹F NMR (376 MHz, CDCl₃) δ -104.2 - -106.7 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₅H₃₆F₂NO₁₆ 580.2200; found: 580.2196.

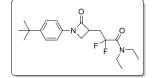

72.3 mg, colorless oil, yield: 83%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR (400 MHz, CDCl**₃) δ 5.18 (s, 1H), 4.33 – 4.20 (m, 6H), 3.82 (t, *J* = 5.9 Hz, 1H), 3.57 – 3.48 (m, 2H), 2.77 – 2.59 (m, 1H), 2.49 – 2.31 (m, 1H), 1.76 – 1.67 (m, 2H), 1.41 – 1.25 (m, 14H), 0.89 (t, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.2, 164.9, 164.8, 163.6 (t, J = 32.3 Hz), 115.1 (t, J = 251.1 Hz), 67.3, 62.62, 62.57, 56.7, 46.5, 43.8, 33.7 (t, J = 24.0 Hz), 31.6, 28.8, 28.2, 25.6, 22.5, 14.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.6 (d, J = 261.7 Hz, 1F), -106.8 (d, J = 261.7 Hz, 1F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₀H₃₂F₂NO₇ 436.2141; found: 436.2138.

Methyl-(3-(1-(4-(tert-butyl)phenyl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoyl)glycinate (5n)


36.6 mg, colorless oil, yield: 48%. Eluent: pentane/ethyl acetate = 20/1.

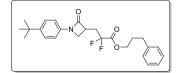
¹**H NMR (400 MHz, CDCl**₃) δ 7.38 – 7.33 (m, 2H), 7.29 – 7.26 (m, 2H), 7.07 (s, 1H), 4.18 – 4.03 (m, 2H), 3.85 (t, *J* = 5.9 Hz, 1H), 3.80 (s, 3H), 3.66 – 3.57 (m, 1H), 3.49 (dd, *J* = 6.2, 2.6 Hz, 1H), 2.84 – 2.65

(m, 1H), 2.57 – 2.41 (m, 1H), 1.30 (s, 10H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 164.6, 163.8 (t, J = 32.1 Hz), 147.3, 135.6, 126.0, 116.9 (t, J = 250.8 Hz), 116.1, 52.8, 45.1, 42.4, 41.0, 34.4, 33.7 (t, J = 24.3 Hz), 31.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.9 (d, J = 257.3 Hz, 1F), -105.9 (d, J = 257.2 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₉H₂₅F₂N₂O₄ 383.1777; found: 383.1783.

3-(1-(4-(tert-Butyl)phenyl)-2-oxoazetidin-3-yl)-N,N-diethyl-2,2-difluoropropanamide (50)

38.9 mg, colorless oil, yield: 53%. Eluent: pentane/ethyl acetate = 5/1.

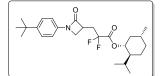

¹**H NMR (400 MHz, CDCl**₃) δ 7.37 – 7.34 (m, 2H), 7.31 – 7.27 (m, 2H), 3.83 (t, *J* = 5.8 Hz, 1H), 3.64 – 3.57 (m, 1H), 3.57 – 3.50 (m, 3H), 3.40 (q, *J* = 7.1 Hz, 2H), 2.87 – 2.72 (m, 1H), 2.63 – 2.46 (m, 1H), 1.30 (s, 9H), 1.22 (t, *J* = 7.0 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.3, 162.1 (t, *J* = 28.7 Hz), 147.0, 135.7, 126.0, 119.0 (t, *J* = 255.8 Hz), 116.1, 45.7, 43.0, 41.8, 41.5, 34.43, 34.35 (t, *J* = 24.2 Hz), 31.4, 14.3, 12.3.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -98.8 (d, *J* = 279.8 Hz, 1F), -99.6 (d, *J* = 279.8 Hz, 1F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₀H₂₉F₂N₂O₂ 367.2192; found: 367.2202.

3-Phenylpropyl 3-(1-(4-(tert-butyl)phenyl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (5p)



48.9 mg, colorless oil, yield: 57%. Eluent: pentane/ethyl acetate = 5/1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.5 Hz, 2H), 7.31 – 7.25 (m, 4H), 7.22 – 7.16 (m, 3H), 4.29 (t, J = 6.5 Hz, 2H), 3.82 (t, J = 5.8 Hz, 1H), 3.59 – 3.52 (m, 1H), 3.47 (dd, J = 6.1, 2.4 Hz, 1H), 2.82 – 2.66 (m, 3H), 2.45 – 2.27 (m, 1H), 2.13 – 2.01 (m, 2H), 1.30 (s, 10H).

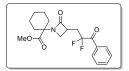
¹³C NMR (101 MHz, CDCl₃) δ 164.4, 163.6 (t, J = 32.4 Hz), 147.3, 140.5, 135.6, 128.6, 128.4, 126.3, 126.0, 116.1, 115.2 (t, J = 251.0 Hz), 66.4, 45.1, 42.3, 34.5, 33.8 (t, J = 23.9 Hz), 31.9, 31.4, 29.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.3 (d, J = 262.3 Hz, 1F), -106.7 (d, J = 262.3 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₅H₃₀F₂NO₃ 430.2188; found: 430.2196.

(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl-3-(1-(4-(*tert*-butyl)phenyl)-2-oxoazetidin-3-yl)-2,2-difl uoropropanoate (5q)

53.9 mg, colorless oil, yield: 60%. Eluent: pentane/ethyl acetate = 10/1.

Inseparable mixture of diastereomers. dr = 1:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.38 – 7.34 (m, 2H), 7.30 – 7.26 (m, 2H), 4.89 – 4.79 (m, 1H), 3.84 (t, J = 5.5 Hz, 1H), 3.61 – 3.54 (m, 1H), 3.54 – 3.49 (m, 1H), 2.84 – 2.67 (m, 1H), 2.46 – 2.29 (m, 1H),

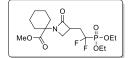

2.07 – 2.00 (m, 1H), 1.89 – 1.81 (m, 1H), 1.77 – 1.67 (m, 2H), 1.55 – 1.47 (m, 2H), 1.30 (s, 10H), 1.15 – 1.01 (m, 2H), 0.97 – 0.90 (m, 7H), 0.81 – 0.74 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 164.5, 163.2 (t, *J* = 32.1 Hz), 147.3, 135.6, 126.0, 116.1, 115.3 (t, *J* = 251.1 Hz), 77.9, 46.8, 46.8, 45.1, 42.3, 40.34, 40.31, 34.4, 34.0, 33.8 (t, *J* = 23.8 Hz), 31.4, 31.4, 26.2, 23.3, 23.3, 21.9, 20.7, 16.2, 16.1.

¹⁹F NMR (**376** MHz, CDCl₃) δ -104.2 - -107.2 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₆H₃₈F₂NO₃ 450.2814; found: 450.2823.

Methyl-1-(3-(2,2-difluoro-3-oxo-3-phenylpropyl)-2-oxoazetidin-1-yl)cyclohexane-1-carboxylate (6a)



35.9 mg, colorless oil, yield: 47%. Eluent: pentane/ethyl acetate = 10/1.

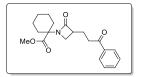
¹**H NMR (400 MHz, CDCl₃)** δ 8.10 (d, J = 7.5 Hz, 2H), 7.69 – 7.62 (m, 1H), 7.51 (t, J = 7.8 Hz, 2H), 3.73 (s, 3H), 3.51 (t, J = 5.4 Hz, 1H), 3.48 – 3.41 (m, 1H), 3.24 – 3.18 (m, 1H), 2.90 – 2.74 (m, 1H), 2.59 – 2.42 (m, 1H), 2.29 (d, J = 13.8 Hz, 1H), 2.12 (d, J = 14.0 Hz, 1H), 1.87 – 1.77 (m, 2H), 1.66 (d, J = 9.6 Hz, 3H), 1.49 – 1.28 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 188.7 (t, J = 30.8 Hz), 173.6, 169.2, 134.6, 131.6, 130.2 (t, J = 3.2 Hz), 128.8, 119.1 (t, J = 254.2 Hz), 63.3, 52.6, 44.6, 41.6, 33.4 (t, J = 23.4 Hz), 31.3, 24.7, 21.8, 21.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -98.8 (d, J = 288.2 Hz, 1F), -100.2 (d, J = 288.2 Hz, 1F). HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₀H₂₄F₂NO₄ 380.1688; found: 380.1695.

Methyl-1-(3-(2-(diethoxyphosphoryl)-2,2-difluoroethyl)-2-oxoazetidin-1-yl)cyclohexane-1-carbox ylate (6b)

31.5 mg, colorless oil, yield: 38%. Eluent: pentane/ethyl acetate = 2/1.

¹**H NMR (400 MHz, CDCl**₃) δ 4.33 – 4.24 (m, 4H), 3.73 (s, 3H), 3.53 – 3.45 (m, 2H), 3.20 – 3.15 (m, 1H), 2.75 – 2.57 (m, 1H), 2.46 – 2.23 (m, 2H), 2.11 (d, *J* = 14.0 Hz, 1H), 1.87 – 1.76 (m, 2H), 1.71 – 1.62 (m, 3H), 1.52 – 1.24 (m, 9H).

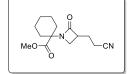

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 169.2, 123.7, 121.6, 121.1, 120.1 (td, *J* = 260.5, 215.6 Hz), 119.0, 118.6, 116.4, 64.7 (d, *J* = 6.7 Hz), 64.6 (d, *J* = 6.9 Hz), 63.2, 52.6, 44.7, 41.1 (d, *J* = 4.7 Hz), 33.4 (td, *J* = 21.2, 15.4 Hz), 24.7, 21.8, 21.7, 16.4, 16.4.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -110.7 (dd, *J* = 297.4, 107.3 Hz, 1F), -112.2 (dd, *J* = 297.4, 105.8 Hz, 1F).

³¹**P** NMR (162 MHz, CDCl₃) δ 6.3 (t, *J* = 106.6 Hz).

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₇H₂₉F₂NO₆P 412.1695; found: 412.1693.

Methyl-1-(2-oxo-3-(3-oxo-3-phenylpropyl)azetidin-1-yl)cyclohexane-1-carboxylate (6c)

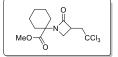


35.5 mg, colorless oil, yield: 52%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.02 – 7.96 (m, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 3.72 (s, 3H), 3.41 (t, J = 5.3 Hz, 1H), 3.32 – 3.16 (m, 3H), 3.03 (dd, J = 5.2, 2.5 Hz, 1H), 2.29 – 2.11 (m, 4H), 1.86 – 1.76 (m, 2H), 1.65 (d, J = 9.7 Hz, 3H), 1.49 – 1.40 (m, 2H), 1.36 – 1.26 (m, 1H). ¹³**C NMR** (**101 MHz**, **CDCl**₃) δ 199.5, 173.7, 171.1, 136.8, 133.1, 128.6, 128.1, 63.0, 52.5, 47.1, 43.7, 35.7, 31.3, 24.8, 23.5, 21.83, 21.77.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₂₀H₂₆NO₄ 344.1856; found: 344.1865.

Methyl-1-(3-(2-cyanoethyl)-2-oxoazetidin-1-yl)cyclohexane-1-carboxylate (6d)

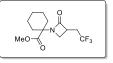

34.3 mg, colorless oil, yield: 65%. Eluent: pentane/ethyl acetate = 10/1.

¹**H NMR (400 MHz, CDCl**₃) δ 3.74 (s, 3H), 3.46 (t, *J* = 5.4 Hz, 1H), 3.28 – 3.20 (m, 1H), 3.13 – 3.07 (m, 1H), 2.66 – 2.49 (m, 2H), 2.32 (d, *J* = 13.9 Hz, 1H), 2.22 – 2.03 (m, 3H), 1.88 – 1.76 (m, 2H), 1.67 (d, *J* = 10.0 Hz, 3H), 1.47 – 1.29 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.6, 169.7, 119.1, 63.3, 52.6, 46.5, 43.3, 31.2, 31.1, 25.0, 24.7, 21.8, 21.7, 15.2.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₄H₂₁N₂O₃ 265.1547; found: 265.1547.

Methyl-1-(2-oxo-3-(2,2,2-trichloroethyl)azetidin-1-yl)cyclohexane-1-carboxylate (6e)


51.5 mg, colorless oil, yield: 76%. Eluent: pentane/ethyl acetate = 10/1.

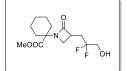
¹**H NMR (400 MHz, CDCl**₃) δ 3.75 (s, 3H), 3.67 – 3.57 (m, 2H), 3.39 (dd, *J* = 5.6, 2.4 Hz, 1H), 3.31 (dd, *J* = 15.0, 1.9 Hz, 1H), 3.04 (dd, *J* = 15.0, 11.2 Hz, 1H), 2.33 (d, *J* = 13.8 Hz, 1H), 2.08 (d, *J* = 13.9 Hz, 1H), 1.90 – 1.78 (m, 2H), 1.72 – 1.63 (m, 3H), 1.50 – 1.29 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.5, 168.5, 98.4, 63.5, 54.0, 52.7, 46.0, 45.6, 31.3, 31.2, 24.7, 21.81, 21.7.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₁₉Cl₃NO₃ 342.0425; found: 342.0430.

Methyl-1-(2-oxo-3-(2,2,2-trifluoroethyl)azetidin-1-yl)cyclohexane-1-carboxylate (6f)

42.2 mg, colorless oil, yield: 72%. Eluent: pentane/ethyl acetate = 10/1.


¹**H NMR** (400 MHz, CDCl₃) δ 3.74 (s, 3H), 3.51 (t, *J* = 5.5 Hz, 1H), 3.41 – 3.33 (m, 1H), 3.18 (dd, *J* = 5.5, 2.0 Hz, 1H), 2.79 – 2.63 (m, 1H), 2.48 – 2.28 (m, 2H), 2.08 (d, *J* = 14.0 Hz, 1H), 1.89 – 1.77 (m, 2H), 1.67 (d, *J* = 9.9 Hz, 3H), 1.48 – 1.29 (m, 3H).

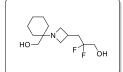
¹³C NMR (101 MHz, CDCl₃) δ 173.4, 168.2, 126.4 (q, *J* = 276.5 Hz), 63.4, 52.6, 43.9, 41.7 (q, *J* = 2.5 Hz), 33.3 (q, *J* = 29.8 Hz), 31.2, 31.2, 24.6, 21.8, 21.7.

¹⁹F NMR (**376** MHz, CDCl₃) δ -65.6.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd. for C₁₃H₁₉F₃NO₃ 294.1312; found: 294.1321.

A methyl 1-(3-(2,2-difluoro-3-hydroxypropyl)-2-oxoazetidin-1-yl)cyclohexane-1-carboxylate (7)

79.4 mg, colorless oil, yield: 87%. Eluent: pentane/ethyl acetate = 2/1.

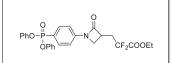

¹**H NMR (400 MHz, CDCl₃)** δ 3.89 – 3.70 (m, 6H), 3.52 (t, *J* = 5.5 Hz, 1H), 3.42 – 3.34 (m, 1H), 3.12 (dd, *J* = 5.4, 2.5 Hz, 1H), 2.59 – 2.42 (m, 1H), 2.33 – 2.19 (m, 2H), 2.08 (d, J = 14.1 Hz, 1H), 1.89 – 1.78 (m, 2H), 1.67 (d, *J* = 12.0 Hz, 3H), 1.48 – 1.28 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.4, 171.0, 122.6 (t, *J* = 243.0 Hz), 63.6 (t, *J* = 33.4 Hz), 63.4, 52.7, 41.6 (dd, *J* = 7.0, 2.5 Hz), 44.3, 33.0 (t, *J* = 25.3 Hz), 31.2, 24.6, 21.8, 21.7.

¹⁹**F NMR (376 MHz, CDCl₃)** δ -103.2 (d, J = 253.2 Hz, 1F), -108.6 (d, J = 253.1 Hz, 1F).

HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for $C_{14}H_{22}F_2NO_4$ 306.1511; found: 306.1521.

2,2-difluoro-3-(1-(1-(hydroxymethyl)cyclohexyl)azetidin-3-yl)propan-1-ol (8)


66.2 mg, colorless oil, yield: 84%. Eluent: pentane/ethyl acetate = 1/1.

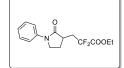
¹**H NMR (400 MHz, CDCl₃)** δ 4.16 (s, 4H), 3.86 – 3.59 (m, 4H), 3.49 – 3.39 (m, 2H), 2.80 (dd, J = 11.4, 3.9 Hz, 1H), 2.68 (dd, J = 11.3, 7.7 Hz, 1H), 2.14 – 2.03 (m, 1H), 2.01 – 1.88 (m, 2H), 1.54 – 1.38 (m, 8H).

¹³C NMR (101 MHz, CDCl₃) δ 123.8 (t, *J* = 242.9 Hz), 67.2, 64.4, 63.8 (t, *J* = 32.6 Hz), 56.0, 45.0, 34.4, 32.9 (t, *J* = 24.1 Hz), 32.0, 31.6, 25.8, 21.5, 21.4.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -104.0 (d, *J* = 250.0 Hz, 1F), -105.9 (d, *J* = 250.0 Hz, 1F). **HRMS (ESI-TOF) m/z:** [M+H]+ Calcd. for C₁₃H₂₄F₂NO₂ 264.1770; found: 264.1774.

Ethyl 3-(1-(4-(diphenoxyphosphoryl)phenyl)-2-oxoazetidin-3-yl)-2,2-difluoropropanoate (11)

78.3 mg, colorless oil, yield: 76%. Eluent: pentane/ethyl acetate = 3/1.


¹**H NMR (400 MHz, CDCl₃)** δ 7.95 – 7.89 (m, 2H), 7.46 – 7.39 (m, 2H), 7.28 (t, *J* = 7.9 Hz, 4H), 7.21 – 7.10 (m, 6H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.90 (t, *J* = 6.0 Hz, 1H), 3.69 – 3.59 (m, 1H), 3.59 – 3.52 (m, 1H), 2.84 – 2.66 (m, 1H), 2.53 – 2.35 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H).

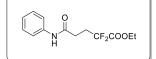
¹³C NMR (101 MHz, CDCl₃) δ 165.2, 163.4 (t, *J* = 32.2 Hz), 150.3 (d, *J* = 7.4 Hz), 141.8 (d, *J* = 3.6 Hz), 133.9 (d, *J* = 11.3 Hz), 129.8, 125.2 (d, *J* = 0.9 Hz), 121.7 (d, *J* = 197.9 Hz), 120.6 (d, *J* = 4.5 Hz), 116.2 (d, *J* = 16.3 Hz), 115.0 (t, *J* = 251.3 Hz), 63.4, 45.2, 42.8 (t, *J* = 3.3 Hz), 33.6 (t, *J* = 24.0 Hz), 13.9.

¹⁹F NMR (**376** MHz, CDCl₃) δ -104.4 (d, J = 263.1 Hz, 1F), -106.7 (d, J = 263.2 Hz, 1F). ³¹P NMR (**162** MHz, CDCl₃) δ 11.3.

HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C₂₆H₂₅F₂NO₆P 516.1382; found: 516.1374.

Ethyl-2,2-difluoro-3-(2-oxo-1-phenylpyrrolidin-3-yl)propanoate (14)

36.5 mg, colorless oil, yield: 62%. Eluent: pentane/ethyl acetate = 10/1.


¹**H** NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.9 Hz, 2H), 7.37 (t, J = 8.0 Hz, 2H), 7.16 (t, J = 7.4 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 3.88 – 3.74 (m, 2H), 3.02 – 2.86 (m, 2H), 2.59 – 2.50 (m, 1H), 2.22 – 2.05 (m, 1H), 2.01 – 1.89 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H).

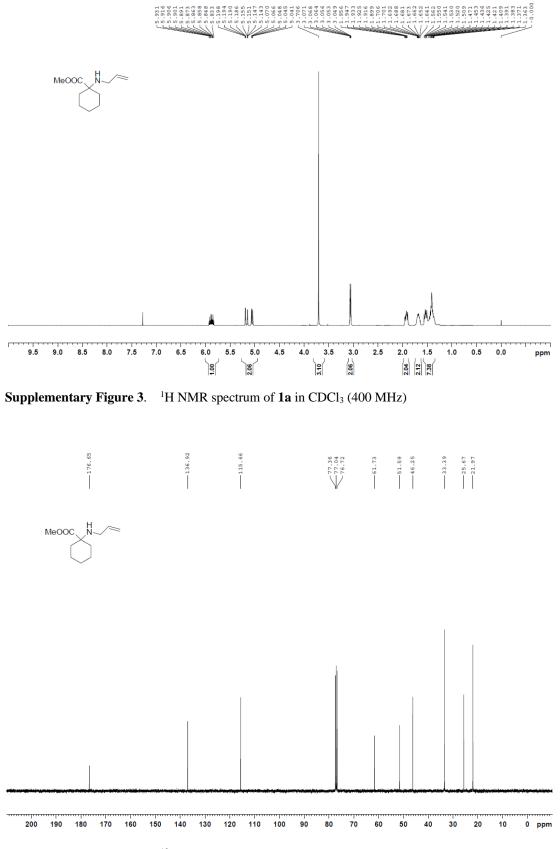
¹³C NMR (101 MHz, CDCl₃) δ 173.4, 163.9 (t, *J* = 32.5 Hz), 139.2, 128.9, 124.8, 119.8, 115.9 (t, *J* = 250.5 Hz), 63.1, 46.8, 38.0, 36.1 (t, *J* = 23.0 Hz), 26.2, 14.0.

¹⁹**F NMR (376 MHz, CDCl**₃) δ -103.5 (d, J = 259.2 Hz, 1F), -107.1 (d, J = 259.1 Hz, 1F).

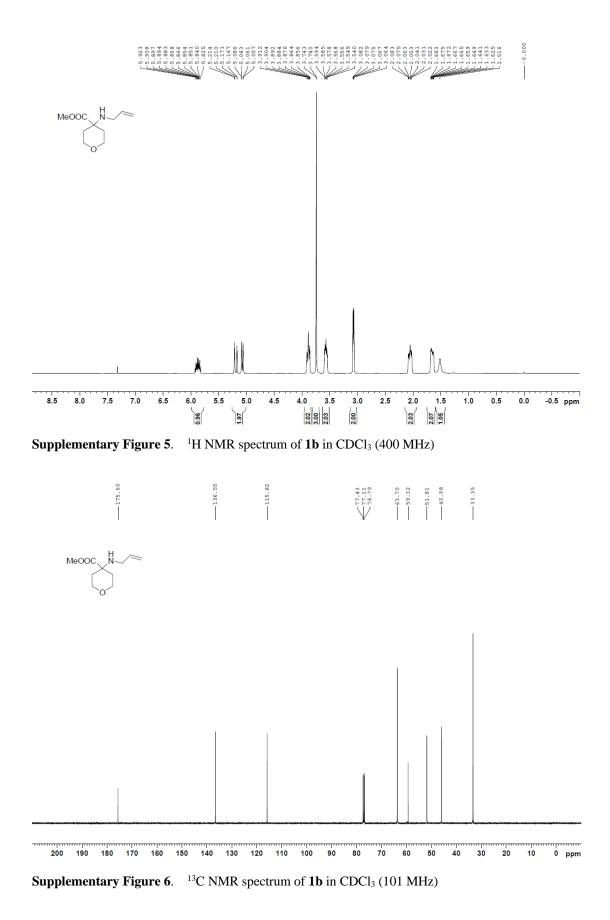
HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C₁₅H₁₈F₂NO₃ 298.1249; found: 298.1252.

Ethyl-2,2-difluoro-5-oxo-5-(phenylamino)pentanoate (16)

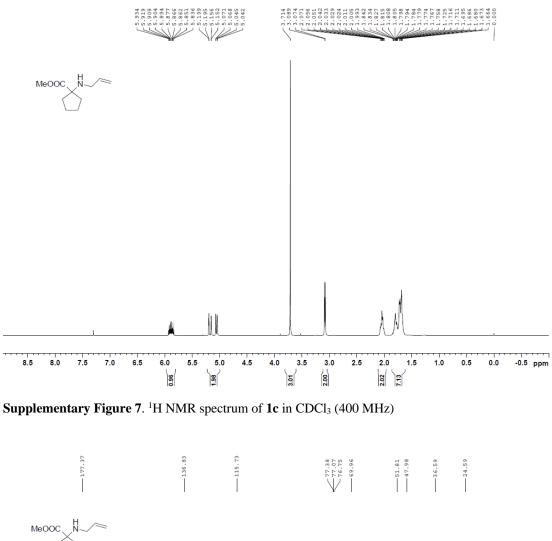
38.1 mg, colorless oil, yield: 70%. Eluent: pentane/ethyl acetate = 5/1.

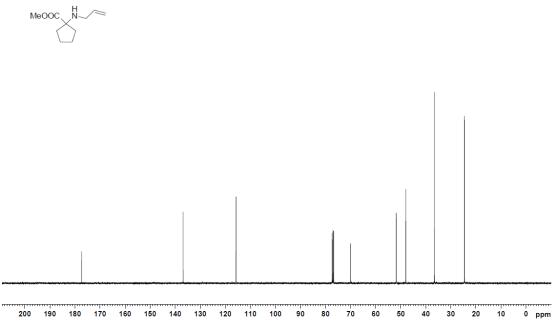

¹**H NMR (400 MHz, CDCl₃)** δ 7.94 (s, 1H), 7.46 (d, *J* = 7.9 Hz, 2H), 7.33 – 7.21 (m, 2H), 7.08 (t, *J* = 7.2 Hz, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 2.59 – 2.42 (m, 4H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 164.0 (t, *J* = 32.7 Hz), 137.7, 129.0, 124.5, 120.2, 115.6 (t, *J* = 250.3 Hz), 63.2, 30.0 (t, *J* = 23.8 Hz), 29.1, 13.9.

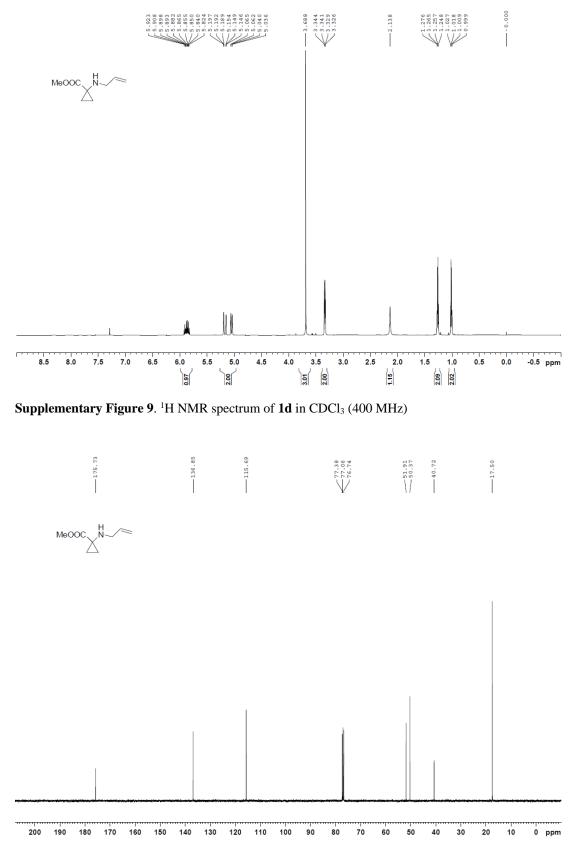

¹⁹F NMR (376 MHz, CDCl₃) δ -106.5 (s, 2F).

HRMS (ESI-TOF) m/z: [M+H]+ Calcd. for C₁₃H₁₆F₂NO₃ 272.1093; found: 272.1097.

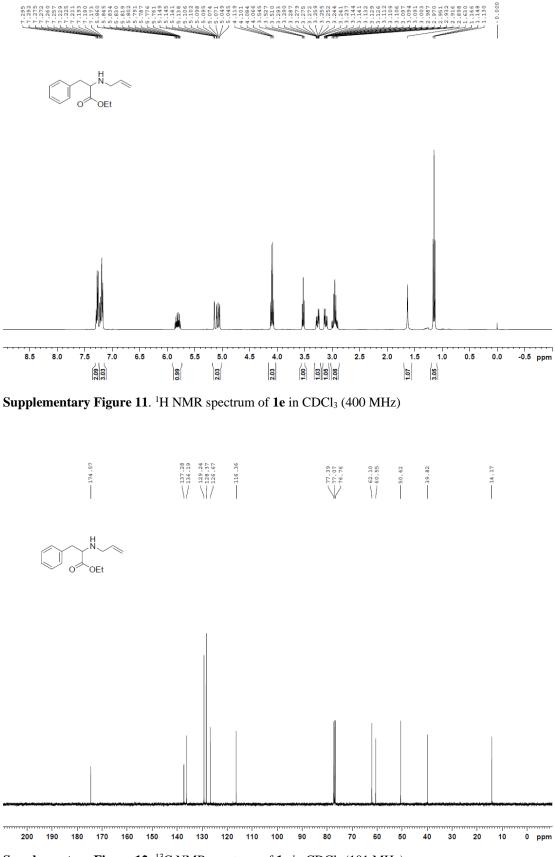

9. Copy of NMR Spectrum.

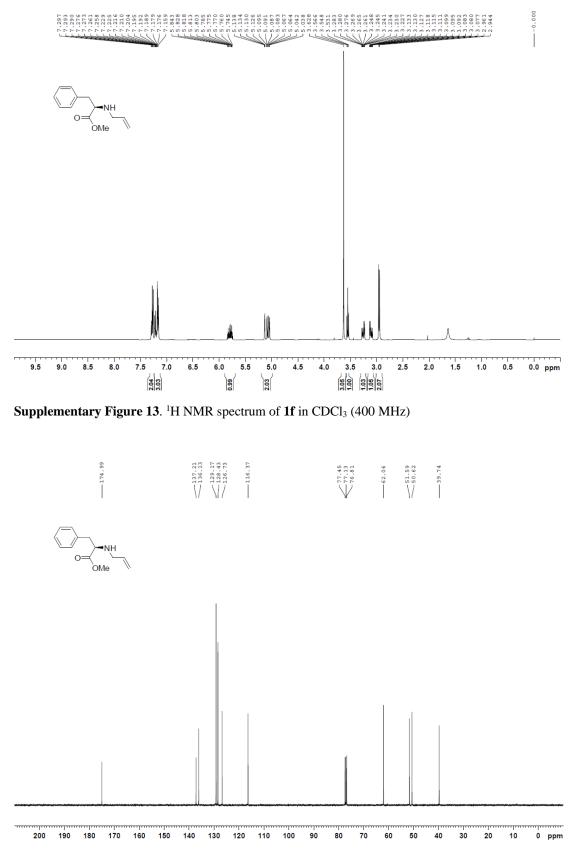


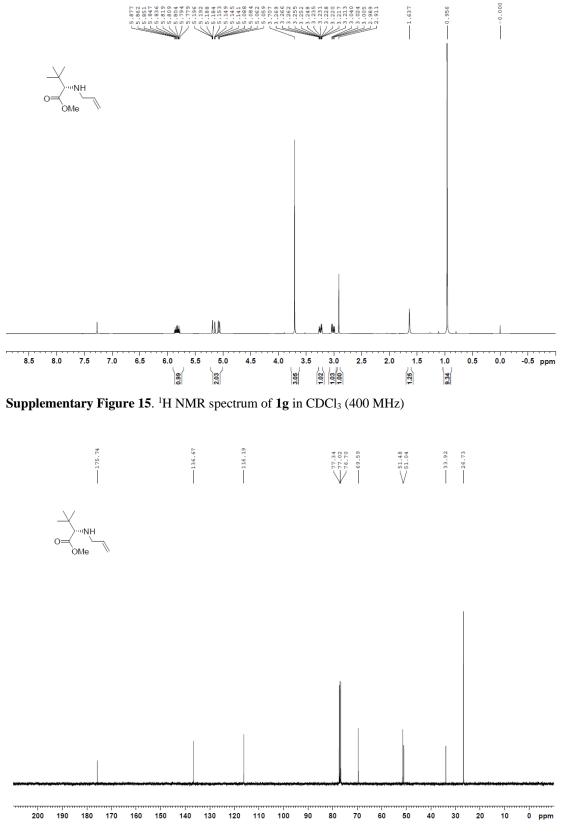
Supplementary Figure 4. ¹³C NMR spectrum of 1a in CDCl₃ (101 MHz)

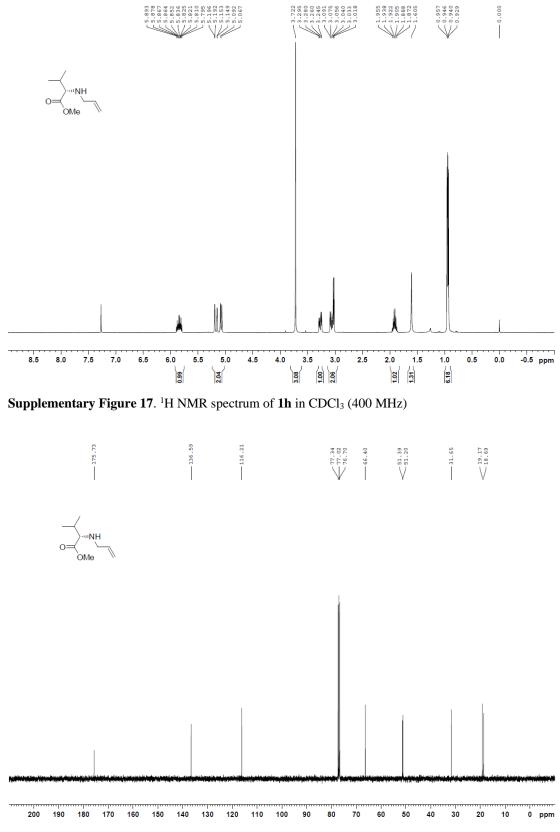


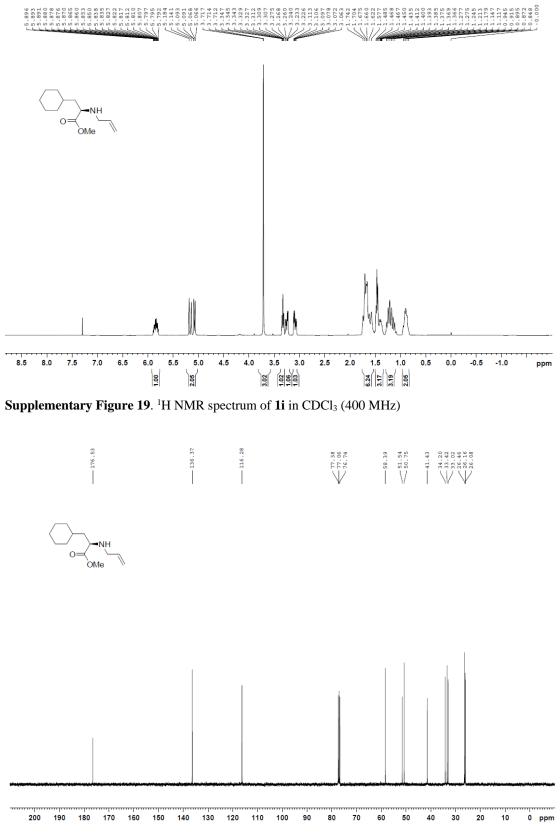
S46

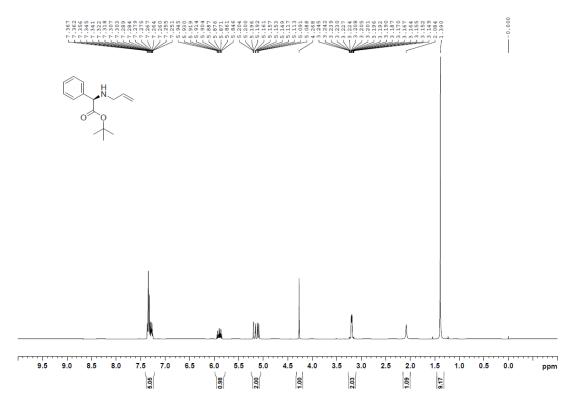


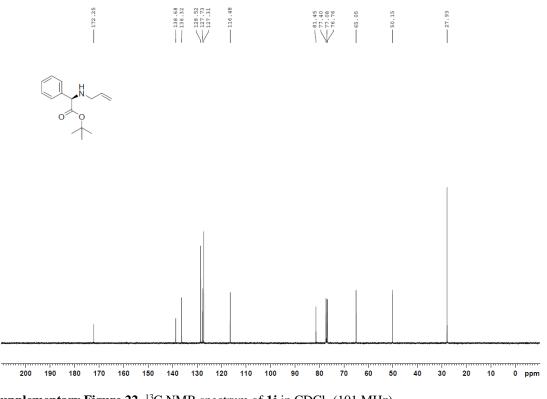

Supplementary Figure 8. ¹³C NMR spectrum of 1c in CDCl₃ (101 MHz)

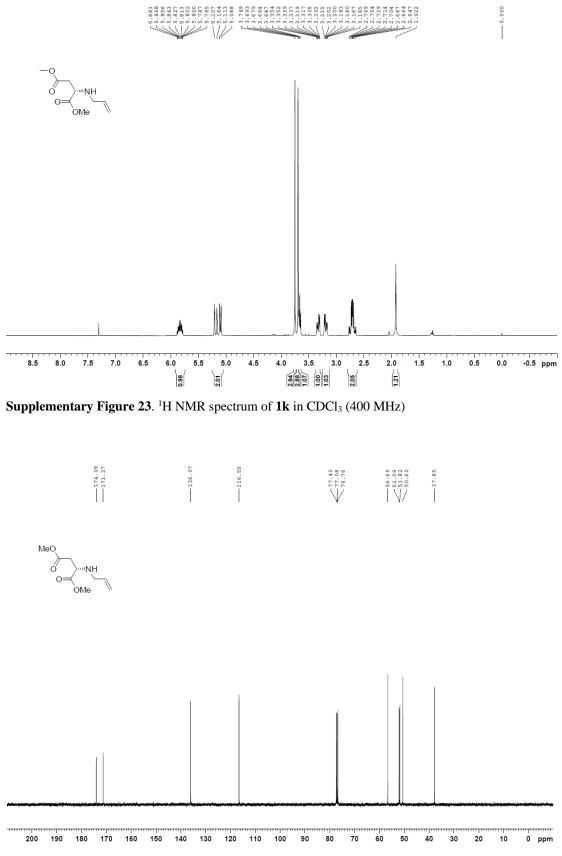

Supplementary Figure 10. ¹³C NMR spectrum of 1d in CDCl₃ (101 MHz)

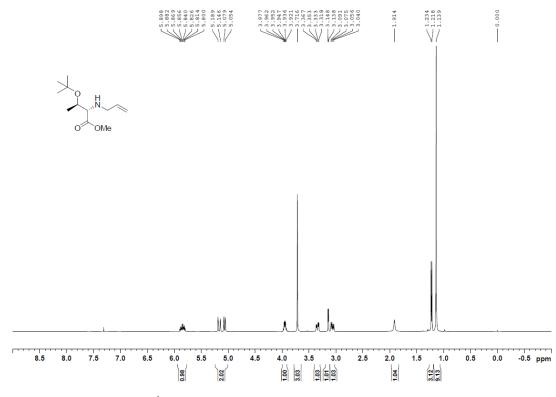

Supplementary Figure 12. ¹³C NMR spectrum of 1e in CDCl₃ (101 MHz)

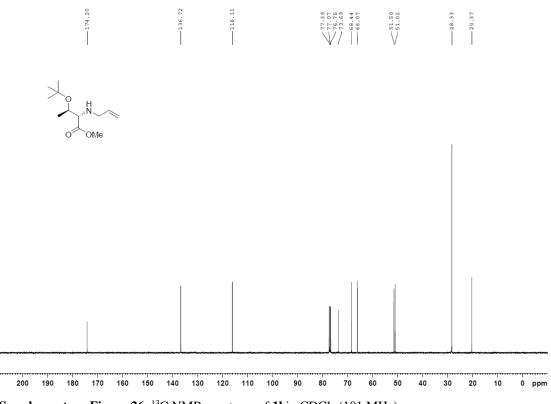

Supplementary Figure 14. ¹³C NMR spectrum of 1f in CDCl₃ (101 MHz)

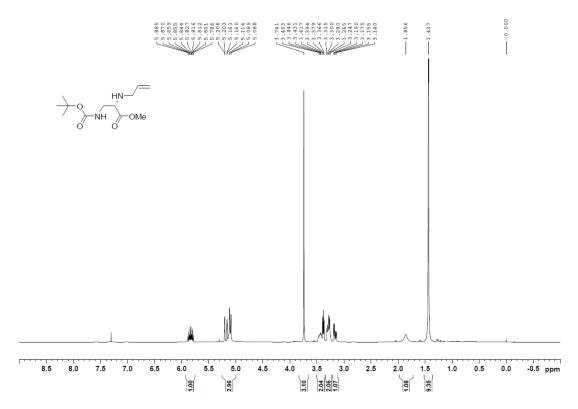

Supplementary Figure 16. ¹³C NMR spectrum of 1g in CDCl₃ (101 MHz)

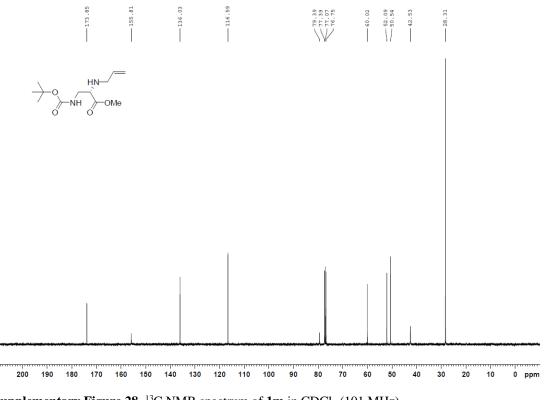

Supplementary Figure 18. ¹³C NMR spectrum of 1h in CDCl₃ (101 MHz)

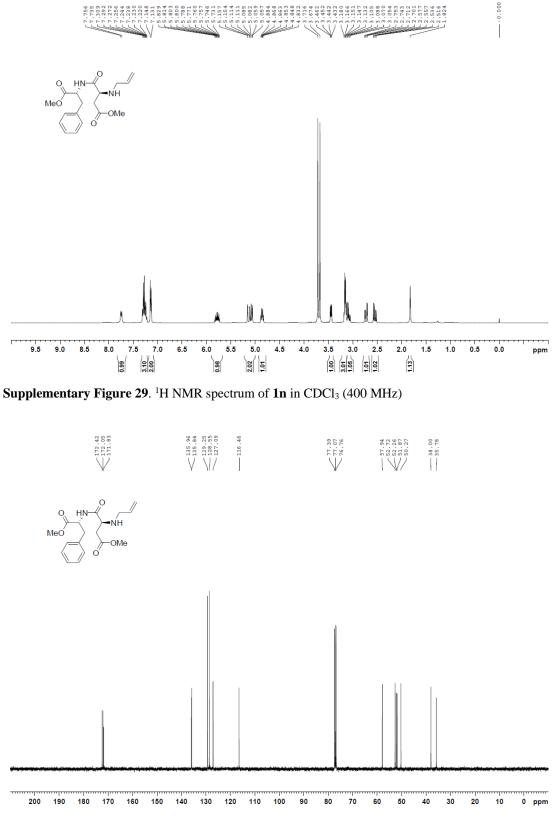

Supplementary Figure 20. ¹³C NMR spectrum of 1i in CDCl₃ (101 MHz)

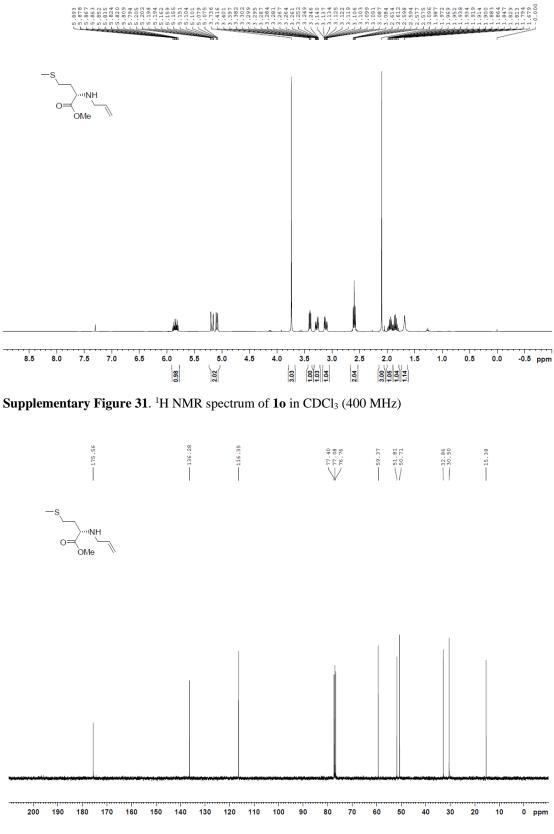

Supplementary Figure 21. ¹H NMR spectrum of 1j in CDCl₃ (400 MHz)

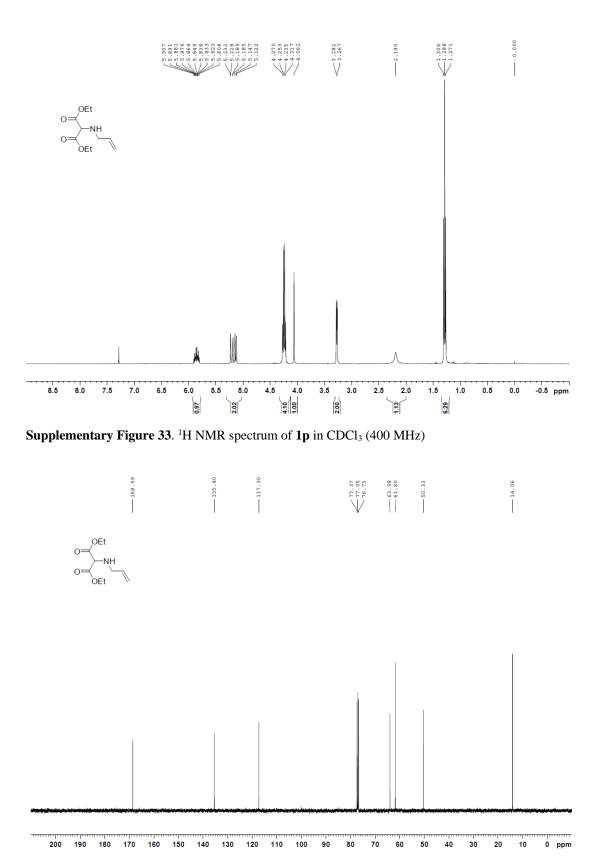

Supplementary Figure 22. ¹³C NMR spectrum of 1j in CDCl₃ (101 MHz)

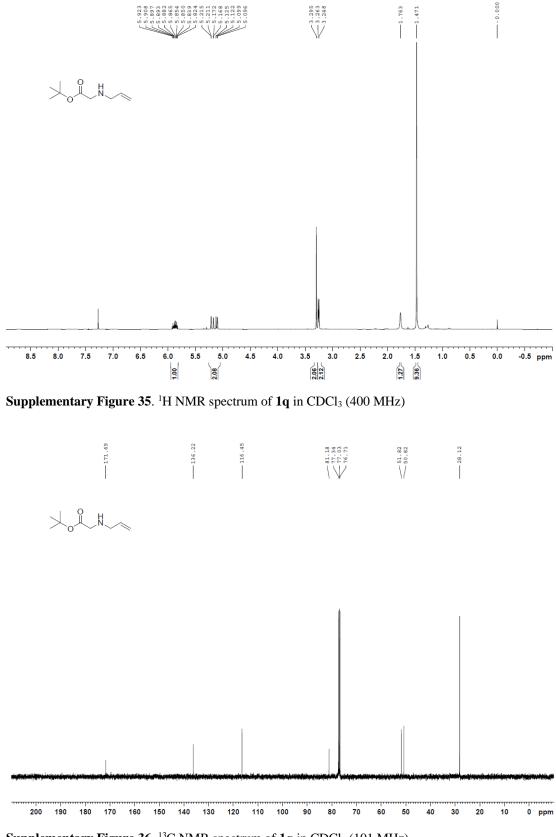

Supplementary Figure 24. ¹³C NMR spectrum of 1k in CDCl₃ (101 MHz)

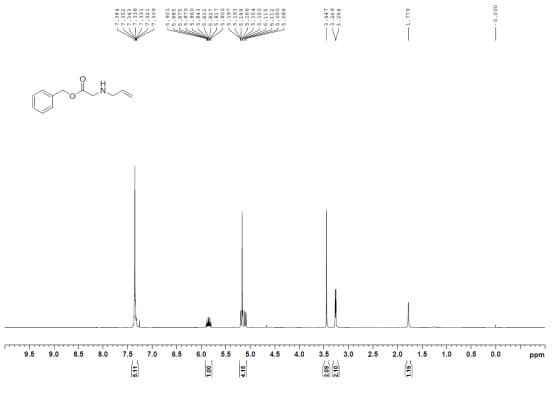

Supplementary Figure 25. ¹H NMR spectrum of 11 in CDCl₃ (400 MHz)

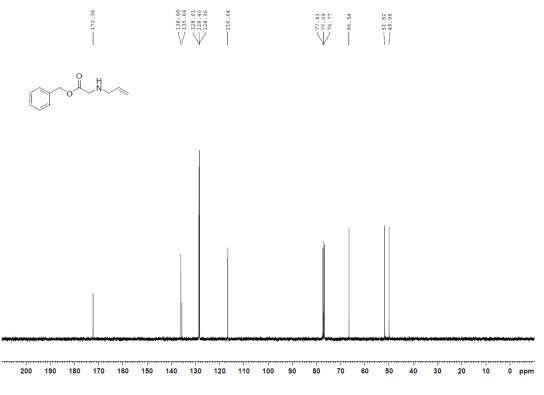

Supplementary Figure 26. ¹³C NMR spectrum of 11 in CDCl₃ (101 MHz)

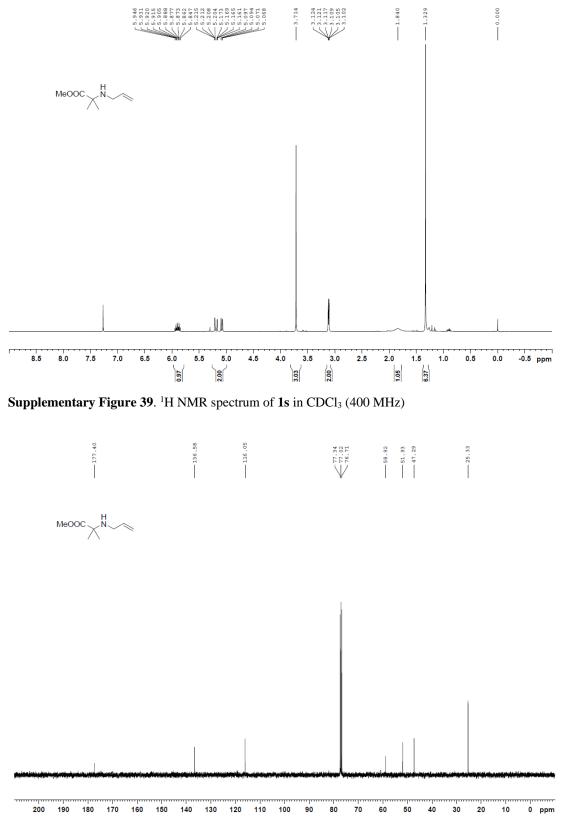

Supplementary Figure 27. ¹H NMR spectrum of 1m in CDCl₃ (400 MHz)

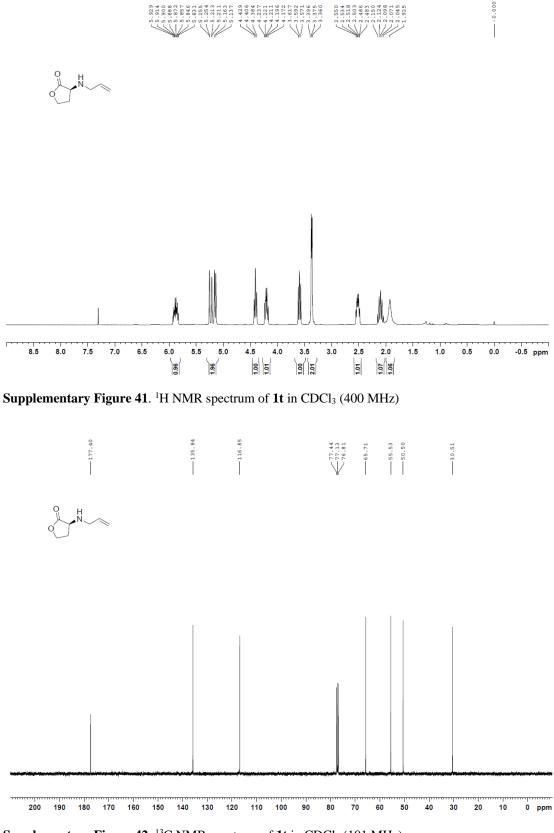

Supplementary Figure 28. ¹³C NMR spectrum of 1m in CDCl₃ (101 MHz)

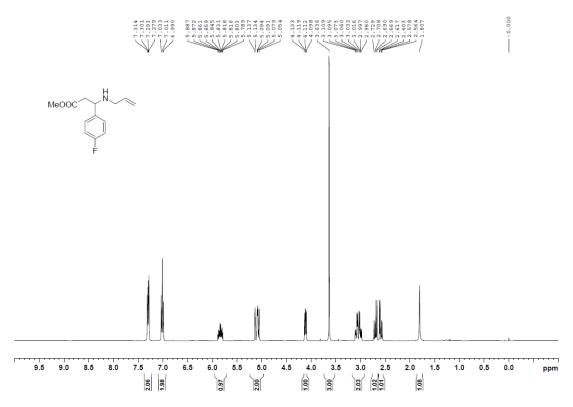

Supplementary Figure 30. ¹³C NMR spectrum of 1n in CDCl₃ (101 MHz)

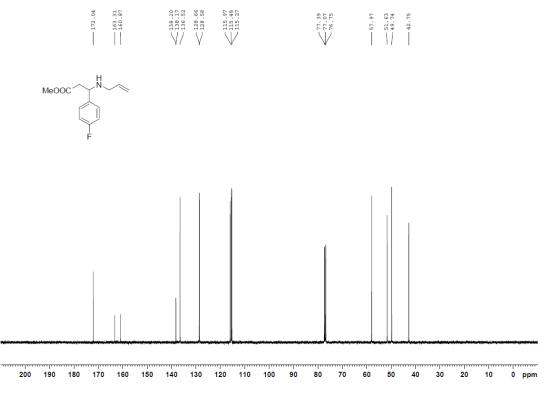

Supplementary Figure 32. ¹³C NMR spectrum of 10 in CDCl₃ (101 MHz)

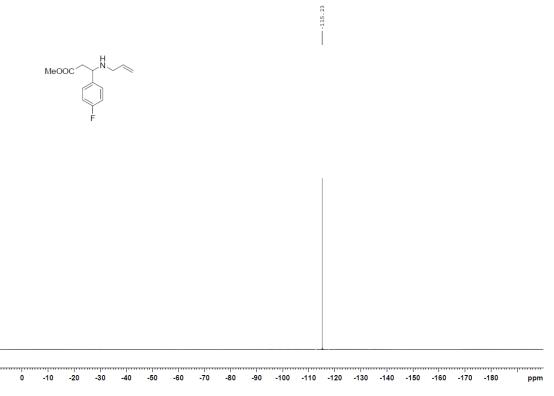

Supplementary Figure 34. ¹³C NMR spectrum of 1p in CDCl₃ (101 MHz)

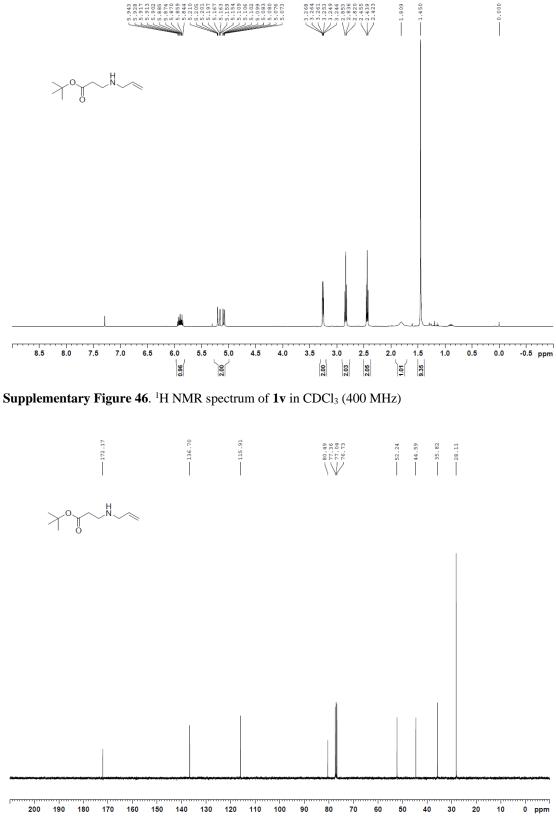

Supplementary Figure 36. ¹³C NMR spectrum of 1q in CDCl₃ (101 MHz)


Supplementary Figure 37. ¹H NMR spectrum of 1r in CDCl₃ (400 MHz)

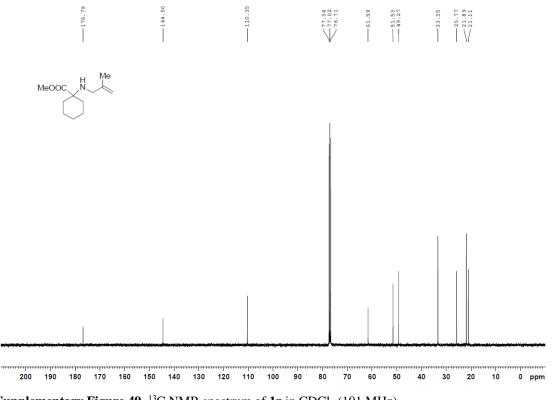

Supplementary Figure 38. ¹³C NMR spectrum of 1r in CDCl₃ (101 MHz)

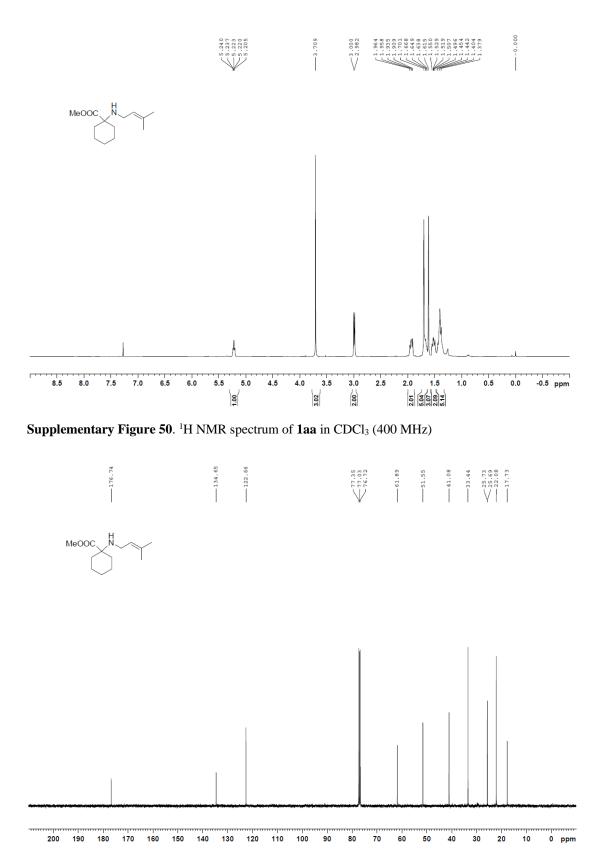

Supplementary Figure 40. ¹³C NMR spectrum of 1s in CDCl₃ (101 MHz)

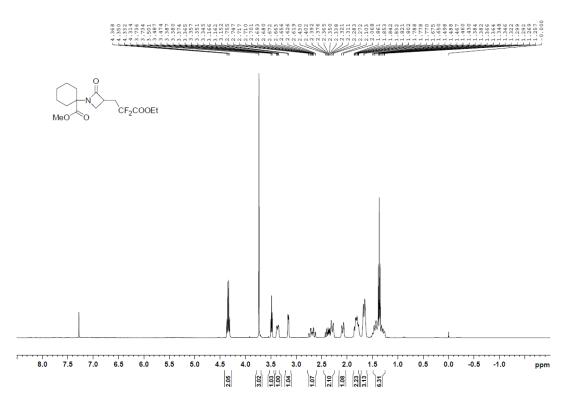

Supplementary Figure 42. ¹³C NMR spectrum of 1t in CDCl₃ (101 MHz)

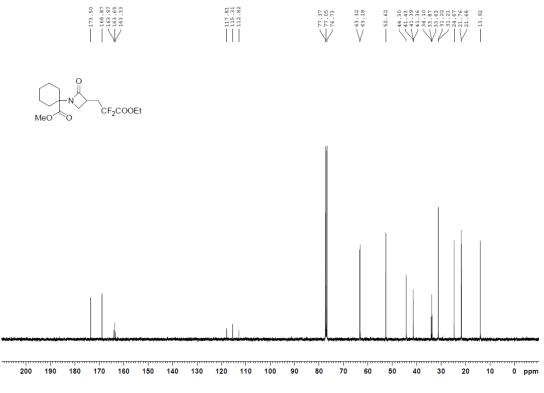

Supplementary Figure 43. ¹H NMR spectrum of 1u in CDCl₃ (400 MHz)

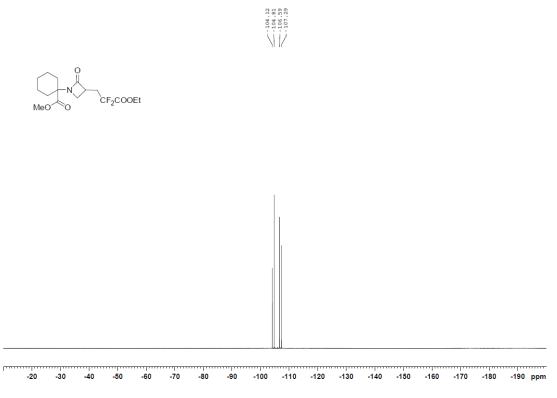
Supplementary Figure 44. ¹³C NMR spectrum of 1u in CDCl₃ (101 MHz)

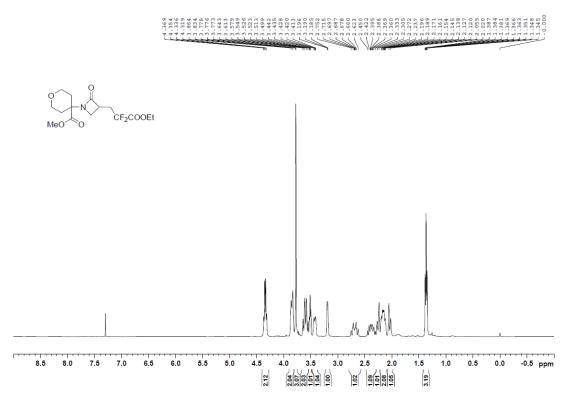

Supplementary Figure 45. $^{19}\mathrm{F}$ NMR spectrum of 1u in CDCl3 (376 MHz)

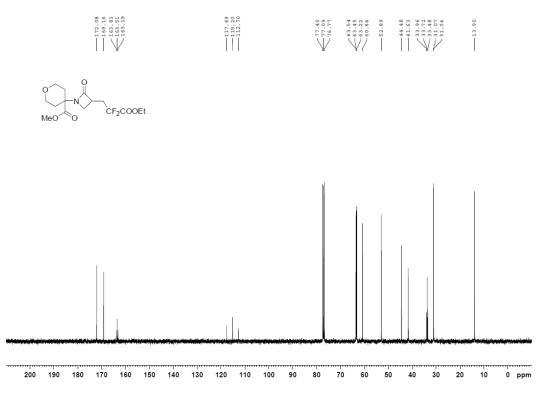

Supplementary Figure 47. ¹³C NMR spectrum of 1v in CDCl₃ (101 MHz)

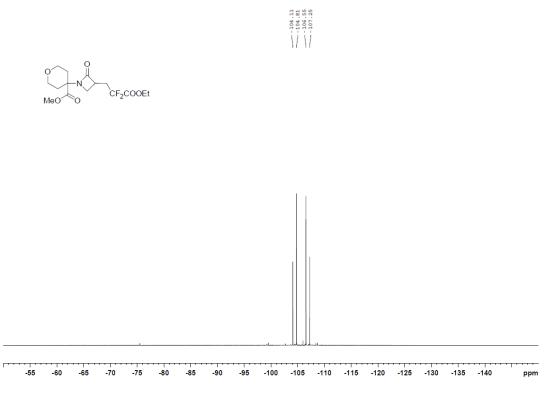

Supplementary Figure 48. ¹H NMR spectrum of 1z in CDCl₃ (400 MHz)

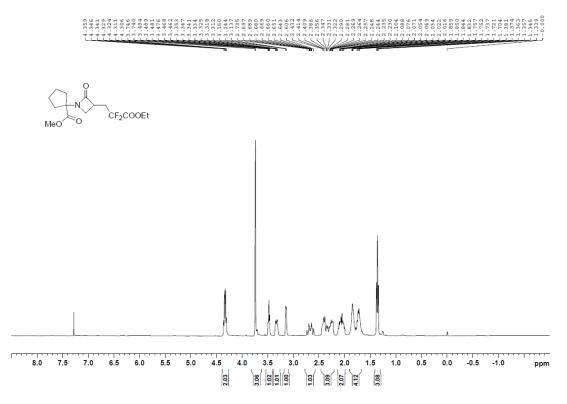

Supplementary Figure 49. ¹³C NMR spectrum of 1z in CDCl₃ (101 MHz)

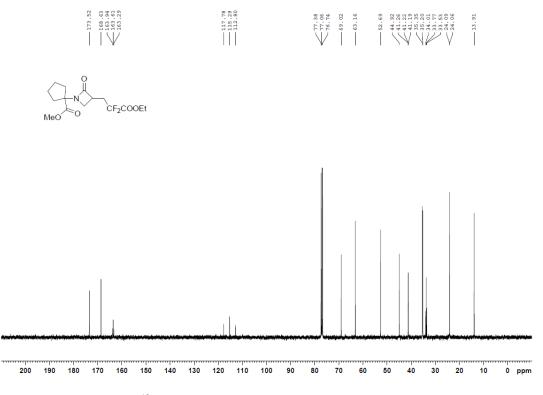

Supplementary Figure 51. ¹³C NMR spectrum of 1aa in CDCl₃ (101 MHz)

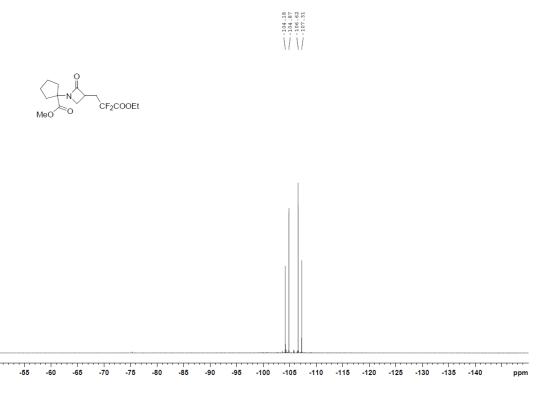

Supplementary Figure 52. ¹H NMR spectrum of 3a in CDCl₃ (400 MHz)

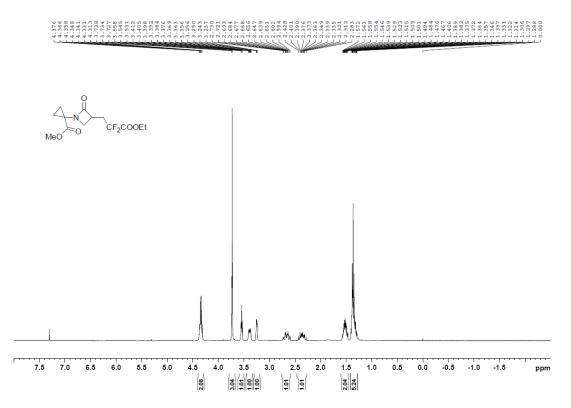

Supplementary Figure 53. ¹³C NMR spectrum of 3a in CDCl₃ (101 MHz)

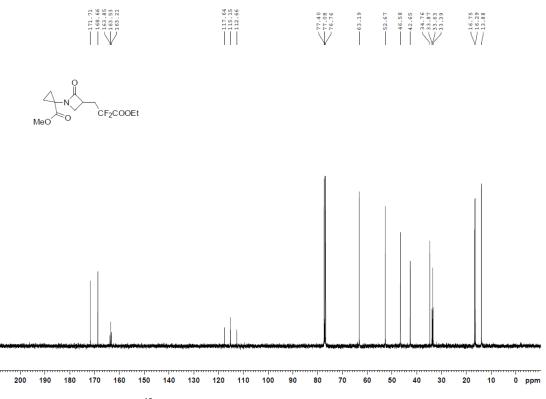

Supplementary Figure 54. ¹⁹F NMR spectrum of 3a in CDCl₃ (376 MHz)

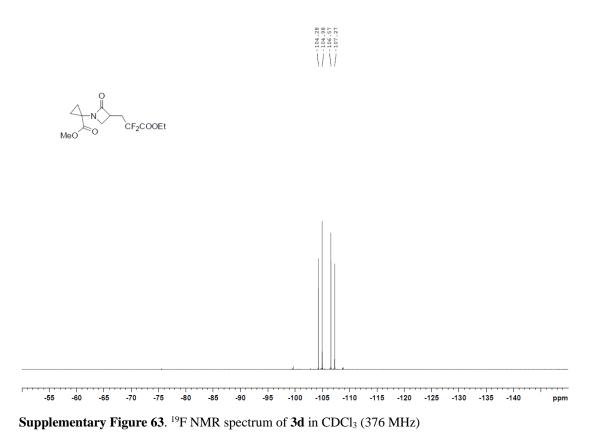

Supplementary Figure 55. ¹H NMR spectrum of 3b in CDCl₃ (400 MHz)

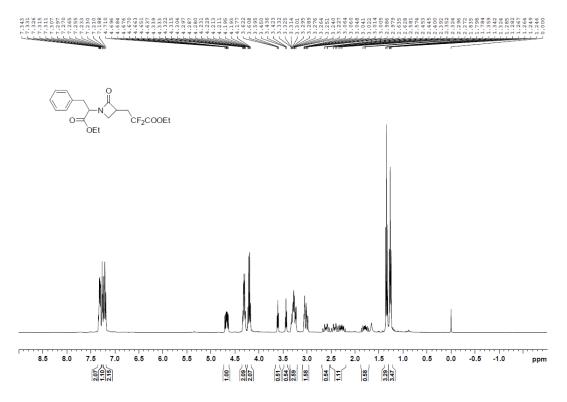

Supplementary Figure 56. ¹³C NMR spectrum of 3b in CDCl₃ (101 MHz)

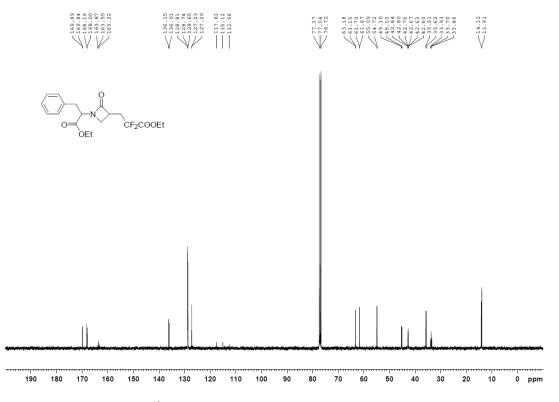

Supplementary Figure 57. ¹⁹F NMR spectrum of 3b in CDCl₃ (376 MHz)

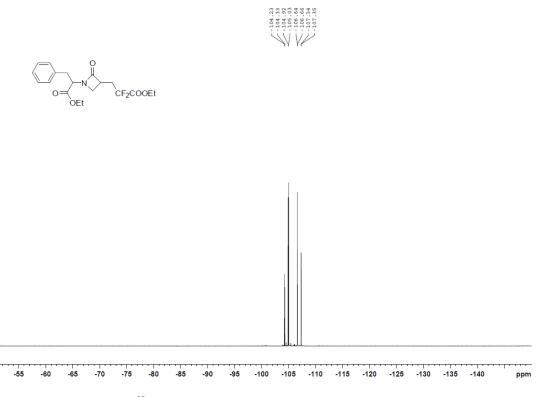

Supplementary Figure 58. ¹H NMR spectrum of 3c in CDCl₃ (400 MHz)

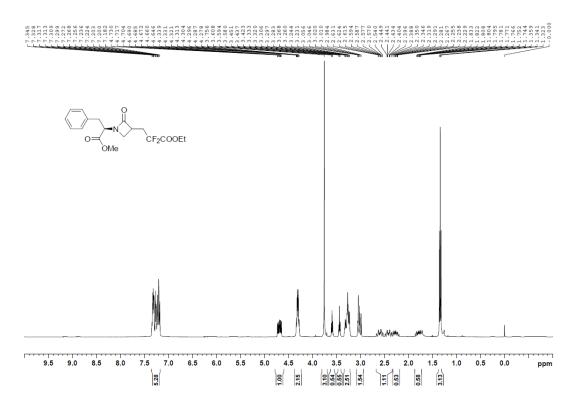

Supplementary Figure 59. ¹³C NMR spectrum of 3c in CDCl₃ (101 MHz)

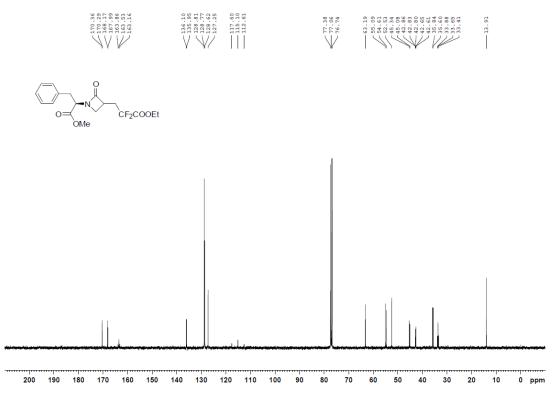

Supplementary Figure 60. ¹⁹F NMR spectrum of 3c in CDCl₃ (376 MHz)

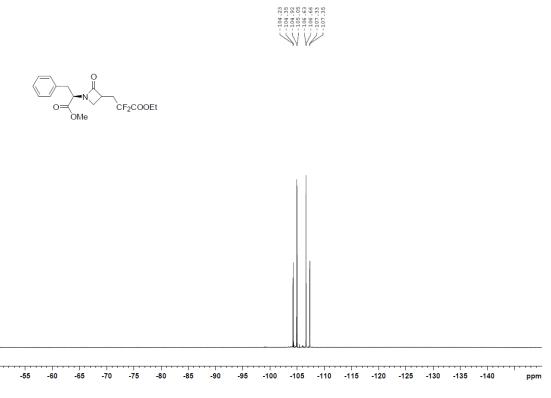

Supplementary Figure 61. ¹H NMR spectrum of 3d in CDCl₃ (400 MHz)

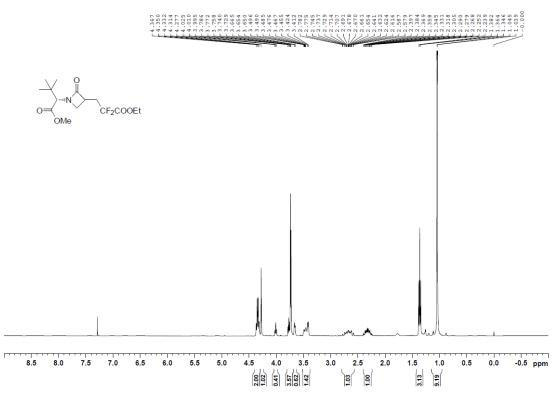

Supplementary Figure 62. ¹³C NMR spectrum of 3d in CDCl₃ (101 MHz)

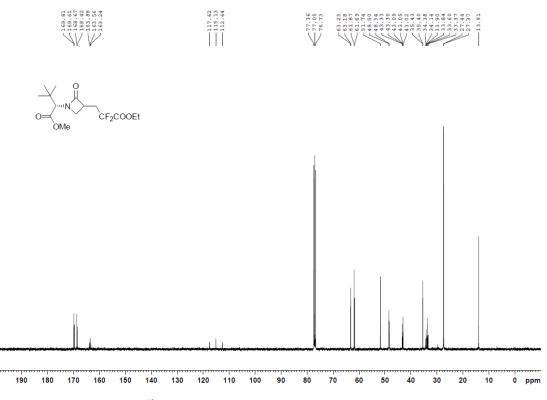

S77

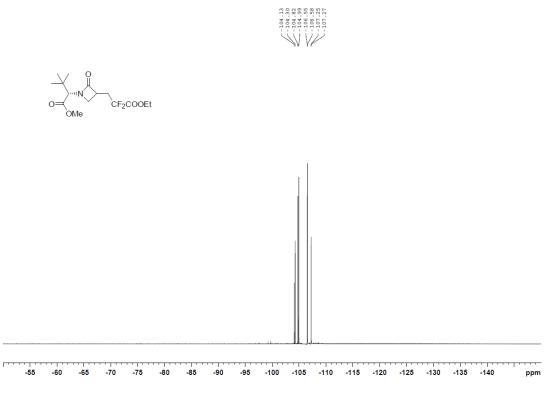

Supplementary Figure 64. ¹H NMR spectrum of 3e in CDCl₃ (400 MHz)

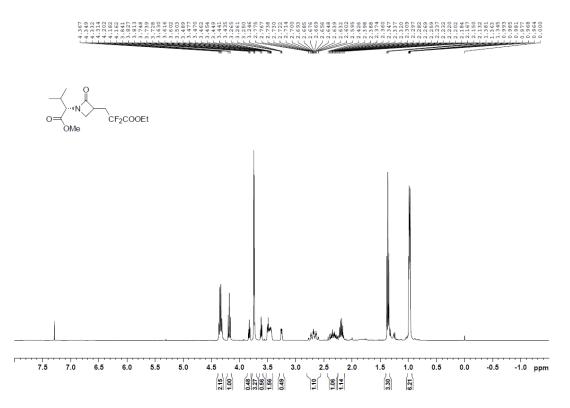

Supplementary Figure 65. ¹³C NMR spectrum of 3e in CDCl₃ (101 MHz)

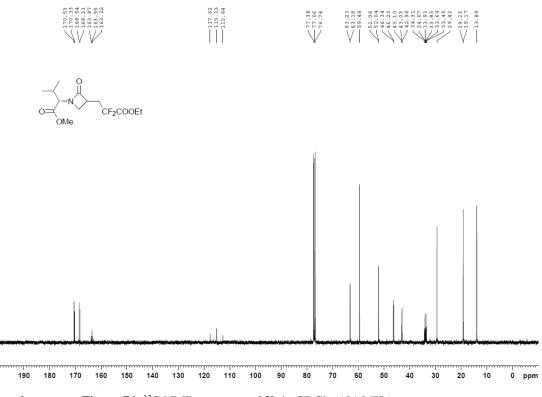

Supplementary Figure 66. ¹⁹F NMR spectrum of 3e in CDCl₃ (376 MHz)

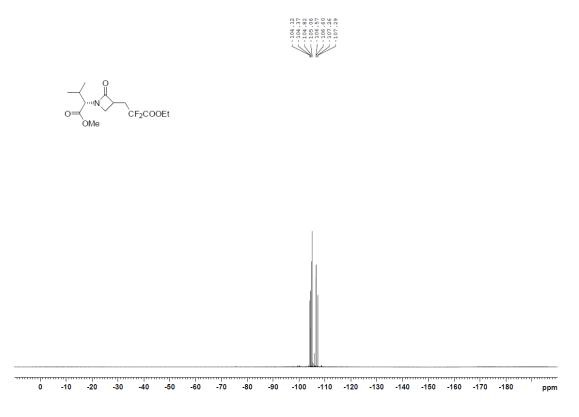

Supplementary Figure 67. ¹H NMR spectrum of 3f in CDCl₃ (400 MHz)

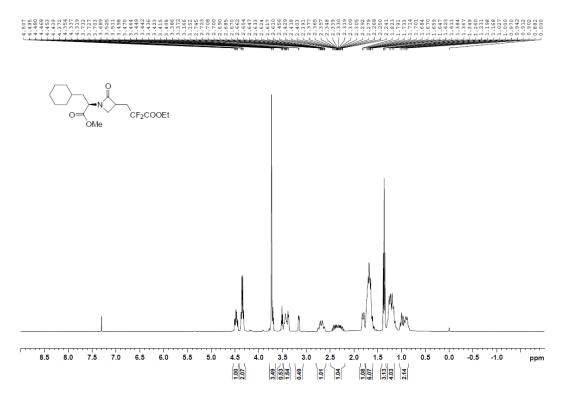

Supplementary Figure 68. ¹³C NMR spectrum of 3f in CDCl₃ (101 MHz)

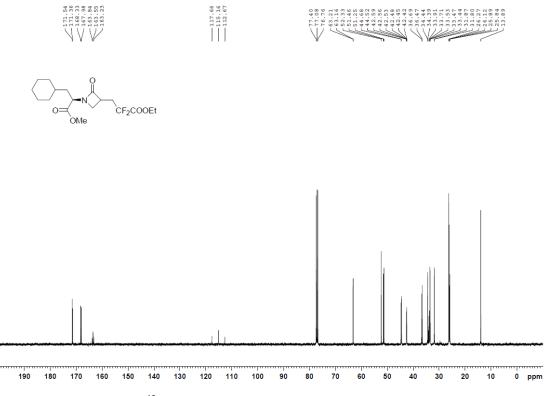

Supplementary Figure 69. ¹⁹F NMR spectrum of 3f in CDCl₃ (376 MHz)

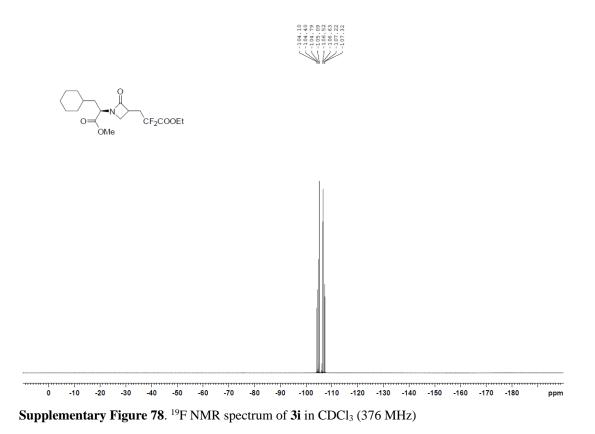

Supplementary Figure 70. ¹H NMR spectrum of 3g in CDCl₃ (400 MHz)

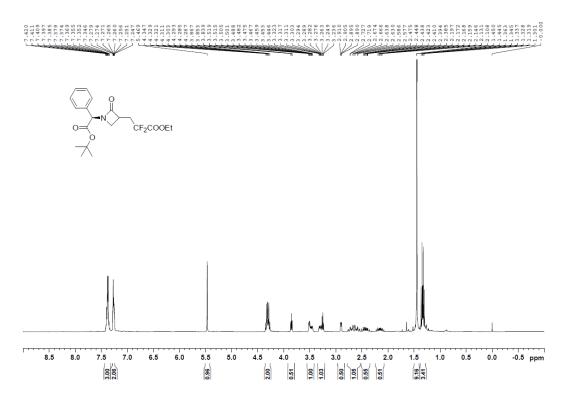

Supplementary Figure 71. ¹³C NMR spectrum of 3g in CDCl₃ (101 MHz)


Supplementary Figure 72. ¹⁹F NMR spectrum of 3g in CDCl₃ (376 MHz)

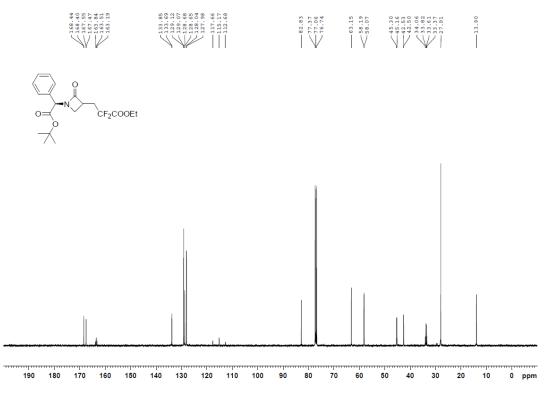

Supplementary Figure 73. ¹H NMR spectrum of 3h in CDCl₃ (400 MHz)


Supplementary Figure 74. ¹³C NMR spectrum of 3h in CDCl₃ (101 MHz)

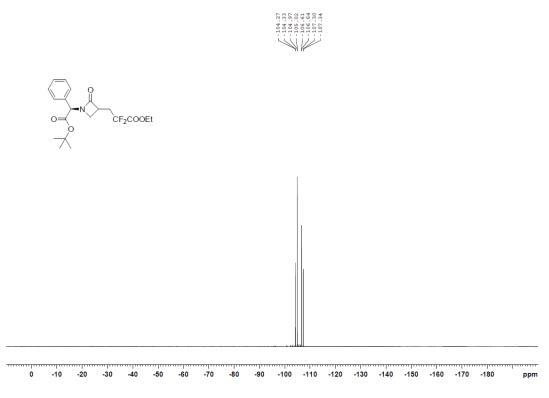

Supplementary Figure 75. ¹⁹F NMR spectrum of 3h in CDCl₃ (376 MHz)



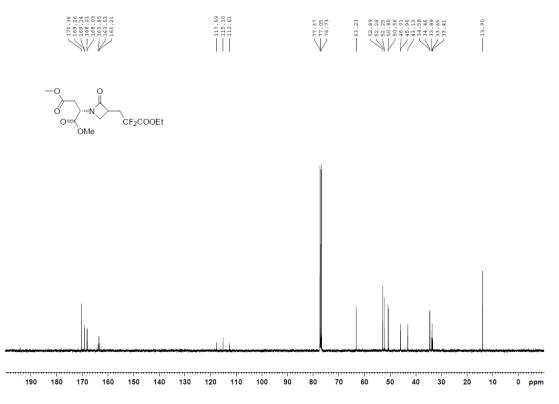
Supplementary Figure 76. ¹H NMR spectrum of 3i in CDCl₃ (400 MHz)

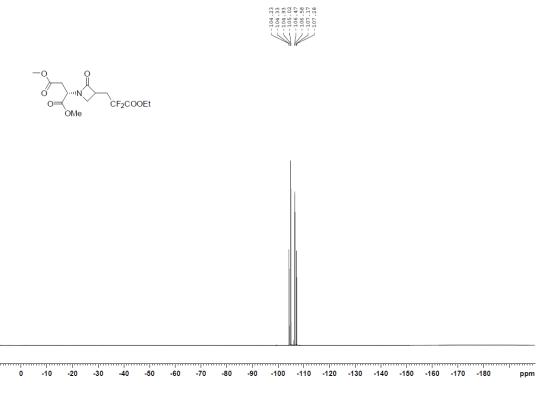


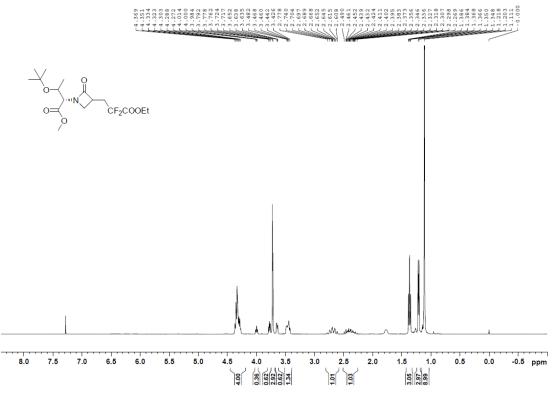
Supplementary Figure 77. ¹³C NMR spectrum of 3i in CDCl₃ (101 MHz)

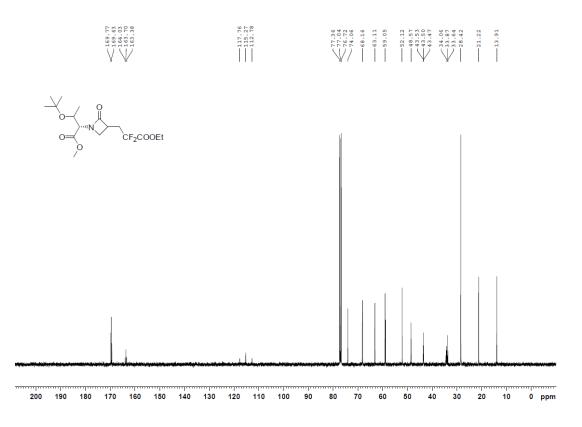


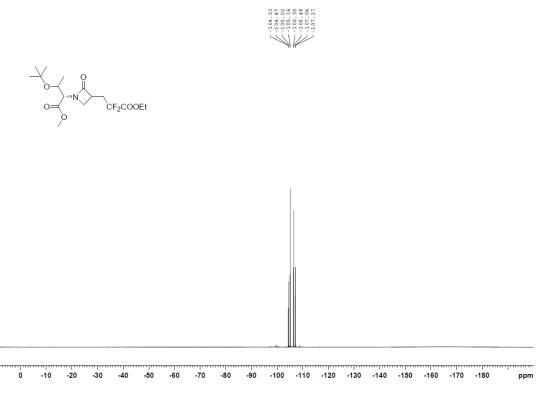
Supplementary Figure 79. ¹H NMR spectrum of 3j in CDCl₃ (400 MHz)

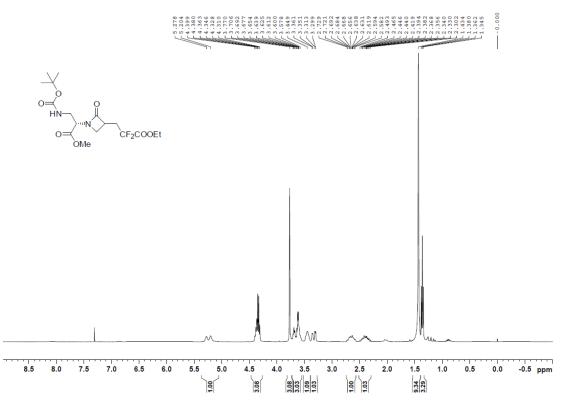

Supplementary Figure 80. ¹³C NMR spectrum of 3j in CDCl₃ (101 MHz)

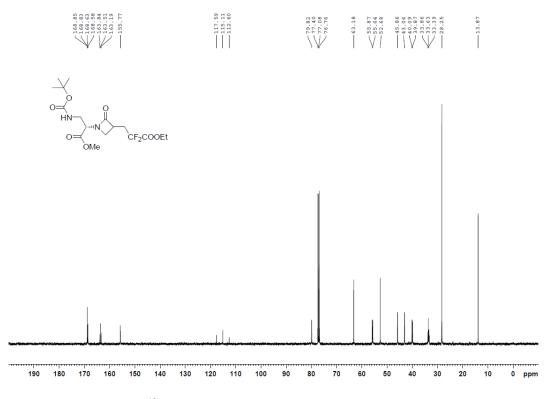

Supplementary Figure 81. ¹⁹F NMR spectrum of 3j in CDCl₃ (376 MHz)

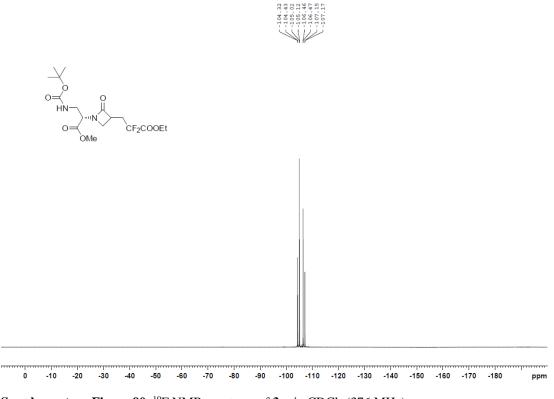

Supplementary Figure 82. ¹H NMR spectrum of 3k in CDCl₃ (400 MHz)

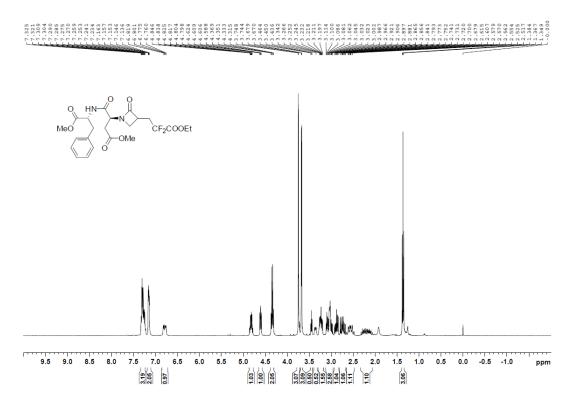

Supplementary Figure 83. ¹³C NMR spectrum of 3k in CDCl₃ (101 MHz)

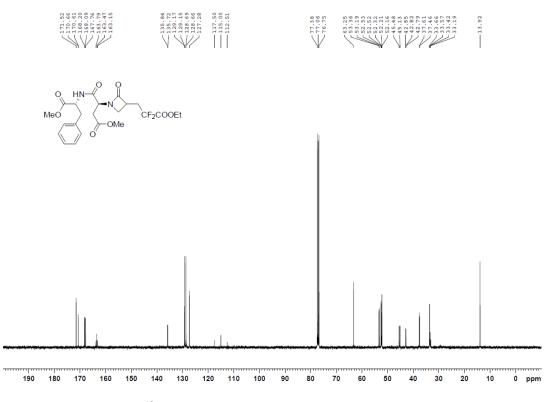

Supplementary Figure 84. ¹⁹F NMR spectrum of 3k in CDCl₃ (376 MHz)

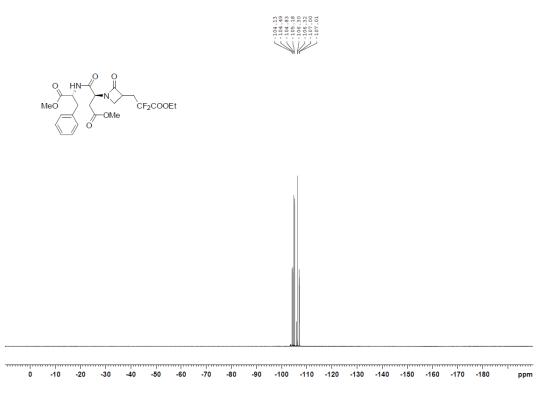

Supplementary Figure 85. ¹H NMR spectrum of 3l in CDCl₃ (400 MHz)

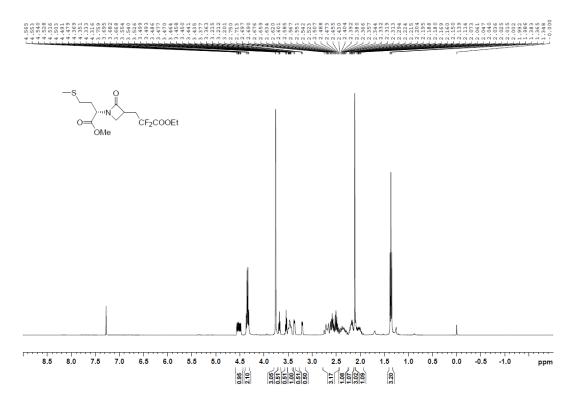

Supplementary Figure 86. ¹³C NMR spectrum of 3l in CDCl₃ (101 MHz)

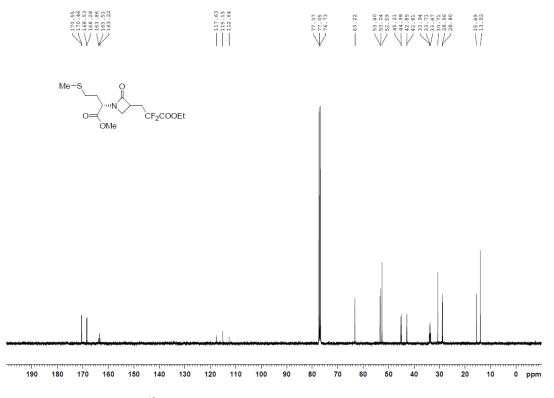

Supplementary Figure 87. ¹⁹F NMR spectrum of 3l in CDCl₃ (376 MHz)

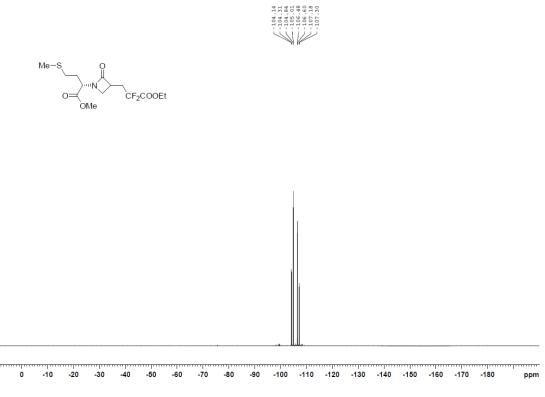

Supplementary Figure 88. ¹H NMR spectrum of 3m in CDCl₃ (400 MHz)

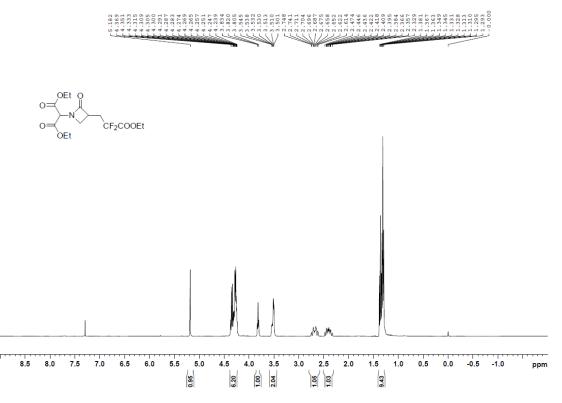

Supplementary Figure 89. ¹³C NMR spectrum of 3m in CDCl₃ (101 MHz)

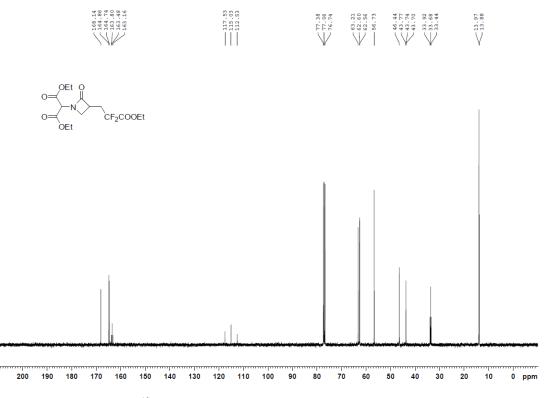

Supplementary Figure 90. ¹⁹F NMR spectrum of **3m** in CDCl₃ (376 MHz)

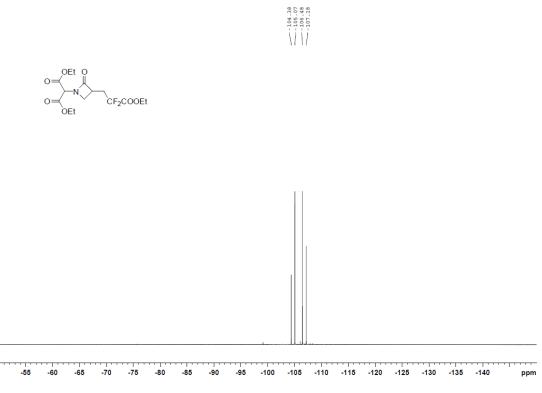

Supplementary Figure 91. ¹H NMR spectrum of 3n in CDCl₃ (400 MHz)

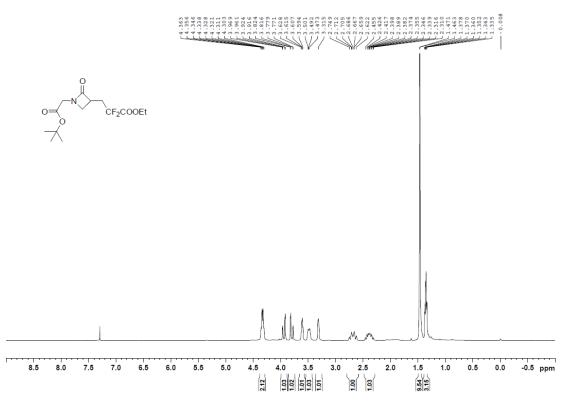

Supplementary Figure 92. ¹³C NMR spectrum of 3n in CDCl₃ (101 MHz)

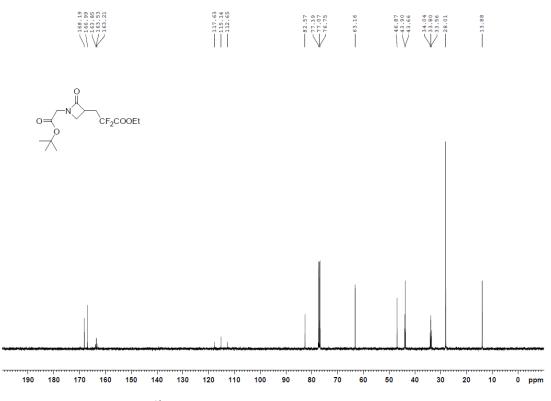

Supplementary Figure 93. ¹⁹F NMR spectrum of 3n in CDCl₃ (376 MHz)

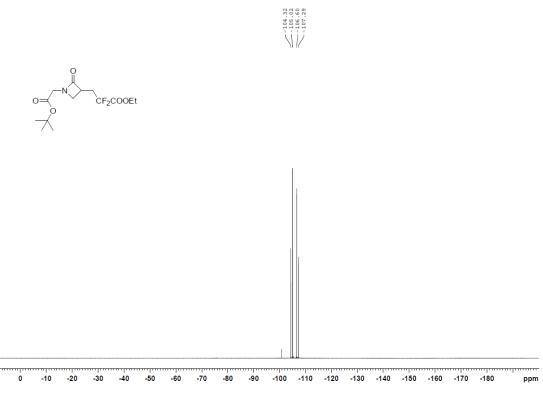

Supplementary Figure 94. ¹H NMR spectrum of 30 in CDCl₃ (400 MHz)

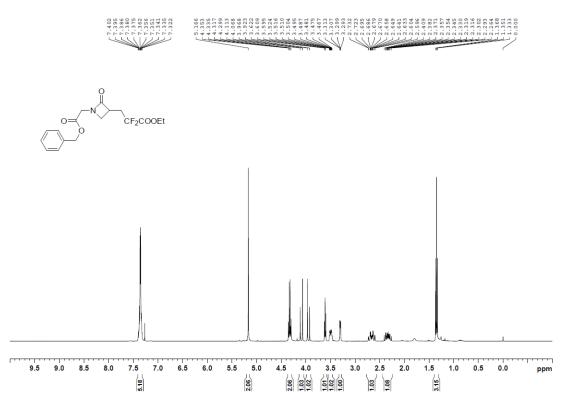

Supplementary Figure 95. ¹³C NMR spectrum of 30 in CDCl₃ (101 MHz)

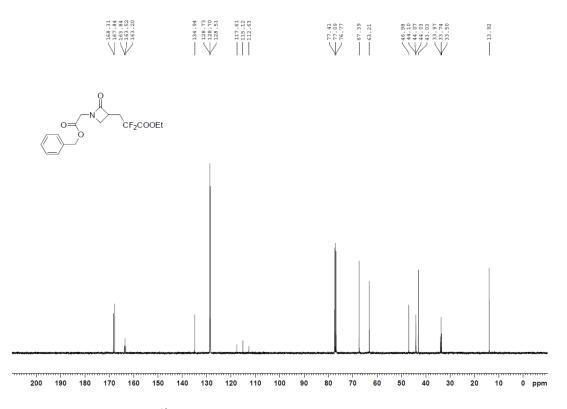

Supplementary Figure 96. ¹⁹F NMR spectrum of 30 in CDCl₃ (376 MHz)

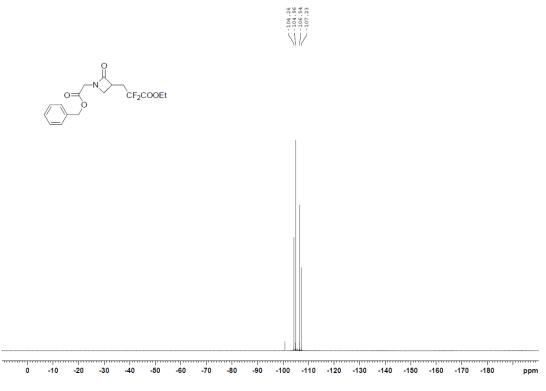

Supplementary Figure 97. ¹H NMR spectrum of **3p** in CDCl₃ (400 MHz)

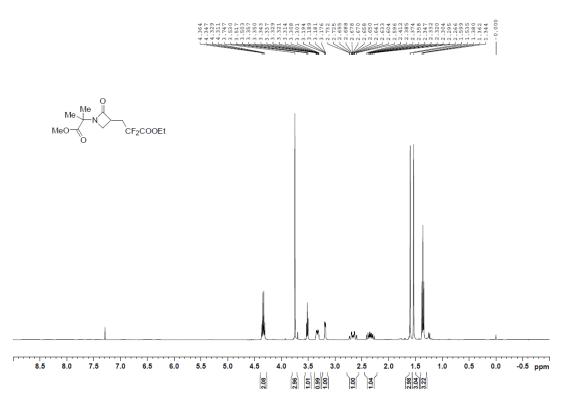

Supplementary Figure 98. ¹³C NMR spectrum of 3p in CDCl₃ (101 MHz)

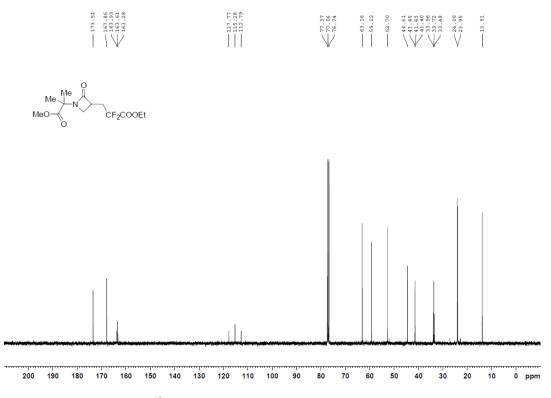

Supplementary Figure 99. ¹⁹F NMR spectrum of 3p in CDCl₃ (376 MHz)

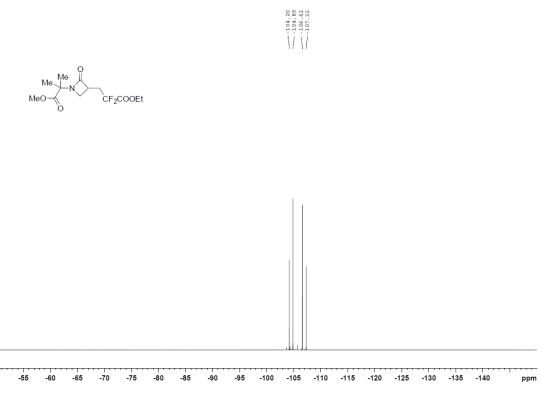

Supplementary Figure 100. ¹H NMR spectrum of 3q in CDCl₃ (400 MHz)

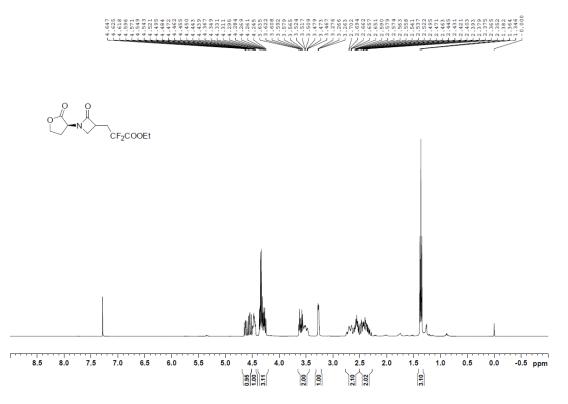

Supplementary Figure 101. ¹³C NMR spectrum of 3q in CDCl₃ (101 MHz)

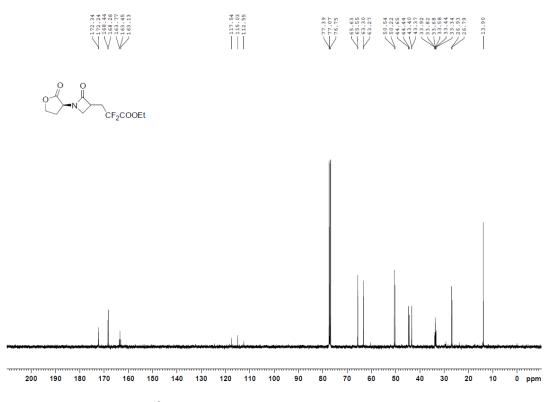

Supplementary Figure 102. ¹⁹F NMR spectrum of 3q in CDCl₃ (376 MHz)

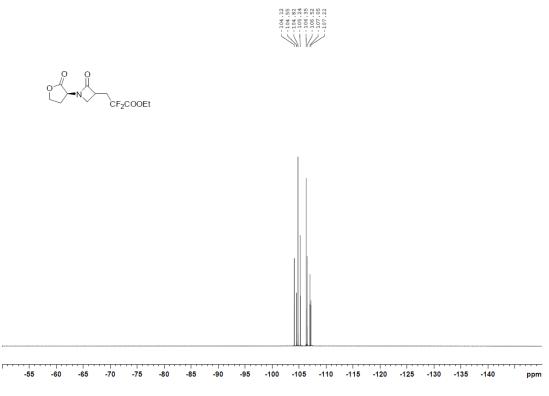

Supplementary Figure 103. ¹H NMR spectrum of 3r in CDCl₃ (400 MHz)

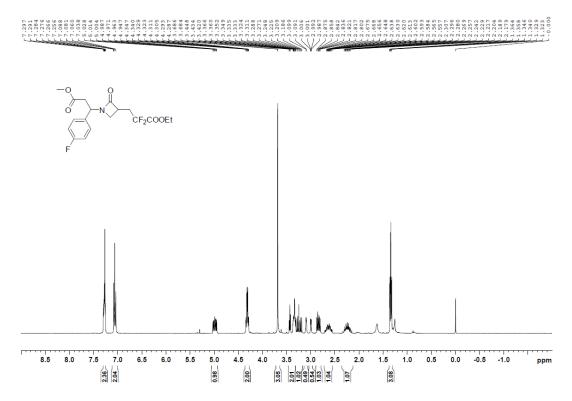

Supplementary Figure 104. ¹³C NMR spectrum of 3r in CDCl₃ (101 MHz)

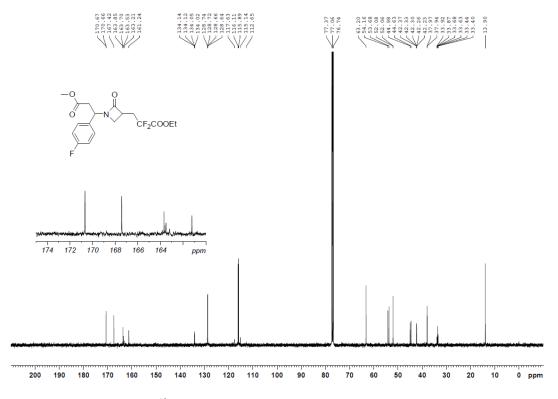

Supplementary Figure 105. 19 F NMR spectrum of 3r in CDCl₃ (376 MHz)

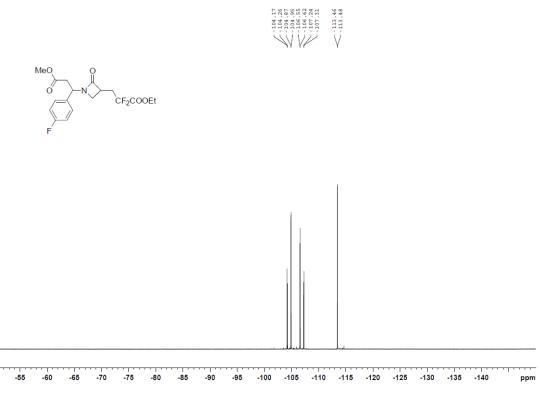

Supplementary Figure 106. ¹H NMR spectrum of 3s in CDCl₃ (400 MHz)


Supplementary Figure 107. ¹³C NMR spectrum of 3s in CDCl₃ (101 MHz)

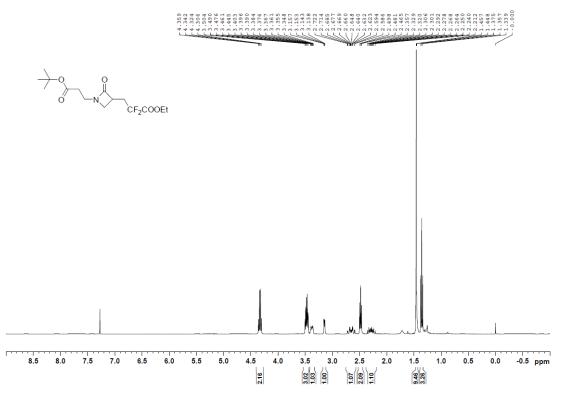

Supplementary Figure 108. ¹⁹F NMR spectrum of 3s in CDCl₃ (376 MHz)


Supplementary Figure109. ¹H NMR spectrum of 3t in CDCl₃ (400 MHz)

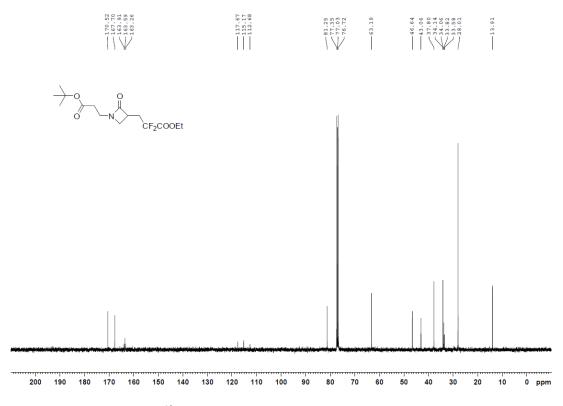

Supplementary Figure 110. ¹³C NMR spectrum of 3t in CDCl₃ (101 MHz)


Supplementary Figure 111. 19 F NMR spectrum of 3t in CDCl₃ (376 MHz)

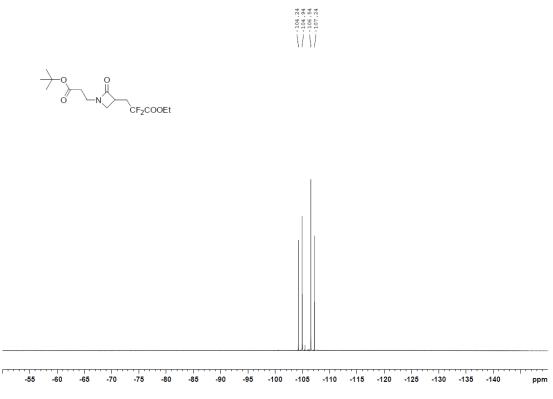
Supplementary Figure 112. ¹H NMR spectrum of 3u in CDCl₃ (400 MHz)

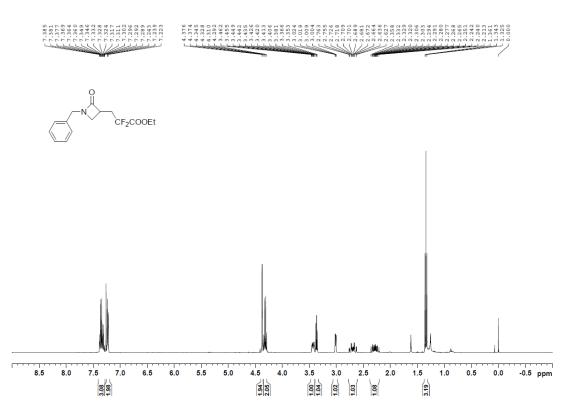


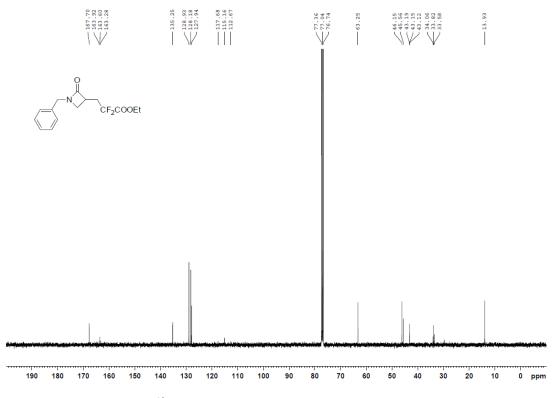
Supplementary Figure 113. ¹³C NMR spectrum of 3u in CDCl₃ (101 MHz)

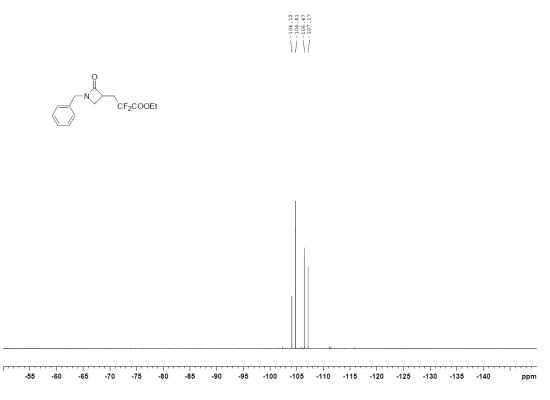


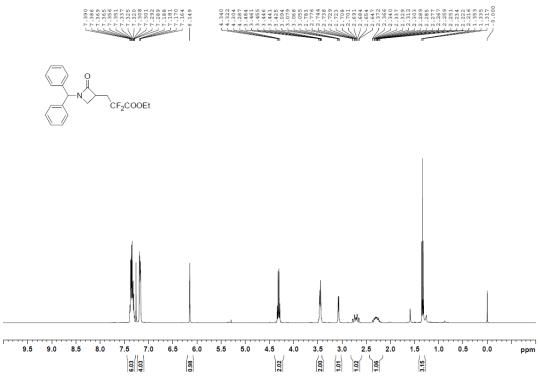
Supplementary Figure 114. ¹⁹F NMR spectrum of 3u in CDCl₃ (376 MHz)

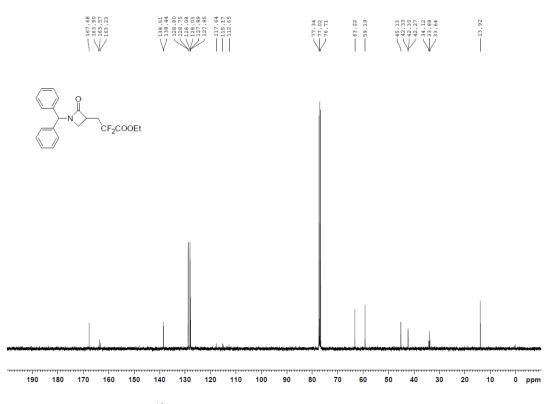

Г

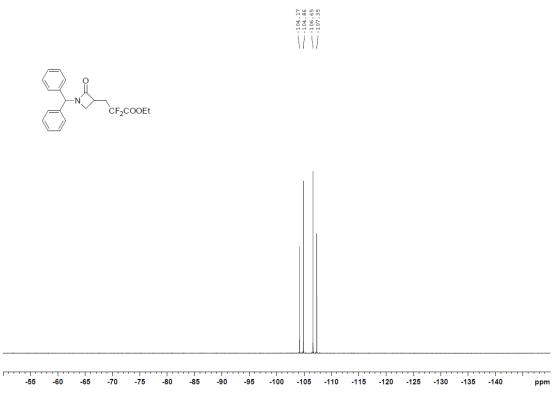

Supplementary Figure 115. ¹H NMR spectrum of 3v in CDCl₃ (400 MHz)

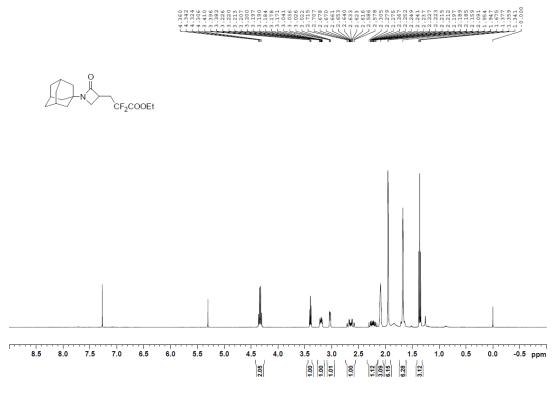

Supplementary Figure 116. ¹³C NMR spectrum of 3v in CDCl₃ (101 MHz)

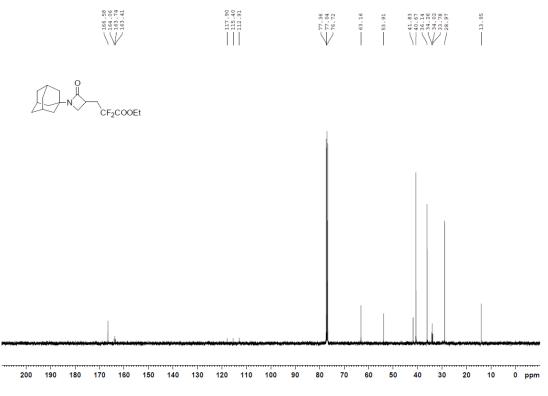

Supplementary Figure 117. ¹⁹F NMR spectrum of 3v in CDCl₃ (376 MHz)


Supplementary Figure 118. ¹H NMR spectrum of 3w in CDCl₃ (400 MHz)

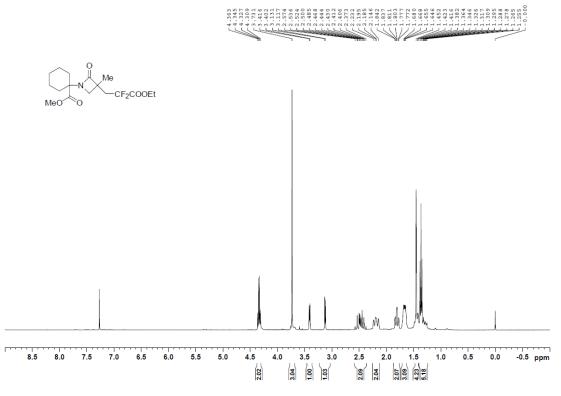

Supplementary Figure 119. ¹³C NMR spectrum of 3w in CDCl₃ (101 MHz)

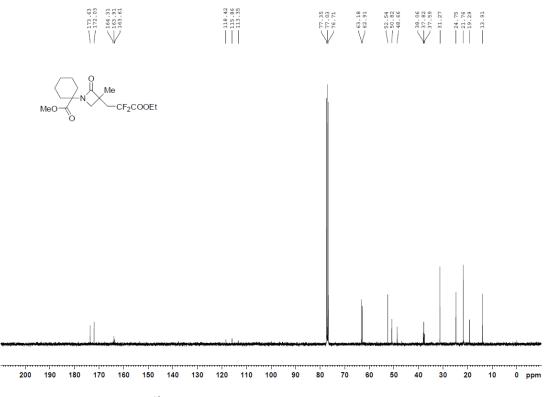

Supplementary Figure 120. ¹⁹F NMR spectrum of 3w in CDCl₃ (376 MHz)

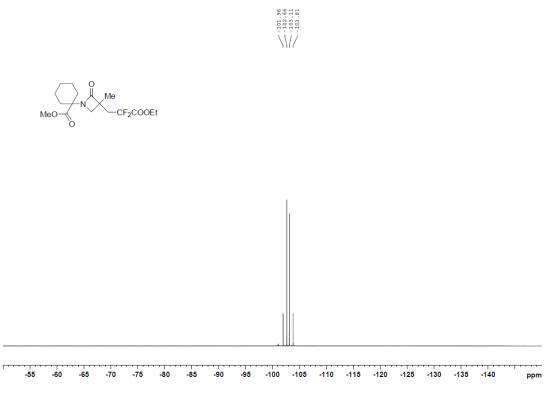

Supplementary Figure 121. ¹H NMR spectrum of 3x in CDCl₃ (400 MHz)

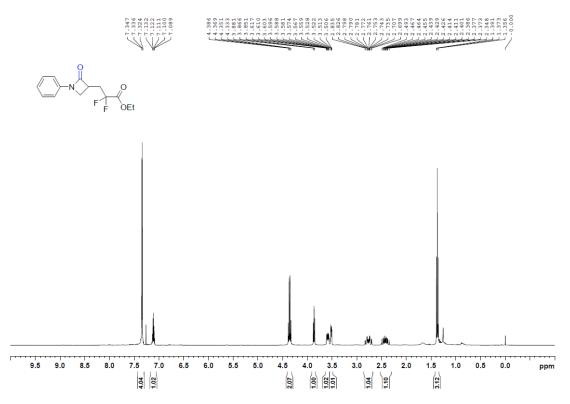

Supplementary Figure 122. ¹³C NMR spectrum of 3x in CDCl₃ (101 MHz)

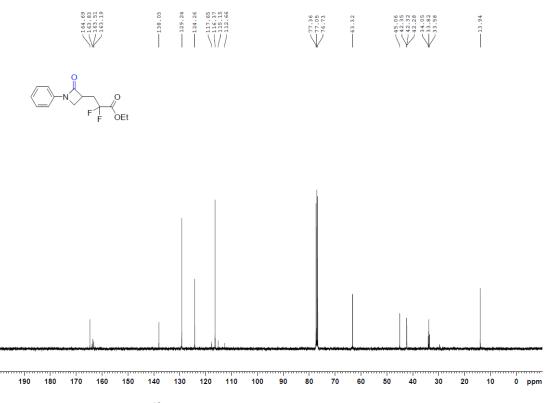

Supplementary Figure 123. ¹⁹F NMR spectrum of 3x in CDCl₃ (376 MHz)

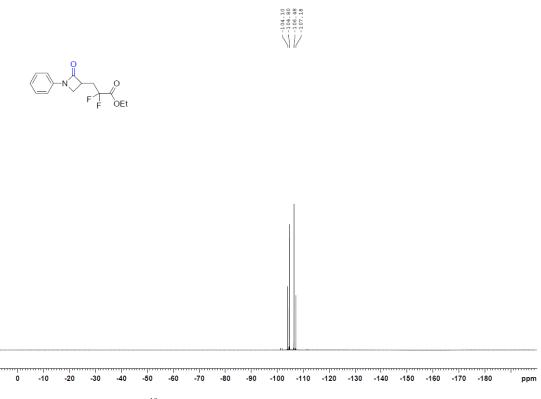

Supplementary Figure 124. ¹H NMR spectrum of 3y in CDCl₃ (400 MHz)

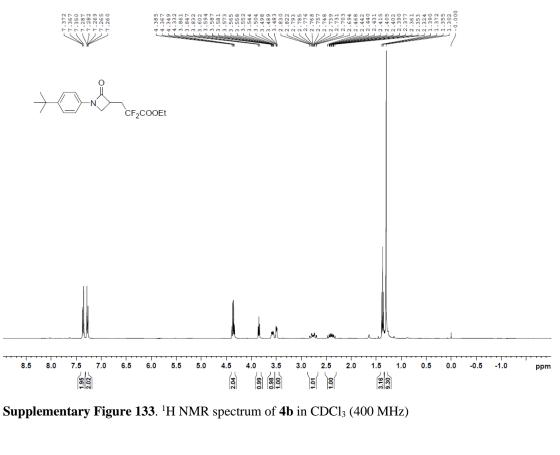

Supplementary Figure 125. ¹³C NMR spectrum of 3y in CDCl₃ (101 MHz)

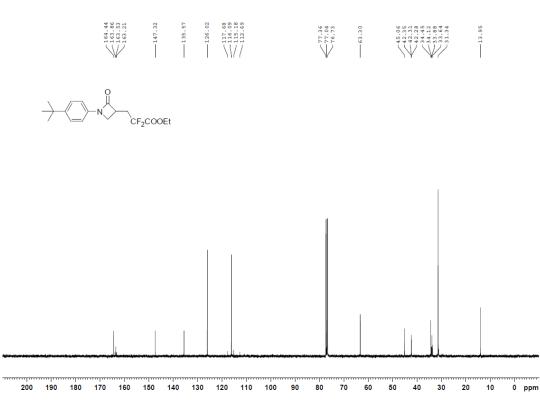

Supplementary Figure 126. ¹⁹F NMR spectrum of 3y in CDCl₃ (376 MHz)


Supplementary Figure 127. ¹H NMR spectrum of 3z in CDCl₃ (400 MHz)

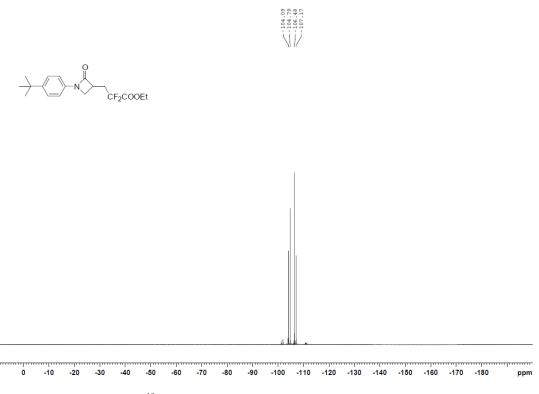

Supplementary Figure 128. ¹³C NMR spectrum of 3z in CDCl₃ (101 MHz)


Supplementary Figure 129. ¹⁹F NMR spectrum of 3z in CDCl₃ (376 MHz)

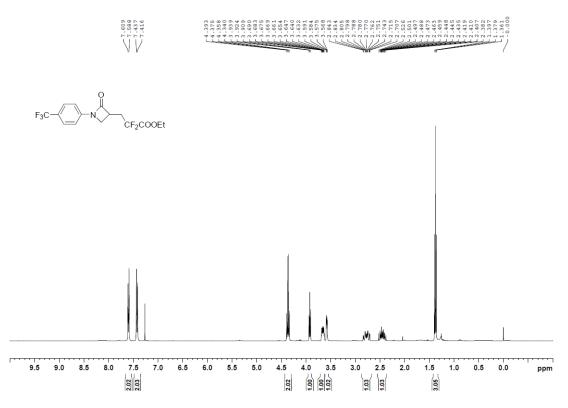

Supplementary Figure 130. ¹H NMR spectrum of 4a in CDCl₃ (400 MHz)

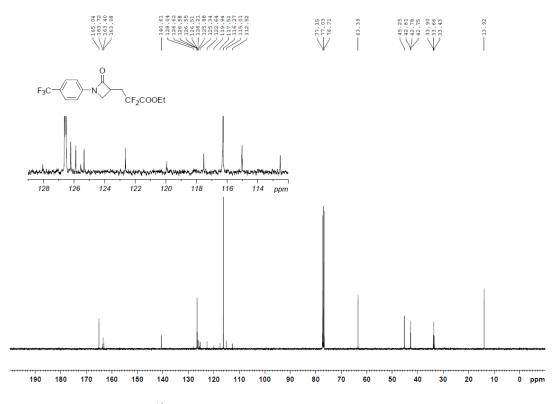


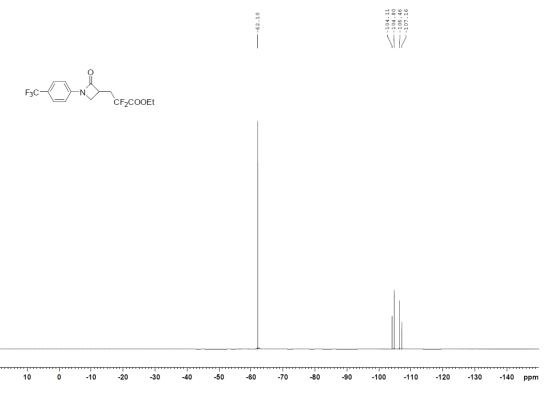
Supplementary Figure 131. ¹³C NMR spectrum of 4a in CDCl₃ (101 MHz)

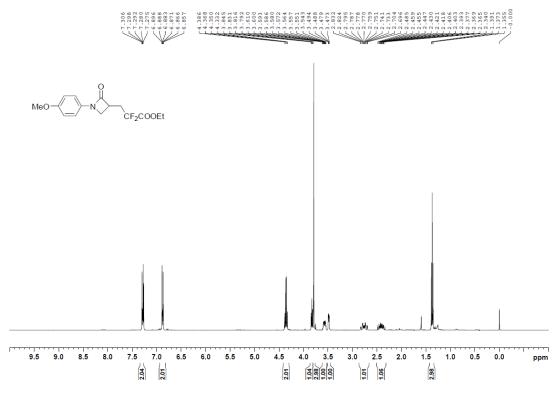


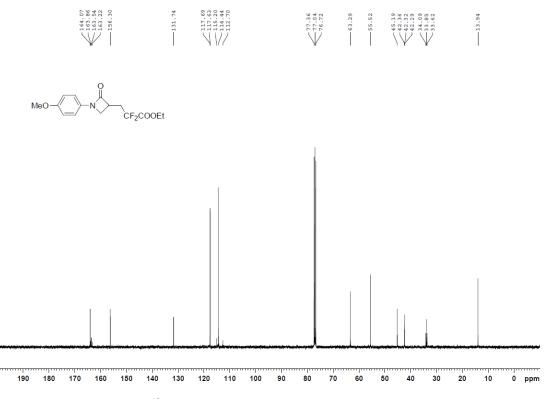
Supplementary Figure 132. ¹⁹F NMR spectrum of 4a in CDCl₃ (376 MHz)

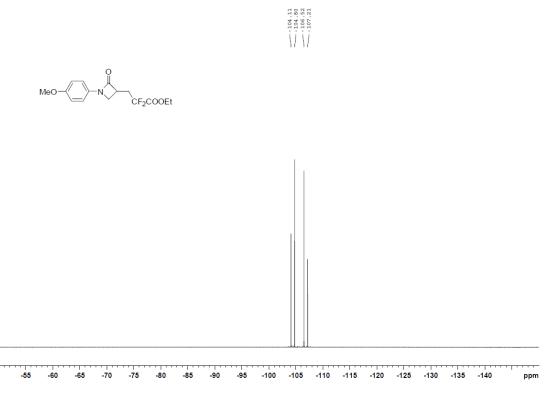


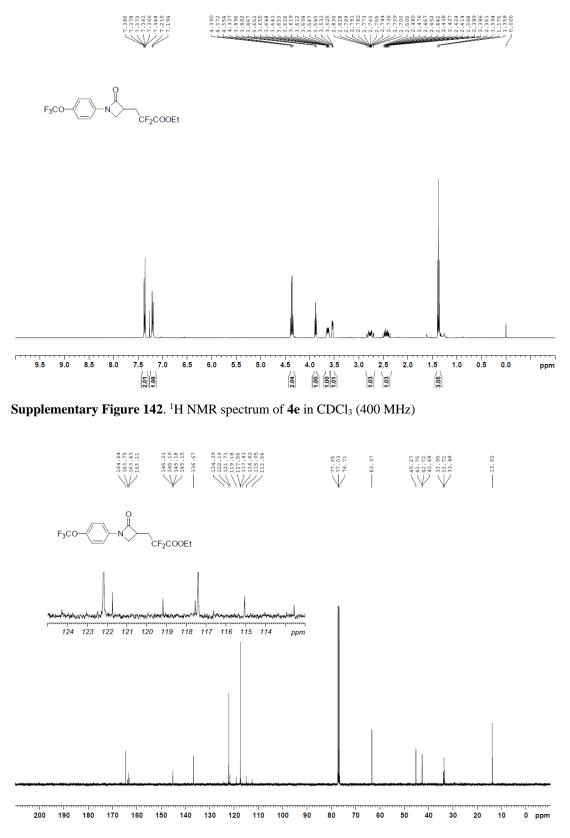

Supplementary Figure 134. ¹³C NMR spectrum of 4b in CDCl₃ (101 MHz)

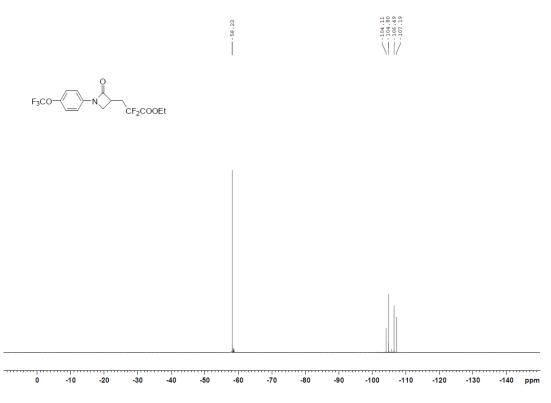

Supplementary Figure 135. ¹⁹F NMR spectrum of 4b in CDCl₃ (376 MHz)

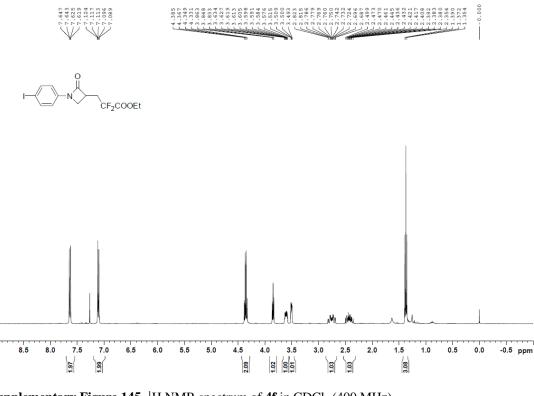

Supplementary Figure 136. ¹H NMR spectrum of 4c in CDCl₃ (400 MHz)

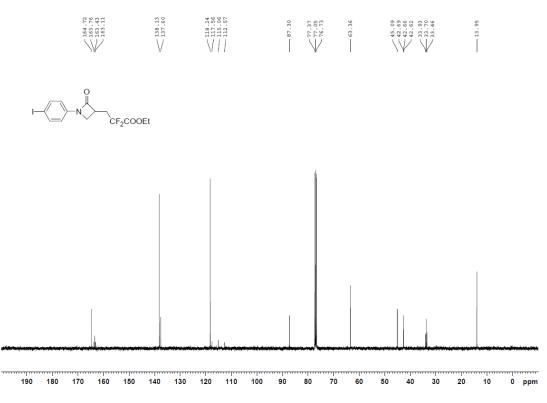

Supplementary Figure 137. ¹³C NMR spectrum of 4c in CDCl₃ (101 MHz)

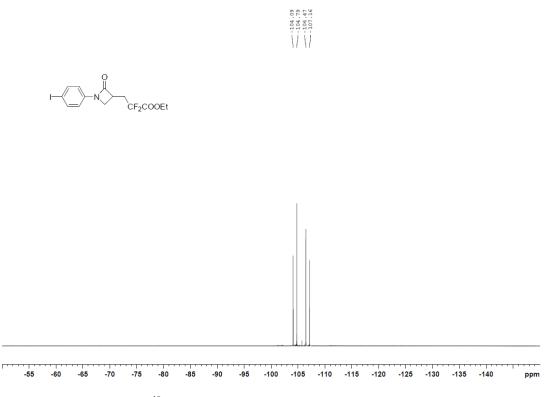

Supplementary Figure 138. ¹⁹F NMR spectrum of 4c in CDCl₃ (376 MHz)

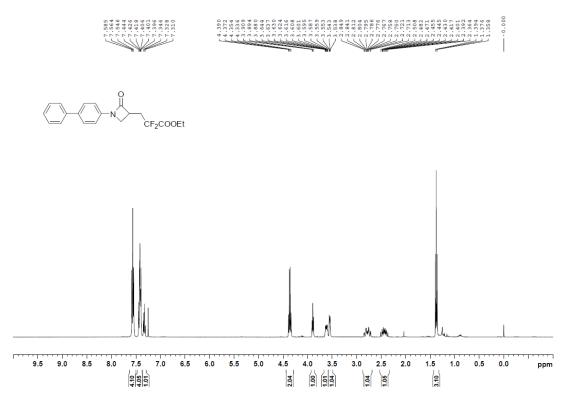

Supplementary Figure 139. ¹H NMR spectrum of 4d in CDCl₃ (400 MHz)

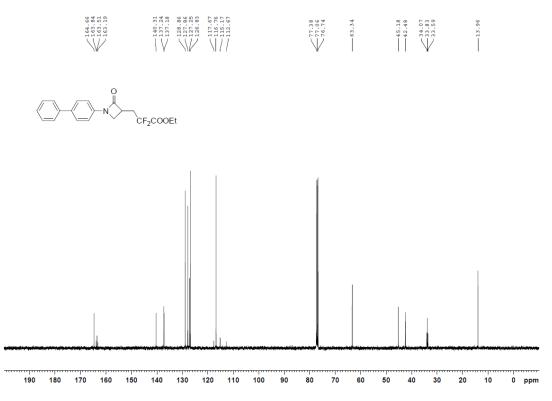

Supplementary Figure 140. ¹³C NMR spectrum of 4d in CDCl₃ (101 MHz)

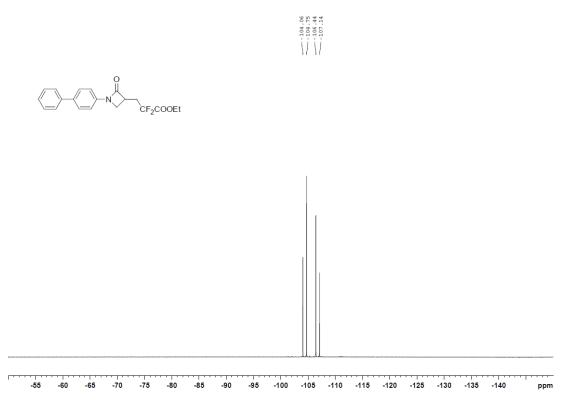

Supplementary Figure 141. ¹⁹F NMR spectrum of 4d in CDCl₃ (376 MHz)

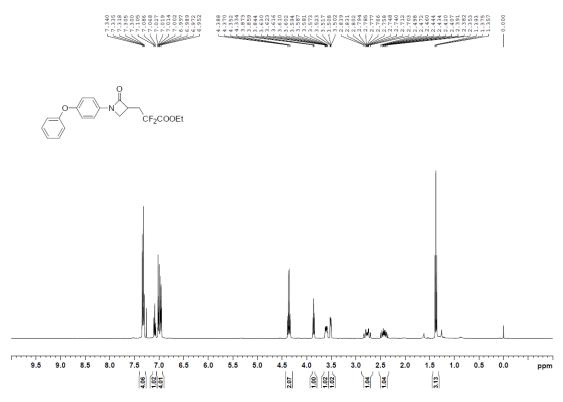

Supplementary Figure 143. ¹³C NMR spectrum of 4e in CDCl₃ (101 MHz)

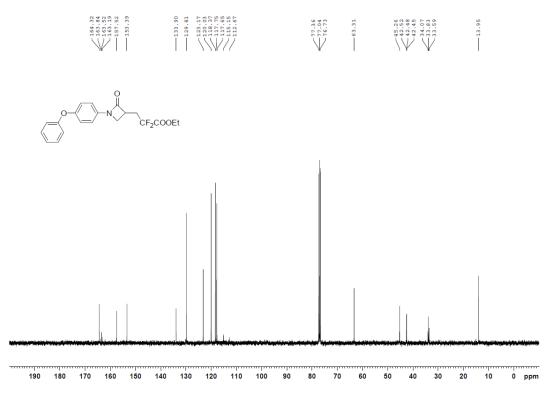

Supplementary Figure 144. ¹⁹F NMR spectrum of 4e in CDCl₃ (376 MHz)

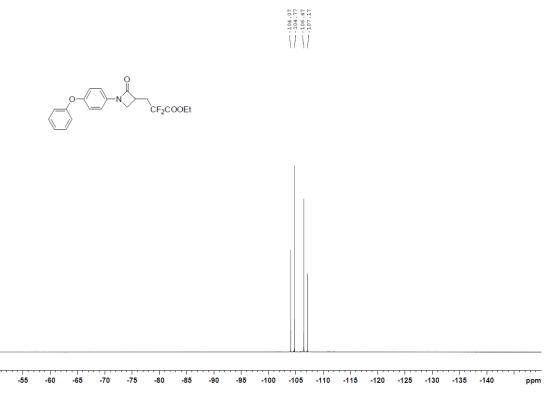

Supplementary Figure 145. ¹H NMR spectrum of 4f in CDCl₃ (400 MHz)

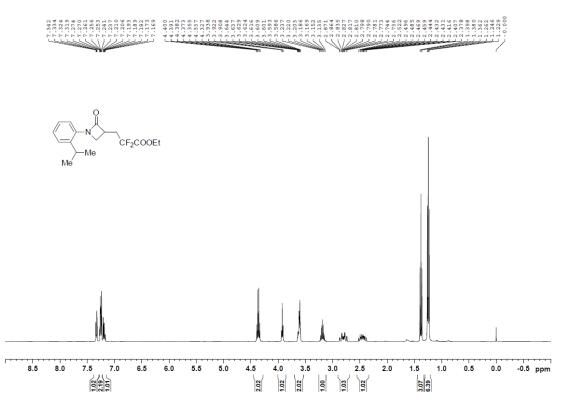

Supplementary Figure 146. ¹³C NMR spectrum of 4f in CDCl₃ (101 MHz)

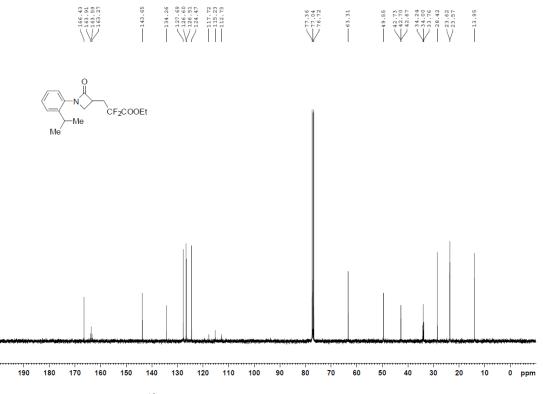

Supplementary Figure 147. ¹⁹F NMR spectrum of 4f in CDCl₃ (376 MHz)

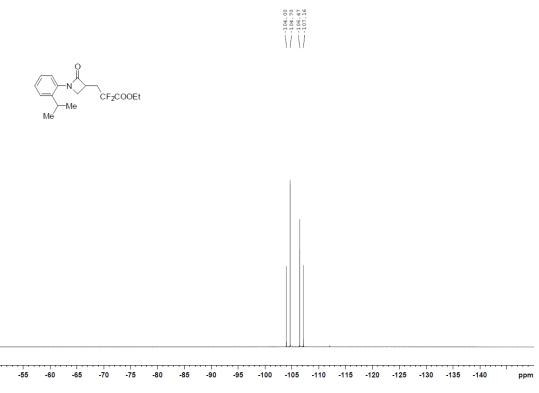

Supplementary Figure 148. ¹H NMR spectrum of 4g in CDCl₃ (400 MHz)

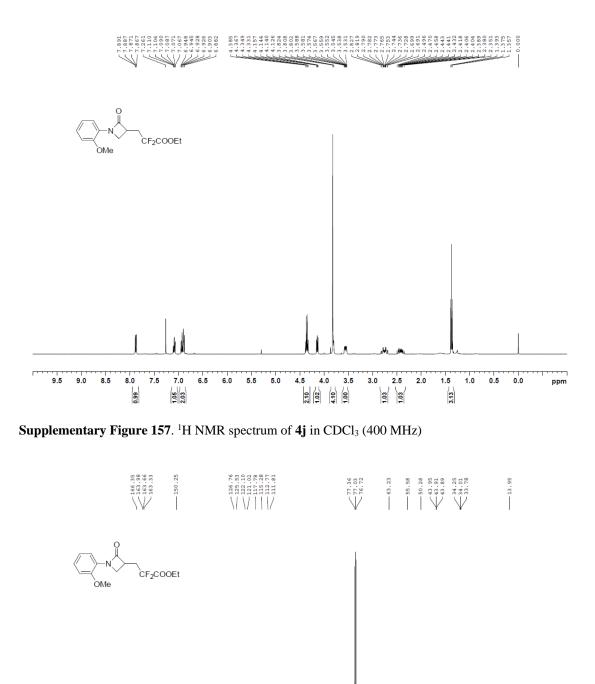

Supplementary Figure 149. ¹³C NMR spectrum of 4g in CDCl₃ (101 MHz)


Supplementary Figure 150. ¹⁹F NMR spectrum of 4g in CDCl₃ (376 MHz)


Supplementary Figure 151. ¹H NMR spectrum of 4h in CDCl₃ (400 MHz)

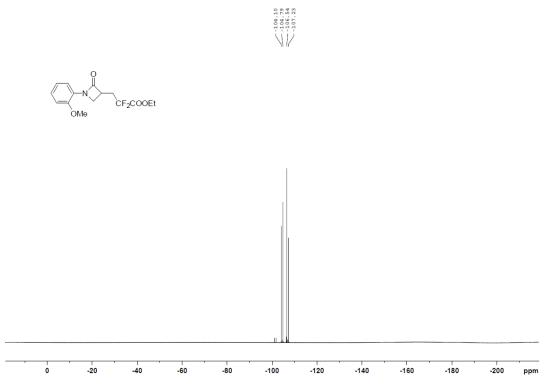

Supplementary Figure 152. ¹³C NMR spectrum of 4h in CDCl₃ (101 MHz)


Supplementary Figure 153. ¹⁹F NMR spectrum of 4h in CDCl₃ (376 MHz)

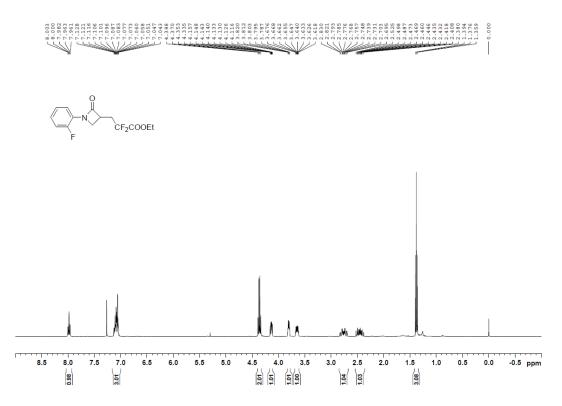

Supplementary Figure 154. ¹H NMR spectrum of 4i in CDCl₃ (400 MHz)

Supplementary Figure 155. ¹³C NMR spectrum of 4i in CDCl₃ (101 MHz)

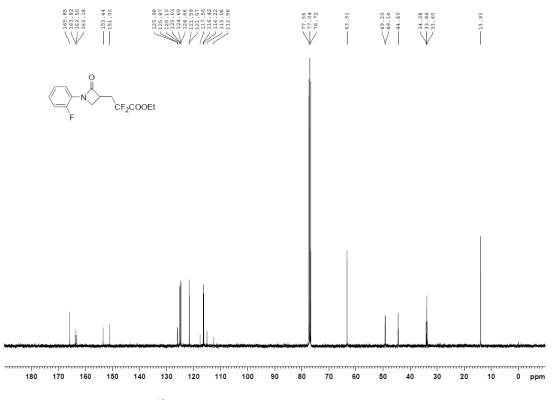
Supplementary Figure 156. ¹⁹F NMR spectrum of 4i in CDCl₃ (376 MHz)

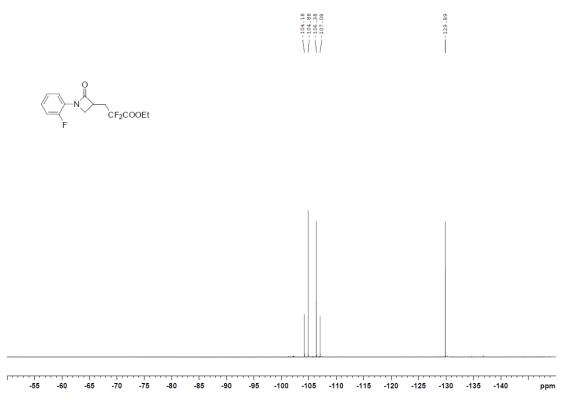


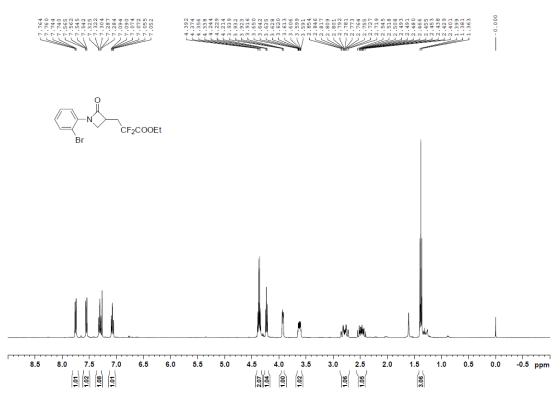
Supplementary Figure 158. ¹³C NMR spectrum of 4j in CDCl₃ (101 MHz)

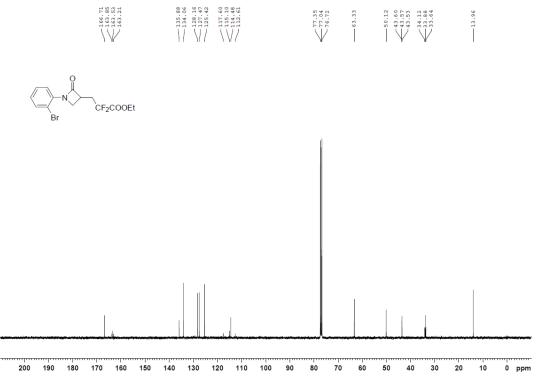

200 190 180 170 160 150 140 130 120 110 100 90

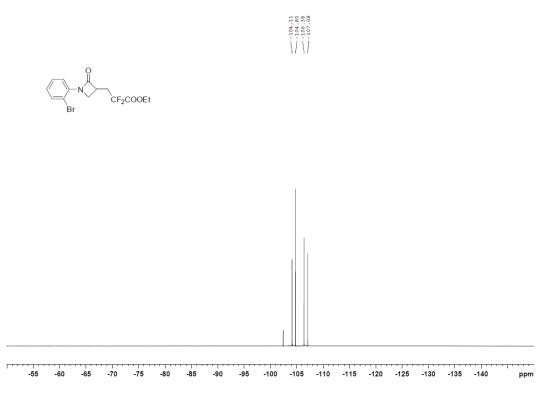
80 70 60 50 40 30 20 10


0 ppm

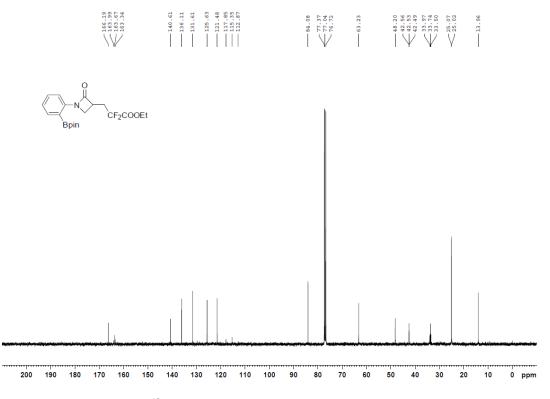

Supplementary Figure 159. ¹⁹F NMR spectrum of 4j in CDCl₃ (376 MHz)

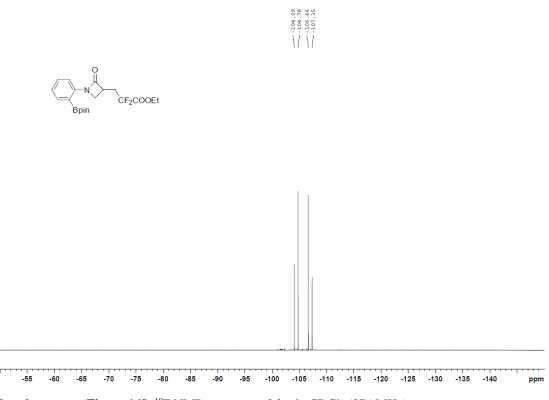

Supplementary Figure 160. ¹H NMR spectrum of 4k in CDCl₃ (400 MHz)

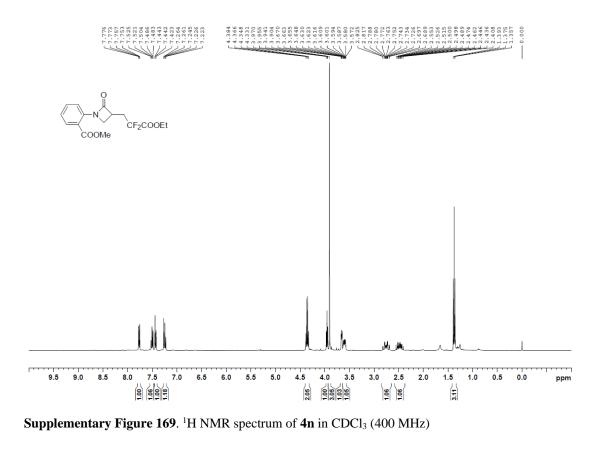

Supplementary Figure 161. ¹³C NMR spectrum of 4k in CDCl₃ (101 MHz)

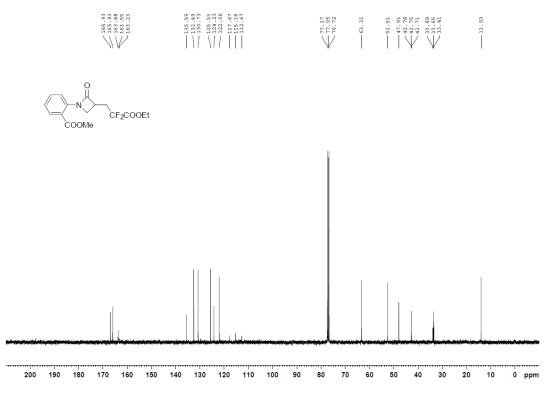

Supplementary Figure 162. ¹⁹F NMR spectrum of 4k in CDCl₃ (376 MHz)

Supplementary Figure 163. ¹H NMR spectrum of 4l in CDCl₃ (400 MHz)

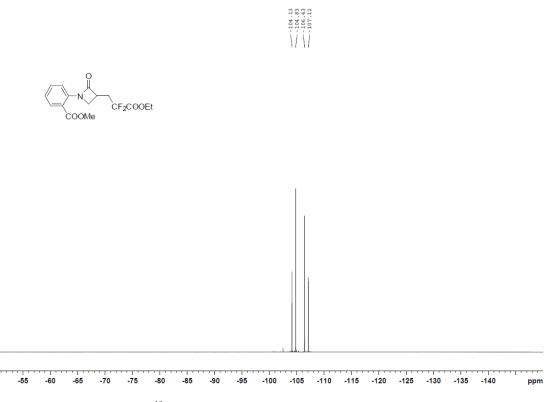

Supplementary Figure 164. ¹³C NMR spectrum of 4l in CDCl₃ (101 MHz)


Supplementary Figure 165. ¹⁹F NMR spectrum of 4l in CDCl₃ (376 MHz)

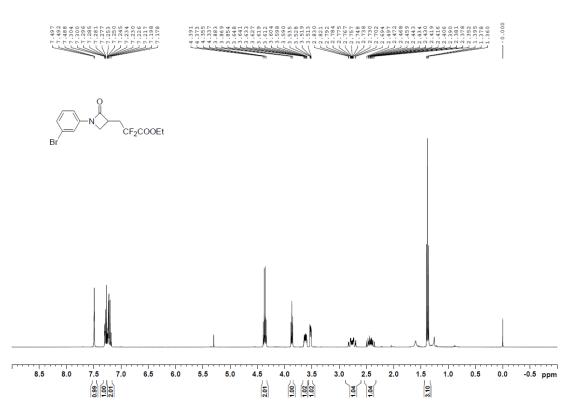

Supplementary Figure 166. ¹H NMR spectrum of 4m in CDCl₃ (400 MHz)

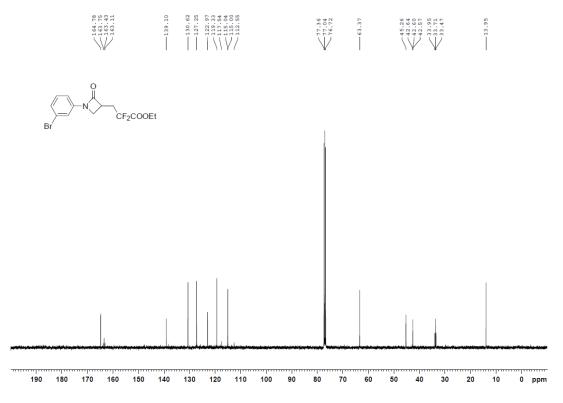


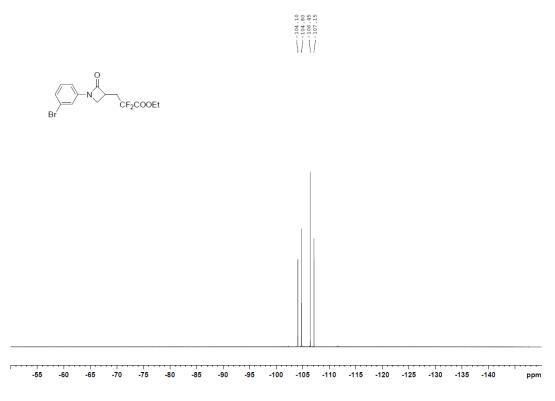
Supplementary Figure 167. ¹³C NMR spectrum of 4m in CDCl₃ (101 MHz)

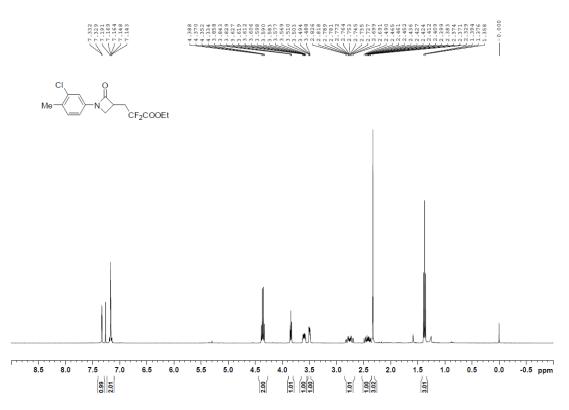


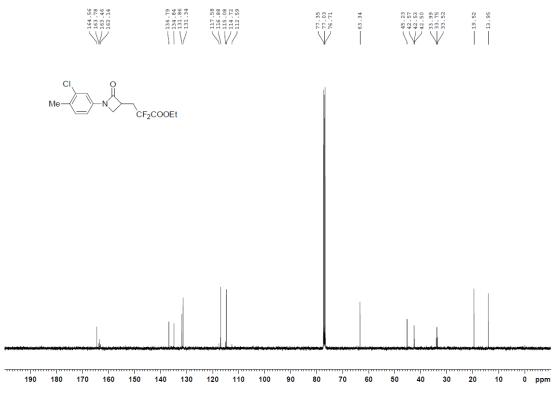
Supplementary Figure 168. ¹⁹F NMR spectrum of 4m in CDCl₃ (376 MHz)

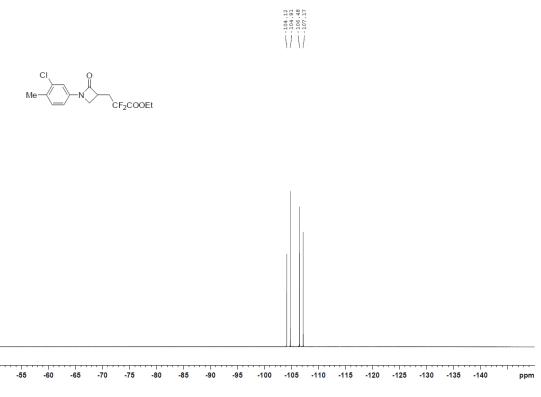



Supplementary Figure 170. ¹³C NMR spectrum of 4n in CDCl₃ (101 MHz)

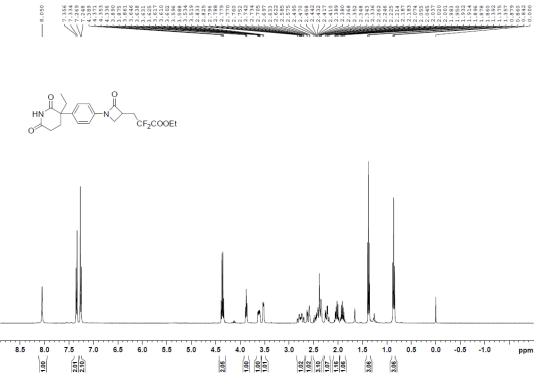

Supplementary Figure 171. ¹⁹F NMR spectrum of 4n in CDCl₃ (376 MHz)


Supplementary Figure 172. ¹H NMR spectrum of 40 in CDCl₃ (400 MHz)

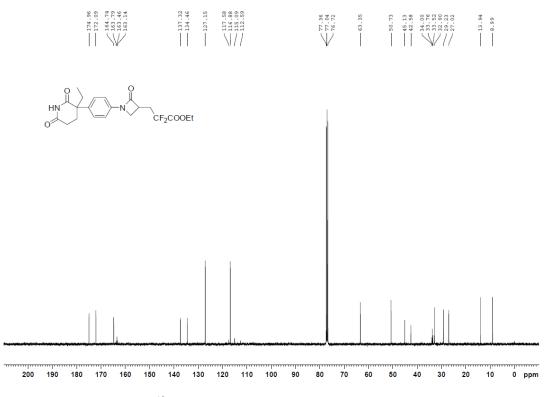

Supplementary Figure 173. ¹³C NMR spectrum of 40 in CDCl₃ (101 MHz)


Supplementary Figure 174. ¹⁹F NMR spectrum of 40 in CDCl₃ (376 MHz)

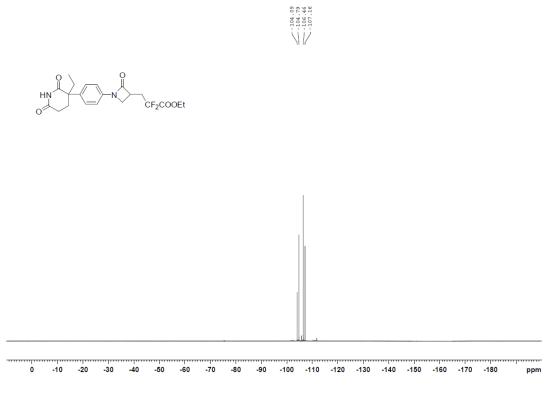
Supplementary Figure 175. ¹H NMR spectrum of 4p in CDCl₃ (400 MHz)

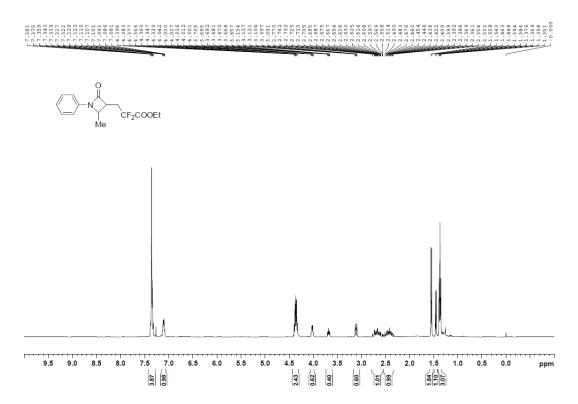


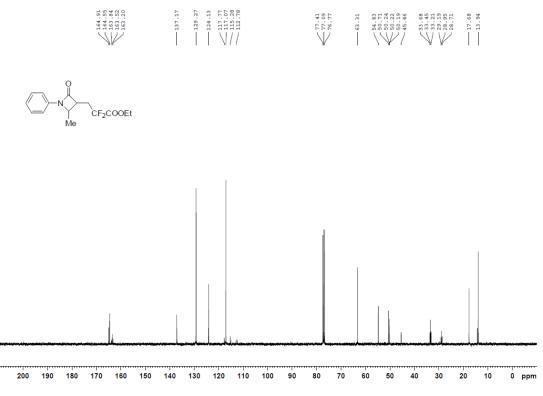
Supplementary Figure 176. ¹³C NMR spectrum of 4p in CDCl₃ (101 MHz)

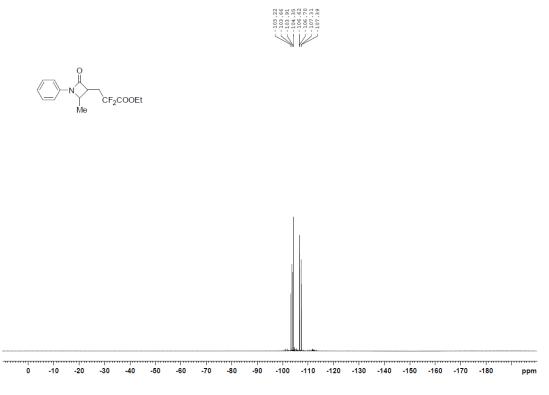


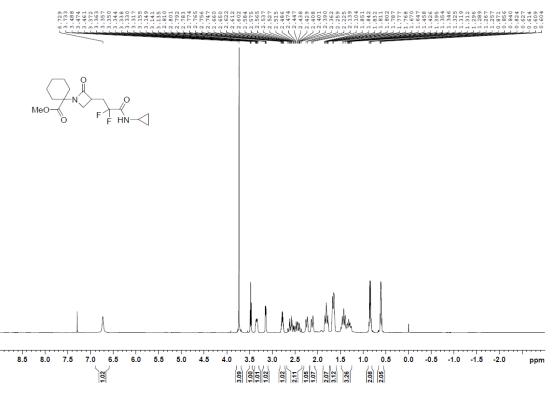
Supplementary Figure 177. ¹⁹F NMR spectrum of 4p in CDCl₃ (376 MHz)

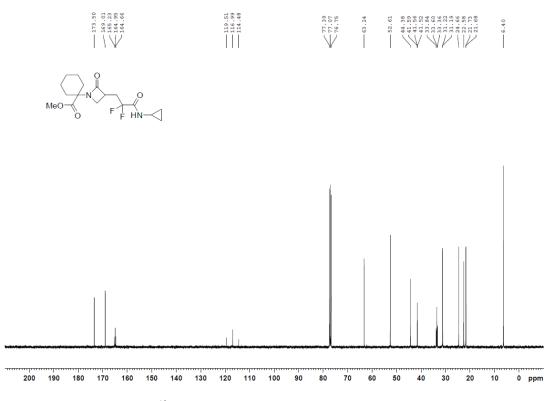

Γ

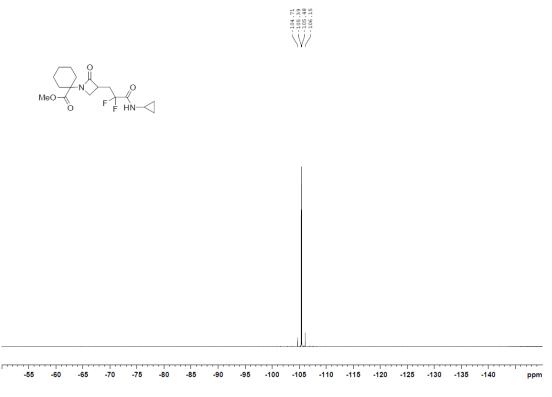

Supplementary Figure 178. ¹H NMR spectrum of 4q in CDCl₃ (400 MHz)

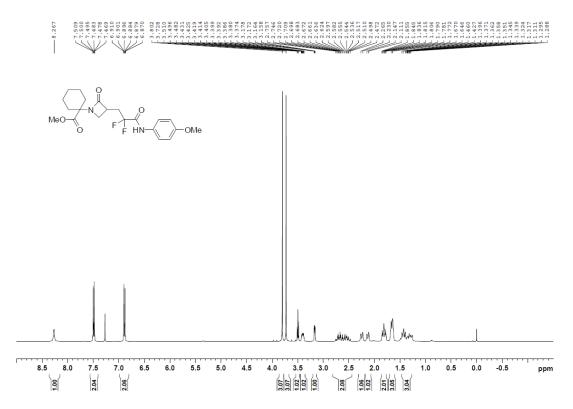

Supplementary Figure 179. ¹³C NMR spectrum of 4q in CDCl₃ (101 MHz)

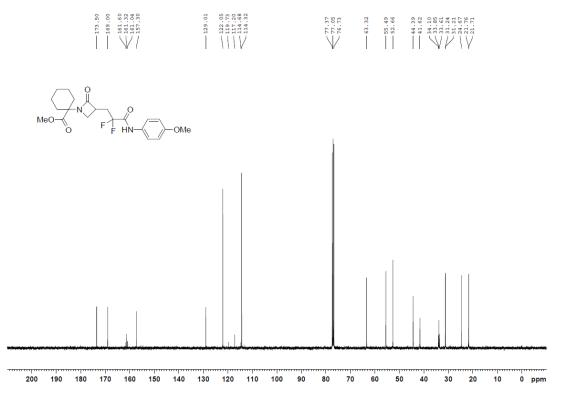

Supplementary Figure 180. ¹⁹F NMR spectrum of 4q in CDCl₃ (376 MHz)

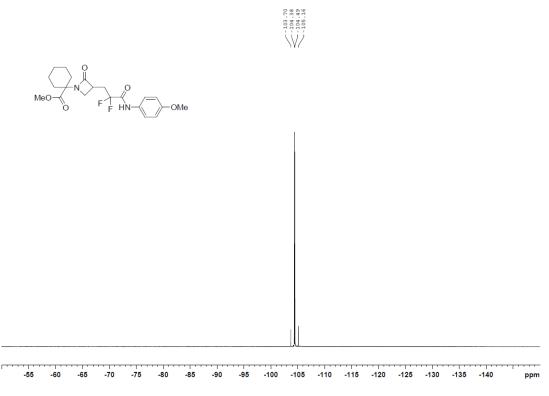

Supplementary Figure 181. ¹H NMR spectrum of 4r in CDCl₃ (400 MHz)

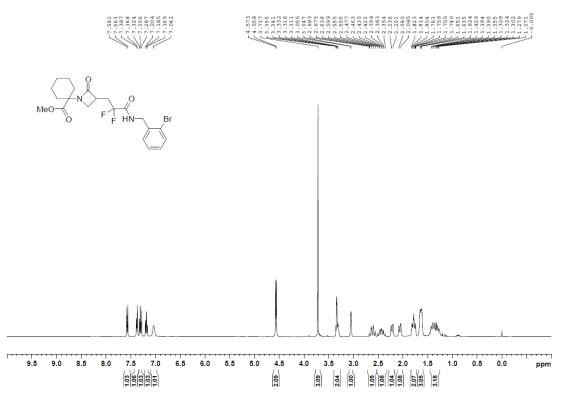

Supplementary Figure 182. ¹³C NMR spectrum of 4r in CDCl₃ (101 MHz)

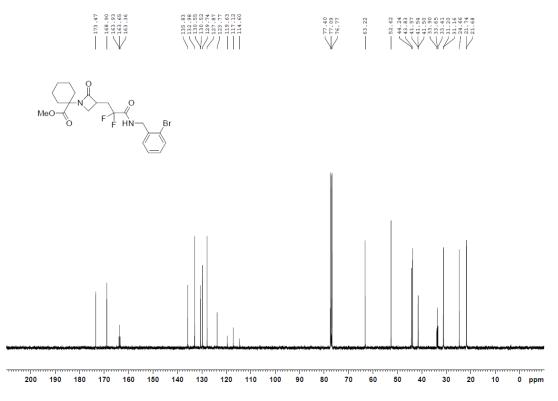

Supplementary Figure 183. ¹⁹F NMR spectrum of 4r in CDCl₃ (376 MHz)

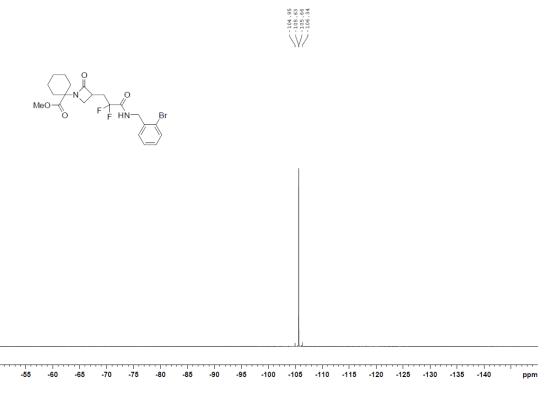

Supplementary Figure 184. ¹H NMR spectrum of 5a in CDCl₃ (400 MHz)

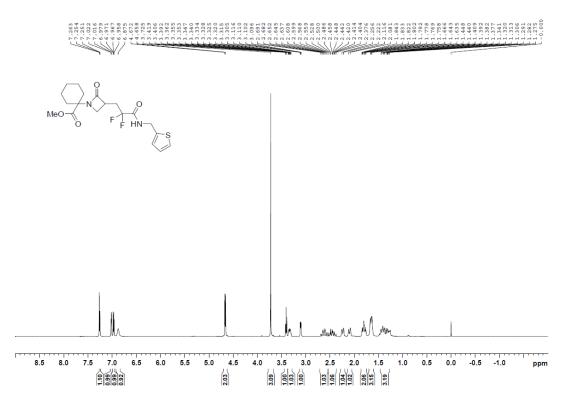

Supplementary Figure 185. ¹³C NMR spectrum of 5a in CDCl₃ (101 MHz)

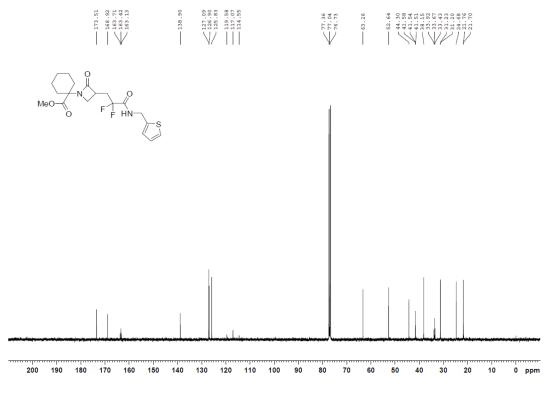

Supplementary Figure 186. ¹⁹F NMR spectrum of 5a in CDCl₃ (376 MHz)

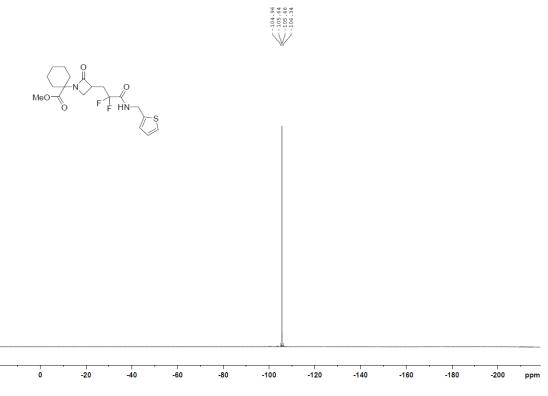

Supplementary Figure 187. ¹H NMR spectrum of 5b in CDCl₃ (400 MHz)

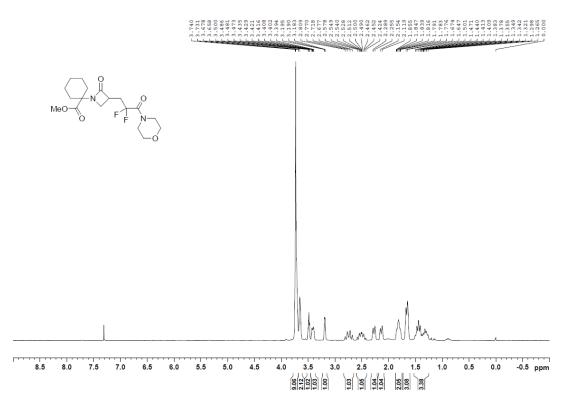

Supplementary Figure 188. ¹³C NMR spectrum of 5b in CDCl₃ (101 MHz)

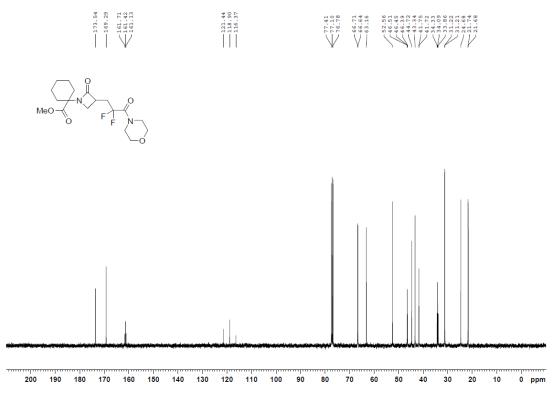

Supplementary Figure 189. ¹⁹F NMR spectrum of 5b in CDCl₃ (376 MHz)

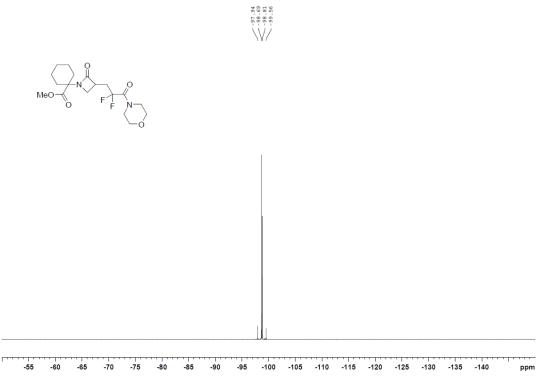

Supplementary Figure 190. ¹H NMR spectrum of 5c in CDCl₃ (400 MHz)

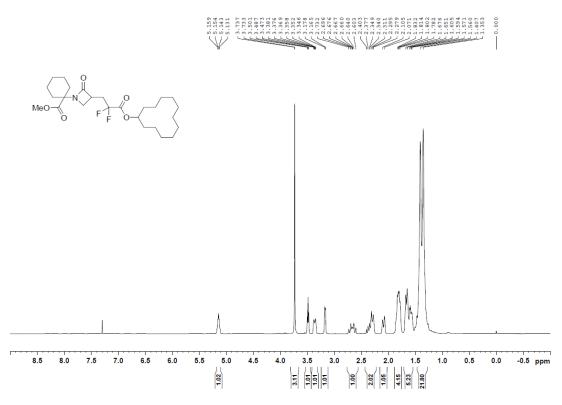

Supplementary Figure 191. ¹³C NMR spectrum of 5c in CDCl₃ (101 MHz)

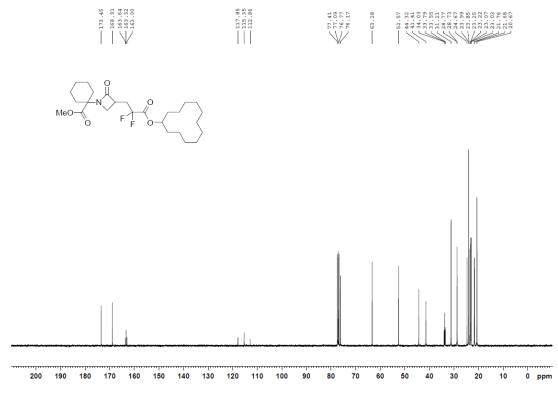

Supplementary Figure 192. ¹⁹F NMR spectrum of 5c in CDCl₃ (376 MHz)

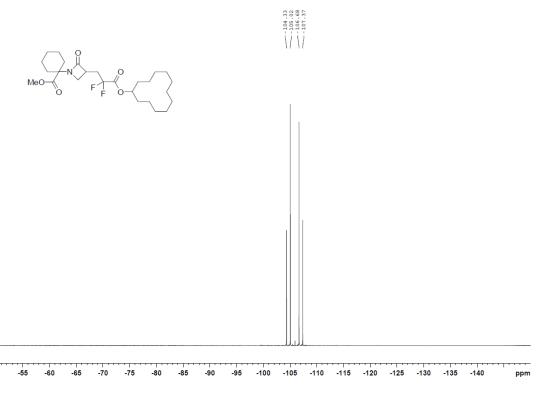

Supplementary Figure 193. ¹H NMR spectrum of 5d in CDCl₃ (400 MHz)

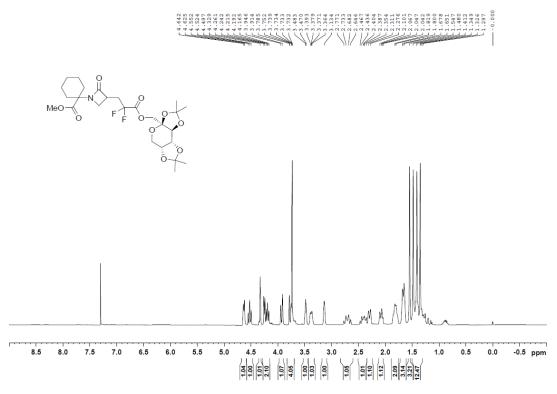

Supplementary Figure 194. ¹³C NMR spectrum of 5d in CDCl₃ (101 MHz)

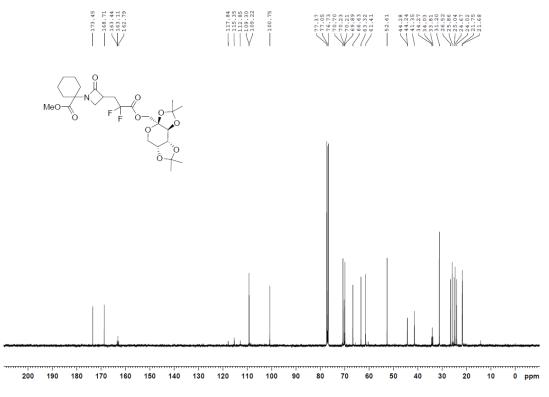

Supplementary Figure 195. ¹⁹F NMR spectrum of 5d in CDCl₃ (376 MHz)

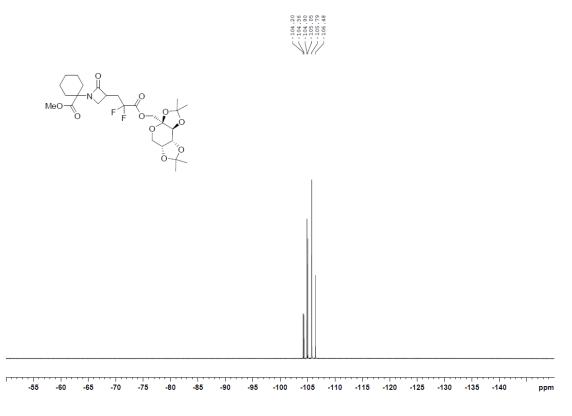

Supplementary Figure 196. ¹H NMR spectrum of 5e in CDCl₃ (400 MHz)

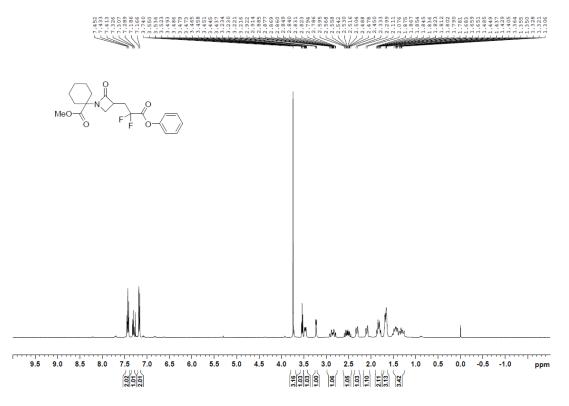

Supplementary Figure 197. ¹³C NMR spectrum of 5e in CDCl₃ (101 MHz)

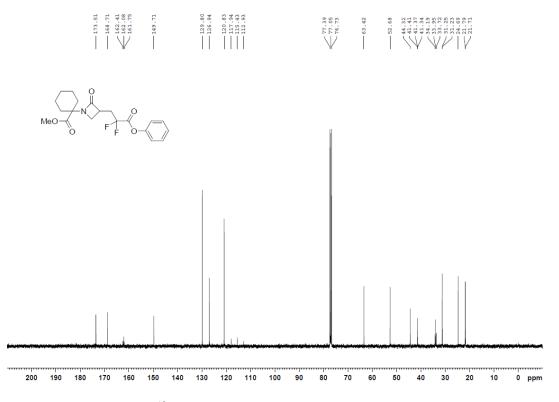

Supplementary Figure 198. ¹⁹F NMR spectrum of 5e in CDCl₃ (376 MHz)

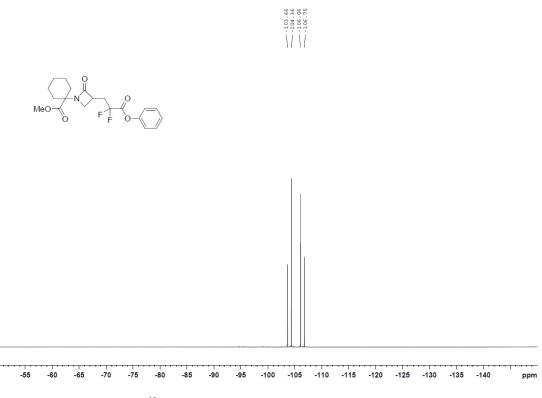

Supplementary Figure 199. ¹H NMR spectrum of 5f in CDCl₃ (400 MHz)

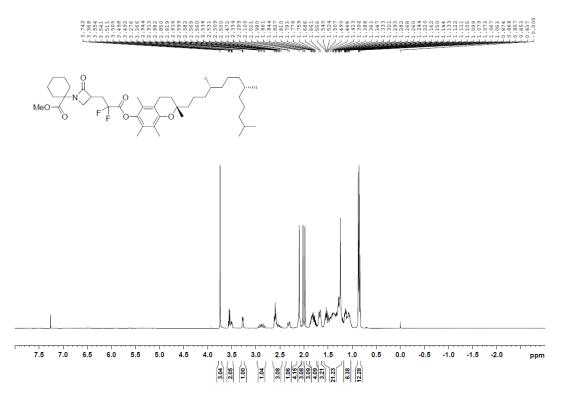

Supplementary Figure 200. ¹³C NMR spectrum of 5f in CDCl₃ (101 MHz)

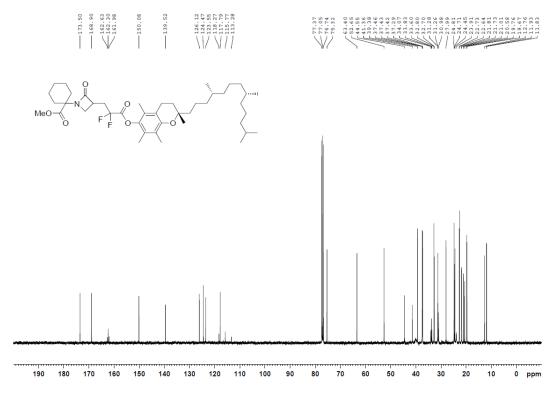

Supplementary Figure 201. ¹⁹F NMR spectrum of 5f in CDCl₃ (376 MHz)

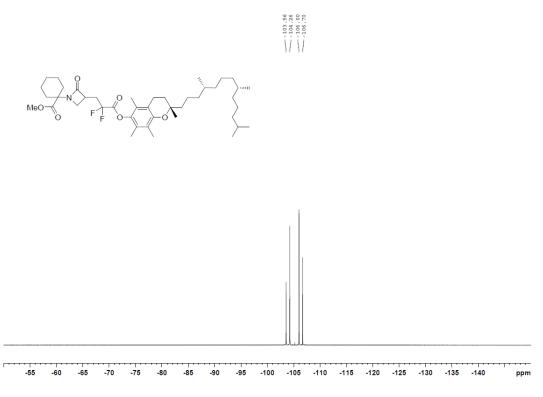

Supplementary Figure 202. ¹H NMR spectrum of 5g in CDCl₃ (400 MHz)

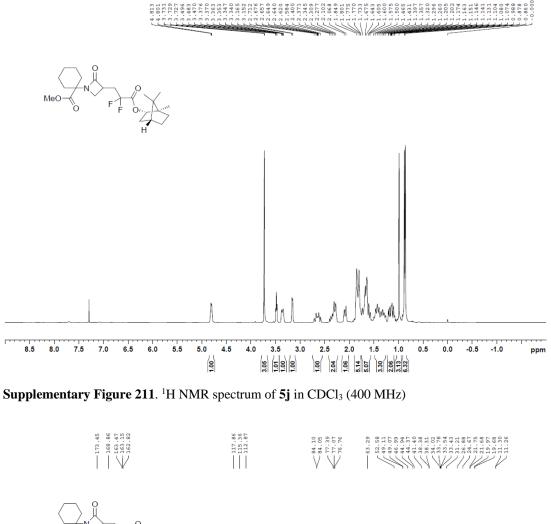

Supplementary Figure 203. ¹³C NMR spectrum of 5g in CDCl₃ (101 MHz)

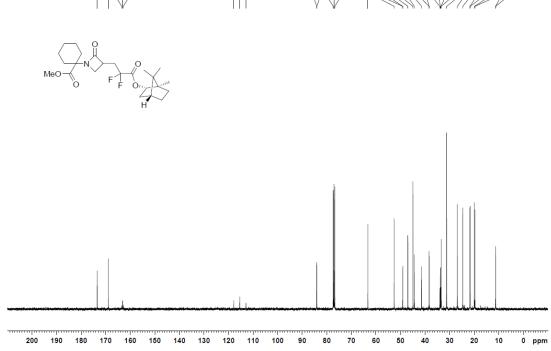

Supplementary Figure 204. ¹⁹F NMR spectrum of 5g in CDCl₃ (376 MHz)


Supplementary Figure 205. ¹H NMR spectrum of 5h in CDCl₃ (400 MHz)

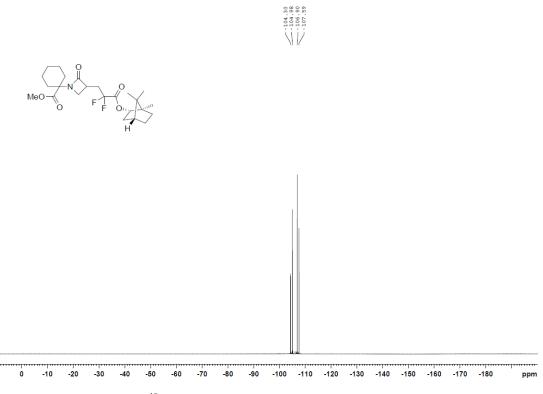

Supplementary Figure 206. ¹³C NMR spectrum of 5h in CDCl₃ (101 MHz)


Supplementary Figure 207. ¹⁹F NMR spectrum of 5h in CDCl₃ (376 MHz)

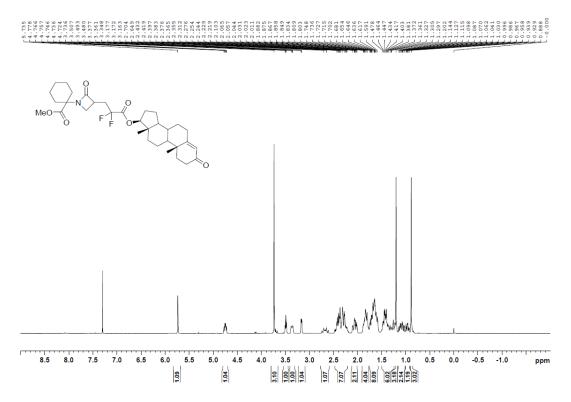

Supplementary Figure 208. ¹H NMR spectrum of 5i in CDCl₃ (400 MHz)

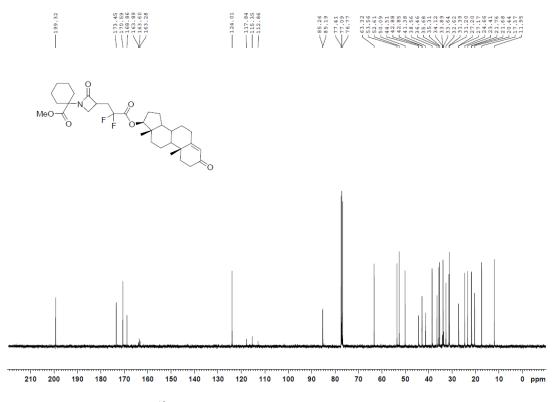


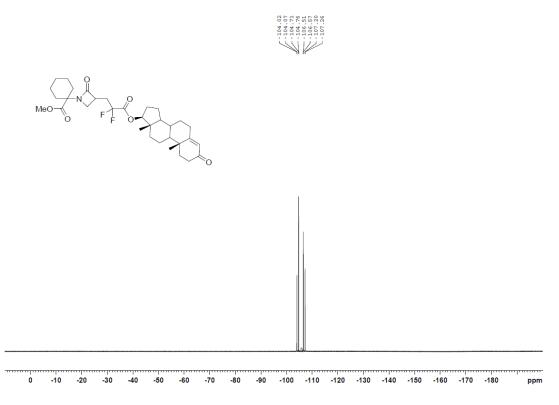
Supplementary Figure 209. ¹³C NMR spectrum of 5i in CDCl₃ (101 MHz)

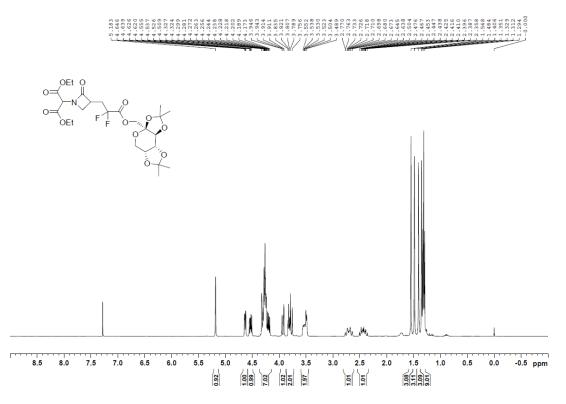


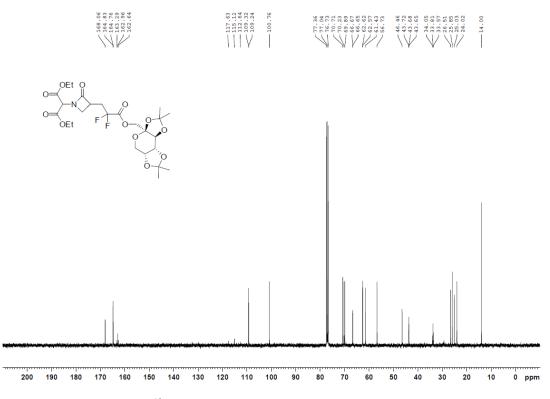
Supplementary Figure 210. ¹⁹F NMR spectrum of 5i in CDCl₃ (376 MHz)

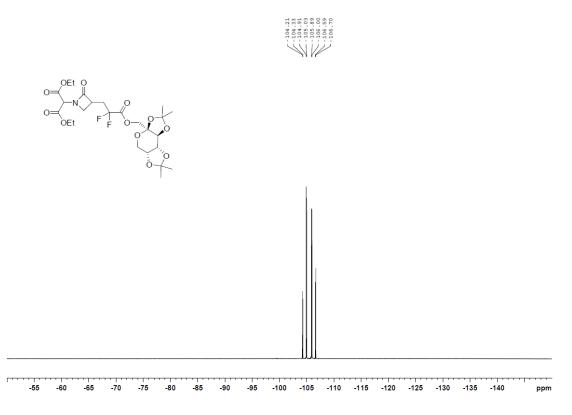


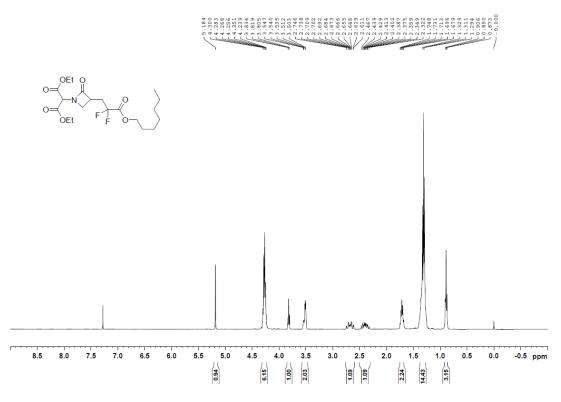

Supplementary Figure 212. ¹³C NMR spectrum of 5j in CDCl₃ (101 MHz)

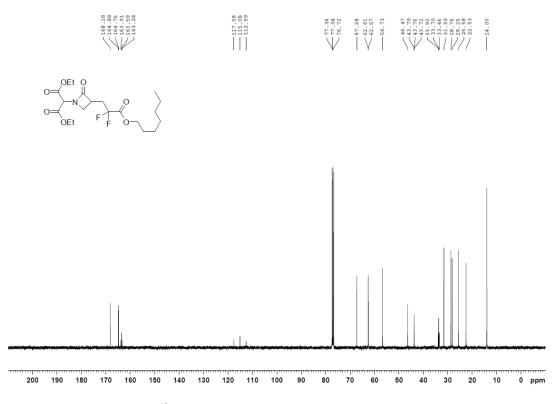

Supplementary Figure 213. ¹⁹F NMR spectrum of 5j in CDCl₃ (376 MHz)

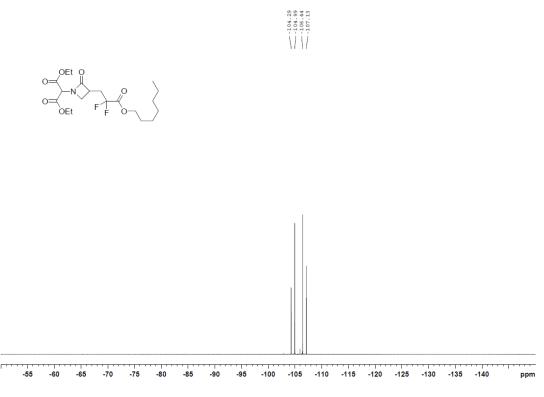

Supplementary Figure 214. ¹H NMR spectrum of 5k in CDCl₃ (400 MHz)

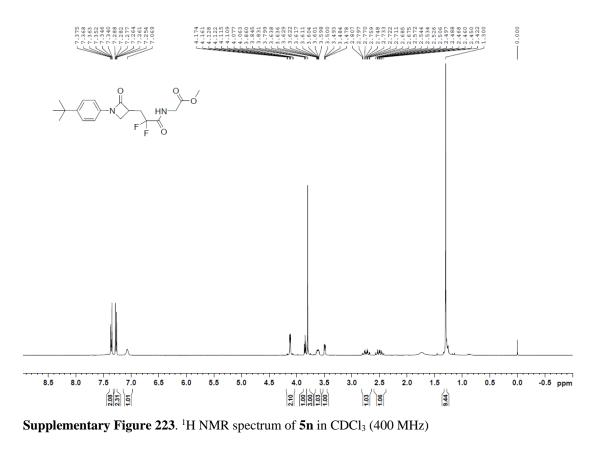

Supplementary Figure 215. ¹³C NMR spectrum of 5k in CDCl₃ (101 MHz)

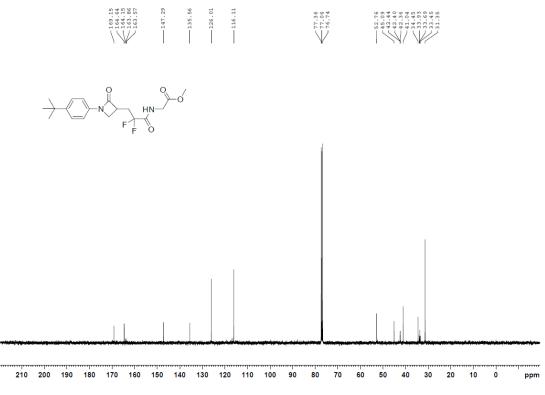

Supplementary Figure 216. ¹⁹F NMR spectrum of 5k in CDCl₃ (376 MHz)


Supplementary Figure 217. ¹H NMR spectrum of 5l in CDCl₃ (400 MHz)

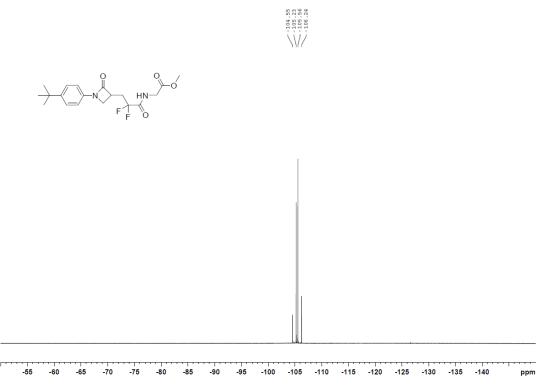

Supplementary Figure 218. ¹³C NMR spectrum of 5l in CDCl₃ (101 MHz)


Supplementary Figure 219. ¹⁹F NMR spectrum of 5l in CDCl₃ (376 MHz)

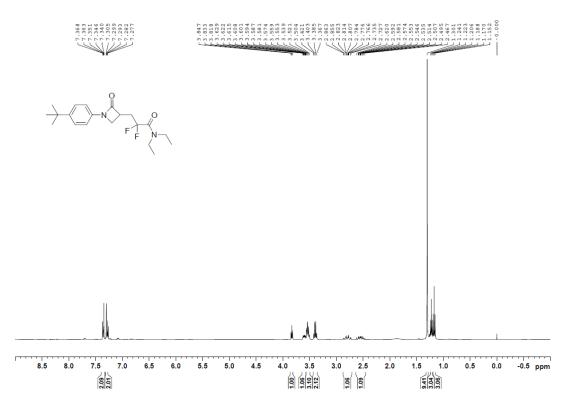

Supplementary Figure 220. ¹H NMR spectrum of 5m in CDCl₃ (400 MHz)

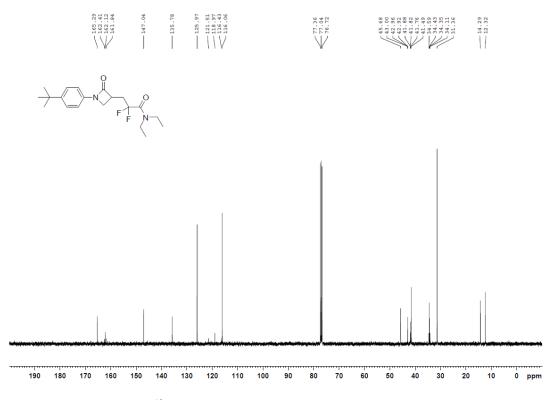


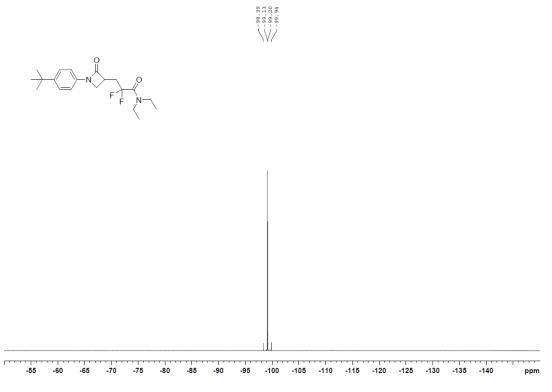
Supplementary Figure 221. ¹³C NMR spectrum of 5m in CDCl₃ (101 MHz)

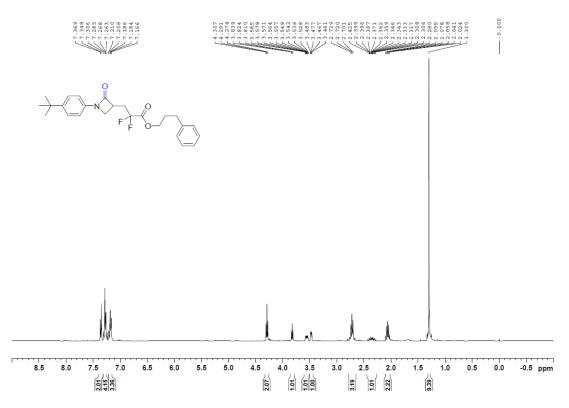


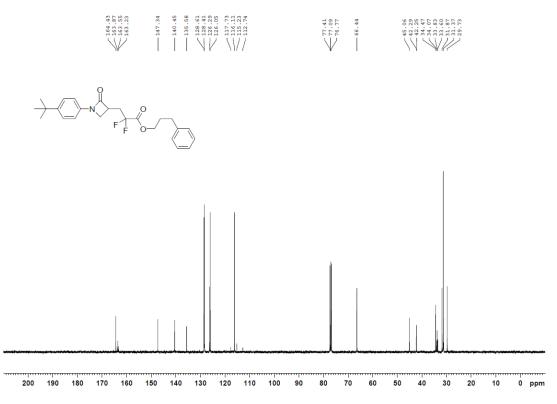
Supplementary Figure 222. ¹⁹F NMR spectrum of 5m in CDCl₃ (376 MHz)

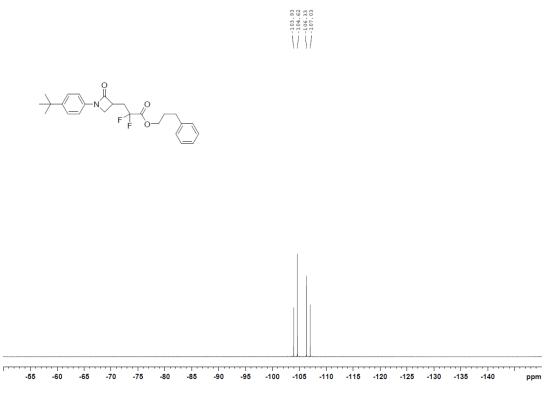


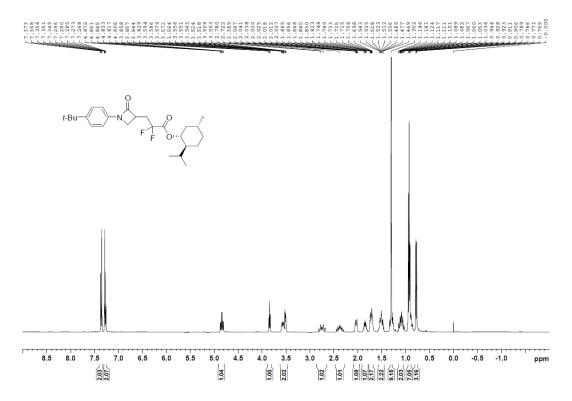

Supplementary Figure 224. ¹³C NMR spectrum of 5n in CDCl₃ (101 MHz)

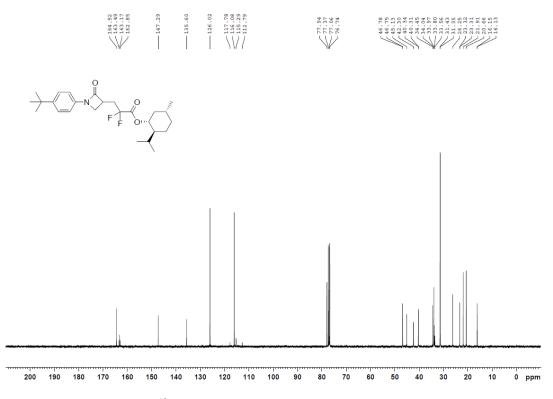

Supplementary Figure 225. ¹⁹F NMR spectrum of 5n in CDCl₃ (376 MHz)

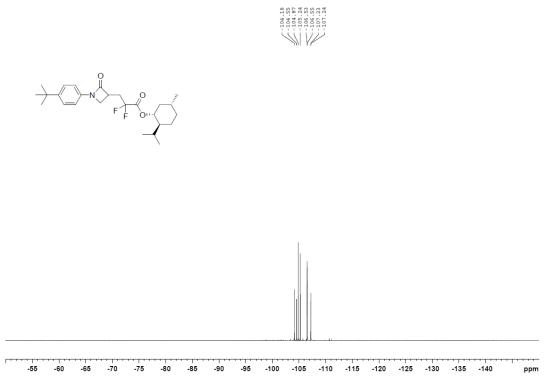

Supplementary Figure 226. ¹H NMR spectrum of 50 in CDCl₃ (400 MHz)


Supplementary Figure 227. ¹³C NMR spectrum of 50 in CDCl₃ (101 MHz)

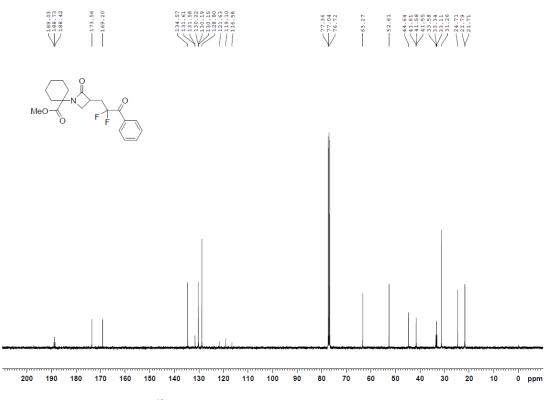

Supplementary Figure 228. ¹⁹F NMR spectrum of 50 in CDCl₃ (376 MHz)

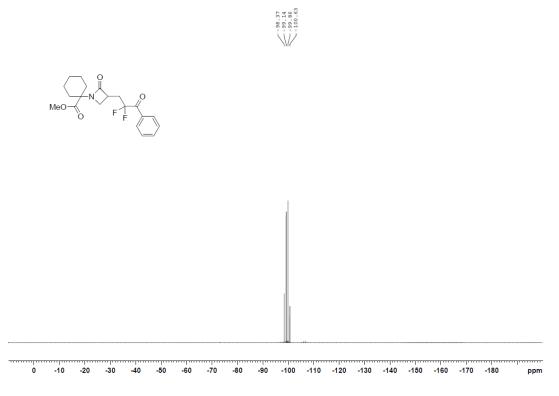

Supplementary Figure 229. ¹H NMR spectrum of 5p in CDCl₃ (400 MHz)

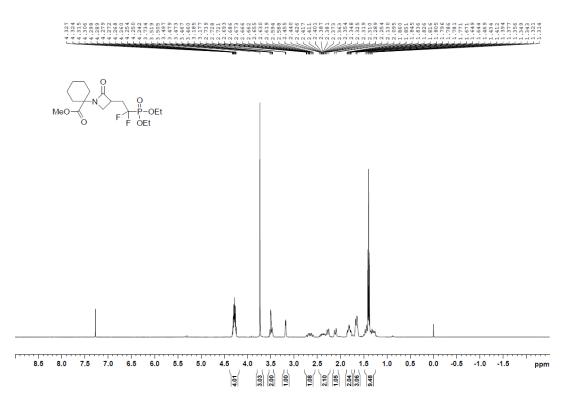

Supplementary Figure 230. ¹³C NMR spectrum of 5p in CDCl₃ (101 MHz)

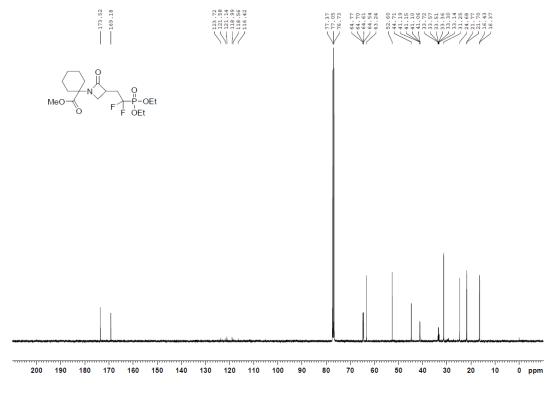

Supplementary Figure 231. ¹⁹F NMR spectrum of 5p in CDCl₃ (376 MHz)

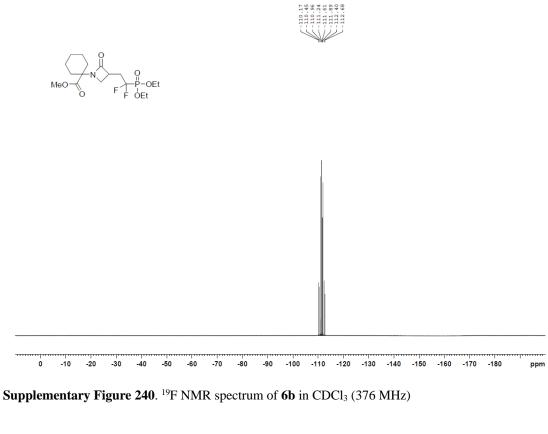
Supplementary Figure 232. ¹H NMR spectrum of 5q in CDCl₃ (400 MHz)

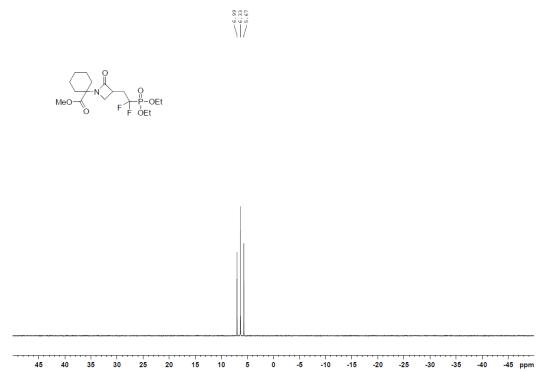

Supplementary Figure 233. ¹³C NMR spectrum of 5q in CDCl₃ (101 MHz)


Supplementary Figure 234. ¹⁹F NMR spectrum of 5q in CDCl₃ (376 MHz)

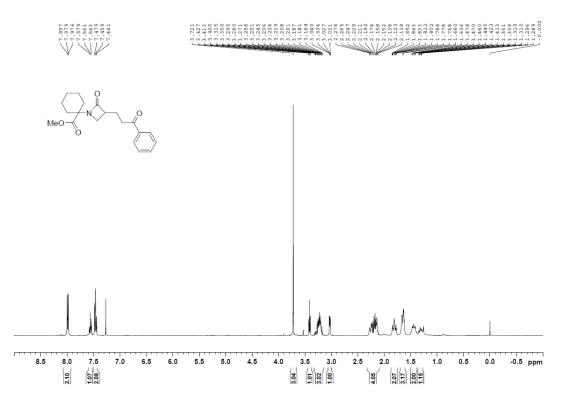

Supplementary Figure 235. ¹H NMR spectrum of 6a in CDCl₃ (400 MHz)


Supplementary Figure 236. ¹³C NMR spectrum of 6a in CDCl₃ (101 MHz)

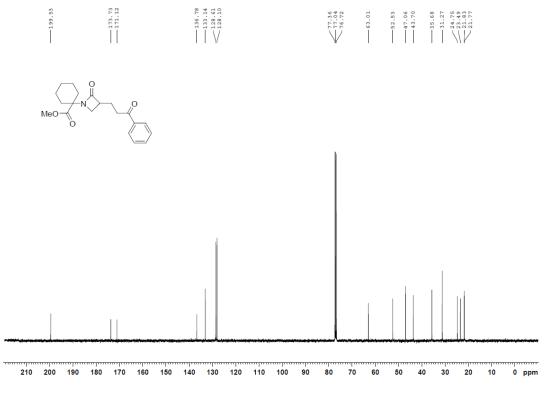

Supplementary Figure 237. ¹⁹F NMR spectrum of 6a in CDCl₃ (376 MHz)

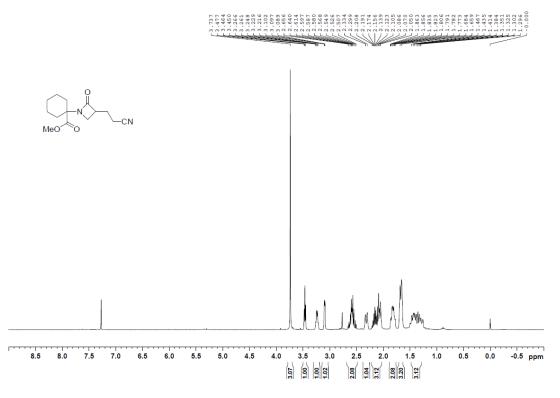


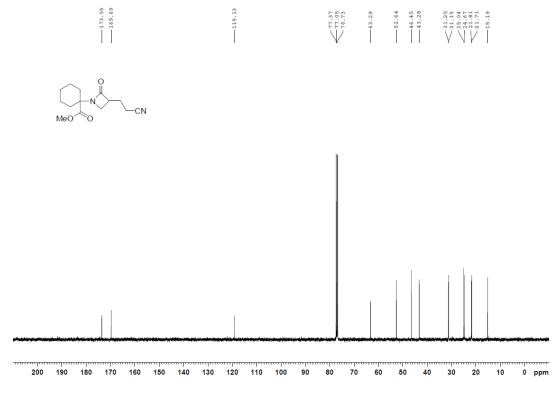
Supplementary Figure 238. ¹H NMR spectrum of 6b in CDCl₃ (400 MHz)

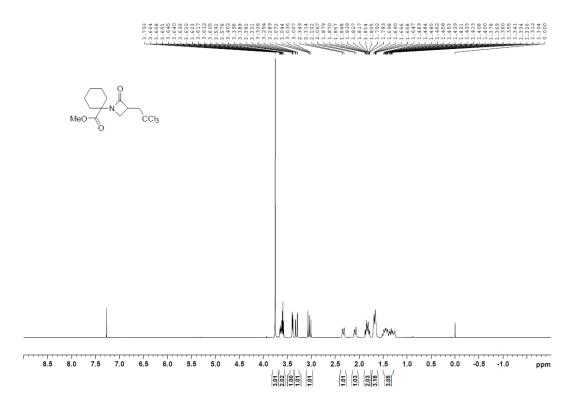


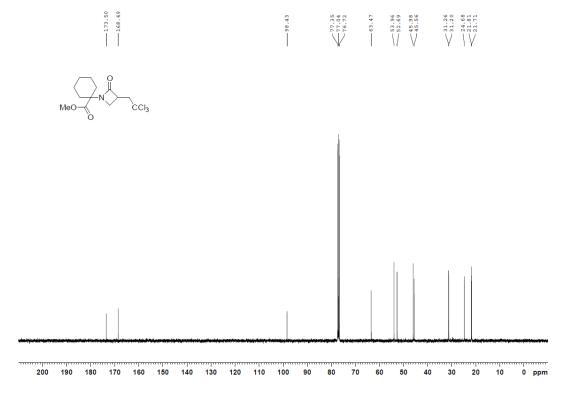
Supplementary Figure 239. ¹³C NMR spectrum of 6b in CDCl₃ (101 MHz)

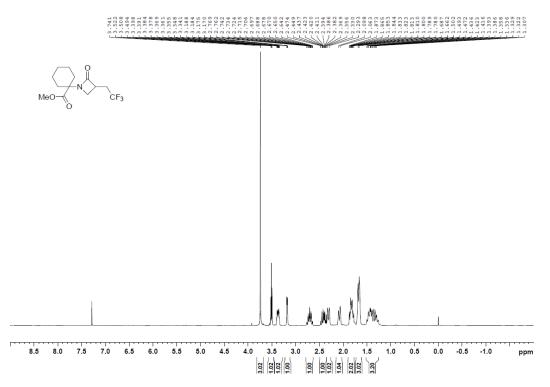


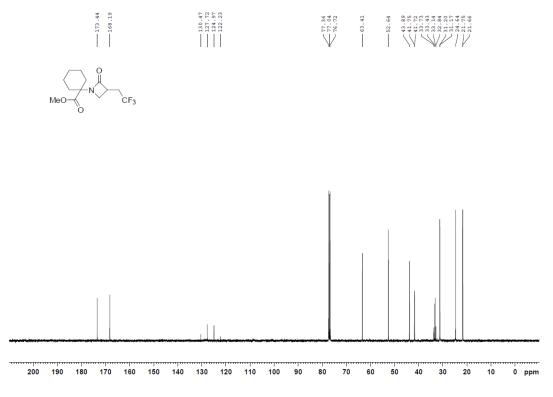

Supplementary Figure 241. ³¹P NMR spectrum of 6b in CDCl₃ (162 MHz)

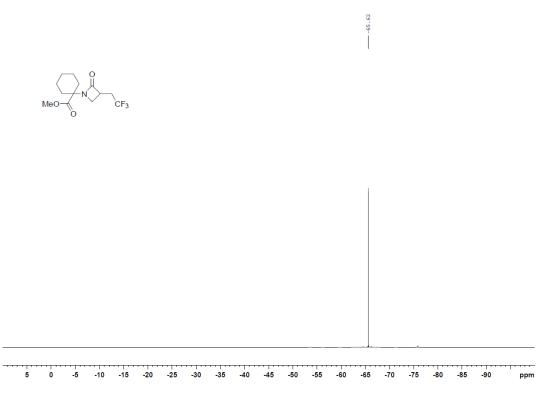

Supplementary Figure 242. ¹H NMR spectrum of 6c in CDCl₃ (400 MHz)

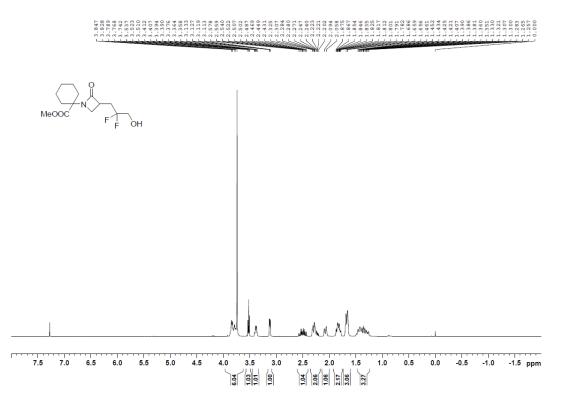

Supplementary Figure 243. ¹³C NMR spectrum of 6c in CDCl₃ (101 MHz)


Supplementary Figure 244. ¹H NMR spectrum of 6d in CDCl₃ (400 MHz)

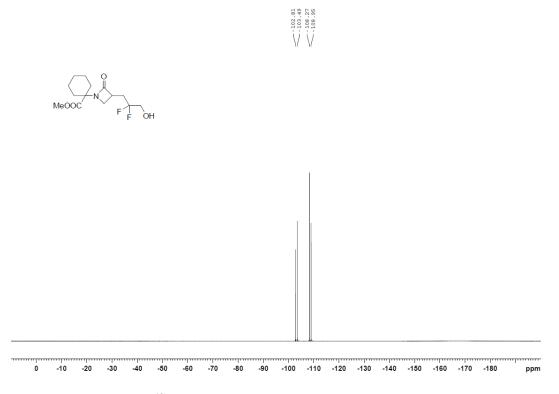

Supplementary Figure 245. ¹³C NMR spectrum of 6d in CDCl₃ (101 MHz)

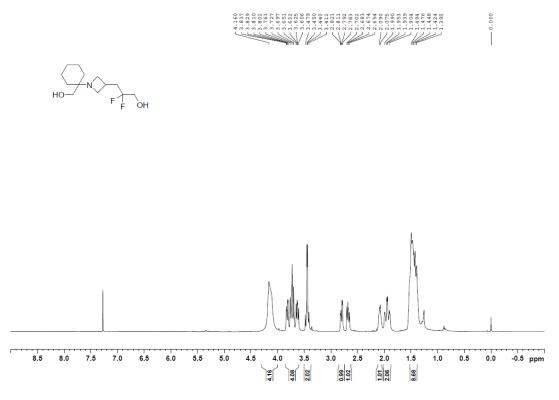

Supplementary Figure 246. ¹H NMR spectrum of 6e in CDCl₃ (400 MHz)

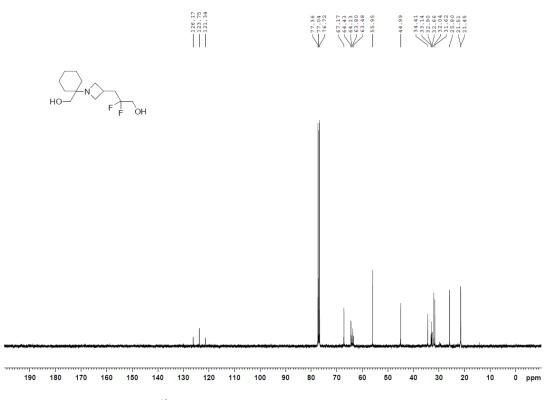

Supplementary Figure 247. ¹³C NMR spectrum of 6e in CDCl₃ (101 MHz)

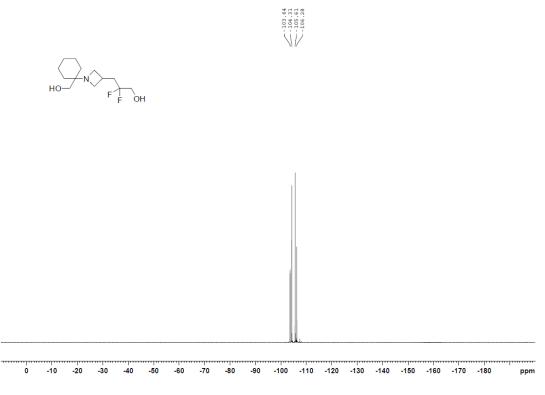

Supplementary Figure 248. ¹H NMR spectrum of 6f in CDCl₃ (400 MHz)

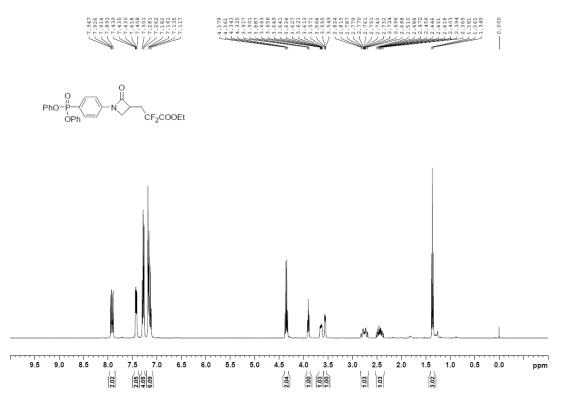
Supplementary Figure 249. ¹³C NMR spectrum of 6f in CDCl₃ (101 MHz)

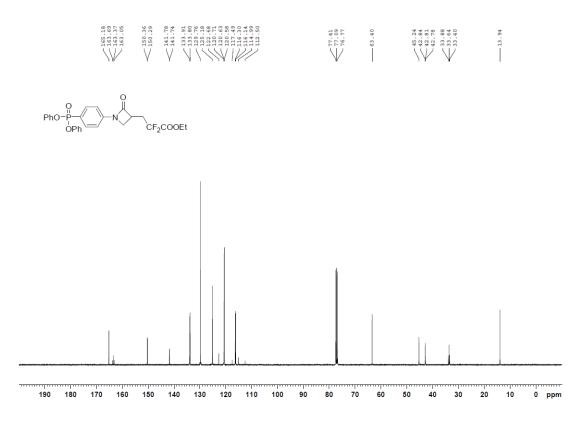

Supplementary Figure 250. ¹⁹F NMR spectrum of 6f in CDCl₃ (376 MHz)

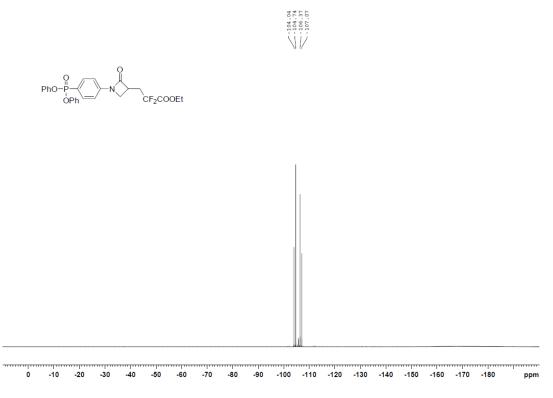

Supplementary Figure 251. ¹H NMR spectrum of 7 in CDCl₃ (400 MHz)

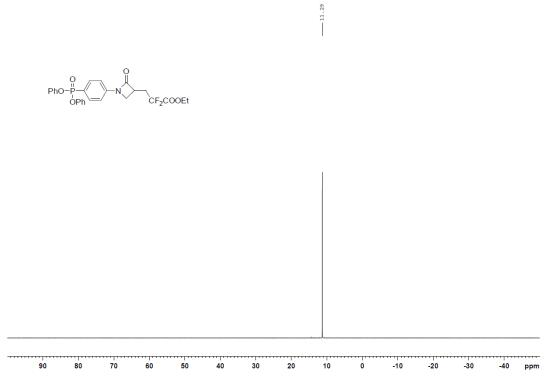

Supplementary Figure 252. ¹³C NMR spectrum of 7 in CDCl₃ (101 MHz)

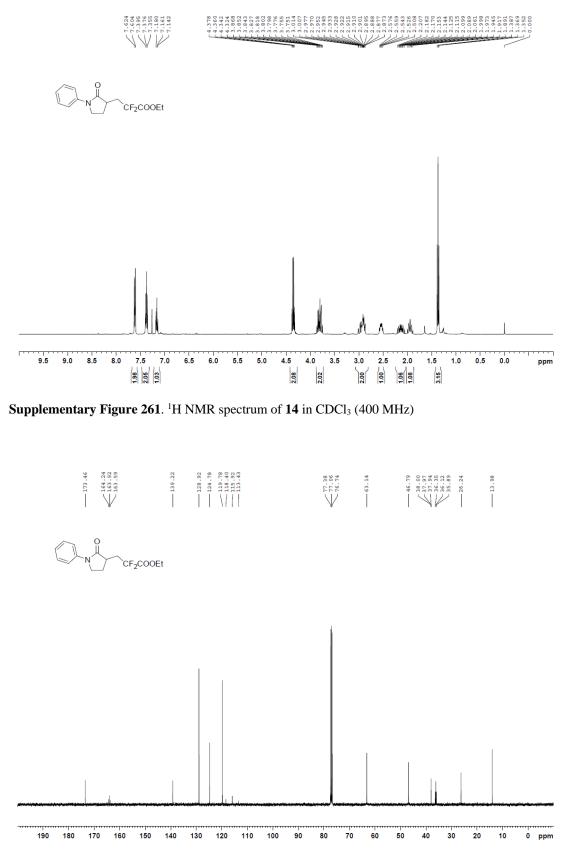

Supplementary Figure 253. ¹⁹F NMR spectrum of 7 in CDCl₃ (376 MHz)

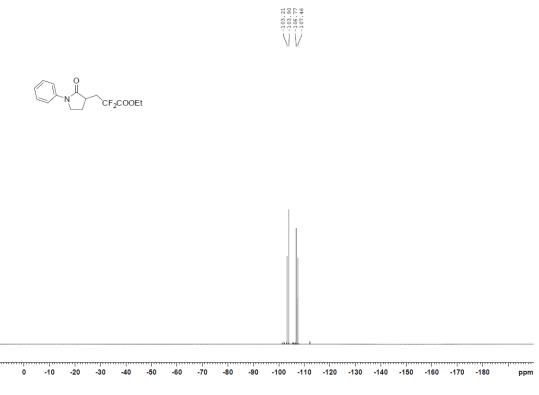

Supplementary Figure 254. ¹H NMR spectrum of 8 in CDCl₃ (400 MHz)

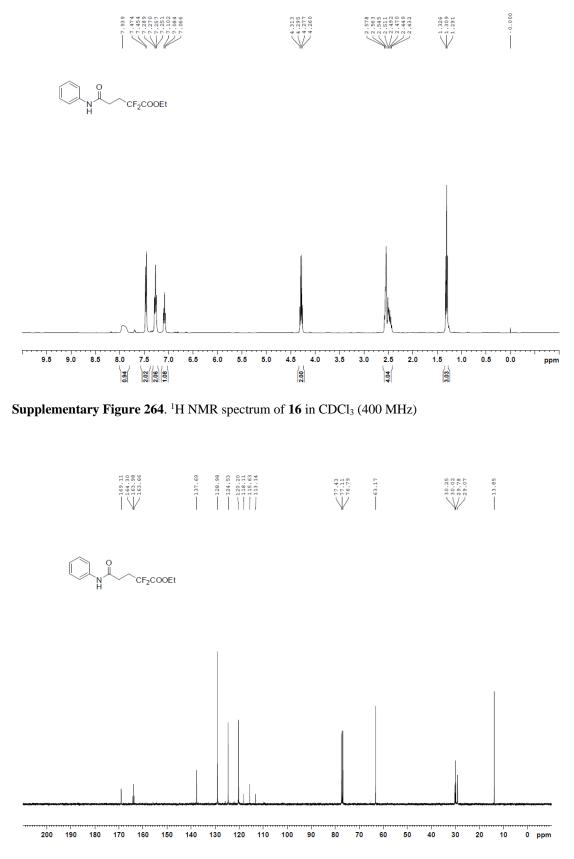

Supplementary Figure 255. ¹³C NMR spectrum of 8 in CDCl₃ (101 MHz)

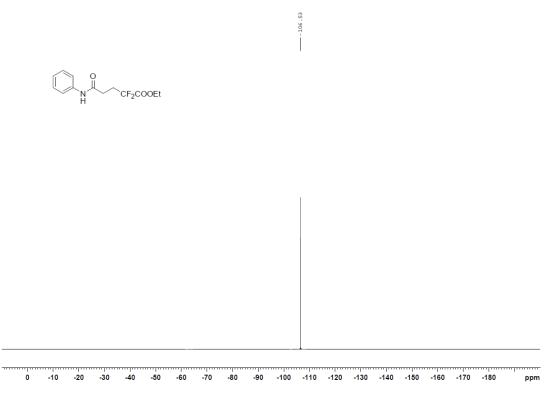

Supplementary Figure 256. ¹⁹F NMR spectrum of 8 in CDCl₃ (376 MHz)


Supplementary Figure 257. ¹H NMR spectrum of 11 in CDCl₃ (400 MHz)


Supplementary Figure 258. ¹³C NMR spectrum of 11 in CDCl₃ (101 MHz)


Supplementary Figure 259. ¹⁹F NMR spectrum of 11 in CDCl₃ (376 MHz)


Supplementary Figure 260. ³¹P NMR spectrum of 11 in CDCl₃ (162 MHz)


Supplementary Figure 262. ¹³C NMR spectrum of 14 in CDCl₃ (101 MHz)

Supplementary Figure 263. 19 F NMR spectrum of 14 in CDCl₃ (376 MHz)

Supplementary Figure 265. ¹³C NMR spectrum of 16 in CDCl₃ (101 MHz)

Supplementary Figure 266. ¹⁹F NMR spectrum of 16 in CDCl₃ (376 MHz)

10. Supplementary References

- 1. Kawamata, Y., Yan, M., Liu, Z., Bao, D.-H., Chen, J., Starr, J. T. & Baran, P. S. Scalable, Electrochemical oxidation of unactivated C–H bonds. J. Am. Chem. Soc. 139, 22, 7448-7451 (2017).
- Li, J., Yang, Y., Liu, Y., Liu, Q., Zhang, L., Li, X., Dong, Y. & Liu, H. Palladium/norbornene catalyzed *ortho* amination/cyclization of aryl iodide: process to 3-Methyl-indole derivates and controllable reductive elimination against the second amination. *Org. Lett.* 23, 2988-2993 (2021).
- Wang, Y., Shen, S., He, C., Zhou, Y., Zhang, K., Rao, B., Han, T., Su, Y., Duan, X.-H. & Liu, L. Cu (II)-mediated direct intramolecular cyclopropanation of distal olefinic acetate: access to cyclopropane-fused γ-lactones. *Chem. Sci.* 14, 6663-6668 (2023).
- 4. Rao, N., Li, Y.-Z., Luo, Y.-C., Zhang, Y. & Zhang. X. Nickel-catalyzed multicomponent carbodifluoroalkylation of electron-deficient alkenes. *ACS Catalysis*. **13**, 4111-4119 (2023).
- 5. Bao, Z.-P., Zhang, Y. & Wu, X.-F. Palladium-catalyzed four-component difluoroalkylative carbonylation of aryl olefins and ethylene. *J. Catal.* **413**, 163-167 (2022).
- Zhang, J., Hu, W., Chen, Z., Wu, N., Li, C., Chen, T. & Han. L.-B. Water-promoted mild and general Michaelis–Arbuzov reaction of triaryl phosphites and aryl iodides by palladium catalysis. *Org. Lett.* 26, 3386-3390 (2024).