Supporting Information

Copper-Catalyzed Asymmetric Carbonylative Hydroallylation of Vinylarenes

Sufang Shao, Yang Yuan, Alban Schmoll, and Xiao-Feng Wu*

[*] S. Shao, C. Xu, Dr. Y. Yuan, A. Schmoll, and Prof. Dr. X.-F. Wu, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China. E-mail: yyuan@dicp.ac.cn; xwu2020@dicp.ac.cn; S. Shao, and Prof. Dr. X.-F. Wu, Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany. E-mail: xiao-feng.wu@catalysis.de

Table of Contents

1. General information
2. General Procedures for Synthesis of Reactants
2.1 General Procedure for the Synthesis of Allyl Alcohol
2.2 General Procedure for the Synthesis of Allyl Phosphate
2.3 General Procedure for the Synthesis of Olefin
2.4 Characterization Data of Reactant
3. General Procedures for Carbonylation of Olefin with Allyl Phosphate
4. Mechanism investigations
5. Determination of the Absolute Configuration of Products
6. General Procedures for Enantioselective 1,2-Reductions of α , β -Unsaturated Ketones 17
7. Characterization Data
8. Copies of NMR Spectra
9. Copies of HPLC chromatogram
10 Deferences 117

1. General information

All chemicals and reagents were obtained from Macklin, Bidepharm and Sigma-Aldrich, and were used without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (bp. 60-90 °C), ethyl acetate and dichloromethane as eluent. All NMR spectra were recorded at ambient temperature using Bruker Avance III 400 MHz NMR (¹H, 400 MHz; ¹³C, 100 MHz, ¹⁹F 376 MHz). All ¹H NMR data are reported in δ units, parts per million (ppm), and were measured relative to the residual proton signal in the deuterated solvent at 7.26 ppm (CDCl₃) whereas ¹³C NMR spectra are ¹H decoupled and reported in ppm relative to the solvent signal at 77.16 ppm (CDCl₃). Data for ¹H are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, br = broad), coupling constant (Hz), and integration. Enantioselectivities were recorded on an Agilent HPLC instrument, using a chiral stationary phase column (Daicel CHIRALPAK® AD-H, AS-H, IC, IA, OD-H, OJ-H). The chiral HPLC methods were calibrated with the corresponding racemic mixtures. All reactions were monitored by GC-FID or NMR analysis, GC-yields were calculated using hexadecane as internal standard. All measurements were carried out at room temperature unless otherwise stated.

Unless otherwise noted, all reactions were carried out under carbon monoxide (CO) or nitrogen atmosphere. Because of the high toxicity of carbon monoxide, all the reactions should be performed in an autoclave. The laboratory should be well-equipped with a CO detector and alarm system.

2. General Procedures for Synthesis of Reactants

2.1 General Procedure for the Synthesis of Allyl Alcohol

The material was prepared according to the reported literature.^[1] To add CuI (10 mmol, 1.95 g) to a 250 mL two-mouth flask, and the flask was evacuated and backfilled with nitrogen for three times, then to add 30 mL THF to the flask and add Grignard reagent (RMgBr, 50 mmol, 50 mL) at 0 °C. After stirring for half an hour, propargyl alcohol (20 mmol, 2.9 mL) solution was added dropwise at 0 °C. Then the mixture was allowed to stir at rt for 20 h. The reaction was quenched carefully by aqueous saturated NH₄Cl solution in ice-water bath. The biphase system was extracted by ethyl acetate for three times (100 mL × 3) and then the combined organic phase was washed by brine for three times (100 mL × 3). The organic phase was dried over MgSO₄, concentrated in vacuo and the residue was purified by silica gel column chromatography to provide allyl alcohol.

2.2 General Procedure for the Synthesis of Allyl Phosphate

$$\begin{array}{c} \ensuremath{\mathbb{R}} \\ \ensuremath{\mathbb{O}} \$$

The material was prepared according to the reported literature.^[2] A 50 mL roundbottom flask equipped with a stir bar was charged with allylic alcohol (1.0 equiv), CH_2Cl_2 (3 mL/mmol allylic alcohol), and pyridine (1.5 equiv). Diphenyl chlorophosphate (1.1 equiv) was added, the flask was stoppered with a vented septum, and the reaction mixture was stirred under air at room temperature for 12 h. The reaction mixture was then diluted with CH_2Cl_2 and water and transferred to a separatory funnel. The phases were partitioned, and the aqueous layer was extracted with CH_2Cl_2 (3×). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo to afford the crude material, which was purified by flash column chromatography to provide the desired product.

2.3 General Procedure for the Synthesis of Olefin

The material was prepared according to the reported literature.^[3] Sodium hydride (60% in mineral oil, 800 mg, 20 mmol, 2.00 equiv) was suspended in DMF (300 mL), alcohol (25 mmol, 2.50 equiv) and 1-(chloromethyl)-4-vinylbenzene (1.4 mL, 10 mmol, 1.00 equiv) were added at 0 °C. After the mixture was further stirred for 4 h, the mixture was diluted with ethyl acetate (30 mL). Saturated aqueous ammonium chloride (15 mL) was added to quench the reaction and the aqueous layer was extracted with ethyl acetate (3×30 mL). The combined organic layers were dried over sodium sulfate and the solvent was removed in vacuo. Then, the residue was purified by silica gel column chromatography to product.

2.4 Characterization Data of Reactant

Diphenyl (2-phenylallyl) phosphate (A1)

OP(O)(OPh)2

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.31 – 7.25 (m, 7H), 7.16 (d, J = 8.0 Hz, 6H), 5.54 (s, 1H), 5.41 (s, 1H), 5.11 (d, J = 7.6 Hz, 2H).

Diphenyl (2-(o-tolyl)allyl) phosphate (A2)

¹**H NMR (400 MHz, CDCl**₃) δ 7.29 (dd, *J* = 8.6, 7.2 Hz, 4H), 7.23 – 7.07 (m, 10H), 5.55 (d, *J* = 1.5 Hz, 1H), 5.13 (d, *J* = 1.3 Hz, 1H), 4.89 (dt, *J* = 7.1, 1.4 Hz, 2H), 2.26 (s, 3H).

Diphenyl (2-(m-tolyl)allyl) phosphate (A3)

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (dd, J = 8.7, 7.1 Hz, 4H), 7.23 – 7.08 (m, 10H),

5.53 (s, 1H), 5.39 (d, *J* = 1.3 Hz, 1H), 5.10 (dd, *J* = 7.6, 1.2 Hz, 2H), 2.31 (s, 3H).

2-(4-Chlorophenyl)allyl diphenyl phosphate (A4)

OP(O)(OPh)₂

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 8H), 7.23 – 7.10 (m, 6H), 5.54 (s, 1H),

5.43 (s, 1H), 5.07 (d, *J* = 7.8 Hz, 2H).

2-(4-Methoxyphenyl)allyl diphenyl phosphate (A5)

¹**H NMR (400 MHz, CDCl₃)** δ 7.37 – 7.24 (m, 7H), 7.18 – 7.14 (m, 5H), 6.84 (d, *J* = 8.9 Hz, 2H), 6.75 (s, 1H), 5.47 (s, 1H), 5.32 (d, *J* = 1.1 Hz, 1H), 5.09 (dd, *J* = 7.6, 1.1 Hz, 2H), 3.81 (s, 3H).

(E)-1-(((3,7-Dimethylocta-2,6-dien-1-yl)oxy)methyl)-4-vinylbenzene (A6)

¹**H NMR (400 MHz, CDCl₃)** δ 7.37 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 6.69 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.72 (d, *J* = 18.5 Hz, 1H), 5.40 (ddt, *J* = 6.7, 5.4, 1.3 Hz, 1H), 5.21 (dd, *J* = 10.9, 0.9 Hz, 1H), 5.10 (ddt, *J* = 8.4, 5.1, 1.5 Hz, 1H), 4.47 (s, 2H), 4.01 (d, *J* = 6.8 Hz, 2H), 2.16 – 1.99 (m, 4H), 1.70 – 1.57 (m, 9H).

2-(((4-Vinylbenzyl)oxy)methyl)furan (A7)

¹**H NMR (400 MHz, CDCl₃)** δ 7.41 – 7.39 (m, 1H), 7.39 – 7.25 (m, 4H), 6.69 (dd, J = 17.6, 10.9 Hz, 1H), 6.31 (dd, J = 7.9, 2.6 Hz, 2H), 5.73 (d, J = 17.6 Hz, 1H), 5.22 (d, J = 10.6 Hz, 1H), 4.51 (s, 2H), 4.46 (s, 2H).

1-((But-3-en-1-yloxy)methyl)-4-vinylbenzene (A8)

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 – 7.25 (m, 4H), 6.70 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.84 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1H), 5.73 (dd, *J* = 17.6, 1.0 Hz, 1H), 5.22 (d, *J* = 10.9 Hz, 1H), 5.15 – 5.00 (m, 2H), 4.50 (s, 2H), 3.51 (t, *J* = 6.7 Hz, 2H), 2.37 (q, *J* = 6.7 Hz, 2H).

1-((Benzyloxy)methyl)-4-vinylbenzene (A9)

¹**H NMR (400 MHz, CDCl₃)** δ 7.43 – 7.26 (m, 9H), 6.72 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.74 (dd, *J* = 17.6, 0.9 Hz, 1H), 5.24 (dd, *J* = 10.9, 0.9 Hz, 1H), 4.55 (d, *J* = 1.6 Hz, 4H).

(1*R*,5*S*)-6,6-Dimethyl-2-(((4-vinylbenzyl)oxy)methyl)bicyclo[3.1.1]hept-2-ene (A10)

¹**H NMR (400 MHz, CDCl₃)** δ 7.42 – 7.24 (m, 4H), 6.70 (dd, J = 17.6, 10.9 Hz, 1H), 5.73 (dd, J = 17.6, 0.9 Hz, 1H), 5.51 (tt, J = 3.0, 1.5 Hz, 1H), 5.22 (dd, J = 10.9, 0.9 Hz,

1H), 4.45 (s, 2H), 3.88 (q, *J* = 1.6 Hz, 2H), 2.41 (dt, *J* = 8.6, 5.6 Hz, 1H), 2.37 – 2.25 (m, 2H), 2.21 (td, *J* = 5.7, 1.6 Hz, 1H), 2.11 (dddt, *J* = 5.9, 4.3, 3.0, 1.3 Hz, 1H), 1.29 (s, 3H), 1.20 (d, *J* = 8.6 Hz, 1H), 0.86 (s, 3H).

(3aS,5aR,8aR,8bS)-2,2,7,7-Tetramethyl-3a-(((4-

vinylbenzyl)oxy)methyl)tetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran (A11)

¹**H NMR (400 MHz, CDCl₃)** δ 7.42 – 7.27 (m, 4H), 6.69 (ddd, J = 17.6, 10.9, 1.4 Hz, 1H), 5.72 (dd, J = 17.6, 1.3 Hz, 1H), 5.21 (dd, J = 10.9, 1.5 Hz, 1H), 4.69 – 4.52 (m, 3H), 4.43 (d, J = 2.6 Hz, 1H), 4.24 – 4.18 (m, 1H), 3.91 (dt, J = 12.9, 1.6 Hz, 1H), 3.72 (dd, J = 13.1, 1.4 Hz, 1H), 3.65 – 3.55 (m, 2H), 1.54 (s, 3H), 1.41 (d, J = 4.2 Hz, 6H), 1.32 (s, 3H).

Diphenyl (2-phenylallyl) phosphate (A12)

¹**H NMR (400 MHz, CDCl**₃) δ 7.40 – 7.25 (m, 4H), 6.70 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.73 (dd, *J* = 17.6, 0.9 Hz, 1H), 5.22 (dd, *J* = 10.9, 0.9 Hz, 1H), 3.75 – 3.64 (m, 4H), 3.47 (s, 2H), 2.48 – 2.37 (m, 4H).

Diphenyl (2-phenylallyl) phosphate (A13)

¹**H NMR (400 MHz, CDCl₃)** δ 7.42 – 7.24 (m, 4H), 6.70 (dd, J = 17.6, 10.9 Hz, 1H), 5.73 (dd, J = 17.6, 0.9 Hz, 1H), 5.51 (tt, J = 3.0, 1.5 Hz, 1H), 5.22 (dd, J = 10.9, 0.9 Hz, 1H), 4.45 (s, 2H), 3.88 (q, J = 1.6 Hz, 2H), 2.41 (dt, J = 8.6, 5.6 Hz, 1H), 2.37 – 2.25 (m, 2H), 2.21 (td, J = 5.7, 1.6 Hz, 1H), 2.11 (dddt, J = 5.9, 4.3, 3.0, 1.3 Hz, 1H), 1.29 (s, 3H), 1.20 (d, J = 8.6 Hz, 1H), 0.86 (s, 3H).

3. General Procedures for Carbonylation of Olefin with Allyl Phosphate

General Procedure A A screw-cap vial (4 mL) was loaded with CuCl (1.0 mg, 10 mol%), (*S*,*S*)-Ph-BPE (5.1 mg, 10 mol%), LiO'Bu (16.0 mg, 0.2 mmol) and a stir bar. First, the vial was sealed with a Teflon septum and cap and connected to the atmosphere via a needle. Then, under a nitrogen atmosphere, DCE (0.5 mL), dioxane (0.5 mL), **1** (0.1 mmol), **2** (2.0 equiv., 0.2 mmol) and (MeO)₂MeSiH (2.0 equiv., 0.2 mmol) were added using a syringe. Next, the vial was transferred to an alloy plate and placed into a Parr 4560 series autoclave (300 mL) under an argon atmosphere. After that, at room temperature, the autoclave was purged with CO three times and then charged with 10 atm of CO. Subsequently, the autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was heated to 50 °C and maintained at this temperature for 24 h. Once the reaction was complete, the autoclave was directly purified by column chromatography on silica gel, with petroleum ether and ethyl acetate being used to obtain the corresponding product **3**.

4. Mechanism investigations

A screw-cap vial (4 mL) was loaded with CuCl (1.0 mg, 10 mol%), (S,S)-Ph-BPE (5.1 mg, 10 mol%), LiO'Bu (16.0 mg, 0.2 mmol) and a stir bar. First, the vial was sealed with a Teflon septum and cap and connected to the atmosphere via a needle. Then, under a nitrogen atmosphere, DCE (0.5 mL), dioxane (0.5 mL), 1i (0.1 mmol), 2k (2.0 equiv., 0.2 mmol) and Ph₂SiD₂ (2.0 equiv., 0.2 mmol) were added using a syringe. Next, the vial was transferred to an alloy plate and placed into a Parr 4560 series autoclave (300 mL) under an argon atmosphere. After that, at room temperature, the autoclave was purged with CO three times and then charged with 10 atm of CO. Subsequently, the autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was heated to 50 °C and maintained at this temperature for 24 h. Once the reaction was complete, the autoclave was cooled to room temperature, and the pressure was carefully released. Finally, the reaction mixture was directly purified by column chromatography on silica gel, with petroleum ether and ethyl acetate being used to obtain the corresponding product **3i-D** (7.9 mg, 36% yield, 93% D) as a colorless oil. ¹H NMR (400 MHz, Chloroform-d) δ 7.13 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 5.99 (p, J = 1.3 Hz, 1H), 3.79 (s, 3H), 3.67 (t, J = 6.9 Hz, 1H), 2.13 (s, 3H), 1.79 (s, 3H), 1.35 (dt, *J* = 7.1, 1.8 Hz, 2H).

3. 3 3. 2 3. 1 3. 0 2. 9 2. 8 2. 7 2. 6 2. 5 2. 4 2. 3 2. 2 2. 1 2. 0 1. 9 1. 8 1. 7 1. 6 1. 5 1. 4 1. 3 1. 2 1. 1 1. 0 0. 9 0. 8

¹H NMR spectra of **3i** and **3i-D** in CDCl₃ (400 MHz)

A screw-cap vial (4 mL) was loaded with CuCl (1.0 mg, 10 mol%), (*S*,*S*)-Ph-BPE (5.1 mg, 10 mol%), LiO'Bu (16.0 mg, 0.2 mmol) and a stir bar. First, the vial was sealed with a Teflon septum and cap and connected to the atmosphere via a needle. Then, under a nitrogen atmosphere, DCE (0.5 mL), dioxane (0.5 mL), **1k** (0.1 mmol), **2k** (2.0 equiv., 0.2 mmol), TEMPO (3 equiv., 0.3 mmol) and (MeO)₂MeSiH (2.0 equiv., 0.2 mmol) were added using a syringe. Next, the vial was transferred to an alloy plate and placed into a Parr 4560 series autoclave (300 mL) under an argon atmosphere. After that, at room temperature, the autoclave was purged with CO three times and then charged with 10 atm of CO. Subsequently, the autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was heated to 50 °C and maintained at this temperature for 24 h. Once the reaction was complete, the autoclave was directly purified by column chromatography on silica gel, with petroleum ether and ethyl acetate being used to obtain the corresponding

product 3k (15.3 mg, 58% yield) as a colorless oil.

A screw-cap vial (4 mL) was loaded with CuCl (1.0 mg, 10 mol%), (*S*,*S*)-Ph-BPE (5.1 mg, 10 mol%), LiO'Bu (16.0 mg, 0.2 mmol) and a stir bar. First, the vial was sealed with a Teflon septum and cap and connected to the atmosphere via a needle. Then, under a nitrogen atmosphere, DCE (0.5 mL), dioxane (0.5 mL), **1k** (0.1 mmol), **2k** (2.0 equiv., 0.2 mmol), (1-cyclopropylvinyl)benzene (3.0 equiv., 0.3 mmol) and (MeO)₂MeSiH (2.0 equiv., 0.2 mmol) were added using a syringe. Next, the vial was transferred to an alloy plate and placed into a Parr 4560 series autoclave (300 mL) under an argon atmosphere. After that, at room temperature, the autoclave was purged with CO three times and then charged with 10 atm of CO. Subsequently, the autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was heated to 50 °C and maintained at this temperature, and the pressure was carefully released. Finally, the reaction mixture was directly purified by column chromatography on silica gel, with petroleum ether and ethyl acetate being used to obtain the corresponding product **3k** (17.2 mg, 65% yield) as a colorless oil.

A screw-cap vial (4 mL) was loaded with CuCl (1.0 mg, 10 mol%), (*S*,*S*)-Ph-BPE (5.1 mg, 10 mol%), LiO'Bu (16.0 mg, 0.2 mmol) and a stir bar. First, the vial was sealed with a Teflon septum and cap and connected to the atmosphere via a needle. Then, under a nitrogen atmosphere, DCE (0.5 mL), dioxane (0.5 mL), **1i** (0.1 mmol), **A1** (2.0 equiv., 0.2 mmol) and (MeO)₂MeSiH (2.0 equiv., 0.2 mmol) were added using a syringe. Next, the vial was transferred to an alloy plate and placed into a Parr 4560 series autoclave (300 mL) under an argon atmosphere. After that, at room temperature, the autoclave

was purged with CO three times and then charged with 10 atm of CO. Subsequently, the autoclave was placed on a heating plate equipped with a magnetic stirrer and an aluminum block. The reaction mixture was heated to 50 °C and maintained at this temperature for 24 h. Once the reaction was complete, the autoclave was cooled to room temperature, and the pressure was carefully released. Finally, the reaction mixture was directly purified by column chromatography on silica gel, with petroleum ether and ethyl acetate being used to obtain the corresponding product **3aa** (14.3 mg, 51% yield) and **3aa-1** (5.6 mg, 20% yield) as a colorless oil. ¹H NMR of **3aa-1** (400 MHz, Chloroform-*d*) δ 7.28 – 7.20 (m, 5H), 7.09 (d, *J* = 8.7 Hz, 2H), 6.85 (d, *J* = 8.7 Hz, 2H), 5.52 (s, 1H), 5.05 (s, 1H), 3.80 (s, 4H), 3.60 – 3.46 (m, 2H), 1.30 (d, *J* = 6.9 Hz, 3H); ¹³C NMR of **3aa-1** (101 MHz, Chloroform-*d*) δ 208.4, 158.8, 141.5, 139.9, 132.4, 129.1, 128.3, 127.7, 125.8, 116.6, 114.3, 55.3, 51.1, 47.8, 17.7.

Following General Procedure A, 3aa-1 was used as the reactant and was only partially converted to 3aa (17.6 mg, 63% yield).

3aa-1 (28 mg, 0.1 mmol) was suspended in DCE (2 mL). Then, Et₃N (3.0 equiv, 0.3 mmol) was added, and the resulting mixture was allowed to react overnight. Subsequently, the reaction mixture was directly purified by column chromatography on silica gel to obtain the corresponding product **3aa** (28 mg, >99%). According to the reported literature,^[4] the α,β -unsaturated ketone could be fully converted from the β,γ -unsaturated ketone in the presence of triethylamine. Therefore, we added triethylamine after the reaction was completed to perform the normalization of the mixed products.

¹³C NMR spectra of **3aa-1** in CDCl₃ (100 MHz)

5. Determination of the Absolute Configuration of Products

The single crystals of 3z were obtained by slow evaporation of the mixed solvent of DCM and petroleum ether at rt. CCDC number of 3z is 2413898. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre-via <u>www.fcdc.cam.ac.uk.</u> 3z was determined to be (*S*) by X-ray diffraction The stereochemistries of the remaining α,β -unsaturated ketones were assigned by analogy.

Figure S1 Crystallographic date of compound 3z (CCDC number 2413898).

Datablock: s1223-1_auto

Bond precision:	C-C = 0.0052 A	Wavelength=1.54184		
Cell:	a=8.9792(10) alpha=90	b=6.2593(6) beta=111.827(13)	c=11.4802(13)	
Temperature:	293 K	(,		
	Calculated	Repo	ted	
Volume	598.97(12)	598.	97(12)	
Space group	P 21	P 1 2	21 1	
Hall group	P 2yb	P 2ył	0	
Moiety formula	C13 H16 O2	C13 H16 O2		
Sum formula	C13 H16 O2	C13 H16 O2		
Mr	204.26	204.26		
Dx,g cm-3	1.133	1.133	3	
Z	2	2		
Mu (mm-1)	0.597	0.59	1	
F000	220.0	220.0)	
F000'	220.64			
h,k,lmax	10,7,13	10,7	13	
Nref	2134[1173]	1697		
Tmin, Tmax	0.994,0.994	0.90	7,1.000	
Tmin'	0.994			
Correction method= # Reported T Limits: Tmin=0.907 Tmax=1.000 AbsCorr = MULTI-SCAN				
Data completeness= 1.45/0.80 Theta(max)= 66.760				
R(reflections) = S = 0.928	0.0429(1336) Npar=	139	wR2(reflections)= 0.1383(1697)	

6. General Procedures for Enantioselective 1,2-Reductions of

α,β-Unsaturated Ketones

General Procedure B A screw-cap vial (4 mL) was loaded with fine powdered $Cu(OAc)_2 \cdot H_2O(0.9 \text{ mg}, 5 \text{ mol }\%, 5 \mu\text{mol})$ and (*rac*)-DTBM-Segphos (5.9 mg, 5 mol %, 5 µmol). The vial was capped with a rubber septum and placed under an Argon atmosphere, 0.4 mL Et₂O was added via syringe. At rt, DEMS (48 µL, 0.3 mmol) was introduced, resulting in a brown solution after 10 min. The vial was then placed into a pre-cooled acetone bath at -25°C and stirred for an additional 5 min. (*rac*)-**3j** (0.1 mmol) were subsequently introduced via syringe. The side of the reaction vial was rinsed with Et₂O (2 × 25 µL). After TLC confirmed full conversion, the reaction was quenched at -25°C by the addition of 0.5 mL sat. NH₄F/MeOH. The reaction vial was taken out of the cooling bath and warmed to rt. After filtration through SiO₂, the solvent was evaporated in vacuo and the crude reaction mixture purified by column chromatography on silica gel to obtain the corresponding product (*rac*)-**5** (20.3 mg, 81% yield).

(2R,3R)-2-(3,4-dimethoxyphenyl)-5-methylhex-4-en-3-ol-(5a)

It was prepared following General Procedure B, using (R)-DTBM-Segphos as the ligand, (R)-3j as the reactant. Finally, the reaction mixture was directly purified by column chromatography on silica gel, with petroleum ether and ethyl acetate being used to obtain the corresponding product 5a.

18.0 mg, 72% yield, >20:1 dr, colourless oil. Eluent: pentane/ethyl acetate = 10:1.

¹**H NMR (400 MHz, CDCl₃)** δ 6.87 – 6.76 (m, 3H), 5.19 (dt, *J* = 8.9, 1.4 Hz, 1H), 4.33 (t, *J* = 8.6 Hz, 1H), 3.88 (d, *J* = 15.8 Hz, 6H), 2.72 – 2.64 (m, 1H), 1.77 (d, *J* = 1.5 Hz, 3H), 1.70 (d, *J* = 1.5 Hz, 3H), 1.18 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 149.0, 147.8, 136.5, 136.0, 126.0, 119.9, 111.3, 111.3, 73.2, 55.9, 55.9, 46.6, 26.0, 18.6, 17.9.

HPLC analysis (OJ-H column, 80:20 hexanes/2-propanol, 0.6 mL/min, t = 27.3 min)

(2R,3S)-2-(3,4-dimethoxyphenyl)-5-methylhex-4-en-3-ol-(5b)

It was prepared following General Procedure B, using (S)-DTBM-Segphos as the ligand, (R)-3j as the reactant. Finally, the reaction mixture was directly purified by column chromatography on silica gel, with petroleum ether and ethyl acetate being used to obtain the corresponding product 5b.

21.8 mg, 87% yield, >20:1 dr, colourless oil. Eluent: pentane/ethyl acetate = 10:1.

¹**H NMR (400 MHz, CDCl₃)** δ 6.86 – 6.70 (m, 3H), 5.10 (dq, *J* = 8.7, 1.3 Hz, 1H), 4.39 (dd, *J* = 8.8, 5.9 Hz, 1H), 3.87 (d, *J* = 4.1 Hz, 6H), 2.83 (p, *J* = 6.8 Hz, 1H), 1.67 (s, 2H), 1.58 (s, 2H), 1.31 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 148.5, 147.5, 136.1, 135.5, 125.9, 120.1, 111.7, 110.9, 72.9, 55.9, 55.9, 45.5, 25.8, 18.3, 16.1.

HPLC analysis (OJ-H column, 80:20 hexanes/2-propanol, 0.6 mL/min, t = 16.4 min)

(2S,3R)-2-(3,4-dimethoxyphenyl)-5-methylhex-4-en-3-ol-(5c)

It was prepared following **General Procedure B**, using (R)-DTBM-Segphos as the ligand, (S)-3j as the reactant. Finally, the reaction mixture was directly purified by column chromatography on silica gel, with petroleum ether and ethyl acetate being used to obtain the corresponding product 5c.

18.8 mg, 75% yield, >20:1 dr, colourless oil. Eluent: pentane/ethyl acetate = 10:1.

¹**H NMR (400 MHz, CDCl₃)** δ 6.85 – 6.68 (m, 3H), 5.10 (dq, *J* = 8.7, 1.3 Hz, 1H), 4.39 (dd, *J* = 8.8, 5.9 Hz, 1H), 3.87 (d, *J* = 4.1 Hz, 6H), 2.83 (p, *J* = 6.8 Hz, 1H), 1.66 (s, 3H), 1.58 (s, 3H), 1.31 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 147.5, 136.1, 135.5, 125.9, 120.1, 111.7, 110.9, 72.9, 55.9, 55.9, 45.5, 25.8, 18.3, 16.1.

HPLC analysis (OJ-H column, 80:20 hexanes/2-propanol, 0.6 mL/min, t = 14.1 min)

(2S,3S)-2-(3,4-dimethoxyphenyl)-5-methylhex-4-en-3-ol-(5d)

It was prepared following **General Procedure B**, using (*S*)-DTBM-Segphos as the ligand, (*S*)-3j as the reactant. Finally, the reaction mixture was directly purified by column chromatography on silica gel, with petroleum ether and ethyl acetate being used to obtain the corresponding product 5d.

22.3 mg, 89% yield, >20:1 dr, colourless oil. Eluent: pentane/ethyl acetate = 10:1.

¹**H NMR (400 MHz, CDCl₃)** δ 6.87 – 6.76 (m, 3H), 5.19 (dq, *J* = 8.8, 1.5 Hz, 1H), 4.33 (t, *J* = 8.6 Hz, 1H), 3.88 (d, *J* = 8.9 Hz, 6H), 2.74 – 2.63 (m, 1H), 1.77 (s, 3H), 1.70 (s, 3H), 1.18 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 149.0, 147.8, 136.6, 136.0, 126.0, 119.9, 111.4, 111.3, 73.2, 55.9, 55.9, 46.7, 26.0, 18.6, 17.9.

HPLC analysis (OJ-H column, 80:20 hexanes/2-propanol, 0.6 mL/min, t = 17.7 min)

7. Characterization Data

(S)-5-Methyl-2-phenylhex-4-en-3-one (3a)

14.5 mg, 77% yield, 96:4 er, colourless oil, $[\alpha]_D^{20} = +207.6$ (c = 0.8, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 (t, *J* = 7.3 Hz, 2H), 7.28 – 7.19 (m, 3H), 5.99 (s, 1H), 3.73 (q, *J* = 7.0 Hz, 1H), 2.14 (s, 3H), 1.79 (s, 3H), 1.39 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.4, 156.2, 141.3, 128.8, 128.0, 126.8, 123.1, 53.5, 27.8, 20.9, 17.6.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{13}H_{17}O^+$ 189.1274 Found: 189.1269.

HPLC analysis (OD-H column, 99:1 hexanes/2-propanol, 1.0 mL/min, t_{minor} = 14.9 min, t_{major} = 9.8 min)

(S)-5-Methyl-2-(o-tolyl)hex-4-en-3-one (3b)

14.3 mg, 71% yield, 92:8 er, colourless oil, $[\alpha]_D^{20} = +215.8$ (c = 0.8, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.18 – 7.13 (m, 3H), 7.08 – 7.05 (m, 3H), 5.86 (p, J = 1.3 Hz, 1H), 3.92 (q, J = 6.9 Hz, 1H), 2.37 (s, 3H), 2.16 (d, J = 1.4 Hz, 3H), 1.77 (d, J = 1.3 Hz, 3H), 1.35 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.9, 155.9, 139.8, 135.8, 130.6, 127.3, 126.7, 126.5, 123.2, 49.7, 27.8, 20.9, 19.8, 16.8.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{14}H_{19}O^+$ 189.1274 Found: 189.1276.

HPLC analysis (OD-H column, 100:0 hexanes/2-propanol, 0.7 mL/min, t_{minor} = 22.4 min, t_{major} = 23.9 min)

(S)-5-Methyl-2-(m-tolyl)hex-4-en-3-one (3c)

14.0 mg, 69% yield, 93:7 er, colourless oil, $[\alpha]_D^{20} = 217.1$ (*c* = 0.8, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1-20:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.20 (t, *J* = 7.9 Hz, 1H), 7.06 – 7.01 (m, 3H), 6.00 (p, *J* = 1.3 Hz, 1H), 3.69 (q, *J* = 6.9 Hz, 1H), 2.33 (s, 3H), 2.14 (d, *J* = 1.2 Hz, 3H), 1.79 (d, *J* = 1.3 Hz, 3H), 1.38 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 156.0, 141.2, 138.4, 128.7, 128.7, 127.6, 125.1, 123.1, 53.5, 27.8, 21.4, 20.9, 17.6.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{14}H_{19}O^+$ 189.1274 Found: 189.1273.

HPLC analysis (OJ-H column, 98:2 hexanes/2-propanol, 0.7 mL/min, t_{minor} = 11.4 min, t_{major} = 8.6 min)

(S)-5-Methyl-2-(p-tolyl)hex-4-en-3-one (3d)

15.8 mg, 78% yield, 92:8 er, colourless oil, $[\alpha]_D^{20} = +87.7$ (c = 1.5, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1.

H NMR (400 MHz, CDCl₃ δ 7.14 – 7.09 (m, 4H), 5.99 (p, *J* = 1.3 Hz, 1H), 3.70 (q, *J* = 7.0 Hz, 1H), 2.32 (s, 3H), 2.14 (d, *J* = 1.2 Hz, 3H), 1.79 (d, *J* = 1.2 Hz, 3H), 1.37 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.6, 156.0, 138.3, 136.5, 129.5, 127.9, 123.1, 53.1, 27.8, 21.1, 20.8, 17.6.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₄H₁₉O⁺ 189.1274 Found: 189.1274.

HPLC analysis (OD-H column, 100:0 hexanes/2-propanol, 0.7 mL/min, t_{minor} = 17.4 min, t_{major} = 17.9 min)

(S)-2-(4-(tert-Butyl)phenyl)-5-methylhex-4-en-3-one (3e)

18.3 mg, 75% yield, >99:1 er, colourless oil, $[\alpha]_D^{20} = +199.5$ (c = 1.6, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 (d, *J* = 8.3 Hz, 2H), 7.14 (d, *J* = 8.3 Hz, 2H), 6.02 (s, 1H), 3.72 (q, *J* = 7.0 Hz, 1H), 2.14 (d, *J* = 1.3 Hz, 3H), 1.80 (d, *J* = 1.2 Hz, 3H), 1.38 (d, *J* = 7.0 Hz, 3H), 1.30 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) ¹³C NMR (100 MHz, CDCl₃) δ 200.7, 156.0, 149.6, 138.1, 127.6, 125.7, 123.2, 53.0, 31.4, 27.8, 20.9, 17.6.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H2₅O⁺ 245.1900 Found: 245.1903.

HPLC analysis (OD-H column, 100:0 hexanes/2-propanol, 0.7 mL/min, t_{minor} = 14.0 min, t_{major} = 15.4 min)

27.8, 20.9, 17.6.

(S)-2-(2-Bromophenyl)-5-methylhex-4-en-3-one (3f)

17.6 mg, 66% yield, 92:8 er, colourless oil, $[\alpha]_D^{20} = +211.7$ (c = 0.2, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1.

¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, J = 7.5 Hz, 2H), 7.24 – 7.20 (m, 2H), 5.99 (s, 1H), 3.73 (q, J = 6.9 Hz, 1H), 2.14 (s, 3H), 1.79 (s, 3H), 1.39 (d, J = 7.0 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 200.4, 156.2, 141.3, 128.8, 128.0, 126.8, 123.1, 53.5,

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₁₆BrO⁺ 267.0379 Found: 267.0381.

HPLC analysis (OD-H column, 100:0 hexanes/2-propanol, 0.7 mL/min, t_{minor} = 21.8 min, t_{major} = 22.7 min)

(S)-2-(4-Chlorophenyl)-5-methylhex-4-en-3-one (3g)

15.5 mg, 70% yield, 84:16 er, colourless oil, $[\alpha]_D^{20}$: +219.0 (c = 0.3, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.29 (d, *J* = 8.5 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 5.97 (p, *J* = 1.3 Hz, 1H), 3.71 (q, *J* = 7.0 Hz, 1H), 2.14 (s, 3H), 1.81 (s, 3H), 1.37 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) ¹³C NMR (100 MHz, DMSO) δ 199.8, 157.0, 139.8, 132.7, 129.3, 128.9, 122.9, 52.8, 27.9, 20.9, 17.6.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{13}H_{16}ClO^+$ 223.0884 Found: 223.0882.

HPLC analysis (OD-H column, 100:0 hexanes/2-propanol, 0.8 mL/min, t_{minor} = 16.6 min, t_{major} = 15.1 min)

(S)-2-(4-Fluorophenyl)-5-methylhex-4-en-3-one (3h)

14.0 mg, 68% yield, 86:14 er, colourless oil, $[\alpha]_D^{20} = +164.8$ (*c* = 1.0, CH₂Cl₂). Eluent: dichloromethane/methanol = 50:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.23 – 7.13 (m, 2H), 7.00 (t, *J* = 8.7 Hz, 2H), 5.98 (p, *J* = 1.3 Hz, 1H), 3.72 (q, *J* = 7.0 Hz, 1H), 2.14 (d, *J* = 1.3 Hz, 3H), 1.81 (d, *J* = 1.3 Hz, 3H), 1.38 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.2, 161.8 (d, *J* = 240 Hz), 156.7, 137.0 (d, *J* = 10 Hz), 129.5 (d, *J* = 10 Hz), 122.9, 115.6 (d, *J* = 20 Hz), 52.6, 27.8, 20.9, 17.7.

¹⁹F NMR (376 MHz, CDCl₃) δ -116.1.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₁₃H₁₆FO⁺ 207.1180 Found: 207.1187.

HPLC analysis (OD-H column, 100:0 hexanes/2-propanol, 0.8 mL/min, t_{minor} = 15.4 min, t_{major} = 14.1 min)

(S)-2-(4-Methoxyphenyl)-5-methylhex-4-en-3-one (3i)

18.1 mg, 83% yield, 96:4 er, $[\alpha]_D^{24} = +245.5$ (*c* = 0.8, CH₂Cl₂). colourless oil. Eluent: pentane/ethyl acetate = 50:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.13 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 5.99 (p, *J* = 1.3 Hz, 1H), 3.78 (s, 3H), 3.68 (q, *J* = 6.9 Hz, 1H), 2.13 (d, *J* = 1.2 Hz, 3H), 1.79 (d, *J* = 1.3 Hz, 3H), 1.36 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.7, 158.5, 156.0, 133.3, 129.0, 123.1, 114.2, 55.2, 52.6, 27.8, 20.8, 17.6.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₄H₁₉O₂ 219.1380 Found: 219.1382.

HPLC analysis (OJ-H column, 98:2 hexanes/2-propanol, 0.8 mL/min, t_{minor} = 15.8 min, t_{major} = 14.8 min)

(S)-2-(3,4-Dimethoxyphenyl)-5-methylhex-4-en-3-one (3j)

20.3 mg, 82% yield, 99:1 er, yellow oil, $[\alpha]_D^{20} = +121.9$ (c = 0.1, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1-20:1.

¹**H NMR (400 MHz, CDCl**₃) δ 6.85 – 6.75 (m, 2H), 6.71 (d, *J* = 2.0 Hz, 1H), 6.01 (s, 1H), 3.86 (d, *J* = 2.5 Hz, 7H), 3.67 (q, *J* = 6.9 Hz, 1H), 2.14 (d, *J* = 1.2 Hz, 3H), 1.80 (d, *J* = 1.2 Hz, 3H), 1.38 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.5, 155.9, 149.1, 148.0, 133.8, 123.0, 120.2, 111.4, 110.8, 55.9, 55.8, 53.0, 27.8, 20.8, 17.6.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{15}H_{21}O_3^+$ 249.1485 Found: 249.1488.

HPLC analysis (OJ-H column, 80:20 hexanes/2-propanol, 0.6 mL/min, t_{minor} = 12.6 min, t_{major} = 14.5 min)

(S)-2-([1,1'-Biphenyl]-4-yl)-5-methylhex-4-en-3-one (3k)

22.2 mg, 84% yield, 92:8 er, colourless oil, $[\alpha]_D^{20} = +302.1$ (c = 0.7, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.61 – 7.52 (m, 4H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.32 (dd, *J* = 19.2, 7.8 Hz, 3H), 6.04 (p, *J* = 1.3 Hz, 1H), 3.78 (q, *J* = 7.0 Hz, 1H), 2.16 (d, *J* = 1.2 Hz, 3H), 1.82 (d, *J* = 1.2 Hz, 3H), 1.43 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.3, 156.4, 140.8, 140.3, 139.8, 128.7, 128.4, 127.5, 127.2, 127.0, 123.1, 53.2, 27.8, 20.9, 17.6.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{19}H_{21}O^+$ 265.1587 Found: 265.1586.

HPLC analysis (OJ-H column, 98:2 hexanes/2-propanol, 0.8 mL/min, $t_{minor} = 16.7$ min, $t_{major} = 20.9$ min)

(S)-5-Methyl-2-(naphthalen-2-yl)hex-4-en-3-one (3l)

15.9 mg, 67% yield, 95:5 er, colourless oil, $[\alpha]_D^{20} = +242.6$ (c = 1.0, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1.

¹H NMR (400 MHz, CDCl₃) δ 7.80 (dd, J = 8.9, 3.2 Hz, 3H), 7.68 (s, 1H), 7.50 – 7.39 (m, 2H), 7.33 (dd, J = 8.5, 1.7 Hz, 1H), 6.02 (s, 1H), 3.89 (q, J = 6.9 Hz, 1H), 2.15 (d, J = 1.3 Hz, 3H), 1.75 (d, J = 1.3 Hz, 3H), 1.48 (d, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.3, 156.4, 138.8, 133.7, 132.5, 128.5, 127.7, 127.7, 126.7, 126.2, 126.2, 125.7, 123.2, 53.7, 27.8, 20.9, 17.6.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{17}H_{19}O^+$ 239.1430 Found: 239.1430.

HPLC analysis (OJ-H column, 98:2 hexanes/2-propanol, 0.8 mL/min, t_{minor} = 13.8 min, t_{major} = 19.2 min)

(S)-5-Methyl-2-(naphthalen-1-yl)hex-4-en-3-one (3m)

15.0 mg, 63% yield, 95:5 er, colourless oil, $[\alpha]_D^{20} = +220.3$ (c = 0.2, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1.

¹**H NMR (400 MHz, CDCl₃)** δ 8.09 (d, J = 8.3 Hz, 1H), 7.88 (d, J = 8.5 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.57 – 7.47 (m, 2H), 7.47 – 7.41 (m, 1H), 7.31 (d, J = 7.1 Hz, 1H), 5.91 (p, J = 1.4 Hz, 1H), 4.46 (q, J = 7.0 Hz, 1H), 2.16 (d, J = 1.3 Hz, 3H), 1.70 (d, J = 1.3 Hz, 3H), 1.54 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 201.0, 156.3, 137.7, 134.1, 131.7, 129.0, 127.5, 126.4, 125.8, 125.7, 125.3, 123.3, 122.9, 49.5, 27.7, 20.9, 17.2.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{17}H_{19}O^+$ 239.1430 Found: 239.1432.

HPLC analysis (OJ-H column, 98:2 hexanes/2-propanol, 0.8 mL/min, t_{minor} = 11.6 min, t_{major} = 16.4 min)

(S)-2-Methyl-5-phenylhept-2-en-4-one (3n)

14.7 mg, 73% yield, >99:1 er, colourless oil, $[\alpha]_D^{20} = +296.8$ (c = 0.3, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.34 – 7.28 (m, 2H), 7.26 – 7.18 (m, 3H), 6.01 (t, *J* = 1.3 Hz, 1H), 3.49 (t, *J* = 7.4 Hz, 1H), 2.12 (s, 3H), 2.08 (dt, *J* = 14.2, 7.2 Hz, 1H), 1.79 (s, 3H), 1.71 (dt, *J* = 13.8, 7.4 Hz, 1H), 0.84 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.1, 156.0, 139.7, 128.7, 128.4, 126.9, 123.7, 61.5, 27.7, 25.3, 20.8, 12.2.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₁₄H₁₉O⁺ 203.1430 Found: 203.1436.

HPLC analysis (OJ-H column, 100:0 hexanes/2-propanol, 0.8 mL/min, t_{minor} = 9.5 min, t_{major} = 11.8 min)

(S)-7-(Benzyloxy)-2-methyl-5-phenylhept-2-en-4-one (30)

18.5 mg, 60% yield, 97:3 er, colourless oil, $[\alpha]_D^{20} = +201.6$ (c = 1.8, CH₂Cl₂). Eluent: pentane/ethyl acetate = 40:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.35 – 7.18 (m, 10H), 6.00 (dt, *J* = 2.5, 1.2 Hz, 1H), 4.42 (s, 2H), 3.89 (t, *J* = 7.4 Hz, 1H), 3.48 – 3.41 (m, 1H), 3.36 – 3.24 (m, 1H), 2.46 – 2.35 (m, 1H), 2.11 (d, *J* = 1.4 Hz, 3H), 2.00 – 1.87 (m, 1H), 1.77 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 204.16, 135.06, 129.06, 129.03, 128.04, 49.10, 39.32, 36.47, 28.27.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{21}H_{25}O_2^+$ 309.1849 Found: 309.1845.

HPLC analysis (OJ-H column, 99:1 hexanes/2-propanol, 0.8 mL/min, t_{minor} = 12.4 min, t_{major} = 15.8 min)

(S)-2-(4-(Dimethylamino)phenyl)-5-methylhex-4-en-3-one (3p)

18.9 mg, 82% yield, >99:1 er, colourless oil, $[\alpha]_D^{20} = +278.8$ (*c* = 0.4, CH₂Cl₂). Eluent: pentane/ethyl acetate = 50:1-20:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.08 (d, *J* = 8.7 Hz, 2H), 6.69 (d, *J* = 8.7 Hz, 2H), 6.01 (s, 1H), 3.63 (q, *J* = 6.9 Hz, 1H), 2.92 (s, 6H), 2.13 (s, 3H), 1.78 (s, 3H), 1.35 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 201.0, 155.3, 149.5, 129.0, 128.6, 123.2, 112.9, 52.6, 40.6, 27.8, 20.8, 17.5.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{15}H_{22}NO^+$ 232.1696 Found: 232.1699.

HPLC analysis (OJ-H column, 97:3 hexanes/2-propanol, 0.8 mL/min, t_{minor} = 7.1 min, t_{major} = 6.7 min)

(S)-5-Methyl-2-(4-(morpholinomethyl)phenyl)hex-4-en-3-one (3q)

22.7 mg, 79% yield, 95:5 er, colourless oil, $[\alpha]_D^{20} = +148.8$ (*c* = 1.1, CH₂Cl₂). Eluent: pentane/ethyl acetate = 30:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.27 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.00 (s, 1H), 3.73 – 3.68 (m, 5H), 3.47 (s, 2H), 2.44 (t, *J* = 4.6 Hz, 4H), 2.14 (s, 3H), 1.80 (s, 3H), 1.38 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.4, 156.2, 140.1, 136.3, 129.6, 127.9, 123.1, 67.0, 63.1, 53.6, 53.2, 27.8, 20.9, 17.6.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₂₆NO₂⁺ 288.1958 Found: 288.1960.

HPLC analysis (OJ-H column, 97:3 hexanes/2-propanol, 0.8 mL/min, t_{minor} = 9.8 min, t_{major} = 9.5 min)

(S)-2-(4-((1H-indol-1-yl)methyl)phenyl)-5-methylhex-4-en-3-one (3r)

20.3 mg, 64% yield, 92:8 er, colourless oil, $[\alpha]_D^{20} = +176.0$ (c = 0.2, CH₂Cl₂). Eluent: pentane/ethyl acetate = 30:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.65 (d, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 9.1 Hz, 1H), 7.20 – 7.04 (m, 7H), 6.55 (d, *J* = 3.2 Hz, 1H), 5.95 (p, *J* = 1.4 Hz, 1H), 5.29 (s, 2H), 3.69 (q, *J* = 7.0 Hz, 1H), 2.12 (d, *J* = 1.2 Hz, 3H), 1.78 (d, *J* = 1.3 Hz, 3H), 1.35 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.1, 156.5, 140.7, 136.3, 136.2, 128.7, 128.4, 128.2, 127.2, 123.0, 121.7, 121.0, 119.5, 109.7, 101.7, 53.1, 49.8, 27.8, 20.9, 17.6.

HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₂H₂₄NO⁺ 318.1852 Found: 318.1852.

HPLC analysis (OJ-H column, 97:3 hexanes/2-propanol, 0.8 mL/min, t_{minor} = 9.2 min, t_{major} = 8.9 min)

(S)-5-Methyl-2-(4-(phenoxymethyl)phenyl)hex-4-en-3-one (3s)

23.5 mg, 80% yield, 99:1 er, colourless oil, $[\alpha]_D^{20} = +0.86$ (c = 0.3, CH₂Cl₂). Eluent: pentane/ethyl acetate = 40:1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.28 (d, *J* = 15.8 Hz, 2H), 7.14 (s, 2H), 7.07 (s, 1H), 6.96 (d, *J* = 8.1 Hz, 2H), 6.91 (d, *J* = 8.5 Hz, 2H), 5.97 (s, 1H), 3.69 (s, 1H), 2.10 (s, 3H), 1.78 (s, 3H), 1.35 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.4, 157.1, 156.3, 156.2, 136.0, 129.7, 129.2, 123.3, 123.0, 119.0, 119.0, 52.8, 27.8, 20.9, 17.7.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{20}H_{23}O_2^+$ 295.1693 Found: 295.1699.

HPLC analysis (OJ-H column, 99:1 hexanes/2-propanol, 0.8 mL/min, t_{minor} = 9.2 min, t_{major} = 8.9 min)

(S)-5-Methyl-2-(4-(phenoxymethyl)phenyl)hex-4-en-3-one (3t)

26.5 mg, 86% yield, 96:4 er, colourless oil, $[\alpha]_D^{20} = +173.4$ (*c* = 0.9, CH₂Cl₂). Eluent: pentane/ethyl acetate = 40:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.38 – 7.27 (m, 7H), 7.22 – 7.18 (m, 2H), 5.98 (p, *J* = 1.4 Hz, 1H), 4.57 (s, 2H), 4.52 (s, 2H), 3.73 (q, *J* = 6.9 Hz, 1H), 2.13 (s, 3H), 1.78 (s, 3H), 1.38 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.3, 156.2, 140.7, 138.3, 136.9, 128.4, 128.3, 128.1, 127.8, 127.7, 123.1, 72.3, 71.9, 53.3, 27.8, 20.9, 17.6.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{21}H_{25}O_2^+$ 309.1849 Found: 309.1851.

HPLC analysis (OJ-H column, 98:2 hexanes/2-propanol, 0.7 mL/min, t_{minor} = 14.8 min, t_{maior} = 25.7 min)

(S)-5-Methyl-2-(4-(phenoxymethyl)phenyl)hex-4-en-3-one (3u)

21.2 mg, 78% yield, 95:5 er, colourless oil, $[\alpha]_D^{20} = +191.4$ (c = 1.3, CH₂Cl₂). Eluent: pentane/ethyl acetate = 40:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.29 (d, *J* = 8.1 Hz, 2H), 7.19 (d, *J* = 8.1 Hz, 2H), 5.98 (p, *J* = 1.4 Hz, 1H), 5.92 – 5.76 (m, 1H), 5.16 – 4.98 (m, 2H), 4.49 (s, 2H), 3.73 (q, *J* = 6.9 Hz, 1H), 3.54 (t, *J* = 6.8 Hz, 2H), 2.38 (qt, *J* = 6.7, 1.4 Hz, 2H), 2.13 (s, 3H), 1.79 (s, 3H), 1.38 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.3, 156.2, 140.6, 137.0, 135.2, 128.2, 128.0, 123.1, 116.4, 72.7, 69.8, 53.3, 34.2, 27.8, 20.8, 17.6.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{18}H_{25}O_2^+$ 273.1849 Found: 273.1851.

HPLC analysis (OJ-H column, 98:2 hexanes/2-propanol, 0.7 mL/min, t_{minor} = 6.9 min, t_{major} = 8.8 min)

(S)-5-Methyl-2-(4-(phenoxymethyl)phenyl)hex-4-en-3-one (3v)

24.7 mg, 83% yield, 98:2 er, colourless oil, $[\alpha]_D^{20} = +166.1$ (*c* = 1.0, CH₂Cl₂). Eluent: pentane/ethyl acetate = 40:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.38 (s, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 6.33 – 6.28 (m, 2H), 5.94 (p, *J* = 1.3 Hz, 1H), 4.47 (d, *J* = 6.7 Hz, 4H), 3.69 (q, *J* = 6.9 Hz, 1H), 2.10 (s, 3H), 1.75 (s, 3H), 1.35 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.2, 156.2, 151.7, 142.8, 140.8, 136.5, 128.4, 128.1, 123.1, 110.3, 109.4, 71.7, 64.0, 53.3, 27.8, 20.9, 17.6.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{19}H_{23}O_3^+$ 299.1642 Found: 299.1644.

HPLC analysis (OJ-H column, 93:7 hexanes/2-propanol, 0.7 mL/min, t_{minor} = 9.8 min, t_{maior} = 9.4 min)

(S)-5-Methyl-2-(4-(phenoxymethyl)phenyl)hex-4-en-3-one (3w)

29.4 mg, 83% yield, 97:3 er, colourless oil. $[\alpha]_D^{20} = +140.5$ (c = 1.4, CH₂Cl₂). Eluent: pentane/ethyl acetate = 40:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.30 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.1 Hz, 2H), 5.97 (p, *J* = 1.4 Hz, 1H), 5.40 (t, *J* = 6.7 Hz, 1H), 5.10 (t, *J* = 6.7 Hz, 1H), 4.46 (s, 2H), 4.04 (d, *J* = 6.7 Hz, 2H), 3.72 (q, *J* = 6.9 Hz, 1H), 2.14 – 2.02 (m, 7H), 1.78 (s, 3H), 1.68 (s, 3H), 1.65 (s, 3H), 1.60 (s, 3H), 1.38 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.3, 156.1, 140.6, 140.4, 137.2, 131.6, 128.4, 128.0, 124.0, 123.1, 120.8, 71.7, 66.8, 53.3, 39.6, 27.7, 26.4, 25.7, 20.8, 17.7, 17.6, 16.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₄H₃₅O₂⁺ 355.2632 Found: 355.2630. HPLC analysis (OJ-H column, 95:5 hexanes/2-propanol, 0.7 mL/min, t_{minor} = 9.2 min, t_{major} = 14.9 min)

(S)-5-Methyl-2-(4-(phenoxymethyl)phenyl)hex-4-en-3-one (3x)

28.2 mg, 80% yield, 99:1 dr, colourless oil, $[\alpha]_D^{20} = +147.7$ (c = 1.4, CH₂Cl₂). Eluent: pentane/ethyl acetate = 30:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 5.98 (p, *J* = 1.3 Hz, 1H), 5.52 (dt, *J* = 3.1, 1.5 Hz, 1H), 4.43 (s, 2H), 3.90 (s, 2H), 3.72 (q, *J* = 6.9 Hz, 1H), 2.43 – 2.20 (m, 4H), 2.13 (s, 4H), 1.78 (s, 3H), 1.38 (d, *J* = 7.0 Hz, 3H), 1.29 (s, 3H), 1.19 (d, *J* = 8.6 Hz, 1H), 0.86 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.3, 156.1, 145.4, 140.5, 137.3, 128.2, 128.0, 123.1, 120.1, 73.3, 71.4, 53.3, 43.4, 40.9, 38.0, 31.6, 31.3, 27.8, 26.2, 21.1, 20.8, 17.6.
HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₄H₃₃O₂⁺ 353.2475 Found: 353.2477.
HPLC analysis (OJ-H column, 96:4 hexanes/2-propanol, 0.7 mL/min, t_{minor} = 14.5 min,

(S)-5-Methyl-2-(4-(phenoxymethyl)phenyl)hex-4-en-3-one (3y)

34.5 mg, 75% yield, 98:2 dr, colourless oil, $[\alpha]_D^{20} = +55.4$ (c = 0.7, CH₂Cl₂). Eluent: pentane/ethyl acetate = 20:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.29 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 5.97 (s, 1H), 4.67 – 4.54 (m, 3H), 4.43 (d, *J* = 2.5 Hz, 1H), 4.23 (d, *J* = 7.9 Hz, 1H), 3.92 (dd, *J* = 13.0, 1.6 Hz, 1H), 3.77 – 3.65 (m, 2H), 3.60 (q, *J* = 10.6 Hz, 2H), 2.14 (s, 3H), 1.79 (s, 3H), 1.55 (s, 3H), 1.41 (d, *J* = 7.9 Hz, 6H), 1.37 (d, *J* = 6.9 Hz, 3H), 1.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.3, 156.2, 140.5, 136.7, 128.0, 127.9, 123.1, 108.9, 108.5, 102.7, 73.4, 71.6, 71.0, 70.2, 70.2, 61.0, 53.3, 27.8, 26.6, 25.8, 25.4, 24.0, 20.8, 17.6.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₂₆H₃₇O₇⁺ 461.2534 Found: 461.2533.

HPLC analysis (OJ-H column, 88:12 hexanes/2-propanol, 0.6 mL/min, t_{minor} = 18.0 min, t_{major} = 14.2 min)

(S)-2-(4-hydroxyphenyl)-5-methylhex-4-en-3-one (3z)

5.5 mg, 27% yield, 95:5 er, colourless oil, $[\alpha]_D^{20} = +237.3$ (c = 0.5, CH₂Cl₂). Eluent: pentane/ethyl acetate = 5:1.

¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.5 Hz, 2H), 6.01 (s, 1H), 3.68 (q, J = 7.0 Hz, 1H), 2.13 (s, 3H), 1.80 (s, 3H), 1.36 (d, J = 7.0 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 201.5, 156.7, 154.9, 132.9, 129.1, 123.0, 115.8, 52.7, 27.9, 20.9, 17.6.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{13}H_{17}O_2^+$ 205.1223 Found: 205.1227. HPLC analysis (OJ-H column, 85:15 hexanes/2-propanol, 0.6 mL/min, $t_{minor} = 16.5$ min, $t_{major} = 15.4 \text{ min}$)

(S)-5-Methyl-2-(4-(phenoxymethyl)phenyl)hex-4-en-3-one (3aa)

18.2 mg, 65% yield, 97:3 er, colourless oil, $[\alpha]_D^{20} = +32.7$ (c = 0.5, CH₂Cl₂). Eluent: pentane/ethyl acetate = 30:1.

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (m, 5H), 7.17 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 6.42 (q, J = 1.3 Hz, 1H), 3.85 – 3.75 (m, 4H), 2.53 (s, 3H), 1.43 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 201.1, 158.6, 154.3, 142.7, 133.1, 129.0, 129.0, 128.5, 126.5, 123.7, 114.3, 55.3, 53.2, 18.5, 17.7.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{19}H_{21}O_2^+$ 281.1536 Found: 281.1545.

HPLC analysis (OJ-H column, 88:12 hexanes/2-propanol, 0.6 mL/min, $t_{minor} = 9.9$ min, $t_{major} = 9.4$ min)

(S)-2-(4-Methoxyphenyl)-5-(o-tolyl)hex-4-en-3-one (3ab)

19.4 mg, 66% yield, 88:12 er, colourless oil, $[\alpha]_D^{20} = +76.6$ (c = 1.6, CH₂Cl₂). Eluent: pentane/ethyl acetate = 30:1.

¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.09 (m, 5H), 6.97 – 6.93 (m, 1H), 6.88 – 6.82 (m, 2H), 6.05 (d, *J* = 1.5 Hz, 1H), 3.78 – 33.70 (m, 4H), 2.39 (d, *J* = 1.5 Hz, 3H), 2.08 (s, 3H), 1.42 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 201.1, 158.6, 156.4, 144.2, 134.0, 133.0, 130.4, 129.0, 127.6, 127.1, 126.0, 125.7, 114.3, 55.3, 53.1, 21.2, 19.7, 17.4.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{20}H_{23}O_2^+$ 295.1693 Found: 295.1693.

HPLC analysis (OJ-H column, 98:2 hexanes/2-propanol, 0.9 mL/min, t_{minor} = 25.2 min, t_{major} = 14.4 min)

(S)-2-(4-Methoxyphenyl)-5-(m-tolyl)hex-4-en-3-one (3ac)

20.6 mg, 70% yield, 99:1 er, colourless oil, $[\alpha]_D^{20} = +20.8$ (c = 0.2, CH₂Cl₂). Eluent: pentane/ethyl acetate = 30:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.24 – 7.10 (m, 6H), 6.89 – 6.83 (m, 2H), 6.40 (q, J = 1.3 Hz, 1H), 3.85 – 3.77 (m, 4H), 2.51 (d, J = 1.3 Hz, 3H), 2.34 (s, 3H), 1.43 (d, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 201.1, 158.6, 154.6, 142.8, 138.1, 133.1, 129.7, 129.0, 128.3, 127.2, 123.6, 123.6, 114.3, 55.3, 53.2, 21.5, 18.6, 17.7.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{20}H_{23}O_2^+$ 295.1693 Found: 295.1699.

HPLC analysis (OJ-H column, 98:2 hexanes/2-propanol, 0.9 mL/min, $t_{minor} = 14.5$ min, $t_{major} = 20.7$ min)

(S)-5-(4-Chlorophenyl)-2-(4-methoxyphenyl)hex-4-en-3-one (3ad)

18.5 mg, 59% yield, 99:1 er, colourless oil, $[\alpha]_D^{20} = -14.8$ (c = 0.2, CH₂Cl₂). Eluent: pentane/ethyl acetate = 30:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (d, *J* = 1.8 Hz, 4H), 7.16 (d, *J* = 8.7 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 6.38 (q, *J* = 1.3 Hz, 1H), 3.85 – 3.76 (m, 4H), 2.49 (d, *J* = 1.3 Hz, 3H), 1.42 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.9, 158.6, 152.8, 141.0, 134.9, 132.9, 129.0, 128.6, 127.8, 123.9, 114.3, 55.3, 53.3, 18.3, 17.6.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{19}H_{20}ClO_2^+$ 315.1146 Found: 315.1150.

HPLC analysis (OJ-H column, 98:2 hexanes/2-propanol, 0.9 mL/min, $t_{minor} = 10.2 \text{ min}$, $t_{major} = 9.4 \text{ min}$)

(S)-2-(4-Methoxyphenyl)-5-(m-tolyl)hex-4-en-3-one (3ae)

25.1 mg, 81% yield, 96:4 er, colourless oil, $[\alpha]_D^{20} = -46.5$ (c = 0.5, CH₂Cl₂). Eluent: pentane/ethyl acetate = 20:1.

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 (d, J = 8.9 Hz, 2H), 7.18 (d, J = 8.7 Hz, 2H), 6.85 (dd, J = 8.8, 6.8 Hz, 4H), 6.41 (q, J = 1.2 Hz, 1H), 3.84 – 3.77 (m, 7H), 2.52 (d, J = 1.2 Hz, 3H), 1.43 (d, J = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 201.0, 160.5, 158.6, 153.9, 134.7, 133.3, 129.0, 127.9, 122.1, 114.3, 113.8, 55.3, 55.2, 53.2, 18.2, 17.7.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{20}H_{23}O_3^+$ 311.1642 Found: 311.1648.

HPLC analysis (OJ-H column, 95:5 hexanes/2-propanol, 0.7 mL/min, $t_{minor} = 16.9$ min, $t_{major} = 16.4$ min)

(S)-2-(4-methoxyphenyl)-5-methyl-6-phenylhex-4-en-3-one (3af)

15.9 mg, 54% yield, 97:3 er, colourless oil, $[\alpha]_D^{20} = +165.0$ (c = 0.2, CH₂Cl₂). Eluent: pentane/ethyl acetate = 30:1.

¹**H NMR (400 MHz, CDCl**₃) δ 7.26 – 7.20 (m, 3H), 7.10 (d, *J* = 8.5 Hz, 2H), 7.03 – 6.96 (m, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 6.00 (s, 1H), 3.81 (s, 3H), 3.69 (q, *J* = 7.0 Hz, 1H), 3.30 (s, 2H), 2.04 (d, *J* = 1.2 Hz, 3H), 1.37 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.9, 158.6, 156.8, 137.8, 133.2, 129.0, 129.0, 128.4, 126.6, 124.2, 114.2, 55.3, 52.8, 47.2, 19.1, 17.4.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for $C_{20}H_{23}O_2^+$ 295.1693 Found: 295.1692.

HPLC analysis (OJ-H column, 95:5 hexanes/2-propanol, 0.7 mL/min, t_{minor} = 36.2 min, t_{major} = 19.8 min)

8. Copies of NMR Spectra

¹H NMR (400 MHz, CDCl₃) - (A1)

¹H NMR (400 MHz, CDCl₃) - (A4)

¹H NMR (400 MHz, CDCl₃) - (A5)

¹H NMR (400 MHz, CDCl₃) - (A6)

¹H NMR (400 MHz, CDCl₃) - (A9)

. 0

8.5 8.0

7.5

7.0

6.5

5.5

5.0

6.0

 $\begin{array}{c} 7.41\\ 7.40\\ 7.39\\ 7.39\\ 7.39\\ 7.39\\ 7.33\\$

4.0

3.5

3.0

4.5

2.5

2.0

1.5

1.0

0.5 0.0 -0

¹H NMR (400 MHz, CDCl₃) - (A11)

 $\begin{array}{c} 7.37\\ 7.35\\$

¹H NMR (400 MHz, CDCl₃) - (A13)

 $\begin{array}{c} 7.65\\ 7.65\\ 7.65\\ 7.64\\ 7.63\\ 7.729\\ 7.229\\ 7.227\\ 7.22\\ 7.$

¹H NMR (400 MHz, CDCl₃) - (3a)

¹³C NMR (100 MHz, CDCl₃) - (3a)

¹³C NMR (100 MHz, CDCl₃) - (3b)

¹H NMR (400 MHz, CDCl₃) - (3c)

¹H NMR (400 MHz, CDCl₃) - (3d)

¹³C NMR (100 MHz, CDCl₃) - (3d)

¹H NMR (400 MHz, CDCl₃) - (3e)

¹³C NMR (100 MHz, CDCl₃) - (3e)

47

¹H NMR (400 MHz, CDCl₃) - (3f)

¹³C NMR (100 MHz, CDCl₃) - (3f)

¹H NMR (400 MHz, CDCl₃) - (3g)

¹³C NMR (100 MHz, CDCl₃) - (3g)

¹H NMR (400 MHz, CDCl₃) - (3h)

¹⁹F NMR (376 MHz, CDCl₃) – (3h)

10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210

¹H NMR (400 MHz, CDCl₃) - (3i)

¹³C NMR (100 MHz, CDCl₃) - (3i)

¹H NMR (400 MHz, CDCl₃) - (3j)

¹³C NMR (100 MHz, CDCl₃) - (3k)

0.09.59.08.58.07.57.06.56.05.504.54.03.53.02.52.01.51.00.50.0-0

¹³C NMR (100 MHz, CDCl₃) - (3l)

¹H NMR (400 MHz, CDCl₃) - (3m)

¹³C NMR (100 MHz, CDCl₃) - (3m)

¹H NMR (400 MHz, CDCl₃) - (3n)

¹³C NMR (100 MHz, CDCl₃) - (3n)

¹³C NMR (100 MHz, CDCl₃) - (30)

58

¹H NMR (400 MHz, CDCl₃) - (3p)

¹³C NMR (100 MHz, CDCl₃) - (3p)

¹H NMR (400 MHz, CDCl₃) - (3q)

¹³C NMR (100 MHz, CDCl₃) - (3q)

	- 200.4	- 156.2	140.1 136.3 129.6 127.9 123.1	67.0 53.6 53.2 53.2	- 27.8 20.9
--	---------	---------	---	------------------------------	----------------

¹³C NMR (100 MHz, CDCl₃) - (3r)

¹H NMR (400 MHz, CDCl₃) - (3s)

¹³C NMR (100 MHz, CDCl₃) - (3s)

¹³C NMR (100 MHz, CDCl₃) - (3u)

¹³C NMR (100 MHz, CDCl₃) - (3v)

200.2	156.2 151.7 142.8 136.5 128.4 128.1 128.1 123.1 123.1 109.4	71.7	64.0	53.3	27.8 20.9 17.6
l l				1	1.51

¹H NMR (400 MHz, CDCl₃) - (3w)

¹³C NMR (100 MHz, CDCl₃) - (3x)

¹³C NMR (100 MHz, CDCl₃) - (3y)

¹³C NMR (100 MHz, CDCl₃) - (3z)

- 201.5	√ 156.7 √ 154.9	132.9129.1123.0115.8	- 52.7	- 27.9 20.9 17.6
---------	--------------------	---	--------	------------------------

¹H NMR (400 MHz, CDCl₃) - (3aa)

¹³C NMR (100 MHz, CDCl₃) - (3aa)

0.09.59.08.58.07.57.06.56.05.504.54.03.53.02.52.01.51.00.50.0-0

¹³C NMR (100 MHz, CDCl₃) - (3ab)

¹H NMR (400 MHz, CDCl₃) - (3ac)

¹³C NMR (100 MHz, CDCl₃) - (3ac)

¹H NMR (400 MHz, CDCl₃) - (3ad)

¹³C NMR (100 MHz, CDCl₃) - (3ad)

¹H NMR (400 MHz, CDCl₃) - (3ae)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) - (3af)

¹³C NMR (100 MHz, CDCl₃) - (3af)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2

78

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹H NMR (400 MHz, CDCl₃) - (5c)

¹³C NMR (100 MHz, CDCl₃) - (5c)

¹³C NMR (100 MHz, CDCl₃) - (5d)

9. Copies of HPLC chromatogram

HPLC chromatogram (3a)

2

100															Ă											
80															8											
60 60 50 F																										
₽ 40 20																								* 298		
c			_																					14.		
	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9,5 목숨버리	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0 1	4.5 15	0 15	5 16.

 \times

50.090

	RT (min) 總面积 (mAU-s) 總面积 % 9.828 5422.007 96.353	
2	14.867 205.227 3.647	
Peak (#)	Ret Time (min)	Area (%)
1	9.828	96.353
2	14.867	3.647

14.671

HPLC chromatogram (3b)

Peak (#)	Ret Time (min)	Area (%)
1	22.076	49.913
2	23.308	50.087

 \times

进样结果						
	峰	汇总				
₽	#	^	名称			
		1				
		2				

 RT (min)
 總面积 (mAU-s)
 總面积 %

 22.411
 102.443
 7.715

 23.913
 1225.326
 92.285

Peak (#)	Ret Time (min)	Area (%)
1	22.411	7.715
2	23.913	92.285

HPLC chromatogram (3c)

 \times

峰 汇总 []·# 本名称
 RT (min)
 修面积 (mAU-s)
 修面积 %

 8.604
 5101.089
 91.704

 11.365
 461.461
 8.296
 2 Peak (#) Ret Time (min) Area (%) 1 8.604 91.704 2 11.365 8.296

HPLC chromatogram (3d)

名称 RT (min) 峰面积 (mAU-s) 峰面积 % 17.415 1.187 0.078

2	17.945 1524.680 99.922	
Peak (#)	Ret Time (min)	Area (%)
1	17.415	0.078
2	17.945	99.922

HPLC chromatogram (3e)

峰江总		
□ # ▲ 名称	RT (min) 峰面积 (mAU·s) 峰面积 %	
1	13.952 9.673 1.406	
2	15.439 678.315 98.594	
Peak (#)	Ret Time (min	a) Area (%)
1	13.952	1.406
2	15.439	98.594

HPLC chromatogram (3f)

 \times

1	进	样结果	
	峰	汇总	
		and i	

₽	# 名称 1 2	RT (min) 峰面积 (mAU-s) 峰面积 % 21.788 23.206 8.029 22.730 265.817 91.971	
	Peak (#)	Ret Time (min)	Area (%)
	1	21.788	8.029
	2	22.730	91.971

HPLC chromatogram (3g)

 \times

	进件结果						
į	F # ▲ 名称	RT (min)	峰面积 (mAU·s)	峰面积 %			
	1	15.053	1057.997	83.984			
	2	16.552	201.757	16.016			
	Peak (#)	Ret	Time	(mi	n)	Area (%)	
	1	15.()53			83.984	
	2	16.5	552			16.016	

HPLC chromatogram (3h)

×

进样结果

_	44	1000							
Ð	#	*	名称	RT (min)	峰面积 (mAU·s)	峰面积%			
		- 1		14.160	5782.951	86.230			
		2		15.366	923.502	13.770			
	P	'ea	ak (#)	Ret	Time	(mi	n)	Area (%)	
	1			14.	160			86.230	
	2	,		15.3	366			13.770	

HPLC chromatogram (3i)

峰汇总		
[] # ▲ 名称	RT (min) 峰面积 (mAU-s) 峰面积 %	
1	14.806 26959.196 96.022	
2	15.765 1116.796 3.978	
Peak (#)	Ret Time (min)	Area (%)
1	14.806	96.022
2	15.765	3.978

HPLC chromatogram (3j)

₽	# ▲ 名称 1	RT (min) 峰面积 (mAU·s) 峰面积 % 12.974 26906.400 98.709	
_	2	15.575 351.770 1.291	
	Peak (#)	Ret Time (min)	Area (%)
	1	12.974	98.709
	2	15.575	1.291

HPLC chromatogram (3k)

进样结果		
]] # * 名称	RT (min) 峰面积 (mAU·s) 峰面积 %	
1	16.738 512.453 7.821 20.941 6039.478 92.179	
-	20511 00051110 521115	
Peak (#)	Ret Time (min)	Area (%)
1	16.738	7.821
2	20.941	92.179

HPLC chromatogram (3l)

进样结果			
峰 汇息	RT (min) 峰面积 (mAU-s) 峰面积 %		
1	13.840 142.212 4.967		
Peak (#)	Ret Time (min)	Area (%)	
1	13.840	4.967	
2	10.000	05.022	
2	19.232	95.033	

HPLC chromatogram (3m)

 \times

进样结果	RT (min) 總面积 (mAU-s) 總面积 % 11.576 32.521 5.329 16.422 577.740 94.671	
Peak (#)	Ret Time (min)	Area (%)
1	11.576	5.329
2	16.422	94.671

HPLC chromatogram (3n)

 \times

进样结果		
I) # 4 名称 1 2	RT (min) 峰面积 (mAU-s) 峰面积 % 9.472 4688.247 99.592 11.797 19.183 0.408	
Peak (#)	Ret Time (min)	Area (%)
1	9.472	99.592
2	11.797	0.408

HPLC chromatogram (30)

. ,	× /	、 <i>,</i> ,
1	12.538	49.410
2	16.100	50.590

 \times

进样结果

 RT (min)
 總面积 (mAU-s)
 绘面积 %

 12.431
 139.625
 2.663

 15.783
 5102.770
 97.337

Peak (#)	Ret Time (min)	Area (%)
1	12.431	2.633
2	15.783	97.337

HPLC chromatogram (3p)

 \times

(Fig. 2) (1) (2003)				
进样结果				
日 # ▲ 名称	RT (min) 峰面积 (mAU·s) 峰面积 %			
2	7.144 9.275 0.332			
Peak (#)	Ret Time (min)	Area (%)		
1	6.662	99.668		
2	7 1 4 4	0.222		

HPLC chromatogram (3q)

	峰	汇总									
Ð	#		名称			RT (min)	峰面积 (mAU·s)	峰面积 %			
		1				9.547	2316.062	95.283			
		2				9.826	114.656	4.717			
	P	'ea	ak	(#)	Ret	Time	(mi	n)	Area (%)	
	1					9.54	17			95.283	
	2					9.82	26			4.717	

HPLC chromatogram (3r)

	峰	汇总						
Ð	#	*	名称	RT (min)	峰面积 (mAU·s)	峰面积 %		
		- 1		8.446	1802.040	49.239		
		2		8.766	1857.734	50.761		
	P	'ea	ak (#)	Ret	Time	(mi	n)	Area (%)
	1			8.44	16			49.239
ſ	2			8.76	66			50.761

 \times

 RT (min)
 維面积 (mAU-s)
 維面积 %

 8.930
 15959.463
 91.937

 9.192
 1399.639
 8.063
 2 Area (%) Peak (#) Ret Time (min) 91.937 1 8.930 2 9.192 8.063

HPLC chromatogram (3s)

_						
₿	# * 名称	RT (min) 峰面积	(mAU·s) ⊯	筆面积 %		
	1	10.938	937.797	99.991		
	2	13.459	0.087	0.009		
	Peak (#)	Ret Ti	me ((min)	A	rea (%)
	1	10.938	3		99	.991
ſ	2	13.459)		0.0	009

HPLC chromatogram (3t)

□ # ▲ 名称	RT (min) 峰面积 (mAU·s) 峰面积 %	
1	14.805 1581.404 3.657	
2	25.703 41664.092 96.343	
Peak (#)	Ret Time (min	a) Area (%)
1	14.805	3.657
2	25.703	96.343

HPLC chromatogram (3u)

16 17 #	E 江急 F * 名称	RT (min)	峰面积 (mAU·s)	峰面积 %		
	2	6.858 8.756	1219.087 23878.502	4.857 95.143		
]	Peak (#)	Ret	Time	(mi	n)	Area (%)
	1	6.858		4.857		
4	2	8.75	56			95.143

HPLC chromatogram (3v)

峰汇总		
[] # ▲ 名称	RT (min) 峰面积 (mAU·s) 峰面积 %	
1	9.367 9174.346 98.183	
2	9.750 169.767 1.817	
Peak (#)	Ret Time (min)	Area (%)
1	9.367	98.183
2	9.750	1.817

HPLC chromatogram (3w)

* /					
山 # 4名称	RT (min)	峰面积 (mAU·s)	峰面积 %		
1	9.155	291.529	3.047		
2	14.907	9275.402	96.953		
Peak (#)	Ret	Time	(mi	n)	Area (%)
1	9.155		3.047		
2	14.9	907			96.953

HPLC chromatogram (3x)

 \times

进杆结果 ⁽⁾⁾ ⁽⁾⁾			
□ # ▲ 名称 1	RT (min) 峰面积 (mAU·s) 峰面积 % 11.326 10083.432 99.006		
2	14.475 101.251 0.994		
Peak (#)	Ret Time (min)	Area (%)	
1	11.326	99.006	
2	14.475	0.994	

HPLC chromatogram (3y)

峰汇总		
□ # ▲ 名称	RT (min) 峰面积 (mAU·s) 峰面积 %	
1	14.151 1615.587 98.169	
2	17.965 30.129 1.831	
Peak (#)	Ret Time (min)	Area (%)
1	14.151	98.169
2	17.965	1.831

HPLC chromatogram (3z)

Peak (#)	Ret Time (min)	Area (%)
1	15.433	94.522
2	16.484	5.478

HPLC chromatogram (3aa)

6	11.10.			
⊕ ≉	# 4 名称	RT (min) 峰面积 (mAU·s)	峰面积 96	
	1	9.222 1585.714	49.591	
	2	9.708 1611.891	50.409	
]	Peak (#)	Ret Time	(min)	Area (%)
]	1	9.222		49.591
2	2	9.708		50.409

进	样结果

峰 江总 [] # 本名称
 RT (min)
 維面积 (mAU-s)
 維面积 %

 9.360
 3841.088
 96.530

 9.863
 138.092
 3.470
 2

Peak (#)	Ret Time (min)	Area (%)
1	9.360	96.530
2	9.863	3.470
HPLC chromatogram (3ab)

 \times

进件结果		
峰汇总		
[] # ▲ 名称	RT (min) 峰面积 (mAU·s) 峰面积 %	
1	14.435 6914.581 88.372	
2	25.166 909.818 11.628	
Peak (#)	Ret Time (min)	Area (%)
1	14.435	88.372
2	25.166	11.628

HPLC chromatogram (3ac)

进样结果		
▶ # ▲ 名称	RT (min) 峰面积 (mAU-s) 峰面积 %	
1	14.474 1144.836 50.08	5
2	20.631 1140.962 49.91	5
Peak (#)	Ret Time (m	in) Area (%)
1	14.474	50.085
2	20.631	49.915

 \times

进样结果				
Γ	峰	汇总		
Ð	#	*	名称	
		1		

 RT (min)
 維面积 (mAU-s)
 維面积 %

 14.541
 11.005
 1.208

 20.658
 899.808
 98.792

Peak (#)	Ret Time (min)	Area (%)
1	14.541	1.208
2	20.658	98.792

HPLC chromatogram (3ad)

峰汇总		
[] # ▲ 名称	RT (min) 峰面积 (mAU-s) 峰面积 %	
1	9.393 9785.433 98.952	
2	10.184 103.606 1.048	
Peak (#)	Ret Time (min)	Area (%)
1	9.393	98.952
2	10.184	1.048

HPLC chromatogram (3ae)

3.899

×

	RT (min)	峰面积 (mAU·s)	峰面积 % 96 101		
2	16.925	122.456	3.899		
Peak (#)	Ret	Time	(mi	n)	Area (%)
1	16.3	368			96.101

16.925

2

HPLC chromatogram (3af)

峰江总	
	RT (min) 緣面积 (mAU-s) 緣面积 %
1	19.812 2560.456 96.839
2	36.234 83.585 3.161
Peak (#) Ret Time (min) Area (%)
1	19.812 96.839
2	26.234 3.161

HPLC chromatogram ((*rac*)-5)

HPLC chromatogram (5a)

HPLC chromatogram (5b)

HPLC chromatogram (5c)

● 注意 日 # ▲ 名称 RT (min) 韓国积 (mAU-s) 韓国积 % 1 14.064 11666.193 100.000

Peak (#)	Ret Time (min)	Area (%)
1	14.064	100.000

HPLC chromatogram (5d)

10. References

- 1. X. Zhang, Q. Zhou, Y. Zhou, Z. Wang, J. Wang, M. Wang, *RSC Adv.* **2023**, *13*, 30391-30400.
- 2. Y.-M. Wang, S. L. Buchwald, J. Am. Chem. Soc. 2016, 138, 5024-5027.
- 3. D. Valverde, R. Porcar, D. Izquierdo, M. I. Burguete, E. Garcia-Verdugo, S. V. Luis, *ChemSusChem.* 2019, 12, 3996-4004.
- 4. S. Ha, Y. Lee, Y. Kwak, A. Mishra, E. Yu, B. Ryou, C.-M. Park, *Nat. Commun.* 2020, *11*, 11-18.