Hexamethylbenzene Elimination Enables the Generation of Transient, Sterically Unhindered Multiply Bonded Boron Species

Chonghe Zhang, Philipp Dabringhaus, Bi Youan E. Tra, Robert J. Gilliard, Jr* and Christopher C. Cummins*

Table of Contents

Synthetic details and characterization data	S2
General considerations	S2
Synthesis of 2-11	S3-S24
Concentration dependence study of the reaction of 1 with xyINC	S25
Monitoring the fragmentation of 2	S26
Other attempted experiments	S28
Crystal structures	S29
Computational Studies	S37
References	S40

Synthetic details and characterization data

General considerations:

All air- and moisture-sensitive reactions were carried out under an inert atmosphere of argon using standard Schlenk techniques or in an MBRAUN LABmaster glovebox equipped with a -35 °C freezer. All glassware used for reactions were oven-dried overnight at 190 °C. Reaction solvents including toluene and hexanes were purified by distillation from Na/benzophenone. Deuterated solvents were purchased from Cambridge Isotope Laboratories and distilled from Na/benzophenone (C₆D₆).

 $PhB(C_6Me_6)$,^[1] cyclooctyne,^[2] and mesitylnitrile oxide^[3] were prepared according to literature procedures. PhN_3 (0.1 M in methyl *tert*-butyl ether) was purchased from Millipore-Sigma and degassed by the freeze-pump-thaw method and stored over activated 4 Å molecular sieves for 48 h in the glovebox prior to use. Unless otherwise noted, all other chemicals were purchased commercially and used as received.

NMR spectra were obtained on Bruker Avance 400, Avance 401, Neo 402, Neo 500, and Neo 501 spectrometers. ¹H and ¹³C NMR spectra were referenced to residual solvent peaks of the deuterated solvent (for C₆D₆, ¹H = 7.16 ppm, ¹³C = 128.06 ppm; for CDCl₃, ¹H = 7.16 ppm, ¹³C = 128.06 ppm). ¹¹B NMR spectra were referenced to an external standard, BF₃·Et₂O (¹¹B: δ = 0.00). Background suppression was applied for all ¹¹B NMR spectra. Abbreviations are as follows; s = singlet, d = doublet, t = triplet, sept = septet, dt = doublet of triplets, m = multiplet, br = broad. Unless noted, all spectra were acquired at 25 °C.

HRMS were obtained on high-resolution JEOL AccuTOF 4G LC-plus equipped with an ionSense DART (Direct Analysis in Real Time) source. Elemental analyses were obtained on Thermo Scientific[™] FlashSmart[™] Elemental Analyzers. IR was performed on an ALPHA II compact FT-IR spectrometer. Samples were removed from the glovebox in sealed vials and briefly handled in the air prior to data collection. Details for single-crystal diffraction measurements are given in the crystallography section of this document.

Synthesis of 2: In a vial, PhB(C₆Me₆) (100 mg, 0.40 mmol, 1.0 eq.) and 2,6-xylyl isocyanide (106 mg, 0.81 mmol, 2.0 eq.) were dissolved in toluene (20 mL). The solution was stirred at room temperature for three days, and the color gradually turned yellow. The solution was concentrated to approx. 0.5 mL and hexanes (2 mL) was added. The mixture was stored in the freezer (– $35 \,^{\circ}$ C) for 2 days to give a yellow precipitate. The mother liquor was removed by pipette, and the remaining solid was dried under vacuum to afford the final product. The product contains 10 percent of compound **3** and was used without further purification (compound **2**: 166 mg, 0.32 mmol, 81%).

Repeating the same procedures except using 2 mL toluene led to an increase in the production of **3**. The yellow precipitate was recrystallized with hexane/toluene three times to finally afford a mixture (~10 mg) of **2** and **3** (54: 46). The mixture was used to characterize compound **3**.

Compound 2:

¹**H NMR** (500 MHz, C₆D₆): 1.43 (s, 3H), 1.49 (s, 3H), 1.80 (s, 6H), 1.86 (s, 3H), 1.89 (s, 3H), 1.95 (s, 6H), 2.05 (s, 3H), 2.06 (s, 3H), 6.19 (d, J = 7.2 Hz, 1H), 6.46 to 6.52 (m, 3H), 6.65 (d, J = 7.4 Hz, 1H), 6.73 (t, J = 7.7 Hz, 1H), 7.10 to 7.20 (m, 5H). ¹¹**B NMR** (161 MHz, C₆D₆): -17.82 (s). ¹³C{¹H} **NMR** (126 MHz, C₆D₆): 13.93 (s), 14.62 (s), 16.02

(s), 16.04 (s), 17.16 (s), 17.75 (s), 18.70 (s), 18.85 (s), 18.89 (s), 60.75 (s), 121.15 (s), 125.18 (s), 125.60 (s), 126.38 (s), 126.27 (s), 128.57 (s), 129.33 (s), 130.40 (s), 130.58 (s), 132.77 (s), 134.14 (s), 136.28 (s), 139.45 (s), 140.86 (s), 153.51 (s). **HRMS** (m/z): $[M+H]^+$ calcd. for C₃₆H₄₂BN₂, 513.34410, not found; calcd. for C₂₇H₃₃BN (xyINC dissociates), 382.27060, found 382.2751.

Compound 3:

¹**H NMR** (500 MHz, C₆D₆): 1.70 (br. s, 6H), 1.76 (br. s, 6H), 1.81 (br. s, 6H), 1.96 (s, 6H), 1.98 (br. s, 6H), 6.42 (d, J = 7.5 Hz, 2H), 6.53 to 6.60 (m, 5H). (Some peaks are hidden and thus unable to identify) ¹¹**B NMR** (161 MHz, C₆D₆): -13.51 (s). ¹³**C**{¹**H**} **NMR** (126 MHz, C₆D₆):

16.51 (s), 17.26 (s), 18.40 (s), 19.81 (s), 21.23 (s), 21.43 (s), 23.06 (s), 31.97 (s), 58.96 (s), 121.29 (s), 125.70 (s), 125.75 (s), 126.70 (s), 127.52 (s), 130.32 (s), 134.05 (s), 134.92 (s), 135.76 (s). **HRMS** (m/z): $[M+H]^+$ calcd. for C₄₅H₅₁BN₃, 644.41760, not found; calcd. for C₃₆H₄₂BN₂ (xyINC dissociates), 513.34410, found 513.35032.

Figure S6. ¹¹B NMR spectrum of 3 in C₆D₆ (mixed with 2, only the peaks belonging to 3 were picked)

Figure S7. ¹³C{¹H} NMR spectrum of **3** in C₆D₆ (mixed with **2**, only the peaks belonging to **3** were picked)

Synthesis of 4: In a Schlenk tube, compound **2** (75 mg, 0.15 mmol) was dissolved in benzene (1 mL). The solution was stirred and heated at 80 °C overnight, and the color gradually turned from yellow to deep dark red. The solution was slowly cooled down to room temperature and yellow crystalline solids were

precipitated. The liquid was removed by filtration, and the solid was dried under vacuum to afford the final product (25 mg, 0.022 mmol, 60.3%). Compound **4** was insoluble in nearly all solvents (DCM, toluene, benzene, THF, acetone) but gave NMR signals at 105 °C in d8-toluene.

One pot synthesis: PhB(C₆Me₆) (615 mg, 2.54 mmol, 1.0 eq.) and 2,6dimethylphenyl isocyanide (1000 mg, 7.62 mmol, 3.1 eq.) were dissolved in 100 mL toluene. The solution was stirred and heated at 45 °C overnight and the color gradually turned dark yellow. The solution was concentrated to approx. 20 mL and heated at 80 °C for another 12 hours. The solution gradually turned from yellow to deep dark red and yellow crystalline solids were precipitated. The liquid was removed by filtration and the solid was dried under vacuum as the final product (189 mg, 0.196 mmol, 15.4%).

¹¹B NMR (161 MHz, d8-toluene, 105 °C): -10.91 (s). HRMS (m/z): not found. IR (cm⁻¹): 2245.95 (C≡N stretching), 1567.72 (C=N stretching). Elemental analysis: calcd. for C₆₆H₆₄B₂N₆· 2C₆H₆, C, 83.71; H, 6.85; N, 7.51; found, C, 83.52; H, 6.85; N, 7.58.

-10.91

Treatment of 2 with BCF: In a vial, compound **2** (51 mg, 0.20 mmol, 1.0 eq.) and tris(pentafluorophenyl)borane (BCF) (51 mg, 0.20 mmol, 1.0 eq.) were dissolved in toluene (5 mL). The solution was stirred at room temperature for 10 min, and all volatile materials in the solution were removed under vacuum to afford a sticky solid. ¹H and ¹¹B NMR spectroscopies suggested the reaction led to a quantitative conversion to BCF· xylNC adduct and compound **5**. The sticky solid was redissolved into hexane (approx. 1 mL) and stored at – 35 °C for a week. Partial BCF· xylNC adduct precipitated as a colorless crystalline solid. The mother liquor was transferred to a new vial and concentrated to approx. 0.5 mL. The solution was stored at –35 °C for another week, and a few yellow crystals precipitated, identified as compound **5** and **6** by XRD analysis. Compound **5** was co-crystallized with compound **6** in one unit cell. BCF· xylNC was also synthesized by the reaction of BCF with xylNC.

BCF· xyINC: ¹H NMR (400 MHz, C₆D₆): 1.81 (s, 6H), 6.36 (d, J = 7.6 Hz, 2H), 6.65 (t, J = 7.7 Hz, 1H). ¹¹B NMR (128 MHz, C₆D₆): -20.92 (s). ¹³C{¹H} NMR (101 MHz, C₆D₆): 17.27 (s), 128,77 (s), 132.28 (s), 137.45 (s), 137.86 (m), 141.02 (m), 148.55 (m). ¹⁹F NMR (376 MHz, C₆D₆): -162.57 (td, J = 23.6, 9.1 Hz), -154.97 (t, J = 22.0 Hz), -132.19 (dd, J = 24.0, 8.1 Hz).

Compound **5**: ¹**H NMR** (500 MHz, C₆D₆): 1.39 (s, 3H), 1.50 (s, 6H), 1.67 (s, 3H), 1.75 (s, 6H), 1.98 (s, 6H), 6.63 (m, 3H), 6.76 (m, 2H), 6.91 (m, 3H). ¹¹**B NMR** (161 MHz, C₆D₆): 41.82 (s). ¹³**C**{¹**H**} **NMR** (126 MHz, C₆D₆): 13.76 (s), 14.41 (s), 14.57 (s), 15.77 (s), 18.27 (s), 55.32 (s), 114.17 (s), 123.03 (s), 125.69 (s), 126.87 (s), 127.00 (s), 127.69 (s), 129.33 (s), 131.61 (s), 141.08 (s). **HRMS** (m/z): $[M+H]^+$ calcd. for C₂₇H₃₃BN, 382.27060, found 382.2751.

S13

In a vial, compound **2** (217 mg, 0.42 mmol, 1.0 eq.) and $B(C_6F_5)_3$ (227.8 mg, 0.45 mmol, 1.05 eq.) were dissolved in 3 mL benzene. The solution was stirred for 5 min at 25 °C. Cyclooctyne (48.7 mg, 0.45 mmol, 1.05 eq.) was added to the stirring solution. The mixture was stirred for 5 min. All volatile materials were removed by vacuum. Hexanes (3 mL) was added and the mixture was stirred for 30 min. The mixture was then filtered, and the filtration was concentrated and cooled in the freezer (-35 °C) to afford the crystalline solid (72.6 mg, 0.15 mmol, 33.0%).

¹H NMR (500 MHz, C₆D₆): 1.25 (s, 6H), 1.26 (s, 6H), 1.31 (s, 6H), 1.43 (m, 2H), 1.56 (m, 2H), 1.67 (m, 2H), 2.02 to 2.06 (m, 8H), 2.32 (m, 2H), 6.85 (d, J = 7.5 Hz, 2H), 6.95 (t, J = 7.3 Hz, 1H), 7.17 (m, 1H), 7.30 to 7.36 (m, 4H). ¹¹B NMR (161 MHz, C₆D₆): 64.55 (s). ¹³C{¹H} NMR (126 MHz, C₆D₆): 12.27 (s), 12.65 (s), 13.89 (s), 21.71 (s), 25.96 (s), 26.88 (s), 26.97 (s), 27.11 (s), 29.70 (s), 33.12 (s), 64.36 (s), 125.89 (s), 126.67 (s), 127.05 (s), 127.98 (s), 130.93 (s), 141.14 (s). HRMS (m/z): [M+H]⁺ calcd. for C₃₅H₄₅BN, 490.36450; found: 490.36858.

S16

In a vial, compound **2** (217 mg, 0.42 mmol, 1.0 eq.) and $B(C_6F_5)_3$ (227.8 mg, 0.45 mmol, 1.05 eq.) were dissolved in 3 mL benzene. The solution was stirred for 5 min at 25 °C. MesCNO (71.7 mg, 0.45 mmol, 1.05 eq.) was added to the stirring solution in one portion. The mixture was stirred for 5 min. All volatile materials were removed by vacuum. Hexanes (10 mL) was added and white solids crashed out. The solids were separated from the liquid via filtration and dried under a vacuum to afford the final product (175 mg, 0.32 mmol, 76.8%).

¹**H NMR** (500 MHz, C₆D₆): 0.61 (s, 3H), 0.98 (s, 3H), 1.11 (s, 3H),1.48 (s, 3H), 1.59 (s, 3H), 1.67 (s, 3H), 1.71 (s, 3H), 2.02 (s, 6H), 2.64 (s, 3H), 2.72 (s, 3H), 6.34 (m, 1H), 6.53 (m, 1H), 6.72 (s, 1H), 6.77 to 6.83 (m, 2H), 7.12 to 7.21 (m, 3H), 7.74 (d, J = 7.2 Hz, 2H). ¹¹**B NMR** (161 MHz, C₆D₆): 42.1 (s). ¹³C{¹H} **NMR** (126 MHz, C₆D₆): 15.10 (s), 15.48 (s), 15.66 (s), 17.26 (s), 18.25 (s), 18.31 (s), 19.08 (s), 20.94 (s), 21.63 (s), 22.96 (s), 31.97 (s), 37.97 (s), 40.23 (s), 126.11 (s), 126.52 (s), 127.21 (s), 128.54 (s), 128.69 (s), 129.09 (s), 129.24 (s), 133.33 (s), 136.61 (s), 138.01 (s), 138.10 (s), 138.24 (s), 138.73 (s), 142.49 (s), 158.59 (s). **HRMS** (m/z): [M+H]⁺ calcd. for C₃₇H₄₃BN₂O, 543.35467, found 543.35575.

Synthesis of 9: In a vial, PhB(C₆Me₆) (100 mg, 0.40 mmol, 1.0 eq.) and trimethylamine *N*-oxide (30 mg, 0.40 mmol, 1.0 eq.) were dissolved in THF (5 mL). The solution was stirred at room temperature for an hour, and all volatiles were removed under vacuum. The remaining solid was heated at

150 °C under vacuum for an hour to remove hexamethylbenzene, after which the solid was identified as triphenylboroxin (40 mg, 0.13 mmol, 97%). The NMR spectra of **9** are in accordance with those in the literature.^[4]

¹**H NMR** (500 MHz, CDCl₃): 7.52 (d, J = 7.2 Hz, 6H), 7.61 (t, J = 7.4 Hz, 3H), 8.25 (t, J = 7.4 Hz, 6H). ¹¹**B NMR** (161 MHz, CDCl₃): 29.01 (s). **HRMS** (m/z): [M+H]⁺ calcd. for C₁₈H₁₆B₃O₃, 313.13786; found 313.14245.

Synthesis of 10: In a Schlenk flask, PhB(C₆Me₆) (100 mg, 0.40 mmol, 1.0 eq.) was dissolved in toluene (10 mL) and then PhN₃ (0.1 M in methyl *tert*-butyl ether) was added (2.0 mL, 2.0 mmol, 5.0 eq.). The solution was stirred and

heated at 50 °C for 5 days. All volatile materials in the solution were removed under vacuum. The remaining solid was stirred with hexane (10 mL), and the liquid was removed by pipette to remove hexamethylbenzene. The solid was dissolved in toluene (approx. 2 mL) and added with hexane (approx. 1 mL) for recrystallization. The solution was stored at -35 °C to afford a white crystalline solid. The mother liquor was removed by filtration, and the solid was dried under vacuum (87 mg, 0.29 mmol, 73%).

¹**H NMR** (500 MHz, C₆D₆): 6.91 (td, J = 7.5 Hz, 1.4, 2H), 6.99 (m, 4H), 7.02 (m, 2H), 7.08 (m, 1H), 7.17 to 7.19 (m, 2H), 7.45 (m, 4H). ¹¹**B NMR** (161 MHz, C₆D₆): 25.36 (s). ¹³**C**{¹**H**} **NMR** (126 MHz, C₆D₆): 122.80 (s), 126.67 (s), 128.57 (s), 129.31 (s), 129.82 (s), 134.09 (s), 140.37 (s). **HRMS** (m/z): [M+H]⁺ calcd. for C₁₈H₁₆BN₄, 299.14680; found 299.15183.

Synthesis of 11: $PhB(C_6Me_6)$ (100 mg, 0.40 mmol, 1.0 eq.) and mesityl isocyanate (MesNCO) (67.7 mg, 0.42 mmol, 1.05 eq.) were added to toluene (5 mL). The solution was stirred at 50 °C for 2 days. All volatile materials in the solution were removed under vacuum,

and the remaining solid was washed with cold hexane $(0.5 \times 2 \text{ mL})$. The solid was crystallized from hexane/toluene to afford the final product as a white solid (102 mg, 0.25 mmol, 62%).

¹H NMR (500 MHz, C₆D₆): 1.21 (s, 3H), 1.31 (s, 3H), 1.66 (s, 3H), 1.72 (s, 3H), 1.81 (s, 6H), 1.90 (s, 3H), 2.06 (s, 3H), 2.31 (s, 3H), 6.57 (s, 1H), 6.80 (s, 3H), 6.99 (m, 3H), 7.34 (m, 2H). ¹¹B NMR (161 MHz, C₆D₆): 53.46 (br. s). ¹³C{¹H} NMR (126 MHz, C₆D₆): 13.47 (s), 15.32 (s), 15.81 (s), 16.11 (s), 17.02 (s), 17.75 (s), 19.10 (s), 19.30 (s), 20.94 (s), 57.71 (s), 125.70 (s), 125.95 (s), 129.57 (s), 128.85 (s), 129.06 (s), 129.33 (s), 129.53 (s), 129.66 (s), 130.21 (s), 130.34 (s), 132.56 (s), 134.02 (s), 134.63 (s), 135.74 (s), 136.56 (s), 187.73 (s). HRMS (m/z): $[M+H]^+$ calcd. for C₂₈H₃₄BN, 395.27842; found 395.27338. Elemental analysis: calcd. for C₂₈H₃₄BNO, C, 81.75; H, 8.33; N, 3.40; found, C, 81.47; H, 8.28; N, 3.52.

7.35 7.35 7.334 7.334 7.334 7.334 7.335 7.334 7.000 6.999 6.890 6.80

31	06 90 81 72 66	31
~	N H H H H	
Ï	TANZ.	Π.

Figure S26. ¹H NMR spectrum of 11 in C₆D₆

S24

Concentration dependence study of the reaction of 1 with 2,6-xylyl isocyanide

In a vial, $PhB(C_6Me_6)$ (1) and 2,6-xylyl isocyanide (xylNC) were dissolved in toluene. The solution was stirred at room temperature for three days, and the color gradually turned yellow. All volatiles in the solution were removed under vacuum, and the remaining solids were redissolved in C_6D_6 . The NMR yield of **3** was determined in each experiment, and using an increased equivalent of xylNC led to a notable enhancement in forming **3**.

No. of experiment	1	xyINC	toluene	1(mol): xyINC(mol)	NMR yields of 3
1	12.5 mg	14 mg	4 mL	1:2	9%
2	12.5 mg	28 mg	4 mL	1:4	15%
3	12.5 mg	42 mg	4 mL	1:6	18%
4	12.5 mg	70 mg	4 mL	1:10	23%

Table S1. NMF	vields of 3	in different	experiments.
			0/10/01/10/11/01

Monitoring the fragmentation of 2

In a J Young NMR tube, compound **2** (25 mg, 0.05 mmol, 1.0 equiv) and acenaphthene (internal reference, 15.4 mg, 0.10 mmol, 1.0 equiv) were dissolved in d8-toluene (0.5 mL). The NMR tube was heated at 90 °C and the reaction was monitored by ¹H NMR spectroscopy. The fragmentation of **2** is neither a first-order nor second-order kinetics.

Time/min	Concentration of	Time/min	Concentration of
0	0.0196	55	0.0696
8	0.0305	61	0.0726
15	0.0389	78	0.0765
27	0.0470	95	0.0801
32	0.0555	113	0.0831
38	0.0611	130	0.0845
43	0.0642	158	0.0860
49	0.0666	1000+	0.0897

Table 2.	The concentration	of C ₆ Me ₆ (mo	I/L) at differen	t times according t	0
the integr	ration of C6Me6 and	d acenaphthe	ne.		

Figure S29. Plot of the concentration of C₆Me₆ (mol/L) at different times

In a J Young NMR tube, compound 2 (15 mg) was dissolved in d8-toluene (0.5 mL). The NMR tube was heated at 90 °C and the reaction was monitored

by ¹¹B NMR spectroscopy. It revealed an intermediate at $\delta = -17.0$ ppm, comparable to the boraketenimine TpB(CNMe)₂.

Figure S30. ¹¹B NMR of heating compound 2 in d8-toluene at different times

Other attempted experiments

Treatment of 1 with CO

In a J. Young NMR tube, PhB(C₆Me₆) (12.5 mg, 0.05 mmol, 1.0 equiv) was dissolved in C₆D₆ (0.5 mL). The solution was subjected to three freeze–pump–thaw cycles and then pressurized with CO (20 psi). It was heated at 80 °C for 16 hours. ¹¹B NMR spectroscopy showed no change in the starting material, PhB(C₆Me₆).

Attempted trapping of the oxoborane (PhB=O)

Figure S31. Attempted trapping of the oxoborane PhB=O by cyclohexadiene and mesityl nitrile oxide, aiming to afford the corresponding cycloaddition product.

In a vial, PhB(C₆Me₆) (12.5 mg, 0.05 mmol, 1.0 eq.), trimethylamine *N*-oxide (3.7 mg, 0.05 mmol, 1.0 eq.), and a trapping reagent (for C₆H₈, 80.0 mg, 0.50 mmol, 10.0 equiv; for MesCNO, 8.1 mg, 0.05 mmol, 1.0 equiv) were dissolved in THF (2 mL). The solution was stirred at room temperature for 1 hour, after which all volatiles were removed under vacuum. The remaining solid was redissolved in C₆D₆, and the major product was identified as triphenylboroxin by ¹H NMR spectroscopy.

Crystal structures

Low-temperature (100 K) diffraction data were collected on a Bruker-AXS X8 Kappa Duo diffractometer with IµS micro-sources, coupled to a Photon 3 CPAD detector for all structures. Mo K_{α} radiation ($\lambda = 0.71073$ Å) was used for all the structures. Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, 2013). The structure was solved with the XT structure solution program using the Intrinsic Phasing solution method^[5] and by using Olex2^[6] as the graphical interface. The model was refined with the SheIXL program^[7] using Least Squares minimization. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealized geometric positions.

Crystallographic data have been deposited with the Cambridge Crystallographic Data as supplementary publication nos. CCDC-2299088 (2), 2299089 (3), 2299090 (4), 2299091 (5&6), 2299092 (10), 2299093 (11), 2416228 (7), 2416229 (8). These data can be obtained free of charge from Crystallographic The Cambridge Data Centre via Data https://www.ccdc.cam.ac.uk.

2299088
C ₃₆ H ₄₁ BN ₂
512.52
100.00
monoclinic
P21/n
11.5762(6)
19.2982(11)
13.3269(7)
90
99.970(2)
90
2932.3(3)
4
1.161
0.066
1104.0
0.121 × 0.111 × 0.098
ΜοΚα (λ = 0.71073)
3.752 to 55.132
-15 ≤ h ≤ 14, -25 ≤ k ≤ 25, -17 ≤ l ≤ 17
88037
6755 [R _{int} = 0.1793, R _{sigma} = 0.0715]

 Table 3. Crystal data and structure refinement for 2.

Data/restraints/parameters	6755/0/362
Goodness-of-fit on F ²	1.002
Final R indexes [I>=2σ (I)]	$R_1 = 0.0440, wR_2 = 0.1089$
Final R indexes [all data]	$R_1 = 0.0731$, $wR_2 = 0.1159$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.25

Table 4. Crystal data and structure refinement for 3.

Identification code	2299089
Empirical formula	$C_{45}H_{50}BN_3$
Formula weight	643.69
Temperature/K	100.00
Crystal system	monoclinic
Space group	P21/C
a/Å	17.4580(13)
b/Å	14.7741(11)
c/Å	16.2688(12)
α/°	90
β/°	104.417(2)
γ/°	90
Volume/Å ³	4064.0(5)
Z	4
ρ _{calc} g/cm ³	1.052
µ/mm ⁻¹	0.060
F(000)	1384.0
Crystal size/mm ³	0.27 × 0.021 × 0.012
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	3.66 to 50.05
Index ranges	-20 ≤ h ≤ 20, -17 ≤ k ≤ 17, -19 ≤ l ≤ 18
Reflections collected	144514
Independent reflections	7184 [$R_{int} = 0.1206$, $R_{sigma} = 0.0459$]
Data/restraints/parameters	7184/0/454
Goodness-of-fit on F ²	1.021
Final R indexes [I>=2σ (I)]	$R_1 = 0.0593$, $wR_2 = 0.1312$
Final R indexes [all data]	$R_1 = 0.0943$, $wR_2 = 0.1502$
Largest diff. peak/hole / e Å ⁻³	0.20/-0.23

Table 5 Crystal data and structure refinement for 4.

Table 9 of ystar data and structure remement for 4.		
Identification code	2299090	
Empirical formula	C78H76B2N6	
Formula weight	1119.06	
Temperature/K	100.00	
Crystal system	triclinic	
Space group	P-1	
a/Å	10.8373(5)	
b/Å	12.1312(7)	

c/Å	13.6657(7)
α/°	84.390(2)
β/°	72.008(2)
γ/°	68.497(2)
Volume/Å ³	1589.59(15)
Z	1
ρ _{calc} g/cm ³	1.169
µ/mm ⁻¹	0.068
F(000)	596.0
Crystal size/mm ³	0.291 × 0.193 × 0.184
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	3.134 to 50.05
Index ranges	-12 ≤ h ≤ 12, -14 ≤ k ≤ 14, -16 ≤ l ≤ 16
Reflections collected	80309
Independent reflections	5618 [Rint = 0.0357, Rsigma = 0.0190]
Data/restraints/parameters	5618/84/413
Goodness-of-fit on F ²	1.021
Final R indexes [I>=2σ (I)]	$R_1 = 0.0604$, $wR_2 = 0.1492$
Final R indexes [all data]	$R_1 = 0.0621$, $wR_2 = 0.1507$
Largest diff. peak/hole / e Å ⁻³	0.55/-0.40

Table 6 Crystal data and structure refinement for 5&6.

Identification code	2299091
Empirical formula	$C_{72}H_{64}B_3F_{15}N_2$
Formula weight	1274.68
Temperature/K	100.00
Crystal system	triclinic
Space group	P-1
a/Å	13.063(3)
b/Å	15.942(3)
c/Å	21.120(5)
α/°	92.077(8)
β/°	107.094(8)
γ/°	109.231(7)
Volume/Å ³	3925.8(16)
Z	2
ρ _{calc} g/cm ³	1.078
µ/mm ⁻¹	0.087
F(000)	1320.0
Crystal size/mm ³	$0.24 \times 0.12 \times 0.032$
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.08 to 64.178
Index ranges	-19 ≤ h ≤ 19, -23 ≤ k ≤ 23, -31 ≤ l ≤ 31
Reflections collected	337344
Independent reflections	27270 [Rint = 0.0762, Rsigma = 0.0372]

Data/restraints/parameters	27270/328/1015
Goodness-of-fit on F ²	1.020
Final R indexes [I>=2σ (I)]	$R_1 = 0.0713$, $wR_2 = 0.1747$
Final R indexes [all data]	R ₁ = 0.0920, wR ₂ = 0.1897
Largest diff. peak/hole / e Å ⁻³	0.41/-0.35

Table 7 Crystal data and structure refinement for 10.

Identification code	2299092
Empirical formula	C35H44BN
Formula weight	489.52
Temperature/K	100.00
Crystal system	monoclinic
Space group	P21/n
a/Å	10.2681(2)
b/Å	17.8570(4)
c/Å	15.4419(3)
α/°	90
β/°	100.3020(10)
γ/°	90
Volume/Å ³	2785.74(10)
Z	4
ρ _{calc} g/cm ³	1.167
µ/mm ⁻¹	0.066
F(000)	1064.0
Crystal size/mm ³	0.098 × 0.078 × 0.065
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	4.424 to 60.128
Index ranges	-14 ≤ h ≤ 14, -25 ≤ k ≤ 25, -21 ≤ l ≤ 19
Reflections collected	32087
Independent reflections	7898 [R _{int} = 0.0325, R _{sigma} = 0.0277]
Data/restraints/parameters	7898/0/342
Goodness-of-fit on F ²	1.072
Final R indexes [I>=2σ (I)]	R ₁ = 0.0457, wR ₂ = 0.1124
Final R indexes [all data]	R ₁ = 0.0521, wR ₂ = 0.1172
Largest diff. peak/hole / e Å ⁻³	0.39/-0.23

Table 8 Crystal data and structure refinement for 11.

Identification code	2299093
Empirical formula	C37H43BN2O
Formula weight	542.54
Temperature/K	100.00
Crystal system	monoclinic
Space group	C2/c
a/Å	20.640(2)
b/Å	13.099(2)

c/Å	22.222(3)
α/°	90
β/°	96.787(7)
γ/°	90
Volume/Å ³	5966.1(16)
Z	8
ρ _{calc} g/cm ³	1.208
µ/mm ⁻¹	0.071
F(000)	2336.0
Crystal size/mm ³	$0.056 \times 0.042 \times 0.024$
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	3.69 to 59.156
Index ranges	$-28 \le h \le 28$, $-18 \le k \le 18$, $-30 \le l \le 30$
Reflections collected	198194
Independent reflections	8370 [R _{int} = 0.0814, R _{sigma} = 0.0264]
Data/restraints/parameters	8370/0/381
Goodness-of-fit on F ²	1.038
Final R indexes [I>=2σ (I)]	$R_1 = 0.0529$, $wR_2 = 0.1245$
Final R indexes [all data]	$R_1 = 0.0787$, $wR_2 = 0.1426$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.24

Table 9 Crystal data and structure refinement 7.

<u> </u>	
Identification code	2416228
Empirical formula	C ₁₈ H ₁₅ BN ₄
Formula weight	298.15
Temperature/K	100.00
Crystal system	monoclinic
Space group	P21/n
a/Å	5.7579(4)
b/Å	15.6788(11)
c/Å	16.3799(11)
α/°	90
β/°	94.763(3)
γ/°	90
Volume/Å ³	1473.62(18)
Z	4
ρ _{calc} g/cm ³	1.344
µ/mm ⁻¹	0.082
F(000)	624.0
Crystal size/mm ³	0.087 × 0.016 × 0.008
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	3.602 to 55.752
Index ranges	-7 ≤ h ≤ 7, -20 ≤ k ≤ 20, -21 ≤ l ≤ 21
Reflections collected	34337
Independent reflections	3526 [R _{int} = 0.0595, R _{sigma} = 0.0318]

Data/restraints/parameters	3526/0/208
Goodness-of-fit on F ²	1.050
Final R indexes [I>=2σ (I)]	$R_1 = 0.0469, wR_2 = 0.0996$
Final R indexes [all data]	$R_1 = 0.0722$, $wR_2 = 0.1141$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.23

Table 10 Crystal data and structure refinement for 8.

Table TO Crystal uata and Structur	
Identification code	2416229
Empirical formula	C ₂₈ H ₃₄ BNO
Formula weight	411.37
Temperature/K	100.00
Crystal system	monoclinic
Space group	P21/c
a/Å	11.0019(8)
b/Å	13.4954(11)
c/Å	16.5173(12)
α/°	90
β/°	100.269(3)
γ/°	90
Volume/Å ³	2413.1(3)
Z	4
ρ _{calc} g/cm ³	1.132
µ/mm ⁻¹	0.067
F(000)	888.0
Crystal size/mm ³	0.249 × 0.246 × 0.211
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	3.762 to 50.054
Index ranges	-13 ≤ h ≤ 13, -16 ≤ k ≤ 16, -19 ≤ l ≤ 19
Reflections collected	75187
Independent reflections	4255 [R _{int} = 0.0338, R _{sigma} = 0.0121]
Data/restraints/parameters	4255/0/289
Goodness-of-fit on F ²	1.051
Final R indexes [I>=2σ (I)]	$R_1 = 0.0475$, $wR_2 = 0.1246$
Final R indexes [all data]	$R_1 = 0.0497$, $wR_2 = 0.1268$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.26

Figure S32. Single crystal structure of **6**. Partial hydrogen atoms have been omitted for clarity. Thermal ellipsoids are drawn at 50 % probability level. The 2,6-dimethylphenyl group has a two-fold disorder and only one part is displayed.

Figure S33. Single crystal structure of BCF· xyINC. Hydrogen atoms have been omitted for clarity. Thermal ellipsoids are drawn at 50 % probability level. The quality of the crystal structure was not publishable, but it displayed its atom connectivity.

Figure S34. Single crystal structure of **7**. Hydrogen atoms have been omitted for clarity. Thermal ellipsoids are drawn at 50 % probability level.

Figure S35. Single crystal structure of **8**. Hydrogen atoms have been omitted for clarity. Thermal ellipsoids are drawn at 50 % probability level.

Computational Studies

Unless otherwise indicated, all calculations were performed with Gaussian 09 program^[8]. The geometry optimizations and frequency calculation were performed at M06-2X/6-311G^{**} level of theory,^[9] incorperating D3 dispersion correction.^[10] Frequency calculations were performed to confirm a transition state has only one imaginary frequency, while a local minimum has no imaginary frequency. Intrinsic reaction coordinate (IRC) calculations^[11] were also carried out to further confirm that transition states can link the relevant local minima. All geometry optimizations, frequency calculations, and electronic energy calculations applied the SMD solvation model (in toluene).^[12] Cartesian coordinates from all structures are compiled in xyz_all.xyz file which could be found at https://pubs.acs.org.

Figure S36. Optimized transition state TS_1^N

Figure S37. Optimized intermediate I^o

Table S11. Computed energies for the formation of **4** in toluene. Computed Electronic Energy (EE, Hartree), total Gibbs free energies (G_T , Hartree), relative electronic energies (ΔE_2 , kcal/mol), relative Gibbs free energies (ΔG_T , kcal/mol).

	EE	G _T	ΔE_2	ΔG_T
2	-1530.631257	-1530.014492		
C ₆ Me ₆	-468.038768	-467.807463		
TS₁ ^C	-1530.580166	-1529.968578	32.06	28.81
I ^c	-1062.561761	-1062.210755	19.28	-2.34
TS ₂ ^C	-2125.109132	-2124.376125	28.31	26.14
II ^c	-2125.177367	-2124.436301	-14.51	-11.62
TS₃ ^C	-2125.152378	-2124.412248	1.17	3.47
IIIc	-2125.19659	-2124.458484	-26.57	-25.54
TS₄ ^C	-2125.162829	-2124.422518	-5.38	-2.97
IV ^c	-2125.205409	-2124.460955	-32.10	-27.09

Table S12. Computed energies for the formation of **9** in toluene solution. Computed Electronic Energy (EE, Hartree), total Gibbs free energies (G_T , Hartree), relative electronic energies (ΔE_2 , kcal/mol), relative Gibbs free energies (ΔG_T , kcal/mol).

	EE	G _T	ΔE	ΔG_{T}
1	-724.484809	-724.166413		
Me₃NO	-249.579783	-249.481419		
C ₆ Me ₆	-468.038768	-467.807463		
Me₃N	-174.430098	-174.336127		
TS₁°	-974.07019	-973.633506	-3.51	8.99
lo	-974.092381	-973.651687	-17.44	-2.42
TS₂°	-974.056208	-973.619884	5.26	17.54
Me₃N+ II º	-974.182228	-973.764981	72.02	70.54
llo	-799.75213	-799.428854	-13.02	-73.51
TS₃°	-799.729124	-799.407222	-59.38	-59.94
PhBO+C ₆ Me ₆	-799.776054	-799.476888	00 02	102.65
PhBO	-331.737286	-331.669425	-00.03	-103.65

Table S13. Computed energies for the formation of **10** in toluene solution. Computed Electronic Energy (EE, Hartree), total Gibbs free energies (G_T , Hartree), relative electronic energies (ΔE_2 , kcal/mol), relative Gibbs free energies (ΔG_T , kcal/mol).

	EE	G _T	ΔE	ΔG_{T}
1	-724.484809	-724.166413		
PhN ₃	-395.772671	-395.700332		
C ₆ Me ₆	-468.038768	-467.807463		
N ₂	-109.513587	-109.526265		
١N	-1120.253215	-1119.83847	2.68	17.74
TS₁ ^N	-1120.234121	-1119.82096	14.66	28.73
II ^N	-1120.306872	-1119.890283	-30.99	-14.77

TS₂ ^N	-1120.297588	-1119.884628	-25.17	-11.22
N ₂ +PhBNPh +C ₆ Me ₆	-1120.394568	-1120.02437	-86.02	-98.91
PhBNPh	-542.842213	-542.690642		
Nitrene Insertion Pathway				
TS₃ ^N	-1120.204716	-1119.79432	33.11	45.45
III ^N +N ₂	-1120.392428	-1119.995371	94.69	80.71
III ^N	-1010.878841	-1010.469106	-04.00	-00.71

Reference

[1] P. J. Fagan, E. G. Burns and J. C. Calabrese, *J. Am. Chem. Soc.* **1988**, *110*, 2979–2981.

[2] D. A. Roberts, B. S. Pilgrim, G. Sirvinskaite, T. K. Ronson and J. R. Nitschke, *J. Am. Chem. Soc.* **2018**, *140*, 9616-9623.

[3] G. Zhao, L. Liang, C. H. E. Wen and R. Tong, Org. Lett. 2019, 21, 315-319.

[4] Z. Alassad, A. Nandi, S. Kozuch and A. Milo, J. Am. Chem. Soc. 2023, 145, 89-98.

[5] G. M. Sheldrick, Acta Cryst. A 2015, 71, 3–8.

[6] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.* **2009**, *42*, 339–341.

[7] G. M. Sheldrick, Acta Cryst. A 2008, 64, 112–122.

[8] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.
Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V.
Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A.
Montgomery, J. E. P. Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V.
N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian, Inc., Wallingford CT* 2016.

[9] a) J.-D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.* 2008, *10*, 6615; b) A.
D. McLean and G. S. Chandler, *J. Chem. Phys.* 1980, *72*, 5639–5648; c) R. Krishnan, J.
S. Binkley, R. Seeger and J. A. Pople, *J. Chem. Phys.* 1980, *72*, 650–654; d) M. M.

Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees and J. A.

Pople, J. Chem. Phys. 1982, 77, 3654–3665; e) L. A. Curtiss, M. P. McGrath, J. P.

Blaudeau, N. E. Davis, R. C. Binning and L. Radom, *J. Chem. Phys.* **1995**, *103*, 6104–6113; f) Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.* **2008**, *120*, 215–241.

[10] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104.

[11] a) K. Fukui, *J. Phys. Chem.* **1970**, *74*, 4161–4163; b) K. Fukui, *Acc. Chem. Res.* **1981**, *14*, 363–368.

[12] A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B* **2009**, *113*, 6378–6396.