Nickel Catalyzed Diastereoselective Hydroboration of Acrylates with a Vinylborane Reagent

Guanwen Hu,¹ Peiqi Zhang,¹ Xinmou Wang,¹ Chunteng Wan,¹ Yiyi Fu,¹ Wa Hung Leung¹, Zhenyang Lin,^{1*} and Yangjian Quan^{1*}

¹Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR (China) *Corresponding author, e-mail: chzlin@ust.hk *Corresponding author, e-mail: chyjquan@ust.hk

1. General Information	2
2. Reagents and Substrates	3
3. Reaction Optimization	9
4. Analytical Data of the Products	11
5. Downstream Transformations	55
6. Mechanistic Investigations	64
7. NMR Spectra	80
8. References	213

1. General Information

Staring materials and reagents were purchased from commercial sources and used without further purification. Organic solvents were dried and distilled by standard methods prior to use. Analytical TLC analyses were performed on Yantai Chemical Industry Research Institute silica gel 60 F254 plates. Flash column chromatography was performed on Qingdao-Haiyang® silica gel (200-300 mesh) or Macklin neutral aluminum oxide (200-300 mesh). Nickel-catalyzed hydroboration reactions were performed under a N2 atmosphere in a glove box using flamedried glassware with a stirring bar and anhydrous solvent unless otherwise indicated. NiCl₂ and Ni(COD)₂ were purchased from Energy. Reaction temperatures were reported as the temperatures of the bather surrounding the flasks or vials. ¹H ,¹³C, ¹¹B and ¹⁹F NMR spectra were recorded on a Bruker 400 or JEOL 600 spectrometer at 400/600, 101/151, 128/193, and 376/565 MHZ, respectively. Peaks recorded are relative to the internal standards: $CDCl_3$ ($\delta =$ 7.26) for ¹H NMR and CDCl₃ (δ = 77.16) for ¹³C spectra, All the ¹¹B chemical shifts were referenced to external BF₃·OEt₂ ($\delta = 0.00$). All the ¹⁹F chemical shifts were not referenced. Data for ¹H NMR and ¹³C NMR spectra were reported as follows: chemical shift (ppm, referenced to protium; s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet, br = broad, coupling constant (Hz), and integration). For the ¹H & ¹³C NMR spectral data, the hydrogens and carbons bonded with boron are not listed due to quadrupole broadening and spin-spin coupling with boron. The dr values of related products were measured via ¹H NMR. High resolution mass spectra (HRMS) were obtained on a Waters Xevo G2-XS Tof mass spectrometer.

2. Reagents and Substrates

2.1. Olefin Substrate Preparation

Fig. S1. List of substrates used in this work.

S3-8, **S11**, **S15**, **S18-19**, **S33**, **S41**, **S49-55**, **S69** are commercially available and used without purification when received. **S9-14**, **S16-17**, **S30-S32**, **S34-39**, **S56-60** and **S64** are synthesized according to procedure A, and their NMR spectra correspond to the reported data.¹⁻¹⁶ **S40**, **S42-48**, **S67-68** and **S70** are synthesized according to procedure B, and their NMR spectra correspond to the reported data.¹⁷⁻²¹ **S61-63** and **S65-66** are synthesized according to procedure C, and their spectra correspond to the reported data.²²

Procedure A

ROH +
$$O$$
 CI $Et_3N (2 eq)$ OR OR $(1.5 eq.)$

In a 100 mL round-bottom flask, ROH (5 mmol, 1.0 eq.) was dissolved in 20 mL DCM, followed by the addition of TEA (10 mmol, 2 eq.). After that, acryloyl chloride (7.5 mmol, 1.5 eq.) was added under 0 °C. The resulting mixture was stirred overnight. When the reaction was completed, water was added. The aqueous phase was extracted by DCM three times. The organic phase was combined and evacuated under reduced pressure. The residue was subjected to column chromatography (SiO₂) to give the pure products.

Procedure B

$$\begin{array}{c} O \\ R \\ H \end{array} + Ph_{3}P \\ O \\ R' = Et or Me \end{array} \xrightarrow{\text{DCM, r.t., overnight}} R \\ R' = Et or Me \\ R' = Et or Me \end{array}$$

In a 100 mL round-bottom flask, methyl (or ethyl) (triphenylphosphoranylidene)acetate (6 mmol, 1.2 eq.) was dissolved in 20 mL anhydrous DCM, followed by the addition of a ROH (5 mmol) solution in anhydrous DCM. Then the mixture was stirred overnight. When the reaction was completed, water was added. The aqueous phase was extracted by DCM three times. The organic phase was combined and evacuated under reduced pressure. The residue was subjected to column chromatography (SiO₂) to give the pure products.

Procedure C

In a 100 mL round bottom flask, acid (10 mmol) and 2-hydroxyethyl acrylate (12 mmol, 1.2 eq.) were dissolved in anhydrous DCM. Then, DMAP (1 mmol, 10 mol%) and DCC (10 mmol, 1 eq.) were added to the solution. The resulting mixture was stirred at room temperature for 22 h. After that, the reaction was quenched with water, and the aqueous phase was extracted with DCM three times. The combined organic phase was then dried with anhydrous Na₂SO₄ and evacuated under reduced pressure. The residue was subjected to column chromatography (SiO₂) to give the pure products.

S27, colorless oil, 83%. Procedure A.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.85 (d, *J* = 8.2 Hz, 1H), 7.41 (s, 1H), 7.37 – 7.32 (m, 2H), 7.0810 – 7.06 (m 1H), 6.45 (dd, *J* = 17.3, 1.3 Hz, 1H), 6.15 (dd, *J* = 17.3, 10.5 Hz, 1H), 5.88 (dd, *J* = 10.5, 1.3 Hz, 1H), 5.20 (s, 2H), 1.53 (s, 9H).

S26, colorless oil, 78%. Procedure A.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.41 (s, 1H), 7.31 – 7.25 (m, 2H), 7.07 – 7.00 (m, 1H), 6.47 (s, 1H), 6.44 (dd, *J* = 17.4, 1.4 Hz, 1H), 6.15 (dd, *J* = 17.3, 10.4 Hz, 1H), 5.85 (d, *J* = 1.4 Hz, 1H), 5.15 (s, 2H), 1.51 (s, 9H).

S28, colorless oil, 76%. Procedure A.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.35 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 6.48 (s, 1H), 6.41 (dd, *J* = 17.3, 1.5 Hz, 1H), 6.13 (dd, *J* = 17.3, 10.4 Hz, 1H), 5.82 (dd, *J* = 10.4, 1.5 Hz, 1H), 5.12 (s, 2H), 1.51 (s, 9H).

S30, orange solid, 89%. Procedure A.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.40 (dd, *J* = 17.3, 1.4 Hz, 1H), 6.10 (dd, *J* = 17.3, 10.4 Hz, 1H), 5.80 (dd, *J* = 10.5, 1.4 Hz, 1H), 4.97 (s, 2H), 4.28 (t, *J* = 1.8 Hz, 2H), 4.18 (t, *J* = 1.9 Hz, 2H), 4.16 (s, 5H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 166.14, 130.90, 128.58, 81.34, 69.69, 68.91, 68.67, 63.01, 0.08.

IHBoc

S31, colorless oil, 95%. Procedure A

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.37 (d, *J* = 17.3 Hz, 1H), 6.07 (dd, *J* = 17.4, 10.5 Hz, 1H), 5.81 (d, *J* = 10.4 Hz, 1H), 4.82 – 4.63 (m, 2H), 3.83 (t, *J* = 8.4 Hz, 1H), 2.86 (d, *J* = 9.3 Hz, 2H), 1.99 – 1.90 (m, 2H), 1.42 (s, 9H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 165.59, 154.92, 131.08, 128.32, 79.66, 62.74, 39.07, 38.47, 28.45.

S46, colorless oil, 89%. Procedure B.

¹**H NMR (400 MHz, Chloroform-***d***)** δ7.43 – 7.25 (m, 5H), 6.73 (d, *J* = 15.5 Hz, 1H), 5.32 (d, *J* = 15.5 Hz, 1H), 3.69 (s, 3H), 1.40 – 1.18 (m, 4H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 167.41, 157.31, 141.02, 130.34, 128.60, 127.26, 118.53, 51.36, 29.19, 16.41.

S67, colorless oil, 49%. Procedure B.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.17 (d, *J* = 16.0 Hz, 1H), 7.12 – 7.05 (m, 2H), 6.91 – 6.85 (m, 2H), 5.96 (d, *J* = 16.0 Hz, 1H), 3.75 (s, 3H), 2.82 (dd, *J* = 10.8, 8.3 Hz, 1H), 1.93 (dd, *J* = 10.7, 7.3 Hz, 1H), 1.77 (t, *J* = 7.9 Hz, 1H), 1.46 (s, 7H).

¹³C NMR (101 MHz, CDCl₃) δ 166.87, 154.81, 153.22, 129.52, 128.80, 121.17, 119.54, 78.54, 60.85, 51.76, 34.88, 26.94, 26.90, 25.87.

S61, colorless oil, 40%. Procedure C.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.33 (d, *J* = 8.1 Hz, 2H), 7.22 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.11 (td, *J* = 7.7, 1.6 Hz, 1H), 7.00 – 6.91 (m, 2H), 6.85 (s, 1H), 6.54 (d, *J* = 8.0 Hz, 1H), 6.37 (dd, *J* = 17.4, 1.4 Hz, 1H), 6.08 (dd, *J* = 17.3, 10.4 Hz, 1H), 5.81 (dd, *J* = 10.5, 1.4 Hz, 1H), 4.43 – 4.31 (m, 4H), 3.83 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 172.27, 165.96, 142.81, 137.88, 131.57, 130.98, 129.59, 128.97, 128.17, 127.94, 124.19, 124.15, 122.17, 118.44, 62.96, 62.17, 38.47, 0.08.

2.2 Synthesis of the vinylborane reagent

To a flame-dried round-bottom flask was added NHC-borane (30 mmol, 1 eq.). Then the flask was evacuated and re-filled with N_2 three times. A solution of I_2 (15 mmol, 0.5 eq.) in dry

toluene was then added dropwise at room temperature. After stirring for 1 hour, the solution was cooled to -78 °C, to which was added vinylmagnesium bromide (30 mmol, 1M in THF, 1.0 eq.) dropwise. The reaction was then quenched with water after TLC monitoring. The aqueous phase was extracted with EtOAc three times. The combined organic phase was dried over Na₂SO₄ and concentrated under reduced pressure. Purification by column chromatography (SiO₂ or Al₂O₃) gave the pure product as a colorless oil with 60% isolation yield.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.83 (s, 2H), 6.31 (t, *J* = 16.2 Hz, 1H), 5.21 (s, 1H), 4.78 (d, *J* = 19.1 Hz, 1H), 3.77 (s, 6H), 2.18 – 1.68 (m, 2H) (B*H*₂).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -27.94 (t, J = 84.3, 1B)

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -27.94 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ170.93 (br, 1C), 150.46 (q, *J* = 52.8, 1C) 120.30, 118.54, 35.93.

HRMS(ESI) m/z (M-H⁺) calculated for $C_{20}H_{29}BN$ - H⁺ 135.1099, found 135.1093.

1- $\mathbf{I}^{i}\mathbf{Pr}$, white solid, 32%

¹H NMR (600 MHz, Chloroform-d) δ 6.96 (s, 2H), 6.39 – 6.29 (m, 1H), 5.21 – 5.10 (m, 3H), 4.72 (d, J = 19.4 Hz, 1H), 1.39 (d, J = 6.8 Hz, 12H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -27.85 (d, *J* = 84.1 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -27.85 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ117.56, 114.69, 48.57, 22.53.

HRMS(ESI) m/z (M+H⁺) calculated for $C_{17}H_{23}BN_2O_2+H^+$ 193.1871, found 193.1865.

1-Me, colorless oil, 37%

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.84 (s, 2H), 4.86 (s, 1H), 4.18 (s, 1H), 3.77 (s, 6H), 1.80 (s, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -26.74 (d, *J* = 84.2 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -26.74 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 120.23, 112.07, 36.02, 28.22.

HRMS(ESI) m/z (M+H⁺) calculated for $C_{17}H_{23}BN_2O_2+H^+$ 151.1401, found 151.1397.

3. Reaction Optimization

Table S1a. Optimization of different nickel catalysts

∕~ B [✓] L	+ OBn	[Ni] (10 mol%)	^H B ^L
I I I I I I I I I I I I I I I I I I I	0	dioxane (0.1 M) rt, overnight	BnO
0.075 m	mol 0.05 mmol	$L = \underbrace{N }_{\underline{N}} N $	(±)- 3
Entry	[Ni]	yield (%)	d.r.
1	NiBr ₂ (DME)	60	1/1.4
2	NiCl ₂ (DME)	69	1/1
3	NiCl ₂	75	1.1/1
4	Ni(COD) ₂	56	1/2.3
5	Ni(acac) ₂	46	1.3/1
6	Ni(OTf) ₂	63	1.4/1
7	-	N.R.	-

¹H NMR yields with 1,3,5-trimethoxybenzene as an internal

The diastereomeric ratio is determined by ¹H NMR

Note: Both Ni(II) and Ni(0) catalysts tested were effective in catalyzing the hydroboration, resulting in **3** with moderate to good yields. However, the ligands bonded with nickel center

affected the dr values. Without a nickel catalyst, no reaction was observed.

^a NiCl₂ (5 mol%), Ligand (6 mol% or 12.5 mol%), dioxane (0.1 M), rt, 18 h

^b NiBr₂(DME) (10 mol%), ligand (15 mol%), THF (0.1 M), rt, 18 h

^c NiBr₂(DME) (10 mol%), ligand (15 mol%), dioxane (0.1 M), rt, 18 h

^d NiBr₂(PPh₃)₂ (10 mol%), dioxane (0.1 M), rt, 18 h

¹H NMR yield with 1,3,5-trimethoxybenzene as an internal. The diastereomeric ratio is determined by ¹H NMR

Note: Multidentate ligands were not effective in improving the drs for 3, meanwhile some mono-phosphine ligands provided excellent drs of up to > 20:1. This experimental finding is consistent with the proposed reaction mechanism (Fig. 2f), wherein the key transition state, determining the product configuration, only has one vacancy for σ -coordination.

Table S1c. Optimization of solvents

B H H	+ OBn O	NiCl ₂ (10 mol%) P(Ar _F) ₃ (25 mol%) solvent (0.1 M) rt, overnight	
0.075 mmol	0.05 mmol		(±)- 3
entry	solvent	yield (%)	d.r.
1	dioxane	>95%	>20/1
2	THF	89%	>20/1
3	PhMe	>95%	>20/1
4	MeCN	37%	11/1
5	DMA	87%	14/1
7 ^a	PhMe	84%	>20/1
8 ^b	PhMe	97%	>20/1

^a 1 (0.05 mmol), Benzyl acrylate (0.06 mmol)

^b 1 (0.12 mmol), Benzyl acrylate (0.10 mmol), isolated yield

 $^{1}\mathrm{H}$ NMR yield with 1,3,5-trimethoxybenzene as an internal, The diastereomeric ratio is determined by $^{1}\mathrm{H}$ NMR

Note: Less polar toluene as the solvent provided the highest yield with an excellent dr of > 20:1.

4. Analytical Data of Products

4.1 General procedure for nickel-catalyzed diastereoselective hydroboration

Under an atmosphere of dry N₂, NiCl₂ (0.005 mmol, 5 mol%) and (*p*-F-Ph)₃P (0.0125 mmol, 12.5 mol%) were mixed in a 10 mL Schlenk tube with a stirring bar. Toluene (0.5 mL) was then added. The mixture was stirred for at least 45 min at room temperature. After that, a sequence of alkene (0.1 mmol, 1.0 eq.), toluene (0.5 mL), and borane (0.12 mmol, 1.2 eq.) was added to the reaction mixture. The tube was then tightly sealed and stirred at room temperature for 16 hours. After the reaction, the mixture was quenched under air, and the solvents were evacuated *in vacuo*. The obtained crude mixture was analyzed by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard and then subjected to flash column chromatography on neutral aluminum oxide (200 – 300 mesh) to give the corresponding products.

4.2 Analytical data of products.

3, major configuration, colorless oil, 97%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.28 – 7.24 (m, 3H), 7.16 – 7.14 (m, 2H), 6.57 (s, 2H), 6.32 – 6.36 (m, 1H), 5.29 (br, 1H), 4.88 (d, *J* = 21.2 Hz, 1H), 4.79 – 4.67 (m, 2H), 3.62 (s, 6H), 2.03 (s, 1H), 1.22 (d, *J* = 6.1 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.92 (d, *J* = 88.0 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.92 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.63, 137.40, 128.39, 128.30, 127.69, 120.66, 119.40,
64.67, 36.61, 16.39.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{17}H_{23}BN_2O_2+Na^+321.1745$, found 321.1754.

Minor configuration, colorless oil

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.36-7.30 (m, 4H), 7.28-7.25 (m, 1H), 6.76 (s, 2H), 6.41 – 6.35 (m, 1H), 5.31 (br, 1H), 5.07 – 5.02 (m, 2H), 4.98 (d, *J* = 19.2 Hz, 1H), 3.69 (s, 6H), 2.08 (sbr, 1H), 0.97 (d, *J* = 6.8 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.97 (d, *J* = 87.6 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.92 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.54, 137.67, 128.34, 128.13, 127.57, 121.01, 119.76,
64.86, 36.75, 16.09.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{17}H_{23}BN_2O_2+Na^+$ 321.1745, found 321.1754.

4, White crystal, 75%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.83 (s, 2H), 6.31 (m, 1H), 5.30 (s, 1H), 4.87 (d, *J* = 19.6 Hz, 1H), 3.79 (s, 6H), 1.91 (s, 1H), 1.16 (d, *J* = 6.5 Hz, 3H), 1.13 (s, 9H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.94 (d, *J* = 87.8 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.94 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.57, 120.79, 118.99, 76.62, 36.77, 28.08, 16.43.

HRMS(ESI) m/z (M+Na⁺⁺) calculated for $C_{14}H_{25}BN_2O_2+Na^+$ 287.1901, found 287.1910.

5, colorless oil, 81%, d.r. > 20/1.

¹**H NMR (400 MHz, Chloroform-d)** δ 6.81 (s, 2H), 6.38 – 6.29 (m, 1H), 5.33 (br, 1H), 4.94 (d, *J* = 19.4 Hz, 1H), 3.81 – 3.73 (m, 1H), 3.78 (s, 6H), 3.70 – 3.62 (m, 1H), 1.98 (s, 1H), 1.19 (d, *J* = 5.3 Hz, 3H), 0.93 (t, *J* = 7.1 Hz, 3H).

¹¹**B** NMR (193 MHz, Chloroform-d) δ -18.72 (d, J = 88.0 Hz, 1B).

¹¹B {1H} NMR (193 MHz, Chloroform-d) δ -18.72 (s, 1B).

¹³C NMR (101 MHz, Chloroform-d) δ 182.87, 120.73, 119.37, 58.28, 36.68, 16.22, 14.28.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{12}H_{21}BN_2O_2+Na^+$ 259.1588, found 259.1599.

6, colorless oil, 98%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.79 (s, 2H), 6.35 – 6.29 (m, 1H), 5.31 (br, 1H), 4.93 (d, *J* = 19.4 Hz, 1H), 3.76 (s, 6H), 3.75 – 3.70 (m, 1H), 3.56 – 3.51 (m, 1H), 1.98 – 1.96 (m, 1H), 1.35 – 1.22 (m, 4H), 1.20 – 1.18 (m, 7H), 0.86 (t, *J* = 7.2 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.91 (d, *J* = 88.1 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.91 (s, 1B).

¹³C NMR (151 MHz, Chloroform-d) δ 183.02, 120.80, 119.43, 62.86, 36.75, 31.60, 28.87, 25.72, 22.62, 16.31, 14.08.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{16}H_{29}BN_2O_2+Na^+$ 315.2214, found 315.2226.

7, colorless oil, 98%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.78 (s, 2H), 6.32 – 6.26 (m, 1H), 5.30 (br, 1H), 4.87 (d, *J* = 19.6 Hz, 1H), 4.39 – 4.35 (m, 1H), 3.75 (s, 6H), 1.96 – 1.64 (m, 1H), 1.70 – 1.66 (m, 1H), 1.65 – 1.59 (m, 1H), 1.55 – 1.49 (m, 1H), 1.47 – 1.44 (m, 1H), 1.39 – 1.33 (m, 1H), 1.26 – 1.06 (m, 7H), 0.79 – 0.73 (m, 1H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.92 (d, *J* = 87.9 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.92 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.43, 120.81, 119.15, 69.99, 36.78, 32.15, 31.79, 25.59, 24.08, 24.05, 16.45.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{16}H_{29}BN_2O_2+Na^+$ 313.2058, found 313.2069.

8, colorless oil, 78%, d.r. = 16/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.79 (s, 2H), 6.32 – 6.26 (m, 1H), 5.31 (br, 1H), 4.89 (d, *J* = 19.7 Hz, 1H), 4.13 – 4.03 (m, 2H), 3.76 (s, 6H), 2.12 – 2.07 (m, 1H), 1.23 (d, *J* = 6.1 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.84 (d, *J* = 88.8 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.84 (s, 1B).

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -73.47 (t, J = 8.8 Hz) (minor configuration), -74.04 (t, J = 9.0 Hz) (major configuration).

¹³C NMR (151 MHz, Chloroform-*d*) δ 181.00, 123.56 (q, *J* = 277.8 Hz, 1C), 121.03, 119.67, 59.34 (q, *J* = 35.5 Hz, 1C), 36.64, 16.25.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{12}H_{18}BF_3N_2O_2+Na^+$ 313.1306, found 313.1313.

9, colorless oil, 93%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.29 – 7.26 (m, 1H), 7.25 – 7.21 (m, 3H), 7.09 – 7.11 (m, 1H), 6.72 (s, 1H), 6.39 (s, 1H), 6.35 – 6.21 (m, 1H), 5.44 (t, *J* = 6.8 Hz, 0.5H), 5.35 (t, *J* = 6.9 Hz, 0.5H), 5.29 (br, 1H), 4.90 – 4.80 (m, 1H), 3.58 (s, 3H), 3.57 (s, 3H), 2.07 – 2.01 (m, 1H), 1.85 – 1.78 (m, 0.5H), 1.67 – 1.60 (m, 1H), 1.53 – 1.46 (m, 1H), 1.23 (d, *J* = 6.2 Hz, 3H), 0.76 (t, *J* = 7.4 Hz, 1.5H), 0.72 (t, *J* = 7.4 Hz, 1.5H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -18.03 (d, *J* = 88.4 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -18.03 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.36/181.88, 141.71/141.38, 128.17/128.09, 127.38/127.33, 127.22/126.91, 120.77/120.45, 119.24/119.19, 75.34/74.83, 36.54, 29.30, 16.59/16.29, 10.01/9.84.

HRMS(ESI) m/z (M+Na⁺) calculated for C₁₉H₂₇BN₂O₂+Na⁺ 349.2058, found 349.2071.

10, colorless oil, 50%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.81 (s, 2H), 6.34 – 6.28 (m, 1H), 5.32 (br, 1H), 4.93 (d, *J* = 19.5 Hz, 1H), 3.91 – 3.83 (m, 1H), 3.78 (s, 6H), 3.73 – 3.66 (m, 1H), 2.24 – 2.19 (m, 1H), 2.15 – 2.09 (m, 1H), 2.05 – 1.99 (m, 1H), 1.93 (t, *J* = 2.7 Hz, 1H), 1.20 (d, *J* = 6.4 Hz, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -17.89 (d, *J* = 88.7 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -17.89 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.52, 120.89, 119.57, 80.92, 69.45, 60.48, 36.81, 19.13, 16.26.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{14}H_{21}BN_2O_2+Na^+$ 283.1588, found 283.1599.

11, colorless oil, 88%, d.r. = 15/1.

¹H NMR (600 MHz, Chloroform-d) δ 6.84 (s, 2H), 6.33 – 6.26 (m, 1H), 5.32 (br, 1H), 4.93

(d, *J* = 19.3 Hz, 1H), 4.02 – 3.99 (m, 1H), 3.79 (s, 6H), 3.72 – 3.68 (m, 1H), 2.48 – 2.43 (m, 1H), 2.34 – 2.29 (s, 1H), 2.04 – 2.02 (m, 1H), 1.19 (d, *J* = 6.4 Hz, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -17.85 (d, *J* = 89.0 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -17.85 (s, 1B).

¹³C NMR (151 MHz, Chloroform-d) δ 182.22, 121.10, 119.82, 117.58, 57.19, 36.85, 36.82, 18.23, 16.21.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{13}H_{20}BN_3O_2+Na^+$ 284.1541, found 284.1550.

12, colorless oil, 76%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.34 – 7.31 (m, 4H), 7.27 – 7.25 (m, 1H), 6.64 (s, 2H), 6.46 – 6.43 (m, 1H), 6.35 – 6.29 (m, 1H), 5.96 (dt, *J* = 15.8, 6.6 Hz, 1H), 5.32 (br, 1H), 4.92 (d, *J* = 19.1 Hz, 1H), 4.40 – 4.31 (m, 2H), 3.71 (s, 6H), 2.04 – 2.04 (m, 1H), 1.23 (d, *J* = 6.4 Hz, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -17.84 (d, *J* = 88.4 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.84 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.55, 136.66, 133.15, 128.71, 127.99, 126.51, 124.71, 120.79, 119.48, 63.36, 36.74, 16.35.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{19}H_{25}BN_2O_2+Na^+$ 347.1901, found 347.1912.

13, colorless oil, 88%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.80 (s, 2H), 6.36 – 6.30 (m, 1H), 5.78 – 5.71 (m, 1H), 5.32 (br, 1H), 5.00 – 4.96 (m, 1H), 4.96 – 4.90 (m, 2H), 3.77 (s, 6H), 3.75 – 3.78 (m, 1H), 3.61 – 3.57 (m, 1H), 2.01 – 1.96 (m, 3H), 1.48 – 1.36 (m, 2H), 1.20 (d, *J* = 6.5 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.91 (d, *J* = 88.3 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.91 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.93, 137.94, 120.83, 119.48, 114.95, 62.15, 36.75, 30.18, 28.16, 16.29.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{15}H_{25}BN_2O_2+Na^+$ 299.1901, found 299.1910.

14, colorless oil, 93%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.77 (s, 2H), 6.34 – 6.28 (m, 1H), 5.31 (br, 1H), 5.05 – 5.02 (m, 1H), 4.96 – 4.88 (m, 2H), 4.23 – 4.11 (m, 2H), 3.75 (s, 6H), 2.03 – 1.94 (m, 5H), 1.67 (s, 3H), 1.65 (s, 3H), 1.57 (s, 3H), 1.19 (d, *J* = 6.5 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.91 (d, *J* = 88.2 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.91 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.84, 140.23, 132.09, 123.78, 120.77, 120.56, 119.39, 59.32, 36.74, 32.19, 26.77, 25.77, 23.65, 17.74, 16.39.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{20}H_{33}BN_2O_2+Na^+$ 367.2527, found 367.2537.

15, colorless oil, 98%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.77 (s, 2H), 6.33 – 6.27 (m, 1H), 5.30 (br, 1H), 4.92 (d, *J* = 19.4 Hz, 1H), 3.91 – 3.88 (m, 1H), 3.75 (s, 6H), 3.64 – 3.59 (m, 1H), 3.35 – 3.31 (m, 1H), 3.27 (s, 3H), 3.26 – 3.23 (m, 1H), 2.04 – 1.98 (m, 1H), 1.18 (d, *J* = 6.4 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.89 (d, *J* = 88.4 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.89 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.83, 120.83, 119.41, 70.95, 61.75, 58.82, 36.74, 16.38.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{13}H_{23}BN_2O_3+Na^+$ 289.1694, found 289.1711.

16, colorless oil, 93%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.83 (s, 2H), 6.36 – 6.30 (m, 1H), 5.33 (br, 1H), 4.94 (d, *J* = 18.1 Hz, 1H), 3.96 – 3.90 (m 1H), 3.78 (s, 6H), 3.76 – 3.70 (m, 1H), 3.54 – 3.42 (m, 2H), 1.98 – 2.00 (m, 1H), 1.90 – 1.77 (m, 2H), 1.19 (d, *J* = 6.5 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.90 (d, *J* = 88.6 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -17.90 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.72, 120.96, 119.64, 59.34, 41.67, 36.77, 32.09, 16.24.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{13}H_{22}BClN_2O_2+Na^+$ 307.1355, found 307.1364.

17, colorless oil, 80%, d.r.= 16/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.82 (s, 2H), 6.36 – 6.26 (m, 1H), 5.31 (br, 1H), 4.92 (d, *J* = 19.5 Hz, 1H), 3.94 – 3.87 (m, 1H), 3.77 (s, 6H), 3.74 – 3.68 (m, 1H), 3.36 – 3.27 (m, 2H), 2.02 – 1.96 (m, 1H), 1.96 – 1.79 (m, 2H), 1.17 (d, *J* = 6.5 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.90 (d, *J* = 88.2 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.90 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.69, 120.99, 119.66, 60.39, 36.82, 32.33, 30.11, 16.27.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{13}H_{22}BBrN_2O_2+Na^+$ 351.0850, found 351.0858.

18, colorless oil, 86%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.79 (s, 1H), 6.77 (s, 1H), 6.35 – 6.27 (m, 1H), 5.31 (br, 1H), 4.99 – 4.86 (m, 1H), 3.86 – 3.67 (m, 4H), 3.76 (d, *J* = 2.0 Hz, 6H), 3.56 – 3.52 (m, 0.5H), 3.40 – 3.34 (m, 0.5H), 2.05 – 1.96 (m, 1H), 1.89 – 1.79 (m, 3H), 1.51 – 1.44 (m, 1H), 1.19 (d, *J* = 6.4 Hz, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -17.87 (d, *J* = 88.6 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -17.87 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.81/182.78, 120.85, 119.40, 76.92, 68.27/68.18, 65.22/64.95, 36.75, 28.21/28.03, 25.71/25.63, 16.41.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{15}H_{25}BN_2O_3+Na^+$ 315.1850, found 315.1864.

19, colorless oil, 79%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.77 (s, 2H), 6.36 – 6.27 (m, 1H), 5.31 (br, 1H), 4.96 – 4.90 (m, 1H), 3.75 (s, 6H), 3.73 – 3.68 (m, 1H), 3.48 – 3.42 (m, 1H), 1.98 – 1.96 (m, 1H), 1.37 – 1.32 (m, 2H), 1.18 (d, *J* = 6.5 Hz, 3H), 0.38 – 0.23 (m, 2H), 0.08 (s, 27H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.94 (d, *J* = 88.1 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.94 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.95, 120.78, 119.44, 65.18, 36.74, 22.90, 16.35, 10.62, 1.83.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{22}H_{49}BN_2O_5Si_4+Na^+$ 567.2704, found 567.2713.

20, colorless oil, 94%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.77 (s, 2H), 6.35 – 6.27 (m, 1H), 5.31 (br, 1H), 4.93 (d, *J* = 18.1 Hz, 1H), 3.89 – 3.83 (m, 1H), 3.75 (s, 6H), 3.59 – 3.42 (m, 3H), 2.00 – 1.93 (m, 1H), 1.18 (d, *J* = 6.4 Hz, 3H), 0.86 (s, 9H), 0.02 (s, 6H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.89 (d, *J* = 88.3 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.89 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.75, 120.82, 119.50, 63.93, 61.66, 36.76, 25.97, 18.43, 16.36, -5.19.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{18}H_{35}BN_2O_3Si+Na^+$ 389.2402, found 389.2410.

21, white crystal, 76%, d.r. = 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.82 (s, 2H), 6.29 – 6.22 (m, 1H), 5.27 (br, 1H), 4.86 – 4.82 (m, 1H), 3.75 (s, 6H), 2.51 – 2.47 (m, 2H), 2.23 – 2.16 (m, 2H), 2.11 – 2.04 (m, 3H), 1.93 – 1.80 (m, 6H), 1.12 (d, *J* = 6.4 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.89 (d, *J* = 88.5 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.89 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 216.44, 182.32, 120.87, 119.31, 74.34, 47.11, 47.07, 41.88, 41.22, 39.78, 38.27, 38.24, 36.81, 29.70, 16.30.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{20}H_{29}BN_2O_3+Na^+$ 379.2163, found 379.2172.

22, colorless oil, 91%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.24 – 7.22 (m, 2H), 7.11 – 7.08 (m, 2H), 6.61 (s, 2H), 6.31 – 6.35 (m, 1H), 5.28 (br, 1H), 4.90 – 4.84 (m, 1H), 4.76 – 4.65 (m, 2H), 3.63 (s, 6H), 2.03 – 2.01 (m, 1H), 1.21 (d, *J* = 6.3 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.92 (d, *J* = 88.3 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.92 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.48, 136.00, 133.48, 129.75, 128.44, 120.68, 119.51,
63.80, 36.64, 16.33.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{17}H_{22}BClN_2O_2+Na^+$ 355.1355, found 355.1375.

23, colorless oil, 94%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.17 – 7.11 (m, 2H), 6.98 – 6.92 (m, 2H), 6.60 (s, 2H), 6.31 – 6.25 (m, 1H), 5.28 (br, 1H), 4.87 (d, *J* = 18.7 Hz, 1H), 4.76 – 4.64 (m, 2H), 3.62 (s, 6H), 2.02 (s, 1H), 1.21 (d, *J* = 6.4 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.93 (d, *J* = 88.0 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -17.93 (s, 1B).

¹⁹F NMR (565 MHz, Chloroform-*d*) δ -114.51 (s) (major configuration), -115.00 (s) (minor configuration).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.56, 162.34 (d, *J* = 246.1 Hz, 1C), 133.33 (d, *J* = 3.2 Hz), 130.22 (d, *J* = 8.0 Hz), 120.67, 119.48, 115.11 (d, *J* = 21.2 Hz), 63.89, 36.63, 16.33.

HRMS(ESI) m/z (M+Na⁺) calculated for C₁₇H₂₂BFN₂O₂+Na⁺ 339.1651, found 339.1660.

24, colorless oil, 92%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.47 – 7.30 (m, 2H), 7.12 – 6.95 (m, 2H), 6.61 (s, 2H), 6.31 – 6.24 (m, 1H), 5.28 (br, 1H), 4.87 (d, *J* = 20.9 Hz, 1H), 4.76 – 4.58 (m, 2H), 3.62 (s, 6H), 2.05 – 1.99 (m, 1H), 1.21 (d, *J* = 6.4 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.92 (d, *J* = 88.6 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.92 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.47, 136.51, 131.41, 130.08, 121.59, 120.69, 119.51,
63.82, 36.64, 16.34.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{17}H_{22}BBrN_2O_2+Na^+$ 399.0850, found 399.0867.

25, colorless oil, 33%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.71 (d, *J* = 7.5 Hz, 2H), 7.14 (d, *J* = 7.5 Hz, 2H), 6.57 (s, 2H), 6.34 – 6.25 (m, 1H), 5.29 (br, 1H), 4.89 (dd, *J* = 19.1, 4.4 Hz, 1H), 4.80 (d, *J* = 12.6 Hz, 1H), 4.65 (d, *J* = 12.6 Hz, 1H), 3.63 (s, 6H), 2.08 – 2.01 (m, 1H), 1.34 (s, 12H), 1.23 (d, *J* = 6.5 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ 29.83 (s,1B), -18.02 (d, *J* = 87.6 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ 29.83 (s,1B), -18.02 (s,1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.69, 140.43, 134.81, 127.48, 120.74, 119.50, 83.99,
64.69, 36.69, 24.99, 16.43.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{23}H_{34}B_2N_2O_4+Na^+$ 447.2597, found 447.2608.

26, colorless oil, 62%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.26 – 7.23 (m, 2H), 7.08 – 7.00 (m, 2H), 6.58 (s, 2H), 6.30 – 6.24 (m, 1H), 5.34 – 5.23 (m, 1H), 4.82 – 4.87 (m, 1H), 4.66 (q, *J* = 12.1 Hz, 2H), 3.59 (s, 6H), 2.00 (s, 1H), 1.50 (s, 9H), 1.20 (d, *J* = 6.3 Hz, 3H). ¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.94 (d, *J* = 88.4 Hz, 1B).

¹¹**B** {¹**H**} **NMR (193 MHz, Chloroform-***d*) δ -17.94 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.74, 152.89, 137.96, 132.03, 129.43, 120.74, 119.33, 118.50, 80.70, 64.30, 36.58, 28.43, 16.41.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{22}H_{32}BN_3O_4+Na^+$ 436.2378, found 436.2385.

27, colorless oil, 76%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.24 – 7.14 (m, 3H), 6.83 (d, *J* = 7.1 Hz, 1H), 6.62 (s, 2H), 6.58 (s, 1H), 6.34 – 6.25 (m, 1H), 5.29 (br, 1H), 4.89 (dd, *J* = 19.4, 4.6 Hz, 1H), 4.73 (d, *J* = 12.2 Hz, 1H), 4.58 (d, *J* = 12.2 Hz, 1H), 3.64 (s, 6H), 2.08 – 1.98 (m, 1H), 1.52 (s, 9H), 1.23 (d, *J* = 6.4 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.91 (d, *J* = 87.9 Hz, 1B).

¹¹**B** {¹**H**} **NMR (193 MHz, Chloroform-***d*) δ -17.91 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.72, 152.89, 138.47, 138.20, 128.91, 119.42, 118.73, 118.13, 80.71, 64.68, 36.64, 28.45, 16.43.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{22}H_{32}BN_3O_4+Na^+$ 436.2378, found 436.2389.

28, colorless oil, 78%, d.r. = 9/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.99 (s, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.27 – 7.24 (m, 1H), 7.08 – 7.05 (m, 1H), 6.95 – 6.91 (m, 1H), 6.43 (s, 2H), 6.27 – 6.20 (m, 1H), 5.33 – 5.20 (m, 1H), 4.91 – 4..89 (m, 1H), 4.87 – 4.81 (m, 1H), 4.73 – 4.69 (m, 1H), 3.48 (s, 6H), 2.04 – 1.98 (m, 1H), 1.52 (s, 9H), 1.22 (d, *J* = 6.4 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.95 (d, *J* = 88.4 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -17.95 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 183.23, 153.38, 137.92, 131.38, 129.27, 122.78, 120.99, 120.65, 119.49, 80.25, 62.05, 36.35, 28.51, 16.41.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₂H₃₂BN₃O₄+Na⁺ 436.2378, found 436.2388.

29, yellow oil, 89%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 8.55 – 8.47 (m, 1H), 7.67 – 7.62 (m, 1H), 7.28 – 7.27 (m, 1H), 7.18 – 7.15 (m, 1H), 6.68 (s, 2H), 6.38 – 6.30 (m, 1H), 5.33 (br, 1H), 4.98 (d, *J* = 13.6 Hz, 1H), 4.97 – 4.91 (m, 1H), 4.69 (d, *J* = 13.6 Hz, 1H), 3.72 (s, 6H), 2.14 – 2.07 (m, 1H), 1.27 (d, *J* = 6.4 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.83 (d, *J* = 88.2 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.83 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.29, 157.43, 149.07, 136.58, 122.43, 121.73, 120.81, 119.62, 65.60, 36.70, 16.31.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{16}H_{22}BN_3O_2+Na^+$ 322.1697, found 322.1713.

30, yellow oil, 94%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.63 (s, 2H), 6.32 – 6.23 (m, 1H), 5.28 (br, 1H), 4.92 – 4.83 (m, 1H), 4.60 – 4.47 (m, 2H), 4.18 – 3.98 (m, 9H), 3.62 (s, 6H), 2.00 – 1.91 (m, 1H), 1.20 (d, *J* = 6.4 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.98 (d, *J* = 88.4 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.98 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.62, 120.77, 119.23, 82.62, 69.94, 69.72, 68.54, 68.33, 68.27, 60.87, 36.69, 16.46.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{21}H_{27}BFeN_2O_2+Na^+$ 429.1407, found 429.1423.

31, colorless oil, 99%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.79 (s, 2H), 6.31 – 6.24 (m, 1H), 5.33 – 5.25 (m, 1H), 4.94 – 4.86 (m, 1H), 4.57 (s, 1H), 4.28 (p, *J* = 7.4 Hz, 1H), 3.73 (s, 6H), 3.69 – 3.49 (m, 1H), 2.69 – 2.60 (m, 1H), 2.53 – 2.45 (m, 1H), 1.95 – 1.89 (m, 1H), 1.73 – 1.52 (m, 1H), 1.39 (s, 9H), 1.14 (d, *J* = 6.4 Hz, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -17.93 (d, *J* = 88.5 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.93 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.25, 154.93, 120.87, 119.56, 60.34, 39.17, 39.07, 36.76, 28.45, 16.14.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{14}H_{25}BN_2O_2+Na^+$ 287.2901, found 287.2910.

32, colorless oil, 91%, d.r. = 11/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.78 – 7.76 (m, 1H), 7.71 (d, *J* = 8.9 Hz, 1H), 7.68 (d, *J* = 1.1 Hz, 1H), 7.45 – 7.37 (m, 2H), 7.12 (d, *J* = 2.2 Hz, 1H), 6.85 – 6.81 (m, 3H), 6.45 – 6.37 (m, 1H), 5.40 (br, 1H), 5.05 – 4.98 (m, 1H), 3.83 (s, 6H), 2.32 – 2.28 (m, 1H), 1.37 (d, *J* = 6.3 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.66 (d, *J* = 88.7 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.66 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 181.20, 149.34, 133.92, 130.98, 128.91, 127.73, 127.44, 126.28, 125.17, 121.70, 121.12, 119.83, 118.05, 36.89, 16.46.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{20}H_{23}BN_2O_2+Na^+$ 357.1745, found 357.1748.

33, colorless oil, 98%, d.r. = 11/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.24 – 7.20 (m, 2H), 7.08 – 7.04 (m, 1H), 6.82 (s, 2H), 6.65 – 6.62 (m, 2H), 6.39 – 6.33 (m, 1H), 5.36 (br, 1H), 4.97 (d, *J* = 19.4 Hz, 1H), 3.81 (s, 6H), 2.24 – 2.20 (m, 1H), 1.31 (d, *J* = 6.3 Hz, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -17.73 (d, *J* = 88.7 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -17.73 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 181.06, 151.61, 129.11, 124.67, 121.60, 121.09, 119.73, 36.87, 16.44.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{16}H_{21}BN_2O_2+Na^+$ 307.1588, found 307.1599.

34, colorless oil, 80%, d.r. = 11/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.20 – 7.14 (m, 1H), 7.07 – 7.04 (m, 2H), 6.82 (s, 2H), 6.42 – 6.33 (m, 2H), 5.36 (br, 1H), 5.05 – 4.90 (m, 1H), 3.84 (s, 6H), 2.52 – 2.39 (m, 2H), 2.30 – 2.24 (m, 1H), 1.36 (d, *J* = 6.4 Hz, 3H), 1.14 (t, *J* = 7.6 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.79 (d, *J* = 88.5 Hz, 1B).

¹¹**B** {¹**H**} **NMR (193 MHz, Chloroform-***d*) δ -17.79 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 181.04, 149.69, 136.32, 129.17, 126.43, 125.12, 121.92, 121.10, 119.55, 36.87, 23.19, 16.63, 14.33.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{18}H_{25}BN_2O_2+Na^+$ 335.1901, found 335.1917.

35, colorless oil, 98%, d.r. = 10/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.93 – 6.87 (m, 2H), 6.83 (s, 2H), 6.65 – 6.53 (m, 2H), 6.38 – 6.31 (m, 1H), 5.35 (br, 1H), 4.96 (d, *J* = 19.2 Hz, 1H), 3.80 (s, 6H), 2.24 – 2.19 (m, 1H), 1.29 (d, *J* = 6.2 Hz, 3H). ¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.74 (d, *J* = 89.4 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.74 (s, 1B).

¹⁹**F NMR (565 MHz, Chloroform-***d***)** δ -118.76 (s) (major configuration), -118.98 (s) (minor configuration).

¹³C NMR (151 MHz, Chloroform-*d*) δ 181.07, 159.59 (d, J = 242.7 Hz, 1C), 147.47 (d, J = 2.8 Hz, 2C), 122.83 (d, J = 8.4 Hz, 2C), 121.10, 119.86, 115.66 (d, J = 23.1 Hz, 2C), 36.86, 16.34.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{16}H_{20}BFN_2O_2+Na^+$ 325.1494, found 325.1504.

36, colorless oil, 99%, d.r. = 12/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.83 (s, 2H), 6.76 (d, *J* = 8.9 Hz, 2H), 6.55 (d, *J* = 8.9 Hz, 2H), 6.41 – 6.33 (m, 1H), 5.36 (br, 1H), 5.03 – 4.92 (m, 1H), 3.81 (s, 6H), 3.74 (s, 3H), 2.24 – 2.19 (m, 1H), 1.31 (d, *J* = 6.3 Hz, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -17.75 (d, *J* = 88.7 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.75 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 181.42, 156.47, 145.11, 122.30, 121.07, 119.69, 114.23, 55.63, 36.86, 16.47.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{17}H_{23}BN_2O_3+Na^+$ 337.1694, found 337.1703.

37, colorless oil, 33%, d.r. = 13/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.10 – 7.04 (m, 1H), 6.88 – 6.86 (m, 1H), 6.83 (s, 2H), 6.81 – 6.78 (m, 1H), 6.50 – 6.25 (m, 2H), 5.36 (br, 1H), 4.97 (d, *J* = 19.4 Hz, 1H), 3.83 (s, 6H), 3.75 (s, 3H), 2.29 (s, 1H), 1.35 (d, *J* = 6.3 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.78 (d, *J* = 88.7 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.78 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 180.70, 151.81, 140.85, 125.81, 122.67, 120.98, 120.58, 119.52, 112.63, 56.03, 36.88, 16.69.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{17}H_{23}BN_2O_3+Na^+$ 337.1694, found 337.1711.

38, colorless oil, 80%, d.r. = 12/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.51 (d, *J* = 8.7 Hz, 2H), 6.84 (s, 2H), 6.80 (d, *J* = 8.4 Hz, 2H), 6.39 – 6.33 (m, 1H), 5.37 (br, 1H), 5.03 – 4.93 (m, 1H), 3.81 (s, 6H), 2.26 – 2.23 (m, 1H), 1.32 (d, *J* = 6.3 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.69 (d, *J* = 88.8 Hz, 1B).

¹¹**B** {¹**H**} **NMR (193 MHz, Chloroform-***d***)** δ -17.69 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 180.46, 154.32, 127.00 (q, *J* = 33.2 Hz, 1C), 126.46 (q, *J* = 4.3 Hz, 2C), 124.13 (q, *J* = 273.3 Hz, 1c), 121.91, 121.14, 120.03, 36.86, 16.22

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{17}H_{20}BF_3N_2O_2+Na^+$ 375.1462, found 375.1465.

39, colorless oil, 56%, d.r. > 20/1.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 6.82 (s, 2H), 6.35 – 6.24 (m, 1H), 5.42 – 5.25 (m, 1H), 5.16 – 5.04 (m, 1H), 3.84 (s, 6H), 2.40 – 2.19 (m, 2H), 1.53 – 1.42 (m, 2H), 1.34 – 1.18 (m, 33H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.65 (d, *J* = 99.2 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.65 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 121.16, 120.26, 36.80, 32.97, 32.03, 31.39, 29.82, 29.77, 29.60, 29.59, 29.47, 22.80, 14.24.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{28}H_{53}BN_2OS+Na^+$ 499.3864, found 499.3871.

40, colorless oil, 95%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.25 – 7.22 (m, 2H), 7.21 – 7.18 (m, 2H), 7.15 – 7.11 (m, 1H), 6.78 (s, 2H), 6.33 – 6.25 (m, 1H), 5.31 (br, 1H), 4.95 (dd, *J* = 19.6, 4.5 Hz, 1H), 3.74 (s, 6H), 3.25 (s, 3H), 2.71 – 2.65 (m, 1H), 2.53 – 2.48 (m, 1H), 2.14 – 2.07 (m, 1H), 2.02 – 1.96 (m, 1H), 1.92 – 1.86 (m, 1H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -18.51 (d, *J* = 88.4 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -18.51 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.02, 143.69, 128.72, 128.08, 125.27, 120.88, 119.75, 50.15, 37.24, 36.74, 34.10.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{18}H_{25}BN_2O_2+Na^+$ 355.1901, found 355.1912.

41, colorless oil, 98%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.78 (s, 2H), 6.34 – 6.27 (m, 1H), 5.32 (br, 1H), 5.01 – 4.92 (m, 1H), 3.77 (s, 6H), 3.76 – 3.71 (m, 1H), 3.66 – 3.59 (m, 1H), 1.93 – 1.87 (m, 1H), 1.81 – 1.72 (m, 1H), 1.61 – 1.55 (m, 1H), 1.35 – 1.27 (m, 3H), 1.23 – 1.16 (m, 1H), 0.93 (t, *J* = 7.1 Hz, 3H), 0.87 (t, *J* = 7.1 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -19.55 (d, *J* = 88.1 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -19.55 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.16, 120.85, 119.46, 58.28, 36.84, 33.46, 32.13, 23.11, 14.45, 14.33.

HRMS(ESI) m/z (M+Na⁺) calculated for C₁₅H₂₇BN₂O₂+Na⁺ 301.2058, found 301.2078.-

42, colorless oil, 91%, d.r. > 20/1.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 6.81 (s, 2H), 6.31 – 6.20 (m, 1H), 5.40 – 5.28 (m, 1H), 5.00 (dd, *J* = 19.2, 4.5 Hz, 1H), 4.02 (s, 2H), 3.77 (s, 6H), 3.21 (s, 3H), 2.73 – 2.54 (m, 2H), 2.10 – 2.01 (m, 1H), 1.87 – 1.81 (m, 1H), 1.74 (d, *J* = 13.1 Hz, 1H), 1.63 – 1.54 (m, 1H), 1.50 – 1.40 (m, 10H), 1.40 – 1.29 (m, 1H), 1.16 – 0.96 (m, 2H)...

¹¹**B NMR (128 MHz, Chloroform-***d***)** δ -18.82 (d, *J* = 89.1 Hz, 1B).

¹¹B {¹H} NMR (128 MHz, Chloroform-d) δ -18.82 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 182.24, 155.03, 120.92, 119.84, 79.03, 50.18, 38.98, 37.00, 36.74, 28.57.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{21}H_{36}BN_2O_3+Na^+$ 428.2691, found 428.2704.

43, colorless oil, 99%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.79 (s, 2H), 6.29 – 6.21 (m, 1H), 5.38 – 5.29 (m, 1H), 4.99 (dd, *J* = 19.4, 4.4 Hz, 1H), 3.93 – 3.86 (m, 2H), 3.77 – 3.75 (m, 6H), 3.35 – 3.29 (m, 2H), 3.20 (s, 3H), 2.09 – 2.02 (m, 1H), 1.87 – 1.80 (m, 1H), 1.69 – 1.64 (m, 1H), 1.54 – 1.49 (m, 1H), 1.49 – 1.39 (m, 2H), 1.30 – 1.16 (m, 2H).

¹¹**B NMR (128 MHz, Chloroform-***d***)** δ -18.65 (d, *J* = 88.7 Hz, 1B).

¹¹**B** {¹**H**} **NMR (128 MHz, Chloroform-***d*) δ -18.65 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.27, 120.93, 119.82, 68.42, 68.39, 50.15, 39.45, 36.77, 36.05, 33.93, 32.96.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{16}H_{27}BN_2O_3+Na^+$ 329.2007, found 329.2027.

44, colorless oil, 89%, d.r. > 20/1.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.71 (d, *J* = 8.9 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 2.5 Hz, 1H), 7.33 – 7.29 (m, 1H), 7.25 – 7.20 (m, 1H), 7.11 (dd, *J* = 8.9, 2.5 Hz, 1H), 6.73 (s, 2H), 6.34 – 6.23 (m, 1H), 5.36 – 5.22 (m, 1H), 5.03 – 4.93 (m, 1H), 3.98 (s, 3H), 3.73 (s, 6H), 3.27 (s, 3H), 3.16 – 3.05 (m, 1H), 2.94 – 2.84 (m, 1H), 2.33 – 2.22 (m, 1H), 2.15 – 2.07 (m, 1H), 2.05 – 1.96 (m, 1H).

¹¹**B NMR (128 MHz, Chloroform-***d***)** δ -18.85 (d, *J* = 88.6 Hz, 1B).

¹¹B {¹H} NMR (128 MHz, Chloroform-d) δ -18.85 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 182.03, 157.49, 138.59, 133.36, 129.96, 129.30, 126.45, 125.84, 123.31, 120.88, 119.76, 117.97, 103.17, 55.53, 50.20, 36.75, 34.98, 33.12.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{23}H_{29}BN_2O_3+Na^+$ 415.2163, found 415.2168.

45, colorless oil, 93%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.85 – 7.73 (m, 2H), 7.68 – 7.63 (m, 2H), 6.78 (s, 2H), 6.29 – 6.22 (m, 1H), 5.32 – 5.20 (m, 1H), 4.99 – 4.91 (m, 1H), 3.74 (s, 6H), 3.70 – 3.59 (m, 2H), 3.21 (s, 3H), 2.01 – 1.91 (m, 1H), 1.86 – 1.67 (m, 2H), 1.65 – 1.51 (m, 2H).

¹¹**B NMR (128 MHz, Chloroform-***d***)** δ -18.74 (d, *J* = 88.4 Hz, 1B).

¹¹B {¹H} NMR (128 MHz, Chloroform-*d*) δ -18.74 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 181.80, 168.52, 133.75, 132.43, 123.09, 120.92, 119.91, 50.17, 38.39, 36.76, 29.52, 29.21.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{21}H_{26}BN_3O_4+Na^+$ 418.1909, found 418.1915.

46, colorless oil, 92%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.33 – 7.31 (m, 2H), 7.21 (t, *J* = 7.7 Hz, 2H), 7.12 – 7.08 (m, 1H), 6.72 (s, 2H), 6.19 – 6.10 (m, 1H), 5.32 – 5.22 (m, 1H), 4.90 – 4.81 (m, 1H), 3.67 (s, 6H), 3.01 (s, 3H), 2.09 (dd, *J* = 14.3, 10.8 Hz, 1H), 2.02 – 1.96 (m, 1H), 1.94 (d, *J* = 14.4 Hz, 1H), 0.81 – 0.77 (m, 1H), 0.73 – 0.61 (m, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -18.68 (d, *J* = 88.0 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -18.68 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.01, 146.31, 129.93, 127.70, 125.52, 120.81, 119.86, 49.86, 42.51, 36.67, 27.75, 12.68, 12.45.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{20}H_{27}BN_2O_2+Na^+$ 361.2058, found 361.2073.

47, colorless oil, 99%, d.r. > 20/1.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.27 – 7.21 (m, 8H), 7.15 – 7.08 (m, 2H), 6.76 – 6.65 (m, 2H), 6.25 – 6.14 (m, 1H), 5.34 – 5.17 (m, 1H), 4.88 (dd, *J* = 19.3, 4.5 Hz, 1H), 3.91 (t, *J* = 7.7 Hz, 1H), 3.69 (s, 6H), 3.23 (s, 3H), 2.17 – 2.05 (m, 1H), 1.99 – 1.90 (m, 2H), 1.86 – 1.74 (m, 1H), 1.63 – 1.52 (m, 1H).
¹¹**B NMR (128 MHz, Chloroform-***d***)** δ -19.62 (d, *J* = 88.8 Hz, 1B).

¹¹B {¹H} NMR (128 MHz, Chloroform-*d*) δ -19.62 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.07, 146.13, 145.51, 128.29, 128.16, 128.00, 125.81, 125.77, 120.83, 119.50, 51.82, 50.13, 37.00, 36.69, 30.64.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₅H₃₁BN₂O₂+Na⁺ 425.2371, found 425.2379.

48, colorless oil, 94%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.78 (s, 2H), 6.33 – 6.25 (m, 1H), 5.83 – 5.76 (m, 1H), 5.38 – 5.22 (m, 1H), 4.99 – 4.92 (m, 2H), 4.92 – 4.88 (m, 1H), 3.76 (s, 6H), 3.75 – 3.70 (m, 1H), 3.65 – 3.58 (m, 1H), 2.03 – 1.99 (m, 2H), 1.92 – 1.86 (m, 1H), 1.76 – 1.71 (m, 1H), 1.59 – 1.52 (m, 1H), 1.36 – 1.19 (m, 12H), 0.92 (t, *J* = 7.1 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -18.53 (d, *J* = 88.9 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -18.53 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.10, 139.46, 120.83, 119.42, 114.10, 58.24, 36.80, 33.94, 32.41, 31.13, 30.03, 29.76, 29.65, 29.28, 29.08, 14.43.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₁H₃₇BN₂O₂+Na⁺ 383.2840, found 383.2851.

49, colorless oil, 79%, d.r. > 20/1.

¹H NMR (400 MHz, Chloroform-d) δ 6.80 (s, 2H), 6.33 – 6.20 (m, 1H), 5.36 (s, 1H), 4.99 (d,

J = 19.4 Hz, 1H), 4.44 – 4.36 (m, 1H), 4.29 – 4.22 (m, 1H), 3.77 (s, 6H), 2.47 – 2.30 (m, 1H), 2.15 – 2.07 (m, 1H), 2.05 – 1.97 (m, 1H).

¹¹**B** NMR (128 MHz, Chloroform-*d*) δ -21.54 (d, *J* = 85.7 Hz, 1B).

¹¹B {¹H} NMR (128 MHz, Chloroform-d) δ -18.53 (s, 1B).

¹³C NMR (101 MHz, Chloroform-d) δ 187.35, 121.07, 120.01, 67.75, 36.68, 29.08.

HRMS(ESI) m/z (M+Na⁺) calculated for C₁₁H₁₇BN₂O₂+Na⁺ 243.1275, found 243.1281.

50, colorless oil, 74%. Using Ni(COD)₂ (10 mol%) and (*p*-F-Ph)₃P (25 mol%).

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.81 (s, 2H), 6.54 – 6.46 (m, 1H), 5.34 (br, 1H), 4.96 (d, *J* = 19.5 Hz, 1H), 3.74 (s, 6H), 3.50 (s, 3H), 1.17 (s, 3H), 1.07 (s, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -15.66 (d, *J* = 88.3 Hz, 1B).

¹¹**B** {¹**H**} **NMR (193 MHz, Chloroform-***d*) δ -15.66 (s, 1B).

¹³C NMR (101 MHz, Chloroform-d) δ 184.57, 121.30, 120.88, 50.62, 37.47, 26.37, 25.49.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{12}H_{21}BN_2O_2+Na^+$ 259.1588, found 259.1606.

51, colorless oil, 41%, d.r. = 1/1. Using Ni(COD)₂ (10 mol%) and (*p*-F-Ph)₃P (25 mol%).

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.82 (s, 2H), 6.54 – 6.34 (m, 1H), 5.34 (br, 1H), 5.06 – 4.90 (m, 1H), 3.82 – 3.68 (m, 6H), 3.59 (d, *J* = 6.3 Hz, 3H), 3.55 (s, 1.5H), 3.49 (s, 1.5H), 3.15 (d, *J* = 16.7 Hz, 0.5H), 2.86 (d, *J* = 16.8 Hz, 0.5H), 2.37 – 2.25 (m, 1H), 1.25 (s, 1.5H), 1.08 (s,

1.5H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -16.00 (d, *J* = 89.7 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -16.00 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 182.67/182.47, 174.79/174.52, 122.14/121.73, 121.54, 51.09/50.72, 43.88/43.57, 37.41, 22.82, 21.28.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{14}H_{23}BN_2O_4+Na^+$ 317.1643, found 317.1650.

52, colorless oil, 48%, d.r. > 20/1. Using Ni(COD)₂ (10 mol%) and (*p*-F-Ph)₃P (25 mol%).

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.81 (s, 2H), 6.42 – 6.35 (m, 1H), 5.45 (br, 1H), 5.13 (d, *J* = 19.3 Hz, 1H), 4.39 – 3.33 (m, 1H), 4.21 – 4.19 (m, 1H), 3.77 (s, 6H), 2.38 – 2.33 (m, 1H), 1.93 – 1.86 (m, 1H), 1.18 (s, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -20.34 (d, *J* = 86.1 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -20.34 (s, 1B).

¹³C NMR (101 MHz, Chloroform-d) δ 189.15, 122.66, 121.53, 65.73, 37.59, 37.46, 21.99.

HRMS(ESI) m/z (M+Na⁺) calculated for C₁₂H₁₉BN₂O₂+Na⁺ 257.1432, found 257.1447.

53, colorless oil, 47%, d.r. = 13/1. Using Ni(COD)₂ (10 mol%) and (*p*-F-Ph)₃P (25 mol%).

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.76 (s, 2H), 6.40 – 6.32 (m, 1H), 5.29 (br, 1H), 4.96 (d, *J* = 19.3 Hz, 1H), 3.76 (s, 6H), 3.70 – 3.63 (m, 1H), 3.57 – 3.50 (m, 1H), 2.04 – 1.96 (m,

1H), 1.79 – 1.75 (m, 1H), 1.01 (d, *J* = 6.8 Hz, 3H), 0.99 – 0.95 (m, 6H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -19.47 (d, *J* = 89.1 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -19.47 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 181.56, 120.77, 119.30, 58.19, 37.03, 32.35, 23.04, 22.94, 14.50.

HRMS(ESI) m/z (M+Na⁺) calculated for C₁₄H₂₅BN₂O₂+Na⁺ 287.1901, found 287.1911.

54, colorless oil, 80%, d.r. = 16/1. Using Ni(COD)₂ (10 mol%) and (*p*-F-Ph)₃P (25 mol%).

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.75 (s, 2H), 6.39 – 6.31 (m, 1H), 5.31 – 5.23 (m, 1H), 4.98 – 4.90 (m, 1H), 3.75 (s, 6H), 3.70 – 3.62 (m, 1H), 3.54 – 5.47 (m, 1H), 2.05 – 1.98 (m, 1H), 1.83 – 1.75 (m, 2H), 1.71 – 1.58 (m, 4H), 1.33 – 0.98 (m, 5H), 0.95 (t, *J* = 7.1 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -19.71 (d, *J* = 88.6 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -19.71 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 181.54, 120.75, 119.17, 58.18, 42.51, 37.04, 33.77, 33.32, 27.40, 27.22, 27.10, 14.51.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{17}H_{29}BN_2O_2+Na^+$ 327.2214, found 327.2223.

55, colorless oil, 84%, d.r. = 18/1. Using Ni(COD)₂ (10 mol%) and (*p*-F-Ph)₃P (25 mol%).

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.75 (s, 2H), 6.34 – 6.27 (m, 1H), 5.27 (br, 1H), 5.03 – 4.91 (m, 1H), 3.96 – 3.91 (m, 1H), 3.90 – 3.86 (m, 1H), 3.74 (s, 6H), 3.68 – 3.62 (m, 1H), 3.50 – 3.44 (m, 1H), 3.39 – 3.33 (m, 2H), 1.96 – 1.86 (m, 2H), 1.84 – 1.79 (m, 1H), 1.66 – 1.61 (m, 1H), 1.44 – 1.36 (m, 1H), 1.36 – 1.27 (m, 1H), 0.93 (t, *J* = 7.1 Hz, 3H)..

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -19.69 (d, *J* = 88.3 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -19.69 (s, 1B).

¹³C NMR (101 MHz, Chloroform-d) δ 180.88, 120.84, 119.69, 69.10, 68.86, 58.37, 39.87, 37.03, 33.78, 33.37, 14.46.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{16}H_{27}BN_2O_3+Na^+$ 329.2007, found 329.2063.

56, colorless oil, 96%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.80 (s, 1H), 6.78 (s, 1H), 6.36 – 6.28 (m, 1H), 5.29 (br, 1H), 4.90 – 4.82 (m, 1H), 4.65 – 4.57 (m, 1H), 3.78 (s, 6H), 2.22 – 2.17 (m, 0.5H), 2.16 – 2.09 (m, 0.5H), 2.04 – 1.96 (m, 1H), 1.90 – 1.85 (m, 0.5H), 1.73 (s, 1H), 1.76 – 1.70 (m, 0.5H), 1.70 – 1.59 (m, 1H), 1.59 – 1.49 (m, 1H), 1.20 (d, *J* = 5.9 Hz, 3H), 1.18 – 1.13 (m, 1H), 0.96 – 0.89 (m, 1H), 0.83 – 0.79 (m, 6H), 0.73 (s, 1.5H), 0.73 – 0.70 (m, 1H), 0.63 (s, 1.5H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.96 (d, *J* = 87.7 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.96 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 183.42/ 183.28, 120.95--, 119.28/119.17, 77.74/77.25, 48.67/48.62, 47.72/47.69, 45.03/44.91, 37.23/36.87, 36.84/36.81, 28.25/28.21, 27.23/27.21, 19.83, 18.94/18.92, 16.70/16.51, 13.56/13.50.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₀H₃₃BN₂O₂+Na⁺ 367.2527, found 367.2541.

57, colorless oil, 89%, d.r. = 10/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.81 (s, 2H), 6.38 – 6.26(m, 1H), 5.29 (br, 1H), 4.89 – 4.81 (m, 1H), 4.49 – 4.33 (m, 1H), 3.81/3.79 (s, 6H), 2.05 – 1.99 (m, 1H), 1.68 – 1.57 (m, 3H), 1.51 – 1.25 (m, 2H), 1.23 – 1.18 (m, 3H), 1.08 – 0.75 (m, 10H), 0.73 – 0.64 (m, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -17.96 (d, *J* = 87.8 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.96 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.56/182.46, 120.88/120.81, 119.00/118.96, 71.82/71.28, 47.49/47.15, 41.35/41.07, 36.88/36.79, 34.51/34.47, 31.35/31.09, 26.40/25.67/, 23.71/23.18, 22.31/22.25, 21.25/20.98, 16.71/16.52, 16.03.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₁H₃₉BN₂O₃+Na⁺ 369.2684, found 369.2699.

58, white solid, 94%, d.r. = 13/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.83/6.81 (s, 2H), 6.37 – 6.24 (m, 1H), 5.80 (d, J = 3.6 Hz)/5.60 (d, J = 3.6 Hz) (1H), 5.34 – 5.22 (m, 1H), 5.00 – 4.93 (m, 1H), 4.91 – 4.83 (m, 1H), 4.26 – 3.93 (m, 5H), 3.78 – 3.75 (m, 6H), 2.05 – 1.97 (m, 1H), 1.46 (d, J = 9.5 Hz, 3H), 1.37 (d, J = 3.1 Hz, 3H), 1.31 (d, J = 2.4 Hz, 3H), 1.24 (s, 2H), 1.22 (s, 1H), 1.15 (dd, J = 11.6, 6.5 Hz, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -17.93 (d, J = 88.4 Hz, 1B)

¹¹**B** {¹**H**} **NMR (193 MHz, Chloroform-***d*) δ -17.93 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 181.45/181.26, 121.09/120.98, 119.88/119.74, 111.98/111.94, 109.07/109.03, 105.07/104.99, 83.74/83.57, 80.08/79.97, 74.87/74.52, 72.76/72.50, 67.15/66.90, 36.90/36.84, 26.90/26.85, 26.77, 26.31/26.25, 25.46/25.44, 16.39/15.94.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₂H₃₅BN₂O₇+Na⁺ 473.2430, found 473.2440.

59, colorless oil, 94%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** 6.83 (d, *J* = 22.4 Hz, 2H), 6.34 – 6.24 (m, 1H), 5.31 (br, 1H), 5.22 – 4.78 (m, 2H), 4.35 – 4.24 (m, 1H), 4.13 – 4.01 (m, 1H), 3.96 – 3.84 (m, 1H), 3.74 (s, 6H), 3.72 (s, 3H), 2.02 – 1.93 (m, 1H), 1.45 (d, *J* = 8.5 Hz, 9H), 1.15 (d, *J* = 6.4 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.93 (d, *J* = 88.7 Hz, 1B)

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.93 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.42, 170.81/170.73, 155.34/155.23, 121.13/121.07, 119.77, 80.25/80.22, 63.34/62.78, 53.49/53.16, 52.67/52.60, 36.77, 28.50/28.46, 16.21/16.11.
HRMS(ESI) m/z (M+Na⁺) calculated for C₁₉H₃₂BN₃O₆+Na⁺ 432.2276, found 432.2288.

60, white solid, 94%, d.r. = 13/1.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.13 (d, *J* = 8.5 Hz, 1H), 6.85 (s, 2H), 6.57 – 6.22 (m, 3H), 5.43 – 5.31 (m, 1H), 5.03 – 4.92 (m, 1H), 3.82 (s, 6H), 2.89 – 2.77 (m, 2H), 2.49 (dd, *J* = 18.9, 8.7 Hz, 1H), 2.38 – 2.31 (m, 1H), 2.26 – 1.89 (m, 7H), 1.65 – 1.37 (m, 6H), 1.31 (d, *J* = 6.4 Hz, 3H), 0.88 (s, 3H).

¹¹**B NMR (128 MHz, Chloroform-***d***)** δ -18.44 (d, *J* = 88.6 Hz)

¹¹B {¹H} NMR (128 MHz, Chloroform-*d*) δ -18.44 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 181.39, 149.41/149.39, 137.51, 136.17, 126.07, 121.87,
121.07, 119.67, 118.79/118.76, 50.48, 48.03, 44.17, 38.13, 36.88, 35.95, 31.67/31.63,
29.49/29.47, 26.46/25.82, 22.74, 21.66, 16.49, 14.22, 13.91.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₈H₃₇BN₂O₃+Na⁺ 483.2789, found 483.2800.

61, colorless oil, 94%, d.r. = 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.35 (d, *J* = 8.1 Hz, 2H), 7.23 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.14 (td, *J* = 7.7, 1.6 Hz, 1H), 7.00 (t, *J* = 8.0 Hz, 1H), 6.97 (td, *J* = 7.4, 1.2 Hz, 1H), 6.88 (s, 1H), 6.70 (s, 2H), 6.56 (d, *J* = 7.9 Hz, 1H), 6.32 – 6.25 (m, 1H), 5.31 (br, 1H), 4.91 (dd, *J* = 19.5, 4.5 Hz, 1H), 4.03 – 3.91 (m, 3H), 3.84 – 3.78 (m, 3H), 3.68 (s, 6H), 1.99 – 1.94 (m, 1H), 1.19 (d, *J* = 6.4 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.91 (d, *J* = 88.6 Hz).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.91 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.47, 172.29, 142.89, 137.81, 131.02, 129.68, 129.04, 128.28, 124.35, 124.16, 122.17, 120.89, 119.63, 118.40, 63.67, 60.07, 38.64, 36.68, 16.25.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₆H₃₀BCl₂N₃O₄+Na⁺ 552.1598, found 552.1603.

62, colorless oil, 94%, d.r. = 18/1.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.13 (d, *J* = 8.2 Hz, 2H), 7.87 (d, *J* = 8.3 Hz, 2H), 6.75 (s, 2H), 6.34 – 6.24 (m, 1H), 5.35 – 5.23 (m, 1H), 4.96 – 4.84 (m, 1H), 4.28 – 4.16 (m, 2H), 4.16 – 4.07 (m, 1H), 3.98 – 3.88 (m, 1H), 3.72 (s, 6H), 3.14 – 3.06 (m, 4H), 2.05 – 1.96 (m, 1H), 1.59 – 1.47 (m, 4H), 1.17 (d, *J* = 6.4 Hz, 3H), 0.85 (t, *J* = 7.4 Hz, 6H).

¹¹**B** NMR (128 MHz, Chloroform-*d*) δ -17.91 (d, J = 88.0 Hz).

¹¹B {¹H} NMR (128 MHz, Chloroform-d) δ -17.91 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 182.47, 165.10, 144.56, 133.28, 130.36, 127.13, 120.93, 119.73, 63.85, 60.14, 49.99, 36.74, 21.99, 16.21, 11.23.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₅H₃₈BN₃O₆S+Na⁺ 542.2467, found 542.2479.

63, colorless oil, 87%, d.r. = 19/1.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.15 (d, *J* = 2.3 Hz, 1H), 8.05 (dd, *J* = 8.8, 2.4 Hz, 1H),

6.99 (d, *J* = 8.9 Hz, 1H), 6.78 (s, 2H), 6.32 – 6.24 (m, 1H), 5.36 – 5.22 (m, 1H), 4.90 (dd, *J* = 19.6, 4.5 Hz, 1H), 4.21 – 4.15 (m, 1H), 4.13 – 4.02 (m, 2H), 3.92 – 3.85 (m, 3H), 3.74 (s, 6H), 2.72 (s, 3H), 2.20 – 2.15 (m, 1H), 2.03 – 1.97 (m, 1H), 1.17 (d, *J* = 6.3 Hz, 3H), 1.06 (d, *J* = 6.9 Hz, 6H).

¹¹**B** NMR (128 MHz, Chloroform-*d*) δ -17.89 (d, *J* = 88.4 Hz).

¹¹B {¹H} NMR (128 MHz, Chloroform-*d*) δ -17.89 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 182.45, 167.66, 162.68, 161.84, 161.65, 132.72, 132.18, 125.96, 121.43, 120.95, 119.73, 115.46, 112.78, 103.09, 75.81, 63.51, 60.14, 36.78, 28.23, 19.13, 17.64, 16.23.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₈H₃₅BN₄O₅S+Na⁺ 573.2313, found 573.2324.

64, colorless oil, 94%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.81 (d, *J* = 5.2 Hz, 2H), 6.35 – 6.26 (m, 1H), 5.35 – 5.19 (m, 2H), 4.88 (dd, *J* = 19.3, 4.5 Hz, 1H), 4.26 – 4.17 (m, 1H), 3.77 (d, *J* = 2.6 Hz, 6H), 2.18 – 1.65 (m, 8H), 1.57 – 1.21 (m, 11H), 1.18 (d, *J* = 6.4 Hz, 3H), 1.15 – 0.94 (m, 9H), 0.92 – 0.88 (m, 6H), 0.85 (dd, *J* = 6.7, 2.7 Hz, 6H), 0.65 (s, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -17.89 (d, *J* = 88.5 Hz).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -17.89 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.79, 140.78/140.63, 122.63/122.55, 121.28/121.26, 119.67, 71.93/71.89, 57.23/57.21, 56.68, 50.56, 42.85, 40.30/40.26, 40.07, 39.01, 38.63, 37.58/37.56, 37.28, 37.14/37.10, 36.73, 36.34, 32.41, 28.77, 28.56, 28.59/28.13, 24.83, 24.38, 23.37, 23.11, 21.56/21.54, 19.86, 19.26, 16.86/16.85, 12.40.

HRMS(ESI) m/z (M+Na⁺) calculated for C₃₇H₆₁BN₂O₂+Na⁺ 599.4718, found 599.4727.

65, colorless oil, 55%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** 7.82 (dd, J = 7.7, 1.4 Hz, 1H), 7.79 – 7.77 (m, 1H), 7.54 (d, J = 1.5 Hz, 1H), 7.52 (dd, J = 7.6, 1.4 Hz, 1H), 7.45 (s, 1H), 7.44 – 7.40 (m, 1H), 7.39 – 7.36 (m, 1H), 7.31 – 7.27 (m, 3H), 7.20 (d, J = 8.2 Hz, 2H), 7.07 (d, J = 8.2 Hz, 2H), 6.61 (s, 2H), 6.31 – 6.23 (m, 1H), 5.51 – 5.44 (m, 2H), 5.32 – 5.25 (m, 1H), 4.89 (dd, J = 19.4, 4.5 Hz, 1H), 3.94 – 3.85 (m, 2H), 3.82 (s, 3H), 3.66 – 3.59 (m, 7H), 3.54 – 3.47 (m, 1H), 2.96 – 2.93 (m, 2H), 2.77 (s, 3H), 1.97 – 1.92 (m, 1H), 1.91 – 1.85 (m, 2H), 1.18 (d, J = 6.4 Hz, 3H), 1.06 (t, J = 7.3 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -17.99 (d, *J* = 88.4 Hz).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -17.99 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.28, 167.78, 156.61, 154.76, 143.20, 142.80, 142.00, 141.00, 136.65, 135.06, 131.63, 130.83, 130.35, 129.99, 129.49, 129.01, 127.44, 125.87, 123.95, 123.83, 122.54, 122.32, 120.74, 119.54, 119.43, 109.66, 109.00, 69.53, 62.73, 60.18, 53.90, 47.04, 36.52, 31.87, 29.81, 29.30, 21.89, 16.89, 16.20, 14.10.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{45}H_{49}BN_6O_4+Na^+$ 771.3800, found 771.3810.

66, yellow oil, 82%, d.r. > 20/1.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.65 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 6.95 (d, *J* = 2.5 Hz, 1H), 6.87 (d, *J* = 9.0 Hz, 1H), 6.74 (s, 2H), 6.67 (dd, *J* = 9.0, 2.6 Hz, 1H), 6.34 – 6.22 (m, 1H), 5.39 – 5.25 (m, 1H), 4.96 – 4.86 (mz, 1H), 4.01 – 3.90 (m, 3H), 3.83 (s, 3H), 3.79 – 3.71 (m, 1H), 3.67 (s, 6H), 3.65 (s, 2H), 2.37 (s, 3H), 1.97 – 1.87 (m, 1H), 1.15 (d, *J* = 6.4 Hz, 3H).

¹¹**B** NMR (128 MHz, Chloroform-*d*) δ -17.98 (d, *J* = 87.9 Hz).

¹¹B {¹H} NMR (128 MHz, Chloroform-*d*) δ -17.98 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 182.41, 170.72, 168.39, 156.17, 139.43, 136.13, 133.91,
131.27, 130.89, 130.67, 129.26, 120.89, 119.68, 115.03, 112.40, 111.63, 101.54, 63.11, 60.21,
55.83, 36.63, 30.32, 16.21, 13.45.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{31}H_{35}BCIN_3O_6+Na^+$ 614.2200, found 614.2209.

67, colorless oil, 20%, d.r. = 12/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.07 (d, *J* = 8.5 Hz, 2H), 6.95 (d, *J* = 8.6 Hz, 2H), 6.78 (s, 2H), 6.29 – 6.20 (m, 1H), 5.34 (d, *J* = 12.7 Hz, 1H), 5.04 (dd, *J* = 19.2, 4.5 Hz, 1H), 3.77 (s, 6H), 3.16 (d, *J* = 1.0 Hz, 3H), 2.85 – 2.80 (m, 1H), 2.35 – 2.29 (m, 1H), 2.26 – 2.21 (m, 1H), 2.03 – 1.96 (m, 1H), 1.93 – 1.88 (m, 1H), 1.79 – 1.75 (m, 1H), 1.24 (d, *J* = 3.4 Hz, 6H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -18.44 (d, *J* = 91.4 Hz).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -18.44 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 182.62, 155.93, 129.25, 128.40, 123.31, 123.29, 120.95, 120.32, 82.16, 61.18, 50.21, 44.59, 44.55, 36.85, 35.18, 26.76, 25.96.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{23}H_{31}BCl_2N_2O_3$ +Na⁺ 487.1697, found 487.1708.

68, yellow oil, 87%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.07 (d, *J* = 8.5 Hz, 2H), 6.95 (d, *J* = 8.6 Hz, 2H), 6.78 (s, 2H), 6.29 – 6.20 (m, 1H), 7.65 – 7.60 (m, 2H), 7.46 – 7.43 (m, 2H), 7.04 (d, *J* = 2.6 Hz, 1H), 6.97 (d, *J* = 8.9 Hz, 1H), 6.78 (s, 6H), 6.64 (dd, *J* = 8.9, 2.6 Hz, 1H), 6.30 – 6.21 (m, 1H), 5.33 – 5.25 (m, 1H), 4.94 (dd, *J* = 19.0, 4.4 Hz, 1H), 3.85 (s, 3H), 3.79 – 3.72 (m, 7H), 3.67 – 3.60 (m, 1H), 2.72 – 2.65 (m, 1H), 2.61 – 2.55 (m, 1H), 2.27 (s, 3H), 2.15 – 2.06 (m, 1H), 2.06 – 2.00 (m, 1H), 1.94 – 1.86 (m, 1H), 0.94 (t, *J* = 7.1 Hz, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -18.59 (d, *J* = 88.9 Hz).

¹¹**B** {¹**H**} **NMR (193 MHz, Chloroform-***d*) δ -18.59 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 181.62, 168.45, 155.99, 138.73, 134.79, 133.57, 131.91, 131.19, 131.14, 129.05, 121.35, 120.89, 119.62, 114.91, 111.14, 101.98, 58.42, 55.84, 36.78, 32.04, 25.16, 14.42, 13.49.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{30}H_{35}BClN_3O_4+Na^+$ 570.2301, found 570.2311.

69, colorless oil, 74%, d.r. = 5/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.79 (d, *J* = 4.1 Hz, 2H), 6.29 – 6.20 (m, 1H), 5.41 – 5.30 (m, 1H), 5.10 – 4.87 (m, 1H), 4.64 – 4.55 (m, 1H), 3.75 (d, *J* = 10.4 Hz, 6H), 2.23 – 2.18 (m, 1H), 2.07 (t, *J* = 8.8 Hz, 1H), 1.93 (q, *J* = 10.0 Hz, 1H), 1.87 – 1.23 (m, 15H), 0.87 (t, *J* = 7.0 Hz, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -18.90 (d, J = 85.0 Hz, minor configuration), -20.54 (d, J = 85.9 Hz, major configuration).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -18.90 (s, minor configuration), -20.54 (s, major

configuration).

¹³C NMR (151 MHz, Chloroform-d) δ 186.76, 121.03/120.88, 119.95/119.49, 80.36/79.72, 36.99/36.65, 36.60/36.20, 35.69/34.97, 31.95, 29.65, 29.60, 29.29, 25.78/25.64, 22.73, 14.17.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{19}H_{33}BN_2O_2+Na^+$ 355.2527, found 355.2537.

4.3 X-ray crystal structures of 4 (CCDC 2381592) and 21 (CCDC 2381593)

Table S2. Crystal data and s	structure refinement for 4	
Identification code	ghuaf1CuLT_auto	
Empirical formula	$C_{14}H_{25}BN_2O_2$	
Formula weight	264.17	
Temperature/K	100.01(10)	
Crystal system	monoclinic	
Space group	P21/n	
a/Å	9.70607(10)	
b/Å	14.11052(14)	
c/Å	11.39150(12)	
$\alpha/^{\circ}$	90	
β/°	93.1395(9)	
$\gamma/^{\circ}$	90	
Volume/Å ³	1557.81(3)	
Z	4	
$\rho_{calc}g/cm^3$	1.126	
μ/mm^{-1}	0.583	
F(000)	576.0	
Crystal size/mm ³	0.25 imes 0.22 imes 0.2	
Radiation	Cu Ka ($\lambda = 1.54184$)	
2Θ range for data collection/° 9.988 to 148.966		
Index ranges	$\textbf{-12} \leq h \leq 11, \textbf{-12} \leq k \leq 17, \textbf{-14} \leq \textbf{l} \leq \textbf{13}$	
Reflections collected	9190	
Independent reflections	$3124 [R_{int} = 0.0151, R_{sigma} = 0.0147]$	

Fable S2. Crystal data and s	structure refinement for 4
------------------------------	----------------------------

Table S3. Crystal data and structure refinement for 21

Identification code	ghuaf2CuLT
Empirical formula	$C_{20}H_{29}BN_2O_3$
Formula weight	356.26
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	10.3051(3)
b/Å	13.6933(5)
c/Å	13.8874(3)
$\alpha/^{\circ}$	90
β/°	103.092(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1908.73(10)
Z	4
$\rho_{calc}g/cm^3$	1.240
μ/mm^{-1}	0.653
F(000)	768.0
Crystal size/mm ³	0.3 imes 0.25 imes 0.08
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/c	8.81 to 148.948
Index ranges	$\textbf{-8} \leq h \leq 12, \textbf{-16} \leq k \leq 15, \textbf{-17} \leq \textbf{l} \leq \textbf{14}$
Reflections collected	6720
Independent reflections	$3743 [R_{int} = 0.0291, R_{sigma} = 0.0343]$
Data/restraints/parameters	3743/490/338
Goodness-of-fit on F ²	1.074
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0599, wR_2 = 0.1487$

Final R indexes [all data] $R_1 = 0.0739$, wR₂ = 0.1605 Largest diff. peak/hole / e Å⁻³ 0.51/-0.41

4.4 Reaction with I'Pr coordinated boranes

S74, colorless oil, 26%, d.r. > 20/1.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 6.98 (s, 2H), 6.43 – 6.31 (m, 1H), 5.32 (s, 1H), 5.12 (p, *J* = 6.8 Hz, 2H), 4.94 (d, *J* = 18.2 Hz, 1H), 3.87 – 3.60 (m, 2H), 1.97 – 1.87 (m, 1H), 1.41 (dd, *J* = 21.1, 6.7 Hz, 12H), 1.22 (d, J = 6.4 Hz, 3H), 0.91 (t, *J* = 7.1 Hz, 3H).

¹¹**B NMR (128 MHz, Chloroform-***d***)** δ -18.54 (d, *J* = 88.9 Hz).

¹¹B {¹H} NMR (128 MHz, Chloroform-d) δ -18.18 (s, 1B).

¹³C NMR (101 MHz, Chloroform-*d*) δ 182.82, 119.48, 115.67, 58.14, 49.39, 23.49, 22.81, 16.07, 14.24.

HRMS(ESI) m/z (M+Na⁺) calculated for C₁₆H₂₉BN₂O₂+Na⁺ 315.2214, found 315.2206.

S75, colorless oil, 72%, d.r. > 20/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.93 (s, 2H), 6.34 – 6.27 (m, 1H), 5.32 – 5.24 (m, 1H), 5.13 – 5.05 (m, 2H), 4.94 (dd, J = 19.2, 4.6 Hz, 1H), 3.68 (ddq, *J* = 67.7, 10.9, 7.2 Hz, 2H), 1.85 – 1.76 (m, 1H), 1.76 – 1.70 (m, 1H), 1.63 – 1.53 (m, 1H), 1.39 (d, *J* = 6.8 Hz, 6H), 1.34 (d, *J* = 6.7 Hz, 6H), 1.32 – 1.24 (m, 3H), 1.21 – 1.14 (m, 1H), 0.89 – 0.84 (m, 6H).

¹¹**B NMR (128 MHz, Chloroform-***d***)** δ -18.43 (d, *J* = 88.1 Hz).

¹¹B {¹H} NMR (128 MHz, Chloroform-d) δ -18.43 (s, 1B)

¹³C NMR (151 MHz, Chloroform-*d*) δ182.00, 119.59, 115.78, 58.08, 49.48, 33.39, 31.80, 23.60, 23.22, 23.14, 22.89, 14.38, 14.31.

HRMS(ESI) m/z (M+Na⁺) calculated for C₁₉H₃₅BN₂O₂+Na⁺ 357.2684, found 357.2672.

4.5 Unsuccessful substrates

5. Downstream Transformations

5.1 Gram scale reaction of 3

Under the dry N₂ atmosphere, NiCl₂ (26 mg, 0.2 mmol, 5 mol%) and (*p*-F-Ph)₃P (158 mg, 0.5 mmol, 12.5 mol%) were mixed in a 100 mL round-bottom flask. PhMe (40 mL) was then added. After stirring for 1 hour, benzyl acrylate (650 mg, 4 mmol, 1 eq.) and borane **1** (650 mg, 4.8 mmol, 1.2 eq.) were sequentially added. The resulting mixture was stirred at room temperature for 18 hours, and monitored by ¹¹B NMR. After completion, the reaction was quenched by air, and the solvent was evacuated under reduced pressure. The residue was purified by column chromatography (neutral Al₂O₃) to give **3** (1.16 g, 97% yield, > 20/1 dr).

Fig. S2. Gram scale synthesis, from left to right: after reaction set-up, after reaction completion, quenched under air, and isolated 3 (1.16 g, 97% yield, > 20/1 dr)

5.2 Fe-mediated C=C modifications

5.2.1 Reaction with acrylamides

Under the dry N₂ atmosphere, **3** (0.1 mmol, 1.0 eq.) was dissolved in anhydrous EtOH (2 mL, 0.05 M), followed by the sequential addition of Na₂HPO₄ (0.1 mmol, 1.0 eq.), Fe(acac)₃ (0.1 mmol, 1.0 eq.), acrylamides (0.3 mmol, 3.0 eq.), and PhSiH₃ (0.3 mmol, 3.0 eq.). Bubbles were

observed after adding silanes. The tube was then tightly sealed and heated at 80 °C with stirring overnight. After the reaction, the solvents were evacuated under reduced pressure, and the residue was subjected to column chromatography (triethylamine-activated SiO₂) to give the products.

72, colorless oil, 94%, d.r. = 2/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.35 – 7.20 (m, 5H), 6.70 – 6.61 (m, 2H), 4.88 – 4.76 (m, 2H), 3.71 – 3.56 (m, 6H), 2.97 (s, 3H), 2.90 (s, 1H), 2.87 (s, 2H), 2.55 – 2.31 (m, 1H), 2.25 – 2.07 (m, 2H), 1.33 – 1.15 (m, 2H), 1.12 (d, *J* = 6.7 Hz, 3H), 1.07 – 0.97 (m, 1H), 0.95 (d, *J* = 6.7 Hz, 2H), 0.60 (d, *J* = 7.0 Hz, 1H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -15.59 (d, *J* = 93.6 Hz), -16.08 (d, *J* = 94.2 Hz).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -15.59 (s, minor configuration), -16.08 (s, major configuration).

¹³C NMR (151 MHz, Chloroform-*d*) δ 183.31/183.28, 175.39/175.14, 137.44, 128.42/128.25, 128.32, 127.69/127.67, 120.97, 64.66, 37.60 /37.51, 35.34, 33.83, 33.20, 32.80, 20.08/19.32, 17.82/17.25.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₂H₃₄BN₃O₃+Na⁺ 422.2585, found 448.2601.

73, colorless oil, 86%, d.r. = 2/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.30 – 7.26 (m, 2H), 7.24 – 7.16 (m, 3H), 6.66 – 6.57 (m, 2H), 4.83 – 4.74 (m, 2H), 3.62 (s, 7H), 3.43 – 3.34 (m, 5H), 2.43 – 2.27 (m, 1H), 2.19 –

2.07 (m, 2H), 1.90 – 1.85 (m, 2H), 1.80 – 1.75 (m, 2H), 1.33 – 1.24 (m, 1H), 1.10 (d, *J* = 6.7 Hz, 3H), 0.92 (d, *J* = 6.7 Hz, 2H), 0.58 (d, *J* = 7.0 Hz, 1H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ -14.59 (*J* = 97.6 Hz,), -15.09 (*J* = 97.4 Hz,).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -14.59 (s, major configuration), -15.09 (s, configuration),

¹³C NMR (151 MHz, Chloroform-d) δ 183.36/183.32, 174.02/173.71, 137.50, 128.44/128.26,
128.35, 127.70/127.68, 120.99, 64.68, 46.76, 45.58, 35.27/34.17, 33.62/32.96, 29.81,
26.31/26.26, 24.58/24.55, 20.17/19.39, 17.88/17.28.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₄H₃₆BN₃O₃+Na⁺ 448.2747, found 448.2755.

74, colorless oil, 86%, d.r. =2/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.32 – 7.23 (m, 5H), 6.70 – 6.60 (m, 2H), 4.87 – 4.75 (m, 2H), 3.71 – 3.53 (m, 14H), 3.45 –3.38 (m, 2H), 2.52 – 2.36 (m, 1H), 2.26 – 2.07 (m, 2H), 1.32 – 1.27 (m, 1H), 1.11 (dd, *J* = 9.2, 6.6 Hz, 3H), 0.94 (d, *J* = 6.6 Hz, 2H), 0.57 (d, *J* = 7.0 Hz, 1H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -14.70 (d, J = 88.8 Hz). -15.16 (d, J = 92.0 Hz).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -14.70 (s, major configuration), -15.16 (s, configuration),

¹³C NMR (151 MHz, Chloroform-d) δ 183.36/183.32, 174.02/173.71, 137.50, 128.44/128.26, 128.35, 127.70/127.68, 120.99, 64.68, 46.76, 45.58, 35.27/34.17, 33.62/32.96, 29.81, 26.31/26.26, 24.58/24.55, 20.17/19.39, 17.88/17.28.

HRMS(ESI) m/z (M+Na⁺) calculated for C₂₄H₃₆BN₃O₄+Na⁺ 464.2691, found 464.2701.

5.2.2 Reaction with diazo compounds

Under a dry N₂ atmosphere, Fe(acac)₃ (1 mmol, 1.0 eq.) was dissolved in EtOH (0.1 M) in an oven-dried 10 mL tube. Then, **3** (1.5 mmol, 1.5 eq.), diazo compound (1 mmol, 1.0 eq.), and PhSiH₃ (3.0 mmol, 3.0 eq.) were added sequentially. The tube was sealed tightly, and the mixture was stirred at 60 °C overnight. After the reaction, the solvents were evacuated under reduced pressure, and the residue was subjected column chromatography (triethylamine activated SiO₂) to give the products.

70, colorless oil, 35%, d.r. = 3/2.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.32 – 7.26 (m, 3H), 7.26 – 7.21 (m, 2H), 6.64 – 6.51 (m, 2H), 4.91 – 4.76 (m, 2H), 4.26 – 4.12 (m, 4H), 3.64 – 3.53 (m, 7H), 2.13 – 2.05 (m, 1H), 1.36 – 1.32 (m, 3H), 1.28 (q, *J* = 7.3 Hz, 6H), 1.16 (d, *J* = 6.6 Hz, 3H);

7.32 - 7.26 (m, 3H), 7.25 - 7.14 (m, 2H), 6.63 (s, 2H), 4.83 - 4.70 (m, 2H), 4.29 - 4.24 (m, 4H), 3.60 (s, 6H), 3.47 (q, J = 6.9 Hz, 1H), 2.08 (t, J = 6.5 Hz, 1H), 1.33 (dt, J = 19.9, 7.1 Hz, 6H), 1.08 (d, J = 6.6 Hz, 3H), 0.87 (d, J = 7.0 Hz, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ –15.95 (d, *J* = 90.7 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -15.95 (s, 1B)

¹³C NMR (151 MHz, Chloroform-d) δ 182.29, 164.96, 164.52, 137.10, 128.42, 128.37, 127.84, 121.17, 112.25, 64.96, 59.89, 59.82, 20.65, 17.42, 14.59, 14.32;

δ 182.11, 164.96, 137.27, 128.61, 128.41, 127.87, 121.18, 113.77, 64.89, 60.16, 60.04, 36.87, 29.84, 21.72, 17.10, 14.64, 14.45.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{24}H_{35}BN_4O_6+Na^+$ 509.2452, found 509.2551.

71, colorless oil, 36 %, d.r. =1/1.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.56 – 7.53 (m, 1H), 7.38 – 7.26 (m, 5H), 7.26 – 7.14 (m, 3H), 6.92 – 6.88 (m, 1H), 6.66 – 6.59 (m, 2H), 4.95 – 4.65 (m, 2H), 4.27 – 4.11 (m, 2H), 3.67 – 3.61 (m, 6H), 3.45 – 3.38 (m, 1H), 2.19 – 2.11 (m, 0.5H), 2.02 – 1.96 (m, 0.5H), 1.31 (t, *J* = 7.1 Hz, 1.5H), 1.25 (t, *J* = 7.1 Hz, 1.5H). 1.20 (dd, *J* = 9.7, 6.7 Hz, 3H), 1.09 (d, *J* = 6.7 Hz, 1.5H), 0.89 (d, *J* = 6.9 Hz, 1.5H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ -15.98 (d, J = 100.8). -16.52 (d, J = 100.8).

¹¹B {¹H} NMR (193 MHz, Chloroform-*d*) δ -15.98, -16.52.

¹³C NMR (151 MHz, Chloroform-d) δ 182.52, 165.17/164.08, 138.83, 137.34/137.16, 131.76, 129.48/128.99, 128.47/128.45, 128.40/128.37, 128.27/127.70, 127.88/127.78, 125.70, 121.08, 64.97/64.83, 60.24/59.61, 37.03, 22.44/22.41, 17.70/17.26, 14.70/14.55.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{27}H_{35}BN_4O_4+Na^+$ 513.2643, found 513.2650.

5.3 Ester reduction

5.3.1 Reduction of 3

To a solution of **3** (29.8 mg, 0.1 mmol, 1.0 eq.) in anhydrous THF (1 mL), DIBAL-H (0.3 mmol, 1.5 M in toluene, 3.0 eq.) was added dropwise at -78°C. After stirring at this temperature for 30 min, the mixture was warmed to room temperature and stirred for another 2.5 hours. After completion, water was added to quench the reaction. The aqueous phase was extracted by ethyl acetate three times. The organic phase was combined and dried with anhydrous Na₂SO₄. After being evacuated under reduced pressure, the residue was subjected to column chromatography (triethylamine-activated SiO₂) to give **75** as a colorless oil. (87%, > 20/1 d.r.) Fresh DIBAL-H is essential to repeat this reaction.

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.80 (s, 2H), 6.46 – 6.38 (m, 1H), 5.30 (s, 1H), 4.88 (d, *J* = 19.4 Hz, 1H), 3.76 (s, 6H), 3.32 – 3.24 (m, 2H), 1.64 (s, 1H), 0.99 (s, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ –19.76 (d, *J* = 81.9 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -19.76 (s, 1B)

¹³C NMR (151 MHz, Chloroform-d) δ 120.87, 119.36, 71.20, 36.74, 17.16.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{10}H_{19}BN_2O+Na^+$ 217.1483, found 217.1495.

5.3.2 Reduction of 50

To a suspension of LiAlH₄ (6 mg, 0.15 mmol, 1.5 eq.) in anhydrous THF (1 mL), solution of **50** (23.6 mg, 0.1 mmol, 1.0 eq.) in anhydrous THF (1 mL) was added at 0 °C dropwise. The reaction was stirred at room temperature for 3 hours. After the start materials were all consumed, water was added to quench the reaction. The aqueous phase was extracted by ethyl acetate three times. The organic phase was combined and dried with anhydrous Na₂SO₄. After being evacuated under reduced pressure, the residue was subjected to column chromatography (triethylamine-activated SiO₂) to give **76** as a colorless oil. (13.3 mg, 65%)

¹H NMR (600 MHz, Chloroform-d) δ 6.83 (s, 2H), 6.56 – 6.48 (m, 1H), 5.35 (s, 1H), 5.08 (d,

J = 19.2 Hz, 1H), 3.81 (s, 6H), 3.39 (d, *J* = 9.7 Hz, 1H), 3.18 – 3.08 (m, 1H), 2.12 (s, 1H), 0.79 (s, 3H), 0.70 (s, 3H).

¹¹**B** NMR (193 MHz, Chloroform-*d*) δ –18.74 (d, *J* = 80.4 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -18.73 (s, 1B)

¹³C NMR (151 MHz, Chloroform-d) δ 120.60, 120.41, 74.73, 36.78, 25.96, 24.82.

HRMS(ESI) m/z (M+Na⁺) calculated for C₁₁H₂₁BN₂O+Na⁺ 231.1639, found 231.1635.

5.4 Reaction of 50 with carbene

50 (23.6 mg, 0.1 mmol, 1 eq.) and ethyl 2-diazo-2-phenylacetate (158 mg, 1 mmol, 10 eq.) were added to a 10 mL Schlenk tube. The tube was evacuated and refilled with N₂ three times. Then, anhydrous DCE (1 mL) was added before the tube was sealed tight. The reaction tube was placed 3 cm from a blue LED Kessil lamp (440 nm) at 40W with cooling fans and a water bath for 16 hours. After the reaction, the mixture was quenched under air, and the solvents were evacuated *in vacuo*. The residue was then subjected to flash column chromatography on neutral aluminum oxide (200 – 300 mesh) to give **77** as a colorless oil. (24.8 mg, 87%, > 20/1 d.r.)

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.35 – 7.31 (m, 3H), 7.06 – 7.04 (m, 2H), 5.93 – 5.84 (m, 1H), 4.93 – 4.73 (m, 1H), 4.32 (dd, *J* = 40.7, 6.8 Hz, 2H), 4.14 – 4.05 (m, 2H), 3.87 – 3.64 (m, 1H), 3.51 (s, 3H), 3.39 (s, 3H), 3.18 (s, 3H), 1.14 (t, *J* = 7.1 Hz, 3H), 0.99 (s, 3H), 0.94 – 0.84 (m, 3H).

¹¹**B NMR (193 MHz, Chloroform-***d***)** δ –16.82 (d, *J* = 89.5 Hz, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -16.80 (s, 1B)

¹³C NMR (151 MHz, Chloroform-d) δ 184.02, 171.72, 131.89, 129.05, 128.87, 127.58, 121.04, 62.00, 55.34, 54.95, 50.58, 37.82, 37.32, 27.72, 25.88, 25.58, 14.18.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{22}H_{31}BN_2O+Na^+$ 421.2269, found 421.2278.

5.5 1,2-Boryl migration

Under a dry N₂ atmosphere, **76** (20.8 mg, 0.1 mmol, 1.0 eq.) was dissolved in anhydrous PhMe (0.1 M) in an oven-dried 10 mL Schlenk tube. Then, HNTf₂ (0.02 mmol, 20 mol%) was added before the tube was sealed tightly. The mixture was stirred at 110 °C overnight. After the reaction, the solvents were evacuated under reduced pressure, and the residue was subjected to column chromatography (neutral Al₂O₃) to give **78** as a colorless oil. (7.0 mg, 32%)

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.73 (s, 2H), 6.49 – 6.41 (m, 2H), 5.28 (d, – = 12.5 Hz, 2H), 4.97 – 4.89 (m, 2H), 3.78 (s, 6H), 1.55 – 1.51 (m, 1H), 0.65 (d, *J* = 6.5 Hz, 6H), 0.61 (d, *J* = 6.2 Hz, 2H).

¹¹B NMR (193 MHz, Chloroform-d) δ –16.47 (s, 1B).

¹¹B {¹H} NMR (193 MHz, Chloroform-d) δ -16.47 (s, 1B)

¹³C NMR (151 MHz, Chloroform-d) δ 121.40, 116.24, 38.04, 27.02, 26.45.

HRMS(ESI) m/z (M+Na⁺) calculated for C₁₃H₂₃BN₂+Na⁺ 241.1847, found 241.1847.

Fig. S3. ¹³C-¹H HSQC spectrum of 78

Fig. S4. Proposed mechanism of 1,2-boryl migration

6. Mechanistic Investigations

6.1. Synthesis of INT1

In a N₂-filled glove box, Ni(COD)₂ (27.5 mg, 0.1 mmol) and P(p-F-Ph)₃ (63.2 mg, 0.2 mmol, 2.0 eq.) were mixed in a 20 mL flamed-dried vial with a stirring bar. Anhydrous THF (4 mL) was then added. After being stirred for 45 min, to the mixture was added a solution of borane (13.6 mg, 0.1 mmol, 1.0 eq.) in anhydrous THF (1 mL). The resulting mixture was then stirred at room temperature for 6 hours. After the reaction, the THF solvent was evacuated under reduced pressure, and anhydrous hexane (4 mL) was added to the tube. After stirring for 30 minutes, yellow solids were precipitated, which were collected through filtration and washed with hexane (2*3 mL). The single crystal of **INT1** was obtained by slowly evacuating the solvent of a benzene solution of yellow to orange solids in the glove box (49 mg, 60%).

Fig. S5. Picture of INT1 (49 mg)

¹**H NMR (600 MHz, Benzene-***d***)** δ 7.39 – 7.31 (m, 6H), 7.27 – 7.18 (m, 6H), 6.75 – 6.63 (m, 12H), 5.43 (s, 2H), 4.10 – 4.01 (m, 1H), 3.74 (d, *J* = 9.9 Hz, 1H), 2.99 (s, 6H), 2.85 (t, *J* = 13.3 Hz, 1H), 0.81 – 0.42 (br, 1H, B*H*), -0.63 – -1.12 (br, 1H, B*H*).

¹¹**B NMR (193 MHz, Benzene** -*d6*) δ -29.29 (brs, 1B)

¹¹B {¹H} NMR (193 MHz, Benzene -d6) δ -29.29 (s, 1B).

¹³C NMR (151 MHz, Benzene-d6) δ 163.89 (d, J = 13.3 Hz), 162.25 (d, J = 12.9 Hz), 136.25 (d, J = 23.8 Hz), 135.70 (d, J = 7.8 Hz), 135.60 (d, J = 7.4 Hz), 135.19 (d, J = 7.8 Hz), 135.09 (d, J = 7.5 Hz), 119.77, 114.78 (d, J = 8.7 Hz), 114.64 (d, J = 8.8 Hz), 65.48, 35.96,

¹⁹F NMR (151 MHz, Benzene-*d6*) δ -113.44, -114.02.

³¹**P NMR (243 MHz, Benzene-***d6***)** δ 42.84 (d, *J* = 72.3 Hz), 13.80 (d, *J* = 72.1 Hz)

Fig. S6. ¹¹B-¹H HMQC spectrum of **INT1**, broad peaks at 0.66 and -0.88 ppm were assigned to two B-Hs; a small portion of feedstock **1** was also observed.

X-ray crystal structure of INT1

Key bond lengths (Å)

	Ni-C ¹	Ni-C ²	Ni-B	Ni-H ¹
Bond Lengths (Å)	2.1204(18)	2.0023(18)	2.2841(19)	1.65(2)
	$B-H^1$	$B-H^2$	Ni-P ¹	Ni-P ²
Bond Lengths (Å)	1.30(2)	1.12(2)	2.1340(5)	2.1763(5)

Table S4. Crystal data and structure refinement for INT1 (CCDC 2381595).

Identification code	GHUAF4_Cu100k_auto
Empirical formula	C46H43.75BF6N2NiP2
Formula weight	870.04
Temperature/K	99.98(10)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	12.01864(11)
b/Å	11.91416(9)
c/Å	28.8690(2)
α/\circ	90
β/°	92.2828(8)
$\gamma^{/\circ}$	90
Volume/Å ³	4130.53(6)
Ζ	4
$\rho_{calc}g/cm^3$	1.399
μ/mm^{-1}	1.943
F(000)	1803
Crystal size/mm ³	0.15 imes 0.1 imes 0.1
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	7.362 to 145.982
Index ranges	$\text{-}14 \leq h \leq 14, \text{-}9 \leq k \leq 14, \text{-}35 \leq l \leq 34$
Reflections collected	12865
Independent reflections	7963 [$R_{int} = 0.0136$, $R_{sigma} = 0.0237$]
Data/restraints/parameters	7963/70/600
Goodness-of-fit on F ²	1.026

Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0349, wR_2 = 0.0903$
Final R indexes [all data]	$R_1 = 0.0411, wR_2 = 0.0947$
Largest diff. peak/hole / e Å ⁻³	0.77/-0.53

6.2. Hydroboration using INT1 as a substrate

In a N₂-filled glove box, **INT1** (42 mg, 0.05 mmol, 1.0 eq.) was dissolved in anhydrous toluene (1 mL) in a flamed-dried 4 mL vial with a stirring bar. Ethyl acrylate (5 mg, 0.05 mmol, 1.0 eq.) or ethyl *trans*-2-hexenoate (7.1mg, 0.05 mmol, 1.0 eq.) was then added to the solution. The vial was then sealed tightly and stirred at room temperature for 16 hours. After completion, the solvent was evacuated under reduced pressure, and the residue was subjected to flash column chromatography on neutral aluminum oxide (200 – 300 mesh) to give **4** (28%, dr = 18/1) or **41** (21%, dr > 20/1).

6.3. Hydroboration using INT1 as a catalyst

In a N₂-filled glove box, **INT1** (2.1 mg, 0.0025 mmol, 5 mol%) was dissolved in anhydrous toluene (x mL) in a flamed-dried 4 mL vial with a stirring bar. Ethyl acrylate (x mg, 0.05 mmol, 1.0 eq.) or ethyl *trans*-2-hexenoate (7.1 mg, 0.05 mmol, 1.0 eq.) was then added to the solution, followed by the addition of **1** (8.4 mg, 0.06 mmol, 1.2 eq.). The vial was sealed tightly and stirred at room temperature for 16 hours. After completion, the solvent was evacuated under reduced pressure, and the residue was subjected to flash column chromatography on neutral aluminum oxide (200 – 300 mesh) to give **4** (85%, dr = 7/1) or **41** (88%, dr > 18/1)

6.4. Deuterium labelling experiments

6.4.1. Synthesis of 1-D2

1-D2 was synthesized using the same procedure for synthesizing **1** using NHC-BD₃ as the starting material. Purification by column chromatography (triethylamine activated SiO_2) gave the pure product as a colorless oil with 33% isolation yield.

¹**H NMR (400 MHz, Chloroform-***d***)** δ 6.83 (s, 2H), 6.33 – 6.25 (m, 1H), 5.29 – 5.13 (br, 1H), 4.79 (d, *J* = 18.7 Hz, 1H), 3.77 (s, 6H).

¹¹**B NMR (193 MHz, Benzene** -*d6*) δ -28.26 (brs, 1B)

¹¹B {¹H} NMR (193 MHz, Benzene -d6) δ -28.26 (brs, 1B).

6.4.2. Hydroboration with 1-D2

Under a dry N₂ atmosphere, NiCl₂ (0.6 mg, 5 mol%) or Ni(COD)₂ (1.3 mg, 5 mol%) and (*p*-F-Ph)₃P (4 mg, 12.5 mol%) were dissolved in toluene (0.5 mL) a 10 mL Schlenk tube with a stirring bar. The mixture was stirred for at least 45 min at room temperature. After that, 2(5H)-furanone (8.4 mg, 0.1 mmol, 1.0 equiv.), toluene (0.5 mL), and **1-D2** (13.8 mg, 0.1 mmol, 1.0 eq.) were sequentially added to the reaction mixture. The tube was tightly sealed and stirred at room temperature for 16 hours. After the reaction, the mixture was evacuated *in vacuo* and then subjected to flash column chromatography on neutral aluminum oxide (200 – 300 mesh) to give **49**-*D* with one hydrogen of β -CH₂ referred to boron was deuterated.

Fig. S7. ¹H NMR spectrum of **49**-*D* using NiCl₂ as a catalyst.

Fig. S8. Comparison between ${}^{1}H$ NMR and ${}^{2}H$ NMR spectra of 49-D using NiCl₂ as a catalyst.

Fig. S9. ¹H NMR spectrum of 49-D using Ni(COD)₂ as a catalyst.

Fig. S10. Comparison between ¹H NMR and ²H NMR spectra of **49-D** using Ni(COD)₂ as a catalyst.

6.4.3. Hydroboration with D₂O as an additive.

Under a dry N₂ atmosphere, NiCl₂ (0.6 mg, 5 mol%) or Ni(COD)₂ (1.3 mg, 5 mol%) and (*p*-F-Ph)₃P (4 mg, 12.5 mol%) were dissolved in toluene (0.5 mL) a 10 mL Schlenk tube with a stirring bar. The mixture was stirred for at least 45 min at room temperature. After that, 2(5H)-Furanone (8.4 mg, 0.1 mmol, 1.0 equiv.), toluene (0.5 mL), **1** (6.8 mg, 0.1 mmol, 1.0 eq.) and D₂O (3 mg, 0.15 mmol, 1.5 eq.) were sequentially added to the reaction mixture. The tube was tightly sealed and stirred at room temperature for 16 hours. After the reaction, the mixture was evacuated *in vacuo* and then subjected to flash column chromatography on neutral aluminum oxide (200 – 300 mesh) to give **49**-*D*. No deuteration of B-H or C-H was observed.

Fig. S11. ¹H NMR spectrum of 49 with D2O as the additive using NiCl₂ as a catalyst.

Fig. S12. ¹H NMR spectrum of 49 with D2O as the additive using Ni(COD)₂ as a catalyst.
6.5. Radical capture experiment.

Under a dry N₂ atmosphere, NiCl₂ (0.6 mg, 5 mol%) or Ni(COD)₂ (1.3 mg, 5 mol%) and (*p*-F-Ph)₃P (4 mg, 12.5 mol%) were dissolved in toluene (0.5 mL) a 10 mL Schlenk tube with a stirring bar. The mixture was stirred for at least 45 min at room temperature. After that, 4-fluorobenzyl acrylate (18 mg, 0.1 mmol, 1.0 equiv.) or ethyl *trans*-2-hexenoate (14.2 mg, 0.1 mmol, 1.0 equiv.), toluene (0.5 mL), **1** (16.3 mg, 0.12 mmol, 1.2 eq.) and 1,1'-diphenylethene (18 mg, 0.1 mmol, 1 eq.) were sequentially added to the reaction mixture. The tube was tightly sealed and stirred at room temperature for 16 hours. After the reaction, the solvent was evacuated in vacuo, and the residue was subjected to ¹H NMR analyses to identify the yields and drs using 1,3,5-trimethoxybenzene as an internal standard. The experimental results indicated that the presence of a radical capture did not affect the hydroboration, negating the involvement of a radical pathway.

6.6. KIE experiments

The parallel experiments were performed using 1 or 1-D2 to react with 4-fluorobenzyl (E)-but-2-enoate. In a N₂-filled glove box, Ni(COD)₂ (27.5 mg, 0.01 mmol) and (*p*-F-Ph)₃P (80 mg, 0.025 mmol) were added to an oven-dried vial. Then, 2 mL anhydrous toluene was added through micro-syringe. This nickel-complex solution was stirred for at least 30 min before use. In another oven-dried 10 mL Schlenk tube, 2 mL anhydrous toluene was added through microsyringe, followed by adding the prepared [*Ni*] solution (40 µL), 1-fluornaphthalene (internal standard, 10 µL, 1 M in toluene), 4-fluorobenzyl (E)-but-2-enoate (19.4 mg, 0.11 mmol, 1 eq.) and **1** (13.6 mg, 0.1 mmol) or **1-D2** (13.8 mg, 0.1 mmol) in sequence before the tube was taken out of the glove box. Aliquots of the reaction mixture were taken via syringe (100 µL) at 3, 7, 11, 15, 19, and 23 min, and immediately placed in acetone (0.5 mL) under air. The yield of the product was detected by ¹⁹F NMR. The initial reaction rate was determined through plotting the yield against reaction time. Subsequently, parallel KIE was calculated by comparing the initial rates ($k_H/k_D = 2.41$).

Fig. S13. Determination of the kinetic isotope effect.

6.6.2. Competitive experiments

In a N₂-filled glove box, Ni(COD)₂ (1.3 mg, 0.005 mmol) and (p-F-Ph)₃P (8 mg, 0.0125 mmol) were dissolved in toluene (2 mL) in a 20 mL flamed-dried vial with a stirring bar. The mixture was stirred for 45 min. Then, 0.1 mL of the catalyst solution was added to a 4 mL flamed-dried vial with a stirring bar. To the vial was sequentially added 2(5H)-furanone (8.4 mg, 0.1 mmol), toluene (1 mL), **1** (6.8 mg, 0.05 mmol, 0.5 eq.), and **1-D2** (6.9 mg, 0.05 mmol, 0.5 eq.). The reaction was then stirred for 2 min, followed by being exposed in air for quenching. The crude mixture was dried under vacuum and subjected to ¹H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

Fig. S14. ¹H{¹¹B} NMR spectrum of the competitive reaction mixture. The H/D ratio of generated **49** was measured as 81/19, leading to a corresponding $k_{\rm H}/k_{\rm D}$ ratio of 2.53.

6.7 Comparison between this nickel catalysis and boryl radical-mediated hydroboration

Fig. S14. Representative comparison between Ni-catalysis and boryl radical method.

Under an atmosphere of N_2 , 4DPAIPN (8.0 mg, 0.01 mmol, 10 mol%), **1** (0.11 mmol, 1.1 eq.), and alkene (0.1 mmol, 1.0 eq.) were added in a 10 mL Schlenk tube with a stirring bar. Anhydrous MeCN (1 mL) was then added before the tube was tightly sealed. The reaction tube was placed 3 cm from a blue LED Kessil lamp (456 nm) at 40W with cooling fans and a water bath for 12h. After completion, the mixture was quenched under air, and the solvents were evacuated *in vacuo*. The residue was then subjected to flash column chromatography on neutral aluminum oxide (200 – 300 mesh) to give the corresponding products. All yields in this section are isolated yields.

NOTE: The comparison highlights the distinct regioselectivity between our developed Nicatalysis and the traditional boryl radical-mediated hydroboration. Moreover, the Ni-catalysis protocol is distinguished by its remarkable diastereoselectivity control.

OBn

S71, colorless oil, 61%

¹**H NMR (600 MHz, Chloroform-***d***)** δ 7.36 – 7.27 (m, 5H), 6.76 (s, 2H), 6.37 – 6.26 (m, 1H), 5.34 – 5.22 (m, 1H), 5.02 (s, 2H), 4.95 (d, *J* = 19.4 Hz, 1H), 3.73 (s, 6H), 2.41 – 2.31 (m, 1H), 2.14 – 2.06 (m, 1H), 1.04 – 0.90 (m, 1H), 0.86 – 0.74 (m, 1H).

¹¹**B NMR (128 MHz, Chloroform-***d***)** δ -20.52 (d, *J* = 82.1 Hz, 1B).

¹¹B {¹H} NMR (128 MHz, Chloroform-d) δ -20.51 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 128.56, 128.13, 127.99, 120.78, 120.32, 118.67, 118.16, 65.63, 36.56, 35.70.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{17}H_{23}BN_2O_2+Na^+$ 321.1745, found 321.1748.

S72, colorless oil, 36%, d.r. = 1.6/1

¹**H NMR (600 MHz, Chloroform***-d***)** δ 6.79/6.77 (s/s, 2H), 6.45 – 6.29 (m, 1H), 5.28 – 5.22 (m, 1H), 4.93 – 4.76 (m, 1H), 4.10 – 4.04/3.90 – 3.80 (m/m, 2H), 3.79 – 3.77 (m, 6H), 2.21 – 2.11 (m, 1H), 2.44 (dd, *J* = 15.0, 5.1 Hz, 0.4H).1.84 (dd, *J* = 14.2, 7.0 Hz, 0.6H), 1.54 – 1.41 (m, 1H), 1.31 – 1.08 (m, 6H), 1.05 – 0.96 (m, 1H), 0.79 (dt, *J* = 91.1, 7.1 Hz, 3H).

¹¹**B NMR (128 MHz, Chloroform-***d***)** δ -18.17 (d, J = 83.2 Hz, 1B)..

¹¹B {¹H} NMR (128 MHz, Chloroform-*d*) δ -18.17 (s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 177.47/176.70, 120.72, 119.28/118.77, 59.49, 41.03/ 40.39, 38.65/37.84, 36.78/36.69, 21.60/21.22, 15.07/14.92, 14.45/14.35.

HRMS(ESI) m/z (M+Na⁺) calculated for $C_{15}H_{27}BN_2O_2+Na^+$ 301.2051, found 301.2059.

S72, colorless oil, 53%, d.r. = 2.3/1

¹**H NMR (600 MHz, Chloroform-***d***)** δ 6.77/6.76 (s/s, 2H), 6.31 – 6.23 (m, 1H), 5.29 – 5.18 (m, 1H), 4.92 – 4.85 (m, 1H), 3.75 – 3.73 (m, 6H), 3.55 (s, 2.2H), 3.41 (s, 0.8H), 2.32 –2.25 (m, 1H), 1.12 – 0.83 (m, 4H), 0.80 – 0.74 (m, 0.3H), 0.63 – 0.55 (m, 0.7H).

¹¹**B NMR (128 MHz, Chloroform-***d***)** δ -21.74 (d, *J* = 78.4 Hz, 1B)..

¹¹B {¹H} NMR (128 MHz, Chloroform-*d*) δ -21.55/-21.94 (s/s, 1B).

¹³C NMR (151 MHz, Chloroform-*d*) δ 180.55, 120.73/120.69, 117.85/117.49, 51.11/50.99, 41.17/40.19, 36.51/36.45, 20.73/19.22.

HRMS(ESI) m/z (M-H⁺) calculated for $C_{12}H_{21}BN_2O_2$ -H⁺ 235.1618, found 235.1619.

6.8 DFT calculation

All computations were carried out using Gaussian 16 software,²³ and the structures were visualized using GaussView 6 software. More concretely, the structures were optimized under M06²⁴ / def2-TZVP²⁵ (Cu, P), 6-31G(d,p) (rest) PCM (toluene) level, while single point energies were obtained under M06 / def2-TZVP SMD (toluene) level. IRC calculations were performed to ensure the transition states related to intermediates. The Cartesian coordinates of all the calculated intermediates and transition states are given in a separate .xyz file.

Fig. S15a depicted the optimized structure of **INT1** together with selected calculated and experimental bond lengths. Fig. S15b shows the energy profiles, considering the four diastereomers. Fig. S15c shows the four diastereomeric **TS1** structures, originating from the three chiral [B, Ni, and C (bonded with the ester group)] centers.

Fig. S15. (a) The optimized structure of INT1 together with selected, calculated and experimental bond lengths. (b) Energy profiles, considering the four diastereomers. (c) Optimized structures of four diastereomeric TS1 transition states. H atoms except BH were omitted for clarity.

7. NMR Spectra

¹¹B NMR and ¹¹B {¹H} NMR of 1

¹H{¹B } NMR of 1-D2

-11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -47 -48 fi (ppm)

¹H NMR of 1-IⁱPr

¹³C NMR of 1-IⁱPr

¹¹B NMR and ¹¹B {¹H} NMR of 1-IⁱPr

¹H NMR of 1-Me

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

¹³C NMR of 1-Me

¹¹B NMR and ¹¹B {¹H} NMR of 3

 ^{11}B NMR and ^{11}B { 1H NMR of 4

^{11}B NMR and ^{11}B { 1H NMR of 7

^{11}B NMR and ^{11}B {¹H} NMR of 11

^{12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40} f1 (ppm)

^{11}B NMR and ^{11}B { ^{1}H } NMR of 12

^{11}B NMR and ^{11}B { ^{1}H } NMR of 15

¹¹B NMR and ¹¹B {¹H} NMR of 18

^{0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0} fl (ppm)

^{11}B NMR and ^{11}B {¹H} NMR of 20

^{11}B NMR and ^{11}B { ^{1}H } NMR of 22

^{11}B NMR and ^{11}B { $^{1}H} NMR of 23$

¹¹B NMR and ¹¹B {¹H} NMR of 24

¹¹B NMR and ¹¹B {¹H} NMR of 25

^{11}B NMR and ^{11}B {¹H} NMR of 27

¹¹B NMR and ¹¹B {¹H} NMR of 33

^{11}B NMR and ^{11}B {1H} NMR of 35

¹¹B NMR and ¹¹B {¹H} NMR of 36

¹¹B NMR and ¹¹B {¹H} NMR of 37

¹¹B NMR and ¹¹B {¹H} NMR of 38

^{0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0} f1 (ppm)

¹¹B NMR and ¹¹B {¹H} NMR of 40

^{6.5 6.0} 5.5 5.0 9.5 9.0 8.5 8.0 7.5 7.0 -0.5 0.0

^{11}B NMR and ^{11}B { $^{1}H} NMR of 45$

^{. 0} 9.5 9.0

^{11}B NMR and ^{11}B { ^{1}H } NMR of 47

¹¹B NMR and ¹¹B {¹H} NMR of 51

16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 11 (ppm)

^{11}B NMR and ^{11}B { ^{1}H } NMR of 53

^{8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5} f1 (ppm)

^{11}B NMR and ^{11}B { $^{1}H} NMR of 57$

^{.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5} fl (ppm)

^{11}B NMR and ^{11}B {1H} NMR of 62

 ^{11}B NMR and ^{11}B { $^{1}H} NMR of 63$

¹¹B NMR and ¹¹B {¹H} NMR of 65

¹¹B NMR and ¹¹B {¹H} NMR of 67

¹¹B NMR and ¹¹B {¹H} NMR of 69

¹¹B NMR and ¹¹B {¹H} NMR of 71

-90 -100 -110 -120 -130 -140 -150 -160 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm) -50 -60 -70 -80

¹¹B NMR and ¹¹B {¹H} NMR of 73

 ^{11}B NMR and ^{11}B { ^{1}H } NMR of 75

¹¹B NMR and ¹¹B {¹H} NMR of 77

¹¹B NMR and ¹¹B {¹H} NMR of S71

^{11}B NMR and ^{11}B {¹H} NMR of S72

^{11}B NMR and ^{11}B {1H} NMR of S73

10 8 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 f1 (ppm) 6 4 2 0 -40 -42 -44 -46 -48 -50 -52 -2 -4 -6 -28 -30 -32 -34 -36 -38

¹¹B NMR and ¹¹B {¹H} NMR of S75

^{11}B NMR and ^{11}B {¹H} NMR of INT1

80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

¹⁹F NMR of INT1

³¹P NMR of INT1

8. Reference

- 1. Lemmerer, M. et al. HFIP Mediates a Direct C-C Coupling between Michael Acceptors and Eschenmoser's salt. *Angew. Chem. Int. Ed.* **61**, e202109933 (2022).
- Yin, S.Y., Zhou, Q., Liu, C.X., Gu, Q. & You, S.L. Enantioselective Synthesis of N-N Biaryl Atropisomers through Iridium(I)-Catalyzed C-H Alkylation with Acrylates. *Angew. Chem. Int. Ed.* 62, e202305067 (2023).
- Zhang, Y., Chen, S.S., Li, K.D. & Huang, H.M. Cyclic Amine Synthesis via Catalytic Radical-Polar Crossover Cycloadditions. *Angew. Chem. Int. Ed.* 63, e202401671 (2024).
- Hao, S. et al. An Efficient Synthesis of Alkyl Dithiocarbamates through Michael-type Addition of Tetraalkylthiuram Disulfides to Electrophilic Alkenes. *Asian J. Org. Chem.* 10, 2521-2524 (2021).
- 5. Zhao, J.-H., Zou, J.-Y., Zhang, S.-Y., Wu, Y. & Wang, P. Construction of Si-Stereogenic Silanols via Enantioselective Pd-Catalyzed C–H Alkenylation. *ChemRxiv.* (2023).
- 6. Cheng, T., Liu, B., Wu, R. & Zhu, S. Cu-catalyzed carboboration of acetylene with Michael acceptors. *Chem. Sci.* **13**, 7604-7609 (2022).
- Zhang, S., Zhang, J. & Zou, H. Rh(III)-catalyzed regioselective versatile indole derivatization: delivering potential of rare beta-(1H-indol-2-yl)-beta-amino acids in one pot. *Chem. Commun.* 59, 4978-4981 (2023).
- Bhowmick, A., Chatterjee, A., Pathak, S.S. & Bhat, R.G. A visible light-driven direct synthesis of industrially relevant glutaric acid diesters from aldehydes. *Chem. Commun.* 59, 11875-11878 (2023).
- 9. Shen, Y., Yuan, Y., Ma, X., Yang, W. & Chen, Y. Mechanically induced chemiluminescence of xanthene-modified 1,2-dioxetane in polymers. *Polym. Chem.* 14, 4148-4152 (2023).
- 10. Katcharava, Z. et al. Solvent and catalyst free vitrimeric poly(ionic liquid) electrolytes. *RSC Adv.* **13**, 14435-14442 (2023).
- Song, J., Torigoe, T. & Kuninobu, Y. 5-Ammonium-4,4-dimethylvaleryl (Amv) Group: Generation from Acryloyl Group through Decatungstate-Catalyzed C(sp3)–H Addition and Removal by Base-Triggered Cyclization. *Eur. J. Org. Chem.* 26 (2023).
- Matsumoto, A., Maeda, N. & Maruoka, K. Bidirectional Elongation Strategy Using Ambiphilic Radical Linchpin for Modular Access to 1,4-Dicarbonyls via Sequential Photocatalysis. J. Am. Chem. Soc. 145, 20344-20354 (2023).
- 13. Pang, Y. et al. Controlling Block Copolymer–Substrate Interactions by Homopolymer Brushes/Mats. *Macromolecules* **50**, 6733-6741 (2017).
- 14. Tilby, M.J. et al. Photocatalytic Late-Stage Functionalization of Sulfonamides via Sulfonyl Radical Intermediates. *ACS Catal.* **12**, 6060-6067 (2022).
- Ye, F., Zheng, S., Luo, Y., Qi, X. & Yuan, W. Ligand-Controlled Regioreversed 1,2-Aryl-Aminoalkylation of Alkenes Enabled by Photoredox/Nickel Catalysis. *ACS Catal.* 14, 8505-8517 (2024).
- 16. Zhang, Q. et al. Photoredox-Catalyzed alpha-C(sp(3))-H Activation of Unprotected Secondary Amines: Facile Access to 1,4-Dicarbonyl Compounds. *Org. Lett.* **22**, 7460-

7464 (2020).

- Wu, J., Grant, P.S., Li, X., Noble, A. & Aggarwal, V.K. Catalyst-Free Deaminative Functionalizations of Primary Amines by Photoinduced Single-Electron Transfer. *Angew. Chem. Int. Ed.* 58, 5697-5701 (2019).
- Cabanero, D.C., Nguyen, J.A., Cazin, C.S.J., Nolan, S.P. & Rovis, T. Deep Red to Near-Infrared Light-Controlled Ruthenium-Catalyzed Olefin Metathesis. *ACS Catal.* 13, 4384-4390 (2023).
- 19. Inada, H., Shibuya, M. & Yamamoto, Y. Direct Synthesis of Free alpha-Amino Acids by Telescoping Three-Step Process from 1,2-Diols. *Org. Lett.* **21**, 709-713 (2019).
- 20. Katcher, M.H., Sha, A. & Doyle, A.G. Palladium-catalyzed regio- and enantioselective fluorination of acyclic allylic halides. *J. Am. Chem. Soc.* **133**, 15902-15905 (2011).
- 21. Vacas, T., Alvarez, E. & Chiara, J.L. Phthalimides as exceptionally efficient single electron transfer acceptors in reductive coupling reactions promoted by samarium diiodide. *Org. Lett.* **9**, 5445-5448 (2007).
- 22. Cheng, T., Liu, B., Wu, R. & Zhu, S. Cu-catalyzed carboboration of acetylene with Michael acceptors. *Chem. Sci.* **13**, 7604-7609 (2022).
- 23. Frisch, M.J. et al. (Wallingford, CT; 2016).
- 24. Zhao, Y. & Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theoretical Chemistry Accounts* **120**, 215-241 (2008).
- 25. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Physical Chemistry Chemical Physics* 7, 3297-3305 (2005).