Stimulus-responsive metallocenes: a photo/thermal switch enabled by the perfluorinated Cp* ligand

Robin Sievers, Nick Hartmann, Paulin S. Riemann, Tim-Niclas Streit, Moritz Malischewski*

R. Sievers, N. Hartmann, P. S. Riemann, T.-N. Streit, Dr. M. Malischewski Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36, 14195 Berlin, Germany E-mail: moritz.malischewski@fu-berlin.de

Contents

General Information	2
Synthetic Procedures	4
NMR Spectra	9
IR Spectra	26
UV/VIS Spectra	28
Crystallographic Data	29
Density functional theory (DFT) calculations	
References	40

General Information

Reactions and workups sensitive to air were performed in previously heated glassware under an atmosphere of argon using standard Schlenk techniques and an oil pump vacuum of 10⁻³ mbar. Room temperature (rt) refers to 25 °C. The addition of liquid reagents and solvents was done by using threefold argon-flushed disposable syringes and septa, while solids were added in argon stream. Low temperature reactions were performed in a cooled ethanol-bath. Glassware was cleaned by storing in a potassium hydroxide bath for several days, rinsed with diluted hydrochloric acid and doubly deionized water and dried at 150 °C.

Pressure reactions

The synthesis of $[NEt_4][C_5(CF_3)_5]$ involves high temperatures and highly volatile substances in a closed system. Hence, it must be assumed, that high pressures will be generated upon heating and advanced caution is required. Therefore, it is advisable to perform the reaction in a separate and properly closed fume hood. The thick-walled glass reaction vessel should not be opened and if possible, not even touched until the reaction is finished and has reached rt.

Solvents, reagents and materials

Anhydrous CH₂Cl₂, MeCN and *n*-pentane were obtained from the solvent system FMBRAUN MB SPS-800 and stored over activated 3 Å molecular sieves. Anhydrous *o*DCB, *o*DFB and 1,2-DCE were used as purchased and stored over activated 3 Å molecular sieves. Deuterated solvents CD₂Cl₂, *d*₃-MeCN and (CD₃)₂CO were used as purchased and stored over activated 3 Å molecular sieves. Sulfolane was heated at 60 °C for at least 24 h over activated 3 Å molecular sieves and additionally 1 h in high vacuum prior to use. 18-crown-6 was heated at 80 °C for 2 h in high vacuum prior to use. All other solvents and commercially available reagents were used without further purification. Photochemistry was performed with a blue LED (470 nm) from OSRAM mounted on a 10 cm³ aluminum heat sink or a 200 W low-pressure mercury vapor lamp (UV).

Nuclear magnetic resonance (NMR) spectroscopy

NMR spectra were measured on a JEOL ECX 400 (400 MHz) or a Varian INOVA 600 (600 MHz) in the reported deuterated solvents CD₂Cl₂, *d*₃-MeCN and (CD₃)₂CO. All given chemical shifts in ¹H NMR spectra are calibrated on the resonance signals of CDHCl₂ contained in CD₂Cl₂ (δ = 5.32 ppm), CHD₂CN contained in *d*₃-MeCN (δ = 1.94 ppm) and (CHD₂)(CD₃)CO contained in (CD₃)₂CO (δ = 2.05 ppm). The ¹³C NMR spectra are calibrated on the respective resonance signals of CD₂Cl₂ (δ = 53.84 ppm), *d*₃-MeCN (δ = 1.32 and 118.26 ppm) and (CD₃)₂CO (δ = 29.84 and 206.26 ppm).^[1,2] The ¹⁹F and ³¹P NMR spectra are device-internally calibrated relative to the resonance signal of CFCl₃ and H₃PO₄ according to the unified chemical shift scale.^[3] The given multiplicities are phenomenological, thus the actual appearance of the signals is stated and not the theoretically expected one. The following abbreviations were used and analogously combined to designate multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), m_c (centrosymmetric multiplet). For centrosymmetric multiplets the center and for non-symmetric multiplets the interval is stated. Evaluation of spectra was performed with Mestrelab Research MNova 7.^[4]

Infrared (IR) spectroscopy

IR spectra were measured on a FT (Fourier transformation) Nicolet iS10. The sample was directly measured by ATR (attenuated total reflection) technique. Characteristic absorptions are given in wavenumbers \tilde{v} [cm⁻¹] and intensities are stated as vs (very strong), s (strong), m (medium) and w (weak).

High resolution mass spectrometry (HRMS) and elemental analysis (EA)

HRMS was recorded using an AGILENT 6210 spectrometer by electrospray ionization (ESI) or a VARIAN MAT 711 by electron impact ionization (EI) at the department of mass spectrometry at the Freie Universität Berlin. A detailed listing of fragmentation is dispensed, instead the molecular ion peak or a characteristic fragment peak is stated. EA was measured on a VARIO EL. Relative proportion of C, H and N are given in percent.

Ultraviolet/visible light (UV/VIS) spectroscopy

UV/VIS spectra were recorded on a PerkinElmer Lambda 465 photometer with deuterium and tungsten lamps. A fiber optic probe was used to record the spectra.

X-ray diffraction (XRD)

X-Ray data were collected on a BRUKER D8 Venture system. Data were collected at 100(2) K using graphite monochromated Mo K_a radiation ($\lambda_{\alpha} = 0.71073$ Å). The strategy for the data collection was evaluated by using the Smart software. The data were collected by the standard " ψ - ω scan techniques" and were scaled and reduced using Saint+software. The structures were solved by using Olex2,^[5] the structure was solved with the XT^[6] structure solution program using Intrinsic Phasing and refined with the XL refinement package^[7,8] using the Least Squares minimization. Bond length and angles were measured with Diamond Crystal and Molecular Structure Visualization Version 4.6.2.^[9] Drawings were generated with POV-Ray.^[10]

Density functional theory (DFT) calculations

DFT calculations were performed with Gaussian 16 (Revision C.02).^[11] Structure optimizations and population analysis (gas phase) were done using B3LYP-D3BJ/def2TZVP. Solutions were processed using Avogadro^[12] and Chemcraft 1.8.^[13]

Synthetic Procedures [NEt₄][C₅(CF₃)₅]

In a dried 1000 mL pressure flask anhydrous KF (60 g, 1.0 mol, 11 equiv.) was placed in anhydrous and degassed sulfolane (190 mL) under an atmosphere of argon. Anhydrous and degassed 18-crown-6 (8.7 g, 33 mmol, 0.33 equiv.) and hexachlorobuta-1,3-diene (15 mL, 96 mmol, 1.0 equiv.) were added at rt. The resulting reaction mixture was carefully shaken and cooled to -196 °C in high vacuum. The properly closed pressure flask was slowly warmed to 190 °C and stirred at this temperature for 3 d. Then the resulting black suspension was cooled to rt and the volatiles were removed in high vacuum. The remaining mixture was filtrated under an atmosphere of argon and the residue was extracted with anhydrous MeCN (3 × 40 mL). The filtrate was warmed to 40 °C and all MeCN was removed in high vacuum, while stirring. The resulting solution was put under high vacuum and H₂SO₄ (conc., 200 mL, 3.6 mol, 38 equiv.) was added dropwise at rt over a period of 3 h, while stirring and continuously collecting the volatiles in a cold trap of -196 °C. After complete addition, the mixture remained for additional 2 h in high vacuum. The cold trap was put under argon and slowly warmed to 0 °C, giving a pale yellow liquid. Then CH₂Cl₂ (20 mL) and a solution of [NEt₄][OH] (35% aqueous, 10 mL, 24 mmol, 0.25 equiv.) were added and the reaction mixture was stirred for 15 min at rt, giving a deep red solution. The aqueous layer was separated and extracted with CH_2Cl_2 (4 x 20 mL). The combined organic layers were dried over MgSO₄, filtrated and the solvent was removed under reduced pressure. The remaining solid was suspended in Et₂O (~5 mL) and recrystallized twice from CH₂Cl₂ (~10 mL) by slowly cooling to -20 °C. The crystalline residue was decanted and washed with Et₂O (2 x 5 mL). The solvents were removed under reduced pressure to give a product mixture of 85 mol% [NEt4][$C_5(CF_3)_5$] (1.7 g, 3.2 mmol) and 15 mol% [NEt4][C₅(CF₃)₄H] (0.30 g, 0.50 mmol) that was placed in a dried 50 mL Schlenk flask in anhydrous MeCN (20 mL). [NO][BF4] (0.26 g, 2.2 mmol, 0.60 equiv.) was added and the reaction mixture was stirred at room temperature for 4 h. Dest. H₂O (20 mL) was slowly added and stirred for 15 min before separating aqueous and organic phase. The aqueous phase was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were dried over MgSO₄, filtrated and the solvents removed under reduced pressure. The residue was dissolved in CH₂Cl₂ (1 mL) and slowly added to stirred nBu₂O (200 mL). The colorless suspension was filtrated and the residue was washed with nBu₂O (2 × 10 mL) and n-pentane (2 × 10 mL). The solvent was removed under reduced pressure to give $[NEt_4][C_5(CF_3)_5]$ (1.7 g, 3.2 mmol) as a colorless amorphous solid with a yield of 9%.

¹**H NMR** (400 MHz, CD₂Cl₂, rt) δ [ppm] = 2.95 (q, ³*J*_{H,H} = 7.3 Hz, 8H), 1.19 (q, ³*J*_{H,H} = 7.1 Hz, 12H). ¹⁹**F NMR** (377 MHz, CD₂Cl₂, rt) δ [ppm] = -50.6 (s, 15F). ¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt) δ [ppm] = 52.7 (m_c, 4C), 7.3 (s, 4C). ¹³C{¹⁹F} NMR (151 MHz, CD₂Cl₂, rt) δ [ppm] = 124.9 (s, 5C), 109.6 (s, 5C). The analytical data are consistent with those reported in literature.^[14–16]

[Fe(C₅H₅)(oDCB)][PF₆]

In a dried 500 mL Schlenk flask [Fe(C₅H₅)₂] (6.0 g, 32 mmol, 1.0 equiv.), powdered aluminum (0.72 g, 27 mmol, 0.80 equiv.) and AlCl₃ (8.0 g, 60 mmol, 1.9 equiv.) were suspended in anhydrous *o*DCB (100 mL) under an atmosphere of argon. The reaction mixture was stirred under reflux for 12 h. The brownish suspension was cooled to 0 °C and dest. H₂O (300 mL) was slowly added while stirring. The aqueous phase was isolated and washed with *n*-pentane (3 × 100 mL). A solution of LiPF₆ (5.2 g, 36 mmol, 1.1 equiv.) in dest. H₂O (40 mL) was added and the reaction mixture was stirred for 15 min. The resulting suspension was filtrated and the residue was washed with dest. H₂O (3 × 40 mL). The crude solid was dissolved in acetone (5 mL) and slowly added to stirred Et₂O (100 mL). The suspension was filtrated and the residue was washed with Et₂O (3 × 40 mL) and dried under reduced pressure to give [Fe(C₅H₅)(*o*DCB)][PF₆] (6.2 g, 15 mmol) as a greenish amorphous solid with a yield of 47%.

¹**H NMR** (400 MHz, (CD₃)₂CO, rt) δ [ppm] = 7.07 (s, 2H), 6.61 (s, 2H), 5.39 (s, 5H). ¹⁹**F NMR** (377 MHz, (CD₃)₂CO, rt) δ [ppm] = -72.2 (d, ¹*J*_{F,P} = 708.1 Hz, 6F). ³¹**P**{¹⁹**F**} **NMR** (162 MHz, (CD₃)₂CO, rt) δ [ppm] = -144.2 (s, 1P). ¹³**C**{¹**H**} **NMR** (100 MHz, (CD₃)₂CO, rt) δ [ppm] = 107.5 (s, 2C), 89.4 (s, 2C), 88.3 (s, 2C), 81.7 (s, 5C). The analytical data are consistent with those reported in literature.^[17]

$[Fe(C_5H_5)(C_5(CF_3)_5)]$

In a dried 10 mL Schlenk flask [Fe(C₅H₅)(*o*DCB)][PF₆] (0.17 g, 0.40 mmol, 1.0 equiv.) and [NEt₄][C₅(CF₃)₅] (0.21 g, 0.40 mmol, 1.0 equiv.) were dissolved in anhydrous *o*DFB (3 mL). The reaction mixture was stirred for 10 h at room temperature under visible light (470 nm) irradiation. Silica gel (200 mg) was added and the solvent was removed in high vacuum. The crude product loaded on silica was purified by column chromatography with *n*-pentane (first fraction). The organic fractions were combined and the solvent was removed under reduced pressure and the product was recrystallized from perfluorohexanes. The product [Fe(C₅H₅)(C₅(CF₃)₅)] (0.12 g, 0.24 mmol) was obtained as a greenish crystalline solid with a yield of 60%.

¹**H NMR** (400 MHz, CD₂Cl₂, rt) δ [ppm] = 4.94 (s, 5H). ¹⁹**F NMR** (377 MHz, CD₂Cl₂, rt) δ [ppm] = -50.3 (s, 15F). ¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt) δ [ppm] = 78.1 (s, 5C). ¹³C{¹⁹F} NMR (151 MHz, CD₂Cl₂, rt) δ [ppm] = 123.3 (m_c, 5C), 112.5 (s, 5C). The analytical data are consistent with those reported in literature.^[18]

Substitution experiment of [Fe(C₅H₅)(C₅(CF₃)₅)]:

In a 10 mL Schlenk flask [Fe(C₅H₅)(C₅(CF₃)₅)] (30 mg, 70 μ mol, 1.0 equiv.) was dissolved in anhydrous and degassed *d*₃-MeCN or MeCN (1 mL). The greenish reaction mixture was stirred for 1 h at –35 °C under UV irradiation, giving a deep purple solution of [Fe(C₅H₅)(MeCN)₃][C₅(CF₃)₅] with a conversion of 95% according to NMR spectroscopy (see Figure S17 and S18 for reaction screening experiment).

 $[Fe(C_5H_5)(d_3-MeCN)_3][C_5(CF_3)_5]: {}^{1}H NMR (400 MHz, d_3-MeCN, -35 °C) \delta [ppm] = 3.93 (s, 5H). {}^{19}F NMR (377 MHz, d_3-MeCN, -35 °C) \delta [ppm] = -51.0 (s, 15F).$

The reaction mixture was warmed to room temperature and stirred for another 2 h. The solvent of the yellow solution was removed in high vacuum and the products were separated by extraction with *n*-pentane ($3 \times 5 \text{ mL}$). The solvent was removed in high vacuum giving products [Fe(C₅H₅)₂] (from *n*-pentane solution) as an orange amorphous solid and [Fe(MeCN)₆][C₅(CF₃)₅]₂ (from residue) as an colorless amorphous solid with a quantitative yield.

[Fe(MeCN)₆][C₅(CF₃)₅]: ¹H NMR (400 MHz, d_3 -MeCN, rt) δ [ppm] = 1.96 (s, 18H). ¹⁹F NMR (377 MHz, d_3 -MeCN, rt) δ [ppm] = -51.0 (s, 15F). The analytical data are consistent with those reported in literature.^[15]

[Fe(C₅H₅)(DPPE)(MeCN)][C₅(CF₃)₅]:

In a 10 mL Schlenk flask [Fe(C₅H₅)(C₅(CF₃)₅)] (15 mg, 29 μ mol, 1.0 equiv.) and DPPE (12 mg, 29 μ mol, 1.0 equiv.) were dissolved in anhydrous and degassed MeCN (2 mL). The greenish reaction mixture was stirred for 1 h at room temperature under UV irradiation. The solvent of the deep red solution was removed in high vacuum and the residue washed with anhydrous *n*-pentane (3 × 5 mL). The solvent was removed in high vacuum and the product [Fe(C₅H₅)(DPPE)(MeCN)][C₅(CF₃)₅] (28 mg, 29 μ mol) was obtained as a red amorphous solid with a quantitative yield.

¹**H** NMR (400 MHz, CD₂Cl₂, rt) δ [ppm] = 7.73 (m_c, 4H), 7.57–7.52 (m, 6H), 7.52–7.44 (m, 6H), 7.34–7.27 (m, 4H), 4.30 (s, 5H), 2.60–2.48 (m, 2H), 2.40–2.23 (m, 2H), 1.35 (s, 3H). ¹⁹**F** NMR (377 MHz, CD₂Cl₂, rt) δ [ppm] = –50.6 (s, 15F). ³¹**P**{¹**H**} NMR (162 MHz, CD₂Cl₂, rt) δ [ppm] = –97.4 (s, 2P). ¹³C{¹**H**} NMR (100 MHz, CD₂Cl₂, rt) δ [ppm] = 136.8 (m_c, 4C), 133.6 (s, 1C), 132.8 (t, ²J_{C,P} = 4.7 Hz, 4C), 131.6 (t, ²J_{C,P} = 4.7 Hz, 4C), 131.3 (d, ¹J_{C,P} = 31.0 Hz, 4C), 129.5 (m_c, 8C), 78.2 (s, 5C), 28.3 (t, ¹J_{C,P} = 21.0 Hz, 2C), 4.0 (s, 1C). ¹³C{¹⁹F} NMR (100 MHz, CD₂Cl₂, rt) δ [ppm] = 124.1 (s, 5C), 110.0 (s, 5C). **FT-IR** (ATR) \tilde{v} [cm⁻¹] = 3064 (w), 2273 (w), 1493 (m), 1435 (m), 1210 (vs), 1122 (vs), 1026 (m), 1000 (m), 917 (w), 876 (m), 847 (m), 811 (m), 744 (s), 693 (vs), 633 (s), 594 (w), 565 (w), 533 (vs). **HRMS** (ESI TOF, positive) m/z for [FeC₃₁H₃₀P₂]⁺ calculated: 520.1172; measured: 520.1165. **HRMS** (ESI TOF, negative) m/z for [C₁₀F₁₅]⁻ calculated: 404.9760; measured: 404.9803. **EA** [FeC₄₃H₃₂NP₂F₁₅] calculated: C: 53.49%, H: 3.34%, N: 1.45; measured: C: 53.85%, H: 3.37%, N: 1.59%. A molecular structure in the solid state was determined for this compound (see Table S1 and Figure S39).

$[Ru(C_5H_5)(C_5(CF_3)_5)]:$

In a dried 10 mL Schlenk flask [Ru(C₅H₅)(MeCN)₃][PF₆] (0.15 g, 0.35 mmol, 1.0 equiv.) and [NEt₄][C₅(CF₃)₅] (0.19 g, 0.35 mmol, 1.0 equiv.) were dissolved in anhydrous 1,2-DCE (3 mL). The reaction mixture was stirred for 16 h at 80 °C. The solvent was removed in high vacuum and the residue was extracted with *n*-pentane (3 × 5 mL). The organic fractions were combined and the solvent was removed in high vacuum. The residue was recrystallized from perfluorohexanes and the product [Ru(C₅H₅)(C₅(CF₃)₅] (0.14 g, 0.24 mmol) was obtained as a colorless crystalline solid with a yield of 68%.

¹**H NMR** (400 MHz, CD₂Cl₂, rt) δ [ppm] = 5.24 (s, 5H). ¹⁹**F NMR** (377 MHz, CD₂Cl₂, rt) δ [ppm] = -50.6 (s, 15F). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, rt) δ [ppm] = 81.0 (s, 5C). ¹³C{¹⁹F} NMR (101 MHz, CD₂Cl₂, rt) δ [ppm] = 122.9 (s, 5C).^[19] **FT-IR** (ATR) \tilde{v} [cm⁻¹] = 3120 (w), 2925 (w), 1427 (s), 1160 (vs), 1141 (vs), 1005 (m), 984 (m), 868 (w), 846 (s), 808 (m), 708 (w), 656 (vs), 630 (s), 527 (w). **HRMS** (EI TOF, positive) m/z for [RuC₁₅H₅F₁₅]⁺ calculated: 571.9195; measured: 571.9194. **EA** [RuC₁₅H₅F₁₅] calculated: C: 31.54%, H: 0.88%; measured: C: 30.73%, H: 0.99%. A molecular structure in solid state was measured for this compound (see Table S2 and Figure S40).

Substitution experiment of $[Ru(C_5H_5)(C_5(CF_3)_5)]$:

In a 10 mL Schlenk flask [Ru(C_5H_5)($C_5(CF_3)_5$)] (30 mg, 53 µmol, 1.0 equiv.) was dissolved in anhydrous MeCN (2 mL). The greenish reaction mixture was stirred for 24 h at room temperature under UV irradiation. The solvent of the yellow solution was removed in high vacuum and the residue was washed with *n*-pentane (3 × 5 mL). The product [Ru(C_5H_5)(MeCN)₃][$C_5(CF_3)_5$] (37 mg, 53 µmol) was obtained as a yellow amorphous solid in quantitative yield (see Figure S32 and S33 for reaction screening experiment).

¹**H NMR** (400 MHz, CD₂Cl₂, rt) δ [ppm] = 4.24 (s, 5H), 2.29 (s, 9H). ¹⁹**F NMR** (377 MHz, CD₂Cl₂, rt) δ [ppm] = -50.6 (s, 15F). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, rt) δ [ppm] = 69.5 (s, 5C), 4.0 (s, 3C).^[20] ¹³C{¹⁹F} NMR (100 MHz, CD₂Cl₂, rt) δ [ppm] = 124.1 (s, 5C), 110.0 (s, 5C). **FT-IR** (ATR) \tilde{v} [cm⁻¹] = 2942 (w), 2289 (w), 1550 (w), 1493 (m), 1414 (w), 1296 (w), 1203 (vs), 1112 (vs), 1034 (m), 993 (m), 947 (w), 863 (w), 801 (w), 725 (w), 633 (s). **HRMS** (ESI TOF, positive) m/z for [RuC₁₁H₁₄N₃]⁺ calculated: 290.0231; measured: 290.0199. **HRMS** (ESI TOF, negative) m/z for [C₁₀F₁₅]⁻ calculated: 404.9760; measured: 404.9747. **EA** [RuC₂₁H₁₄N₃F₁₅] calculated: C: 36.32%, H: 2.03%, N: 6.05%; measured: C: 35.79%, H: 1.77%, N: 5.51%. A molecular structure in the solid state was determined for this compound (see Table S3 and Figure S41).

Substitution experiment of $[Ru(C_5H_5)(MeCN)_3][C_5(CF_3)_5]$:

In a 10 mL Schlenk flask $[Ru(C_5H_5)(MeCN)_3][C_5(CF_3)_5]$ (25 mg, 36 µmol, 1.0 equiv.) was dissolved in anhydrous 1,2-DCE (2 mL). The yellow reaction mixture was stirred for 4 h at 80 °C. The solvent of the colorless solution was removed in high vacuum. The product $[Ru(C_5H_5)(C_5(CF_3)_5)]$ (21 mg, 36 µmol) was obtained as a colorless amorphous solid with a quantitative yield (see Figure S34 for reaction screening experiment).

---50.6

²⁰ ¹⁰ ¹⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ ⁻²²⁰ ⁻²¹⁰ ⁻²¹⁰ ⁻²²⁰ ⁻²¹⁰ ⁻²

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 ppm Figure S10. ¹⁹F NMR (377 MHz, CD₂Cl₂, rt) spectrum of [Fe(C₅H₅)(C₅(CF₃)₅)].

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 ppm 40 30 20 10 0 Figure S11. ¹³C{¹H} NMR (151 MHz, CD₂Cl₂, rt) spectrum of [Fe(C₅H₅)(C₅(CF₃)₅)].

Figure S14. ¹⁹F NMR (400 MHz, *d*₃-MeCN, -35 °C) spectrum of [Fe(C₅H₅)(*d*₃-MeCN)₃][C₅(CF₃)₅].

— -51.0

Figure S16. ¹⁹F NMR (377 MHz, *d*₃-MeCN, rt) spectrum of [Fe(MeCN)₆][C₅(CF₃)₅]₂.

Figure S18. ¹⁹F NMR (377 MHz, d_3 -MeCN) spectra of [Fe(C₅H₅)(C₅(CF₃)₅)] at rt (red), after 1 h of UV irradiation at -35 °C giving [Fe(C₅H₅)(d_3 -MeCN)₃][C₅(CF₃)₅] (green) and after another 2 h at rt giving [Fe(C₅H₅)₂] (blue).

Figure S20. ¹⁹F NMR (377 MHz, CD₂Cl₂, rt) spectrum of [Fe(C₅H₅)(DPPE)(MeCN)][C₅(CF₃)₅].

0 ppm 240 220 200 180 160 140 120 100 80 60 40 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 20 Figure S21. ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, rt) spectrum of [Fe(C₅H₅)(DPPE)(MeCN)][C₅(CF₃)₅].

Figure S26. ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, rt) spectrum of [Ru(C₅H₅)(C₅(CF₃)₅)].

Figure S28. ¹H NMR (400 MHz, CD₂Cl₂, rt) spectrum of [Ru(C₅H₅)(MeCN)₃][C₅(CF₃)₅].

Figure S30. ¹³C{¹H} NMR (100 MHz, CD₂Cl₂, rt) spectrum of [Ru(C₅H₅)(MeCN)₃][C₅(CF₃)₅].

Figure S31. ¹³C{¹⁹F} NMR (100 MHz, CD₂Cl₂, rt) spectrum of [Ru(C₅H₅)(MeCN)₃][C₅(CF₃)₅].

Figure S32. ¹H NMR (400 MHz, d_3 -MeCN, rt) spectra of [Ru(C₅H₅)(C₅(CF₃)₅)] after 0 h (black), 2 h (yellow), 4 h (green), 8 h (light blue), 16 h (dark blue) and 24 h (purple) of UV irradiation at room temperature giving [Ru(C₅H₅)(d_3 -MeCN)₃][C₅(CF₃)₅].

Figure S33. ¹⁹F NMR (377 MHz, d_3 -MeCN, rt) spectra of [Ru(C₅H₅)(C₅(CF₃)₅)] after 0 h (black), 2 h (yellow), 4 h (green), 8 h (light blue), 16 h (dark blue) and 24 h (purple) of UV irradiation at room temperature giving [Ru(C₅H₅)(d_3 -MeCN)₃][C₅(CF₃)₅].

Figure S34. ¹⁹F NMR (377 MHz, 1,2-DCE, rt) spectra of $[Ru(C_5H_5)(MeCN)_3][C_5(CF_3)_5]$ after 0 h (red) and 2 h (blue) of heating at 80 °C giving $[Ru(C_5H_5)(C_5(CF_3)_5)]$.

IR Spectra

Figure 35. IR (ATR, rt) spectrum of $[Fe(C_5H_5)(DPPE)(MeCN)][C_5(CF_3)_5]$.

Figure 36. IR (ATR, rt) spectrum of $[Ru(C_5H_5)(C_5(CF_3)_5)]$.

Figure 37. IR (ATR, rt) spectrum of $[Ru(C_5H_5)(MeCN)_3][C_5(CF_3)_5]$

UV/VIS Spectra

Wavelength [nm]Figure S38. UV/VIS spectra (MeCN, rt) of $[Fe(C_5H_5)(MeCN)_3][C_5(CF_3)_5]$ after 0 min (dark blue), 10 min (violet), 20min (light blue), 30 min (green), 40 min (orange), 75 min (red).

Crystallographic Data

Table S1. Crystallographic data of $[Fe(C_5H_5)(DPPE)(MeCN)][C_5(CF_3)_5]$ · 2 CH ₂ Cl ₂ .	
---	--

Identification code	2440856
Empirical formula	$C_{45}H_{36}Cl_4F_{15}FeNP_2$
Formula weight	1135.34
Temperature/K	100.00
Crystal system	monoclinic
Space group	Pc
a/Å	15.9310(9)
b/Å	15.9306(11)
c/Å	18.5289(13)
α/°	90
β/°	89.979(3)
γ/°	90
Volume/Å ³	4702.5(5)
Z	4
ρ _{calc} g/cm ³	1.604
µ/mm ⁻¹	0.711
F(000)	2288.0
Crystal size/mm ³	0.1 × 0.1 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	3.616 to 52.782
Index ranges	-19 ≤ h ≤ 19, -19 ≤ k ≤ 19, -23 ≤ l ≤ 23
Reflections collected	77532
Independent reflections	19069 [$R_{int} = 0.0551$, $R_{sigma} = 0.0503$]
Data/restraints/parameters	19069/2/1326
Goodness-of-fit on F ²	0.842
Final R indexes [I>=2σ (I)]	$R_1 = 0.0563$, $wR_2 = 0.1715$
Final R indexes [all data]	$R_1 = 0.0681, wR_2 = 0.1968$
Largest diff. peak/hole / e Å ⁻³	1.01/-0.89
Flack parameter	0.046(6)

Identification code	2440857
Empirical formula	$C_{15}H_5F_{15}Ru$
Formula weight	571.26
Temperature/K	100.15
Crystal system	monoclinic
Space group	P21/c
a/Å	7.3204(3)
b/Å	15.6095(7)
c/Å	14.6724(7)
α/°	90
β/°	90.01(2)
γ/°	90
Volume/Å ³	1676.58(13)
Z	4
p _{calc} g/cm ³	2.263
µ/mm ⁻¹	1.095
F(000)	1096.0
Crystal size/mm ³	0.532 × 0.168 × 0.092
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	2.61 to 61.056
Index ranges	$-10 \le h \le 10, -22 \le k \le 19, -20 \le l \le 16$
Reflections collected	14655
Independent reflections	5034 [$R_{int} = 0.0497, R_{sigma} = 0.0581$]
Data/restraints/parameters	5034/48/294
Goodness-of-fit on F ²	1.091
Final R indexes [I>=2σ (I)]	$R_1 = 0.0785, wR_2 = 0.1969$
Final R indexes [all data]	$R_1 = 0.0993$, $wR_2 = 0.2176$
Largest diff. peak/hole / e Å ⁻³	1.35/-1.07

Table S2. Crystallographic data of $[Ru(C_5H_5)(C_5(CF_3)_5)]$.

Identification code	2440858
Empirical formula	C ₂₂ H ₁₄ Cl ₂ F ₁₅ N ₃ Ru
Formula weight	777.33
Temperature/K	100.00
Crystal system	monoclinic
Space group	P21
a/Å	11.6437(10)
b/Å	11.1515(9)
c/Å	12.2040(11)
α/°	90
β/°	116.484(3)
γ/°	90
Volume/Å ³	1418.3(2)
Z	2
p _{calc} g/cm ³	1.820
µ/mm ⁻¹	0.859
F(000)	760.0
Crystal size/mm ³	0.1 × 0.1 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
29 range for data collection/°	5.22 to 50.088
Index ranges	-13 ≤ h ≤ 13, -13 ≤ k ≤ 13, -14 ≤ l ≤ 14
Reflections collected	24628
Independent reflections	5005 [$R_{int} = 0.0490$, $R_{sigma} = 0.0349$]
Data/restraints/parameters	5005/16/389
Goodness-of-fit on F ²	1.084
Final R indexes [I>=2σ (I)]	$R_1 = 0.0415$, $wR_2 = 0.0956$
Final R indexes [all data]	$R_1 = 0.0501, wR_2 = 0.1056$
Largest diff. peak/hole / e Å ⁻³	1.21/-0.65
Flack parameter	0.47(6)

Table S3. Crystallographic data of $[Ru(C_5H_5)(MeCN)_3][C_5(CF_3)_5]$ · CH_2Cl_2 .

Figure S39. Molecular structure in the solid state of $[Ru(C_5H_5)(DPPE)(MeCN)][C_5(CF_3)_5] \cdot 2 CH_2Cl_2$. Ellipsoids are depicted with 50% probability level. Color code: white-hydrogen, grey-carbon, green-fluorine, orange-iron, deep blue-nitrogen, yellow-chlorine, purple-phosphorus.

Figure S40. Molecular structure in the solid state of $[Ru(C_5H_5)(C_5(CF_3)_5)]$ with disorder (left) and without disorder (right). Ellipsoids are depicted with 50% probability level. Color code: white-hydrogen, grey-carbon, green-fluorine, light blue-ruthenium.

Figure S41. Molecular structure in the solid state of $[Ru(C_5H_5)(MeCN)_3][C_5(CF_3)_5]$ · CH₂Cl₂. Ellipsoids are depicted with 50% probability level. Color code: white-hydrogen, grey-carbon, green-fluorine, light blue-ruthenium, deep blue-nitrogen, yellow-chlorine.

[Fe(C₅H₅)(DPPE)(MeCN)][C₅(CF₃)₅]: This compound crystallized as a twin with a ratio of 97:3. The structure shows severe disorder, since solvent molecules as well as CF₃-groups are refined with split position which results in a higher number of parameters.

[$Ru(C_5H_5)(C_5(CF_3)_5)$]: The structure suffers from severe general and racemic twinning, being a four-fold twin. Further the Ru1 and Ru2 atoms are disordered (ratio 72:28) resulting in an infinite chain of Ru cations and [$C_5(CF_3)_5$]⁻ anions. The above-average ADPs of six fluorine and two carbon atoms of the perfluorinated Cp* have been treated with the command ISOR.

 $[Ru(C_5H_5)(MeCN)_3][C_5(CF_3)_5]$: The $[C_5H_5]^-$ ligand shows rotational disorder (ratio 58:42), that was treated with SADI commands. The compound is also twinned with a ratio of 53:47.

Density functional theory (DFT) calculations

[C₅H₅][−]

monoanionic, diamagnetic, HF= -193.6112471 Hartree **Table S4**. Coordinates (x,y,z) for $[C_5H_5]^-$. С -0.919874000 -0.766354000 0.072425000 С 0.486217000 -0.686045000 -0.017904000 С 0.834871000 0.669451000 -0.199533000 С 1.426887000 -0.355783000 -0.221310000 С -1.440310000 0.539512000 -0.053452000 Н 1.177232000 -1.519183000 0.042606000 Н 1.840763000 1.060232000 -0.303934000 Н -2.489063000 0.812971000 -0.025801000 Н -1.498637000 -1.672117000 0.214307000 Н -0.425222000 2.501582000 -0.346722000

[C₅(CF₃)₅][−]

monoanionic, diamagnetic, HF= -1879.679711 Hartree

lat	ble 55 . Coordina	ites (x,y,z) for [0	$J_5(CF_3)_5]^-$.
F	2.916325000	1.483320000	0.561188000
F	2.934289000	0.260199000	-1.234190000
F	2.196316000	2.277040000	-1.315684000
F	0.476555000	3.583212000	0.181258000
F	-0.253623000	3.219038000	-1.833661000
F	-1.638394000	3.436173000	-0.199647000
F	-3.403612000	1.555666000	-0.980693000
F	-3.709474000	-0.102251000	0.369742000
F	-3.067295000	1.787856000	1.155384000
F	-2.325795000	-2.290196000	1.310650000
F	-2.683058000	-2.079212000	-0.823208000
F	-0.949453000	-3.132654000	-0.130390000
F	1.004326000	-2.552439000	1.380332000
F	1.744487000	-2.601162000	-0.661775000
F	2.635941000	-1.282675000	0.804439000
С	1.449899000	-1.765095000	0.368256000
С	2.193723000	1.166010000	-0.546919000
С	-2.885988000	0.932754000	0.111934000
С	-1.709453000	-2.044883000	0.123955000
С	-0.927048000	-0.771878000	0.090431000
С	0.482120000	-0.678397000	0.026749000
С	-0.451478000	2.888708000	-0.527576000
С	0.818661000	0.664736000	-0.250237000
С	-0.376278000	1.418724000	-0.277940000
С	-1.457094000	0.532259000	-0.057083000

[Fe(C₅H₅)]⁺

monocationic, diamagnetic, HF = -1457.0535874 Hartree

lable	e S6. Coordinate	es (x,y,z) for [Fe(C₅H₅)]⁺.	
Fe	-0.9306960000	-0.0001230000	-0.0023450000	
С	0.6991630000	1.1943230000	-0.2072250000	
С	0.7018810000	0.1703660000	-1.1983350000	
С	0.6956660000	0.5679120000	1.0728100000	
С	0.6964540000	-0.8432650000	0.8726140000	
С	0.7002480000	-1.0889430000	-0.5310820000	
Н	0.6507610000	-2.0571640000	-1.0053630000	
Н	0.6432000000	-1.5924840000	1.6470900000	
Н	0.6409970000	1.0721170000	2.0251600000	
Н	0.6483790000	2.2561010000	-0.3930820000	
Н	0.6542780000	0.3222730000	-2.2655460000	

[Fe(C₅H₅)]⁺ Monocationic, paramagnetic (quintet), HF= -1457.0945932 Hartree

Tab	le S7. Coordina	ates (x,y,z) for [H	·e(C₅H₅)]⁺ (quint	et)
Fe	-1.168373000	-0.013711000	0.067300000	
С	0.696382000	1.194132000	-0.216035000	
С	0.713508000	0.171467000	-1.202138000	
С	0.672752000	0.572071000	1.068166000	
С	0.672733000	-0.845327000	0.867308000	
С	0.695880000	-1.085687000	-0.539773000	
Н	0.707106000	-2.053477000	-1.016551000	
Н	0.691712000	-1.596802000	1.641051000	
Н	0.690205000	1.078795000	2.020372000	
Н	0.705773000	2.256415000	-0.404601000	
Н	0.722655000	0.323237000	-2.270402000	

[Ru(C₅H₅)]⁺

monocationic, diamagnetic, HF = -288.2832530 Hartree **Table S8**. Coordinates (x,y,z) for [Ru(C₅H₅)]⁺.

			• 51 · 5/] ·	
Ru	-0.7647490000	-0.0008190000	-0.0005690000	
С	0.9636920000	1.0576540000	-0.6063440000	
С	0.9664190000	-0.2497740000	-1.1915970000	
С	0.9620780000	0.9048970000	0.8179550000	
С	0.9642850000	-0.4970420000	1.1128000000	
С	0.9676320000	-1.2106750000	-0.1291770000	
Н	0.9454500000	-2.2833210000	-0.2446370000	
Н	0.9388120000	-0.9373600000	2.0973090000	
Н	0.9366920000	1.7049960000	1.5414160000	
Н	0.9398730000	1.9931630000	-1.1437570000	
Н	0.9435130000	-0.4718250000	-2.2471310000	

[Fe(C₅(CF₃)₅)]⁺

monocationic, diamagnetic, HF = -3142.9555470 Hartree

Table S9.	Coordinates	(x,y,z) for	$[Fe(C_5(CF_3)_5)]^+$.

Tab	ole S9. Coordina	ites (x,y,z) for [F	$e(C_5(CF_3)_5)]^+$.	
Fe	-0.034741000	0.020995000	1.321412000	
F	0.828871000	3.154125000	0.681656000	
F	0.356557000	3.219606000	-1.450986000	
F	-1.220725000	3.259414000	0.016544000	
F	-2.599832000	1.412716000	1.201678000	
F	-3.073814000	1.614031000	-0.929233000	
F	-3.449682000	-0.237674000	0.112913000	
F	-0.819153000	-3.277565000	-0.932793000	
F	-2.115733000	-2.620564000	0.681239000	
F	-2.515085000	-2.046149000	-1.385836000	
F	0.968429000	-2.992530000	0.878123000	
F	1.954256000	-2.819289000	-1.061763000	
F	2.727784000	-1.777388000	0.677912000	
F	3.057482000	0.964670000	0.930563000	
F	3.335141000	0.049503000	-1.031996000	
F	2.686007000	2.091364000	-0.884830000	
С	-1.562467000	-2.270791000	-0.485151000	
С	-2.620055000	0.787413000	-0.005990000	
С	-0.029347000	2.751079000	-0.270860000	
С	2.589384000	0.893740000	-0.325927000	
С	1.622593000	-2.169473000	0.038232000	
С	0.725861000	-0.964197000	-0.256666000	
С	1.134770000	0.405112000	-0.308229000	
С	-0.044302000	1.220350000	-0.304213000	
С	-0.706751000	-1.006261000	-0.325838000	
С	-1.182702000	0.342161000	-0.295233000	

[Fe(C₅(CF₃)₅)]⁺

monocationic, paramagnetic (quintet), HF = -3143.0017633 Hartree **Table S10**. Coordinates (x,y,z) for [Fe(C₅(CF₃)₅)]⁺.

ιαυ			
Fe	-0.192275000	0.230905000	1.569425000
F	0.864711000	3.177288000	0.507558000
F	0.315870000	3.207141000	-1.604660000
F	-1.205588000	3.270929000	-0.073678000
F	-2.272760000	1.101050000	1.429009000
F	-3.137694000	1.760599000	-0.517515000
F	-3.414593000	-0.253309000	0.142886000
F	-0.802450000	-3.229336000	-1.129598000
F	-2.069970000	-2.690354000	0.553841000
F	-2.541281000	-2.014784000	-1.463514000
F	0.894140000	-3.076768000	0.797728000
F	2.087497000	-2.711678000	-0.983578000
F	2.589916000	-1.759191000	0.907691000
F	3.025124000	1.086609000	0.940352000
F	3.327790000	-0.046535000	-0.894198000
F	2.682490000	1.999981000	-1.000743000
С	-1.550162000	-2.261610000	-0.607684000
С	-2.563545000	0.736944000	0.039813000
С	-0.026146000	2.748487000	-0.409064000
С	2.566784000	0.873391000	-0.306854000
С	1.586542000	-2.157715000	0.107110000
С	0.689650000	-0.963118000	-0.203694000
С	1.111192000	0.405697000	-0.260588000
С	-0.053263000	1.222572000	-0.396182000
С	-0.712925000	-0.999468000	-0.401878000
С	-1.186307000	0.346676000	-0.457258000

[Ru(C₅(CF₃)₅)]⁺

monocationic, diamagnetic, HF = -1974.1852318 Hartree **Table S11**. Coordinates (x,y,z) for [Ru(C₅(CF₃)₅)]⁺.

Tabl					
Ru	-0.0022390000	0.0141820000	1.3754410000		
F	2.8459840000	1.7260370000	0.5567120000		
F	2.4989770000	1.9550590000	-1.5891120000		
F	1.4449310000	3.1945210000	-0.1794220000		
F	-0.8094100000	3.0469880000	0.9633780000		
F	-1.1528750000	3.1980610000	-1.1881280000		
F	-2.6100570000	2.2535720000	0.1085070000		
F	-2.8870610000	-1.7222410000	-1.0529390000		
F	-3.3915020000	-0.3713190000	0.5690000000		
F	-3.1859750000	0.3585730000	-1.4775280000		
F	-1.4415780000	-2.8896140000	0.7028510000		
F	-0.5748860000	-3.3252040000	-1.2510070000		
F	0.6709400000	-3.2393360000	0.5245060000		
F	2.8474090000	-1.5863290000	0.8294870000		
F	2.3820660000	-2.2859890000	-1.1848480000		
F	3.4015710000	-0.4147510000	-0.9037030000		
С	-2.7123760000	-0.4953720000	-0.5724480000		
С	-1.3137270000	2.4304440000	-0.1210640000		
С	1.9296220000	1.9785610000	-0.3878980000		
С	2.4720720000	-1.2138800000	-0.4016570000		
С	-0.3818960000	-2.7055040000	-0.0990730000		
С	-0.1671960000	-1.2029960000	-0.3039840000		
С	1.1016950000	-0.5185510000	-0.3416210000		
С	0.8399140000	0.9021160000	-0.3344550000		
С	-1.2157090000	-0.2139370000	-0.3584880000		
С	-0.5937810000	1.0880740000	-0.3075100000		

[Fe(C₅H₅)(C₅(CF₃)₅)]

neutral, diamagnetic, HF = -3336.9986336 Hartree	
Table S12 Coordinates (x, y, z) for $[Fe(C_{c}H_{c})(C_{c}(CF_{c}))]$	1-

Table S12 . Coordinates (x,y,z) for $[Fe(C_5H_5)(C_5(CF_3)_5)]$.				
Fe	-0.0143280000	0.0145610000	1.0739940000	
F	2.8934940000	1.9161850000	-0.9528750000	
F	3.2456390000	-0.1077100000	-1.6024490000	
F	3.3098640000	0.3971790000	0.5109680000	
F	2.6560080000	-2.1074200000	0.0661530000	
F	1.6197190000	-2.8551550000	-1.6775450000	
F	0.8278730000	-3.2080980000	0.3173530000	
F	-2.6633300000	-1.7241010000	-1.7526030000	
F	-2.3789090000	-2.4769270000	0.2689450000	
F	-1.1072420000	-3.1427080000	-1.3488640000	
F	-3.4081880000	0.0467780000	-0.0832200000	
F	-2.9664270000	1.5035190000	-1.6283660000	
F	-2.6550800000	1.9715880000	0.4697810000	
F	-0.9687310000	3.3583960000	-0.7028570000	
F	0.7713010000	3.0325040000	-1.9159790000	
F	0.9684040000	3.2716650000	0.2409210000	
С	-1.1320400000	0.4634390000	-0.5618090000	
С	-0.7785540000	-0.9257400000	-0.6003140000	
С	0.0820760000	1.2298160000	-0.5820870000	
С	1.1834060000	0.3110590000	-0.5671920000	
С	0.6482550000	-1.0184430000	-0.5523210000	
С	1.4408620000	-2.3023380000	-0.4686250000	
С	2.6624840000	0.6365700000	-0.6450770000	
С	0.2107660000	2.7299710000	-0.7311030000	
С	-2.5429290000	1.0029600000	-0.4573160000	
C	-1.7383080000	-2.0745140000	-0.8419740000	
С	1.0071120000	0.6284140000	2.7682530000	
С	-0.2980400000	1.1920180000	2.7551790000	
C	0.8752460000	-0.7871140000	2.7650440000	
С	-1.2367180000	0.1251450000	2.7421350000	
С	-0.5113490000	-1.0980060000	2.7488310000	
Н	1.9334940000	1.1762040000	2.7362080000	
Н	-0.5330360000	2.2422140000	2.7107750000	
Н	1.6843350000	-1.4971890000	2.7308490000	
Н	-2.3076280000	0.2249920000	2.6888280000	
Н	-0.9378160000	-2.0854880000	2.6954830000	

[Ru(C₅H₅)(C₅(CF₃)₅)]

neutral, diamagnetic, HF = -2168.2185621 Hartree **Table S13**. Coordinates (x,y,z) for [Ru(C₅H₅)(C₅(CF₃)₅)].

Tub			
Ru	-0.515119000	0.069216000	1.234657000
F	-3.089389000	1.984307000	2.845318000
F	-2.592460000	1.468671000	4.903017000
F	-1.435792000	2.937974000	3.846829000
F	0.685310000	2.974954000	2.559975000
F	1.304648000	2.308530000	4.531816000
F	2.388313000	1.693572000	2.755172000
F	2.264013000	-2.411600000	3.250817000
F	2.909398000	-0.868880000	1.879817000
F	2.799262000	-0.481951000	4.017917000
F	0.604533000	-3.228595000	1.491734000
F	-0.169995000	-3.719327000	3.463401000
F	-1.517136000	-3.353722000	1.811132000
F	-3.487152000	-1.588642000	1.857647000
F	-2.982220000	-2.371152000	3.821775000
F	-3.848070000	-0.408526000	3.619192000
С	0.509577000	-0.013279000	-0.708697000
С	0.178289000	1.343094000	-0.419981000

С	-0.704043000	-0.756083000	-0.795534000
С	-1.240254000	1.438259000	-0.327686000
С	-1.785536000	0.140972000	-0.558728000
С	2.189792000	-1.098868000	2.989553000
С	1.163105000	1.926449000	3.251880000
С	-2.072182000	1.771977000	3.698840000
С	-2.983004000	-1.260699000	3.060842000
С	-0.369044000	-2.953936000	2.378975000
С	-0.400045000	-1.483720000	2.730020000
С	-1.577868000	-0.694004000	2.973633000
С	-1.158253000	0.659019000	3.232347000
С	0.748917000	-0.635229000	2.880420000
С	0.279298000	0.701875000	3.133840000
Н	1.504434000	-0.410984000	-0.819188000
Н	0.877295000	2.150121000	-0.278697000
Н	-0.787791000	-1.812481000	-0.987478000
Н	-1.801934000	2.329490000	-0.103398000
Н	-2.829967000	-0.120369000	-0.536100000

[Rh(COD)]⁺ cationic, diamagnetic, HF= -422.5845527 Hartree **Table S14**. Coordinates (x,y,z) for [Rh(COD)]⁺.

Rh	-0.383380000	-0.200454000	1.936381000
С	0.941295000	0.122912000	0.335474000
С	0.419023000	1.124182000	-0.677974000
С	0.541964000	-1.237363000	0.384945000
С	-0.794128000	1.896798000	-0.130178000
С	-0.483673000	-1.887805000	-0.509082000
С	-1.772156000	-1.054475000	-0.627771000
С	-2.036360000	-0.260427000	0.637967000
С	-1.608542000	1.077137000	0.838935000
Н	-2.615413000	-1.717055000	-0.814725000
Н	-1.720644000	-0.372089000	-1.475162000
Н	-0.719295000	-2.864927000	-0.087628000
Н	-0.047236000	-2.077753000	-1.495202000
Н	1.894735000	0.367744000	0.798153000
Н	1.231057000	-1.926971000	0.871838000
Н	1.212961000	1.826402000	-0.926137000
Н	0.167250000	0.602693000	-1.600494000
Н	-0.451421000	2.788099000	0.395218000
Н	-1.434626000	2.249974000	-0.945047000
Н	-2.868346000	-0.602759000	1.249238000
Н	-2.158343000	1.655045000	1.581381000

[Rh(C₅(CF₃)₅)(COD)] neutral, diamagnetic, HF= -2302.4545927 Hartree Table S15. Coordinates (x,y,z) for [Rh(COD)]⁺.

Rh	0.626018000	-0.718569000	0.187351000
F	-2.755850000	-1.670257000	1.199520000
F	-3.523272000	0.337734000	1.507615000
F	-3.781057000	-0.631243000	-0.391832000
F	-2.121934000	-1.765221000	-2.050195000
F	-2.851354000	0.166121000	-2.742465000
F	-0.945119000	-0.579473000	-3.407255000
F	1.327387000	0.315663000	-3.067474000
F	0.204876000	2.166397000	-3.204586000
F	2.018182000	2.044854000	-2.016684000
F	-1.437736000	0.018133000	3.034299000
F	0.296338000	1.285374000	3.084384000
F	-1.667172000	2.162643000	2.800713000

F	2.372056000	2.469789000	0.674709000
F	0.980164000	3.729360000	-0.423999000
F	0.655565000	3.342189000	1.661113000
С	-0.892397000	1.117994000	2.477516000
С	1.070538000	2.772460000	0.519849000
С	0.904936000	1.383129000	-2.365500000
С	-1.754001000	-0.503443000	-2.344413000
С	-2.917091000	-0.466836000	0.616176000
С	-1.613494000	0.149777000	0.152548000
С	-1.107969000	0.176491000	-1.159919000
С	0.076264000	1.006316000	-1.155771000
С	-0.744298000	0.946498000	0.982856000
С	0.215501000	1.583012000	0.150161000
С	1.470247000	-1.630740000	1.960487000
С	2.939147000	-1.987154000	1.816492000
С	0.419865000	-2.423865000	1.477453000
С	3.559381000	-1.339625000	0.572665000
С	0.567734000	-3.702126000	0.688209000
С	1.605923000	-3.585537000	-0.435529000
С	1.669538000	-2.175750000	-0.999288000
С	2.570669000	-1.189605000	-0.557380000
Н	1.350272000	-4.276767000	-1.238927000
Н	2.594565000	-3.881348000	-0.083867000
Н	-0.405782000	-3.928899000	0.251371000
Н	0.805048000	-4.536148000	1.359755000
Н	1.236123000	-0.959744000	2.776867000
Н	-0.538983000	-2.309133000	1.968361000
Н	3.473233000	-1.651744000	2.705815000
Н	3.049255000	-3.071240000	1.786276000
Н	3.912580000	-0.339863000	0.829127000
Н	4.438921000	-1.899779000	0.232644000
Н	1.292020000	-2.062225000	-2.008653000
Н	2.834673000	-0.418861000	-1.271150000

References

- [1] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512–7515.
- [2] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176–2179.
- [3] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, Pure Appl. Chem. 2001, 73, 1795–1818.
- [4] M. R. Willcott, J. Am. Chem. Soc., 2009, 131, 13180.
- [5] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339– 341.
- [6] G. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- [7] G. M. Sheldrick, SHELXL Version 2014/7, Program for Crystal Structure Solution and Refinement, Göttingen, Germany, 2014.
- [8] G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.
- [9] K. Brandenburg, Diamond: Crystal and Molecular Structure Visualization http://www.crystalimpact.com/diamond
- [10] Persistence of Vision Pty. Ltd. Persistence of Vision Raytracer. Ltd., Persistence of Vision Pty. 2004.
- [11] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [12] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, J. Cheminformatics 2012, 4, 17.
- [13] G. A. Zhurko, in ChemCraft, http://www.chemcraftprog.com
- [14] E. D. Laganis, D. M. Lemal, J. Am. Chem. Soc. 1980, 102, 6633.
- [15] R. D. Chambers, W. K. Gray, J. F. S. Vaughan, S. R. Korn, M. Médebielle, A. S. Batsanov, C. W. Lehmann, J. A. K. Howard, *Perkin Trans.*, **1997**, 135–146.
- [16] R. Sievers, M. Sellin, S. M. Rupf, M. Malischewski, Angew. Chem. Int. Ed., 2022, e202211147.
- [17] C. Malchau, N. Ultes, J. Ehrhard, T. R. Eger, D. V. Fries, B. Oelkers, S. Becker, G. Niedner Schatteburg, W. R. Thiel, *J. Organomet. Chem.* 2023, 987, 122618.
- [18] R. Sievers, N. G. Kub, T.-N. Streit, M. Reimann, G. Thiele, M. Kaupp, M. Malischewski, ChemRxiv 2025, DOI: 10.26434/chemrxiv-2025-lqllp
- [19] [C₅(CF₃)₅]⁻ resonances are suppressed and invisible in ¹³C{¹⁹F} NMR spectroscopy even at prolonged measurement times.
- [20] MeCN resonances are suppressed and invisible in ¹³C{¹H} NMR spectroscopy even at prolonged measurement times.