Photocatalytic Synthesis of 2-Oxabicyclo[2.1.1]hexanes: Cobalt-Enhanced Efficiency

Si-Yuan Tang⁺,^[a] Zhan-Jie Wang⁺,^[a] Jin-Jiao Wu,^[a] Zhi-Xi Xing,^[a] Ze-Yi

Du,^[b] and Huan-Ming Huang^{[a]*}

^aSchool of Physical Science and Technology, ShanghaiTech University,

Shanghai 201210, China

^bDepartment of Medicinal Chemistry, School of Pharmacy, Fudan

University, No. 826 Zhangheng Road, Shanghai 201203, China

+ equal contribution

*Correspondence author. Email: huanghm@shanghaitech.edu.cn

SUPPORTING INFORMATION

Table of Contents

1	Ge	neral ExperimentalS 3
	1.1	Data AnalysisS 3
2	Sy	nthesis of Starting MaterialsS 5
	2.1	General Procedure AS 6
	2.2	General Procedure B
	2.3	Experimental Procedures and Spectral Characterization of the Starting
Mater		rialS7
3	Sy	nthesis of Desired CompoundsS 11
	3.1	General Procedure C: Preparation of Desired CompoundsS 11
	3.2	Experimental Procedures and Spectral Characterization of the Desired
	Prod	ucts S 11
4 Mechanistic Studies		echanistic StudiesS 43
	4.1	Radical cation trapping experimentS 43
	4.2	Radical trapping experimentS 44
	4.3	Ketyl Radical-trapping ExperimentS 48
	4.4	UV-Vis Absorption Spectra AnalysisS 49
	4.5	Stern-Volmer Luminescence Quenching Analysis
	4.6	Quantum Yield Experiment S 51
5	Gr	am-scale experimentS 54
6	Sy	nthetic TransformationS 55
7 Physicochemical Property Assessment		
8 Phrenological Property Assessment		
9	Do	ocking AnalysisS 65
1	0	X-Ray Structure of Compound 33S 66
1	1	Unsuccessful CasesS 67
12	2	NMR Spectra of Starting MaterialsS 68
1	3	NMR Spectra of Desired CompoundsS 74
14	4	References S 149

1 General Experimental

All experiments were performed in oven-dried glassware under nitrogen unless otherwise stated. All reagents were purchased from Alfa Aesar, Adamas, Accela, Bidepharm, Energy chemical, J&K chemical, Macklin, TCI, Leyan and used without further purification, unless otherwise stated. Dry solvents were purchased from J&k chemical (Extra Dry, H₂O <10 ppm) in J&KSeal® bottles, stored under molecular sieves and used as received or obtained from commercial sources. Dichloromethane, toluene, diethyl ether, THF were purified by passage through an activated alumina column under nitrogen. Thin-layer chromatography (TLC) analysis of reaction mixtures were performed using Huanghai silica gel HSGF254 TLC plates and Leyan HPTLC Silica Gel 60 GF254, and visualized under UV or by staining with ceric ammonium molybdate or potassium permanganate.

1.1 Data Analysis

Nuclear magnetic resonance (NMR) spectra were recorded using Bruker Avance III HD spectrometer (FT, 400, 500 or 600 MHz for ¹H, 101, 126 or 150 MHz for ¹³C). All spectral data were acquired at 295 K. Chemicals shifts (δ) are quoted in parts per million (ppm) against tetramethylsilane (TMS, δ = 0.00 ppm). The following residual solvent signals were used as references for ¹H and ¹³C NMR spectra: CDCl₃, δ H 7.26 ppm, δ C 77.16 ppm, δ C calibrated using absolute referencing to the ¹H spectrum). ¹⁹F-NMR spectra were calibrated using absolute referencing to the 1H-NMR spectrum, as suggested by IUPAC. Coupling constants (*J*) are reported in Hertz (Hz) to the nearest 0.1 Hz. The multiplicity abbreviations used (or combinations thereof) are: s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, m = multiplet. High-resolution mass spectra (HRMS) were obtained from the Agilent Technologies 6230 TOF LC/MS spectrometer in electrospray ionization (ESI⁺) mode. Ultraviolet-visible (UV-vis) absorption spectra were recorded by an AgilentCary 3000 UV-vis spectrophotometer at 25 °C. Stern-Volmer luminescence quenching analyses were conducted using an Edinburgh Instruments FS5 spectrometer. X-Ray structure analyses were performed using a Bruker D8 Venture X-ray single crystal diffractometer.

2 Synthesis of Starting Materials

 Zac
 Zad
 Zae

 4-Oxobutyl (S)-2-(4-isobutylphenyl)propanoate
 4-Oxobutyl 2-(11-oxo-6,11-dihydrodibenzo[*b*,e]oxepin-2-yl)acetate
 4-Oxobutyl 2-propylpentanoate

Figure S2. Chemical structures of alkyl compound 2

Figure S4. Chemical structures of drug derivatives starting material **75-77** Some compounds were synthesized according to published literature (see General Procedure A for compound **2y**, **2aa**, **2ad** and **2ae**, General Procedure B for compound **76** and **77**).^[1,2] Compound **1**, **2q**, **2v**, **2w**, **2x**, **2z**, **2ab**, **2ac** and **75** were synthesized according to published literatures and all analytical data matched the report.^[1,3-6] Other reagents were purchased from Alfa Aesar, Adamas, Accela, Bidepharm, Energy chemical, J&K chemical, Macklin, TCI, Leyan and used directly without further purification.

2.1 General Procedure A

Step1: Butane-1,4-diol (25 mmol) was dissolved in DCM (20 mL). Corresponding acid (5 mmol mmol), EDCI·HCl (7.5 mmol) and DMAP (1 mmol) were added under nitrogen atmosphere. The mixture was stirred for 12 hours under nitrogen atmosphere at RT. The reaction mixture was quenched with H₂O (40 mL) and extracted with EtOAc (3×40 mL). The organic phases were combined, dried over

NaSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with indicated solvent system to give intermediate S1.

Step2: Intermediate S1 was dissolved in DCM (0.25 M). Dess-Martin reagent (1.2 eq.) was added under nitrogen atmosphere. The mixture was stirred for 12 hours under nitrogen atmosphere at RT. The reaction mixture was quenched with saturated NaHCO₃ aqueous solution (40 mL) and extracted with EtOAc (3 × 40 mL). The organic phases were combined, dried over NaSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with indicated solvent system to give the desired compound.

2.2 General Procedure B

Ester compound (0.5 mmol) was dissolved in a mixture of THF, MeOH and H₂O (8/2/2 mL). NaOH (60 mg, 1.5 mmol) was added under nitrogen atmosphere. The mixture was stirred for 6 hours under nitrogen atmosphere at 50 °C. The reaction mixture was quenched with 2 M HCl aqueous solution (20 mL) and extracted with EtOAc (3 × 20 mL). The organic phases were combined, dried over NaSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with indicated solvent system to give the desired compound.

2.3 Experimental Procedures and Spectral Characterization of the Starting Material

2y was synthesized according to the general procedure A and purified by flash column chromatography (silica gel), eluting with 20% EtOAc in PE to afford the title compound as a colourless oil (1.27 g, 3.92 mmol, 78% over 2-steps).

 $R_f = 0.5$ (40% EtOAc in PE)

¹**H NMR (500 MHz, CDCl**₃) δ 9.79 (t, *J* = 1.4 Hz, 1H), 8.09 – 8.02 (m, 2H), 7.71 – 7.67 (m, 2H), 7.67 – 7.60 (m, 2H), 7.47 (dd, *J* = 8.4, 6.8 Hz, 2H), 7.44 – 7.38 (m, 1H), 4.16 (t, *J* = 6.3 Hz, 2H), 3.35 (t, *J* = 6.5 Hz, 2H), 2.78 (t, *J* = 6.5 Hz, 2H), 2.61 – 2.53 (m, 2H), 1.99 (app. p, *J* = 6.8 Hz, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 201.5, 197.8, 173.0, 146.1, 139.9, 135.3, 129.1 (2C),
128.8 (2C), 128.4, 127.4 (3C), 63.7, 40.6, 33.5, 28.3, 21.4 ppm.

HRMS (ESI) calculate: C₂₀H₂₁O₄⁺ (M+H)⁺: 325.1434, found: 325.1431.

2aa was synthesized according to the general procedure A and purified by flash column chromatography (silica gel), eluting with 20% EtOAc in PE to afford the title compound as a colourless oil (0.91 g, 3.64 mmol, 73% over 2-steps).

 $R_f = 0.6$ (40% EtOAc in PE)

¹H NMR (500 MHz, CDCl₃) δ 9.81 (t, J = 1.3 Hz, 1H), 7.98 (dd, J = 7.8, 1.7 Hz, 1H),
7.62 - 7.52 (m, 1H), 7.36 - 7.29 (m, 1H), 7.10 (dd, J = 8.1, 1.2 Hz, 1H), 4.31 (t, J = 6.4 Hz, 2H), 2.61 (td, J = 7.2, 1.2 Hz, 2H), 2.34 (s, 3H), 2.07 (t, J = 6.8 Hz, 2H) ppm.
¹³C NMR (126 MHz, CDCl₃) δ 201.2, 169.8, 164.4, 150.8, 134.1, 131.7, 126.2, 124.0,
123.2, 64.1, 40.5, 21.4, 21.2 ppm.

HRMS (ESI) calculate: C₁₃H₁₄O₅⁺ (M+H)⁺: 251.0914, found: 251.0911.

2ad was synthesized according to the general procedure A and purified by flash column chromatography (silica gel), eluting with 12% EtOAc in PE to afford the title compound as a colourless oil (1.02 g, 3.02 mmol, 60%).

 $R_f = 0.5$ (30% EtOAc in PE)

¹**H NMR (500 MHz, CDCl**₃) δ 9.75 (t, *J* = 1.2 Hz, 1H), 8.10 (d, *J* = 2.4 Hz, 1H), 7.87 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.57 – 7.50 (m, 1H), 7.50 – 7.43 (m, 1H), 7.40 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.38 – 7.33 (m, 1H), 7.02 (d, *J* = 8.5 Hz, 1H), 5.17 (s, 2H), 4.12 (t, *J* = 6.3 Hz, 2H), 3.62 (s, 2H), 2.55 – 2.47 (m, 2H), 2.00 – 1.91 (m, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 201.3, 190.9, 171.4, 160.6, 140.5, 136.4, 135.6, 132.9, 132.5, 129.5, 129.4, 127.9, 127.7, 125.2, 121.2, 73.7, 64.0, 40.5, 40.2, 21.3 ppm.
HRMS (ESI) calculate: C₂₀H₁₉O₅⁺ (M+H)⁺: 339.1227, found: 339.1223.

2ae was synthesized according to the general procedure A and purified by flash column chromatography (silica gel), eluting with 5% EtOAc in PE to afford the title compound as a colourless oil (0.63 g, 2.94 mmol, 59%).

 $R_f = 0.5$ (10% EtOAc in PE)

¹**H NMR (500 MHz, CDCl**₃) δ 9.78 (t, *J* = 1.3 Hz, 1H), 4.09 (t, *J* = 6.4 Hz, 2H), 2.56 – 2.49 (m, 2H), 2.37 – 2.30 (m, 1H), 2.00 – 1.92 (m, 2H), 1.61 – 1.51 (m, 2H), 1.40 (dd, *J* = 8.0, 5.3 Hz, 2H), 1.31 – 1.21 (m, 4H), 0.88 (app. t, *J* = 7.3 Hz, 6H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 201.4, 176.6, 63.1, 45.4, 40.6, 34.7 (2C), 21.5, 20.8 (2C), 14.1 (2C) ppm.

HRMS (ESI) calculate: C₁₂H₂₃O₃+ (M+H)+: 215.1642, found: 215.1642.

76 was synthesized according to the general procedure B and purified by flash column chromatography (silica gel), eluting with 3% MeOH in DCM to afford the title compound as a white solid (133 mg, 0.48 mmol, 95%).

 $R_f = 0.7$ (8% MeOH in DCM)

¹**H NMR** (500 MHz, CDCl₃) δ 7.56 – 7.50 (m, 4H), 7.46 – 7.41 (m, 2H), 7.40 – 7.35 (m, 3H), 7.35 – 7.29 (m, 1H), 5.54 (s, 1H), 2.71 – 2.59 (m, 2H), 2.35 (s, 1H), 2.26 (dd, *J* = 8.1, 2.3 Hz, 1H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 176.0, 139.3, 136.8, 128.6 (3C), 128.3 (2C), 128.0, 126.8 (2C), 126.3 (2C), 87.1, 80.2, 54.6, 51.4, 39.8 ppm.

HRMS (ESI) calculate: C₁₈H₁₇O₅⁺ (M+H)⁺: 281.1172, found: 281.1174.

77 was synthesized according to the general procedure B and purified by flash column chromatography (silica gel), eluting with 2% MeOH in DCM to afford the title compound as a white solid (130 mg, 0.47 mmol, 95%).

R*f* = 0.8 (8% MeOH in DCM)

¹**H NMR** (400 MHz, MeOD) δ 8.03 (d, *J* = 2.1 Hz, 1H), 7.81 (dd, *J* = 8.0, 2.1 Hz, 1H), 7.69 (dd, *J* = 7.1, 1.8 Hz, 2H), 7.51 – 7.45 (m, 3H), 7.43 – 7.35 (m, 6H) ppm. ¹³**C NMR** (126 MHz, CDCl₃) δ 172.4, 142.3 (2C), 141.4, 141.0, 133.7, 132.5, 130.5, 130.1 (2C), 129.6 (2C), 129.2 (2C), 128.9 (2C), 128.3, 128.0 (2C) ppm. **HRMS** (ESI) calculate: C₁₉H₁₅O₂⁺ (M+H)⁺: 275.1067, found: 275.1066.

3 Synthesis of Desired Compounds

3.1 General Procedure C: Preparation of Desired Compounds

An oven-dried two-dram vials equipped with PTFE-coated stir bar and Teflon® septum were used. CoCl₂ (7.5 mol%), Mes₂Acr-*t*Bu₂BF₄ (**PC1**, 1 mol%), **1** (0.2 mmol, 2 eq.) and **2** (0.1 mmol, 1 eq.) were added into the vial and was dissolved in DCE (0.5 mL, 0.2 M). The vial was set to stir (500 rpm) and irradiated with a 30 W 450 nm blue LED lamp (approximate 3 cm away, with cooling fan to keep the reaction at room temperature). After 12 hours, the reaction mixture was transferred to a 100mL round-bottom flask and concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with indicated solvent system to give the desired product.

Figure S5. Picture of 30 W 450 nm irradiator

3.2 Experimental Procedures and Spectral Characterization of the Desired Products

Methyl-3-phenethyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

3 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 3% EtOAc in PE to afford the title compound as a white solid (29 mg, 0.090 mmol, 90%).

 $R_f = 0.6$ (10% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.45 – 7.41 (m, 2H), 7.41 – 7.36 (m, 2H), 7.35 – 7.27 (m, 3H), 7.24 (d, *J* = 1.4 Hz, 2H), 7.22 – 7.18 (m, 1H), 4.34 (dd, *J* = 9.5, 3.6 Hz, 1H), 3.75 (s, 3H), 2.99 – 2.90 (m, 1H), 2.78 – 2.69 (m, 1H), 2.43 (d, *J* = 6.9 Hz, 1H), 2.39 – 2.31 (m, 2H), 2.26 (dd, *J* = 10.2, 7.7 Hz, 1H), 2.09 – 2.00 (m, 1H), 1.93 – 1.83 (m, 1H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 171.0, 142.1, 137.4, 128.6 (2C), 128.5 (4C), 128.4, 126.3 (2C), 126.0, 86.6, 79.7, 52.8, 52.1, 50.1, 42.1, 35.0, 32.3 ppm.

HRMS (ESI) calculate: C₂₁H₂₃O₃⁺ (M+H)⁺: 323.1642, found: 323.1641.

Methyl-3-(4-fluorophenethyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carb-oxylate

4 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a pale-yellow oil. (18 mg, 0.053 mmol, 53%).

 $R_f = 0.6$ (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.44 – 7.30 (m, 5H), 7.23 – 7.17 (m, 2H), 7.00 – 6.94 (m, 2H), 4.30 (dd, *J* = 9.6, 3.5 Hz, 1H), 3.75 (s, 3H), 2.96 – 2.87 (m, 1H), 2.75 – 2.66 (m, 1H), 2.43 (d, *J* = 7.0 Hz, 1H), 2.34 (dd, *J* = 9.9, 7.1 Hz, 2H), 2.24 (dd, *J* = 10.3, 7.7 Hz, 1H), 2.05 – 1.97 (m, 1H), 1.89 – 1.79 (m, 1H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 170.8, 161.3 (d, *J* = 242.6 Hz), 137.5, 137.2, 129.86 (d, *J* = 7.8 Hz, 2C), 128.4 (2C), 128.3, 126.1 (2C), 115.11 (d, *J* = 21.0 Hz, 2C), 86.5, 79.3, 52.6, 52.0, 50.0, 42.0, 34.9, 31.4. ppm.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -117.74 ppm.

HRMS (ESI) calculate: C₂₁H₂₂FO₃⁺ (M+H)⁺: 341.1547, found: 341.1545.

Methyl-3-(4-chlorophenethyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carb-oxylate

5 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (20 mg, 0.0570 mmol, 57%).

 $R_f = 0.6$ (10% EtOAc in PE).

¹**H NMR** (600 MHz, CDCl₃) δ 7.35 – 7.28 (m, 4H), 7.27 – 7.23 (m, 1H), 7.20 – 7.16 (m, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 4.22 (dd, *J* = 9.6, 3.4 Hz, 1H), 3.67 (s, 3H), 2.87 – 2.80 (m, 1H), 2.68 – 2.61 (m, 1H), 2.35 (d, *J* = 7.0 Hz, 1H), 2.28 – 2.22 (m, 2H), 2.19 – 2.14 (m, 1H), 1.97 – 1.90 (m, 1H), 1.81 – 1.73 (m, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 170.7, 140.4, 137.1, 131.6, 129.9 (2C), 128.5 (2C), 128.4 (2C), 128.3, 126.1 (2C), 86.5, 79.2, 52.6, 51.9, 50.0, 42.0, 34.6, 31.5 ppm.
HRMS (ESI) calculate: C₂₁H₂₂ClO₃⁺ (M+H)⁺: 357.1252, found: 357.1250.

Methyl-3-(4-methylphenethyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

6 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a pale-yellow oil. (20 mg, 0.060 mmol, 60%).

 $R_f = 0.6$ (10% EtOAc in PE).

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.29 (m, 5H), 7.17 – 7.08 (m, 4H), 4.33 (dd, *J* = 9.5, 3.6 Hz, 1H), 3.74 (s, 3H), 2.95 – 2.85 (m, 1H), 2.74 – 2.63 (m, 1H), 2.42 (d, *J* = 6.9 Hz, 1H), 2.37 – 2.29 (m, 5H), 2.25 (dd, *J* = 10.1, 7.6 Hz, 1H), 2.07 – 1.96 (m, 1H), 1.92 – 1.80 (m, 1H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 170.9, 138.9, 137.2, 135.3, 129.1 (2C), 128.4 (4C), 128.3, 126.1 (2C), 86.4, 79.6, 52.6, 51.9, 50.0, 41.9, 35.0, 31.8, 21.1 ppm.

HRMS (ESI) calculate: C₂₂H₂₅O₃⁺ (M+H)⁺: 337.1798, found: 337.1795.

Methyl-3-(4-(*tert*-butyl)phenethyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4carboxylate

7 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil (29 mg, 0.076 mmol, 76%).

R_{*f*} = 0.6 (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.45 – 7.31 (m, 7H), 7.22 – 7.16 (m, 2H), 4.36 (dd, *J* = 9.5, 3.6 Hz, 1H), 3.75 (s, 3H), 2.97 – 2.88 (m, 1H), 2.75 – 2.66 (m, 1H), 2.43 (d, *J* = 7.0 Hz, 1H), 2.39 – 2.30 (m, 2H), 2.26 (dd, *J* = 10.1, 7.7 Hz, 1H), 2.09 – 1.99 (m, 1H), 1.93 – 1.82 (m, 1H), 1.32 (s, 9H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 170.9, 148.7, 138.9, 137.2, 128.4 (2C), 128.3, 128.2 (2C), 126.1 (2C), 125.3 (2C), 86.4, 79.8, 52.7, 52.0, 50.0, 41.9, 34.9, 34.4, 31.7, 31.5 (3C) ppm.

HRMS (ESI) calculate: C₂₅H₃₁O₃+ (M+H)+: 379.2268, found: 379.2260.

Methyl-3-(4-methoxyphenethyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-ca-rboxylate

8 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (25 mg, 0.070 mmol, 70%).

R_f = 0.4 (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.46 – 7.29 (m, 5H), 7.17 (d, *J* = 8.1 Hz, 2H), 6.85 (d, *J* = 8.4 Hz, 2H), 4.33 (dd, *J* = 9.5, 3.5 Hz, 1H), 3.80 (s, 3H), 3.75 (s, 3H), 2.93 – 2.85 (m,

1H), 2.73 – 2.64 (m, 1H), 2.42 (d, J = 7.0 Hz, 1H), 2.34 (dd, J = 14.7, 8.5 Hz, 2H), 2.26 (dd, J = 10.2, 7.6 Hz, 1H), 2.06 – 1.96 (m, 1H), 1.91 – 1.81 (m, 1H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 169.8, 156.8, 136.2, 133.0, 128.3 (2C), 127.3 (2C), 127.2, 125.1 (2C), 112.8 (2C), 85.3, 78.5, 54.2, 51.5, 50.8, 48.9, 40.9, 34.0, 30.2 ppm. HRMS (ESI) calculate: C₂₂H₂₅O₄+ (M+H)+: 353.1747, found: 353.1744.

Methyl-3-ethyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

9 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (25 mg, 0.098 mmol, 98%).

R_f = 0.6 (10% EtOAc in PE).

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 5H), 4.22 (dd, *J* = 8.8, 4.4 Hz, 1H), 3.75 (s, 3H), 2.42 – 2.17 (m, 4H), 1.79 – 1.67 (m, 1H), 1.63 – 1.54 (m, 1H), 1.05 (t, *J* = 7.5 Hz, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 171.1, 137.3, 128.4 (2C), 128.2, 126.1 (2C), 86.2, 81.9,
52.5, 51.9, 50.1, 41.6, 26.0, 10.5 ppm.

HRMS (ESI) calculate: C₁₅H₁₉O₃⁺ (M+H)⁺: 261.1485, found: 261.1484.

Methyl-3-benzyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

10 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (16 mg, 0.051 mmol, 51%).

 $R_f = 0.6$ (10% EtOAc in PE).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 4H), 7.31 – 7.21 (m, 5H), 7.21 – 7.15 (m, 1H), 4.57 – 4.51 (m, 1H), 3.50 (s, 3H), 3.02 (dd, *J* = 14.1, 7.4 Hz, 1H), 2.93 (dd, *J* = 14.0, 5.8 Hz, 1H), 2.38 (d, *J* = 5.8 Hz, 1H), 2.34 – 2.26 (m, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 170.7, 137.8, 137.1, 129.5 (2C), 128.4 (4C), 128.3, 126.4, 126.1 (2C), 86.6, 80.8, 52.6, 51.7, 50.0, 41.6, 39.5 ppm.

HRMS (ESI) calculate: C₂₀H₂₁O₃⁺ (M+H)⁺: 309.1485, found: 309.1483.

Methyl-3-cyclopropyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

11 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (22 mg, 0.086 mmol, 86%).

R_f = 0.6 (10% EtOAc in PE).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.26 (m, 5H), 4.28 (d, *J* = 8.9 Hz, 1H), 3.72 (s, 3H), 2.62 – 2.50 (m, 1H), 2.41 – 2.32 (m, 2H), 2.24 – 2.19 (m, 2H), 2.17 – 2.02 (m, 2H), 1.98 – 1.75 (m, 4H) ppm.

¹³**C NMR** (101 MHz, CDCl₃) δ 171.2, 137.0, 128.5, 128.4, 126.3, 86.3, 86.0, 53.3, 51.9, 49.8, 41.7, 12.5, 3.1, 2.1 ppm.

HRMS (ESI) calculate: C₁₆H₁₉O₃+ (M+H)+: 259.1329, found: 259.1326.

Methyl-3-cyclobutyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

$$\begin{array}{c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

12 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (21 mg, 0.077 mmol, 77%).

R*f* = 0.6 (10% EtOAc in PE).

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.26 (m, 5H), 4.28 (d, *J* = 8.9 Hz, 1H), 3.72 (s, 3H), 2.62 – 2.50 (m, 1H), 2.41 – 2.32 (m, 2H), 2.24 – 2.19 (m, 2H), 2.17 – 2.02 (m, 2H), 1.98 – 1.75 (m, 4H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 137.1, 128.4 (2C), 128.2, 126.2 (2C), 86.0, 84.7,
52.0, 51.8, 49.8, 41.4, 37.9, 25.8, 24.8, 19.1 ppm.

HRMS (ESI) calculate: C₁₇H₂₁O₃+ (M+H)+: 273.1485, found: 273.1481.

Methyl-3-cyclopentyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

13 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (25 mg, 0.087 mmol, 87%).

R_f = 0.6 (10% EtOAc in PE).

¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.28 (m, 5H), 4.07 (d, J = 9.4 Hz, 1H), 3.74 (s, 3H), 2.41 – 2.34 (m, 2H), 2.30 – 2.20 (m, 2H), 2.04 – 1.95 (m, 2H), 1.61 – 1.45 (m, 5H), 1.36 – 1.28 (m, 1H), 1.19 – 1.07 (m, 1H) ppm.

¹³**C NMR** (101 MHz, CDCl₃) δ 171.7, 137.2, 128.3 (2C), 128.2, 126.1 (2C), 85.7, 85.5, 52.5, 51.8, 50.1, 43.5, 41.4, 30.6, 28.3, 25.6, 25.0 ppm.

HRMS (ESI) calculate: C₁₈H₂₃O₃+ (M+H)+: 287.1642, found: 287.1642.

Methyl-3-cyclohexyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

14 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (25 mg, 0.083 mmol, 83%).

R_f = 0.6 (10% EtOAc in PE).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 5H), 4.00 (d, *J* = 9.1 Hz, 1H), 3.74 (s, 3H), 2.35 (d, *J* = 3.7 Hz, 2H), 2.23 (d, *J* = 5.1 Hz, 2H), 2.12 (d, *J* = 13.0 Hz, 1H), 1.82 – 1.70 (m, 2H), 1.61 – 1.52 (m, 1H), 1.52 – 1.44 (m, 1H), 1.32 – 1.13 (m, 4H), 1.12 – 0.94 (m, 2H) ppm.

¹³**C NMR** (101 MHz, CDCl₃) δ 172.0, 137.3, 128.4 (2C), 128.1, 126.1 (2C), 85.4, 84.8, 51.9, 51.8, 51.8, 50.9, 41.6, 41.0, 29.8, 28.6, 26.3, 25.8, 25.8 ppm.

HRMS (ESI) calculate: C₁₉H₂₅O₃+ (M+H)+: 301.1798, found: 301.1795.

Methyl-1-phenyl-3-(tetrahydro-2*H*-pyran-4-yl)-2-oxabicyclo[2.1.1]hexane-4-carboxylate

15 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 5% EtOAc in PE to afford the title compound as a colourless oil (19 mg, 0.063 mmol, 63%).

R_f = 0.4 (10% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.40 – 7.34 (m, 4H), 7.33 – 7.29 (m, 1H), 4.04 (d, *J* = 9.2 Hz, 1H), 4.02 – 3.98 (m, 1H), 3.96 – 3.91 (m, 1H), 3.74 (s, 3H), 3.44 – 3.33 (m, 2H), 2.39 – 2.35 (m, 2H), 2.29 (d, *J* = 7.8 Hz, 1H), 2.26 – 2.20 (m, 1H), 2.00 – 1.94 (m, 1H), 1.85 – 1.77 (m, 1H), 1.54 – 1.33 (m, 3H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 171.8, 137.1, 128.5 (2C), 128.4, 126.2 (2C), 85.9, 84.0,
67.9, 67.3, 52.0, 51.9, 51.0, 41.2, 39.1, 29.8, 28.8 ppm.

HRMS (ESI) calculate: C₁₆H₂₃O₄+ (M+H)+: 303.1591, found: 303.1593.

Methyl-1-phenyl-3-(1-phenylethyl)-2-oxabicyclo[2.1.1]hexane-4-carboxylate

16 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 3% EtOAc in PE to afford the title compound as a colourless oil (18 mg, 0.056 mmol, 56%).

 $R_f = 0.6$ (10% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.43 (m, 2H), 7.41 – 7.36 (m, 2H), 7.36 – 7.32 (m, 1H), 7.30 (m, 4H), 7.24 – 7.19 (m, 3H), 4.44 (dd, *J* = 9.1, 5.2 Hz, 1H), 3.01 (s, 3H), 2.93 – 2.86 (m, 1H), 2.38 – 2.35 (m, 2H), 2.32 – 2.30 (m, 1H), 2.28 – 2.25 (m, 1H), 1.47 (d, *J* = 6.9 Hz, 3H), 1.30 (d, *J* = 7.1 Hz, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 170.8, 142.6, 137.2, 128.5 (2C), 128.4 (4C), 128.3, 127.0, 126.2 (2C), 85.8, 84.6, 52.4, 51.2, 50.8, 44.3, 41.0, 19.7 ppm.
HRMS (ESI) calculate: C₂₁H₂₃O₃⁺ (M+H)⁺: 323.1642, found: 323.1642.

Methyl-3-isopropyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

17 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 3% EtOAc in PE to afford the title compound as a colourless oil (20 mg, 0.077 mmol, 77%).

 $R_f = 0.7 (10\% \text{ EtOAc in PE})$

¹H NMR (500 MHz, CDCl₃) δ 7.41 - 7.33 (m, 4H), 7.33 - 7.28 (m, 1H), 3.93 (d, J = 9.4 Hz, 1H), 3.74 (s, 3H), 2.40 - 2.35 (m, 2H), 2.25 - 2.18 (m, 2H), 1.87 - 1.78 (m, 1H), 1.10 (d, J = 6.6 Hz, 3H), 0.85 (d, J = 6.7 Hz, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 172.1, 137.4, 128.5 (2C), 128.3, 126.2 (2C), 86.2, 85.5, 52.2, 51.9, 51.0, 41.3, 32.1, 20.0, 18.7 ppm.

HRMS (ESI) calculate: C₁₆H₂₁O₃+ (M+H)+: 261.1485, found: 261.1487.

Methyl-3-(3-((*tert*-butyldiphenylsilyl)oxy)propyl)-1-phenyl-2-oxabicyclo

[2.1.1]hexane-4-carboxylate

18 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a colourless oil (32 mg, 0.062 mmol, 62%).

R_{*f*} = 0.8 (10% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.72 – 7.68 (m, 4H), 7.45 – 7.37 (m, 10H), 7.36 – 7.31 (m, 1H), 4.32 (dd, *J* = 9.3, 3.2 Hz, 1H), 3.81 – 3.71 (m, 5H), 2.43 (d, *J* = 6.9 Hz, 1H), 2.35 (dd, *J* = 10.1, 7.0 Hz, 1H), 2.31 (d, *J* = 7.6 Hz, 1H), 2.23 (dd, *J* = 10.2, 7.6 Hz, 1H), 1.93 – 1.83 (m, 2H), 1.75 – 1.61 (m, 2H), 1.08 (s, 9H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 171.0, 137.4, 135.7 (3C), 134.2, 134.1, 129.7 (2C),
128.4 (2C), 128.3 (2C), 127.7 (4C), 126.2 (2C), 86.4, 80.3, 63.8, 52.8, 51.9, 50.0,
41.9, 29.3, 29.1, 23.0 (3C), 19.4 ppm.

HRMS (ESI) calculate: C₃₂H₃₉O₄Si⁺ (M+H)⁺: 515.2539, found: 515.2542.

Methyl-3-(5-ethoxy-5-oxopentyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4carboxylate

19 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 4% EtOAc in PE to afford the title compound as a colourless oil (22 mg, 0.064 mmol, 64%).

 $R_f = 0.5$ (10% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.41 – 7.33 (m, 4H), 7.33 – 7.28 (m, 1H), 4.27 (dd, *J* = 9.1, 3.6 Hz, 1H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.76 (s, 3H), 2.40 (d, *J* = 7.0 Hz, 1H), 2.35 – 2.27 (m, 4H), 2.21 (dd, *J* = 10.2, 7.7 Hz, 1H), 1.75 – 1.67 (m, 3H), 1.65 – 1.53 (m, 2H), 1.48 – 1.40 (m, 1H), 1.27 – 1.23 (m, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 173.8, 171.0, 137.3, 128.5 (2C), 128.3, 126.2 (2C), 86.5, 80.2, 60.4, 52.7, 52.0, 50.0, 41.9, 34.4, 32.7, 25.8, 25.2, 14.4 ppm.

HRMS (ESI) calculate: C₂₀H₂₈O₅+ (M+H)+: 347.1853, found: 347.1852.

Methyl-3-isobutyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

20 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a colourless oil (20 mg, 0.073 mmol, 73%).

R_f = 0.8 (10% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.45 – 7.33 (m, 4H), 7.30 (app. t, *J* = 7.2 Hz, 1H), 4.38 (dd, *J* = 9.0, 3.9 Hz, 1H), 3.76 (s, 3H), 2.40 (d, *J* = 6.9 Hz, 1H), 2.36 – 2.30 (m, 1H), 2.27 (d, *J* = 7.5 Hz, 1H), 2.25 – 2.19 (m, 1H), 1.91 – 1.79 (m, 1H), 1.56 – 1.43 (m, 2H), 0.99 (dd, *J* = 6.7, 4.2 Hz, 6H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 171.2, 137.4, 128.5 (2C), 128.3, 126.2 (2C), 86.4, 78.7,
52.8, 52.0, 49.9, 42.0, 41.9, 25.3, 23.7, 22.4 ppm.

HRMS (ESI) calculate: C₁₇H₂₃O₃+ (M+H)+: 275.1642, found: 275.1642.

Methyl-3-(2-((tert-butyldimethylsilyl)oxy)ethyl)-1-phenyl-2-oxabicyclo

[2.1.1]hexane-4-carboxylate

21 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a colourless oil (20 mg, 0.053 mmol, 53%).

 $R_f = 0.6 (10\% \text{ EtOAc in PE})$

¹**H NMR** (500 MHz, CDCl₃) δ 7.42 – 7.34 (m, 4H), 7.33 – 7.29 (m, 1H), 4.42 (dd, *J* = 9.7, 3.2 Hz, 1H), 3.88 – 3.79 (m, 2H), 3.76 (s, 3H), 2.41 (d, *J* = 6.9 Hz, 1H), 2.32 (dd, *J* = 8.8, 5.4 Hz, 2H), 2.21 (dd, *J* = 10.3, 7.8 Hz, 1H), 2.02 – 1.93 (m, 1H), 1.81 – 1.73 (m, 1H), 0.91 (s, 9H), 0.08 (d, *J* = 1.7 Hz, 6H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 170.8, 137.4, 128.4 (2C), 128.3, 126.2 (2C), 86.6, 76.9, 60.2, 52.7, 52.0, 50.1, 42.0, 36.4, 26.1 (3C), 18.5, 5.1 (2C) ppm.

HRMS (ESI) calculate: C₂₁H₃₃O₄Si⁺ (M+H)⁺: 377.2143, found: 377.2139.

Methyl-(4-chlorobutyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

22 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 4% EtOAc in PE to afford the title compound as a colourless oil (20 mg, 0.065 mmol, 65%).

R_f = 0.4 (10% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.41 – 7.34 (m, 4H), 7.34 – 7.29 (m, 1H), 4.31 – 4.25 (m, 1H), 3.76 (s, 3H), 3.56 (t, *J* = 6.7 Hz, 2H), 2.41 (d, *J* = 7.0 Hz, 1H), 2.35 – 2.29 (m, 2H), 2.21 (dd, *J* = 10.2, 7.7 Hz, 1H), 1.89 – 1.83 (m, 2H), 1.78 – 1.69 (m, 2H), 1.62 – 1.54 (m, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 171.0, 137.3, 128.5 (2C), 128.4, 126.2 (2C), 86.5, 80.1,
52.7, 52.0, 50.1, 45.0, 41.9, 32.7, 32.3, 23.7 ppm.

HRMS (ESI) calculate: C₁₇H₂₂ClO₃⁺ (M+H)⁺: 395.1252, found: 395.1250. **Methyl-hexyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate**

23 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a colourless oil (17 mg, 0.056 mmol, 56%).

 $R_f = 0.8 (10\% \text{ EtOAc in PE})$

¹**H NMR** (500 MHz, CDCl₃) δ 7.41 – 7.38 (m, 2H), 7.38 – 7.33 (m, 2H), 7.33 – 7.28 (m, 1H), 4.28 (dd, *J* = 8.7, 4.1 Hz, 1H), 3.75 (s, 3H), 2.39 (d, *J* = 6.9 Hz, 1H), 2.33 (dd, *J* = 10.0, 7.0 Hz, 1H), 2.28 (d, *J* = 7.5 Hz, 1H), 2.22 (dd, *J* = 10.0, 7.6 Hz, 1H), 1.72 – 1.64 (m, 1H), 1.57 (m, 2H), 1.41 – 1.33 (m, 3H), 1.32 – 1.25 (m, 4H), 0.88 (t, *J* = 6.7 Hz, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 171.2, 137.4, 128.5 (2C), 128.3, 126.2 (2C), 86.3, 80.6, 52.7, 52.0, 50.1, 41.8, 33.1, 31.9, 29.6, 26.2, 22.8, 14.2 ppm.

HRMS (ESI) calculate: C₁₉H₂₈O₃+ (M+H)+: 303.1955, found: 303.1953.

Methyl-3-(3-((4,4-difluorocyclohexane-1-carbonyl)oxy)propyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

24 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 8% EtOAc in PE to afford the title compound as a colourless oil (28 mg, 0.066 mmol, 66%).

 $R_f = 0.3$ (10% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.41 – 7.34 (m, 4H), 7.34 – 7.29 (m, 1H), 4.29 (dd, *J* = 9.7, 2.9 Hz, 1H), 4.24 – 4.10 (m, 2H), 3.76 (s, 3H), 2.42 (d, *J* = 7.4 Hz, 2H), 2.37 – 2.30 (m, 2H), 2.24 – 2.16 (m, 1H), 2.14 – 2.02 (m, 2H), 2.02 – 1.90 (m, 3H), 1.86 – 1.73 (m, 5H), 1.63 – 1.55 (m, 2H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 174.4, 170.8, 137.1, 128.5 (2C), 128.4, 126.2 (2C), 122.8 (t, *J* = 240.3 Hz), 86.7, 79.7, 64.6, 52.7, 52.1, 50.1, 41.9, 40.7, 32.7 (t, *J* = 24.4 Hz, 2C), 29.4, 25.5, 25.2 (d, *J* = 7.9 Hz, 2C) ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -94.29 (d, J = 237.3 Hz), -99.56 (d, J = 237.9 Hz) ppm.
HRMS (ESI) calculate: C₂₃H₂₉F₂O₆⁺ (M+H)⁺: 423.1978, found: 423.1979.

Methyl-3-(3-(2-(2,4-dichlorophenoxy)acetoxy)propyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

25 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 10% EtOAc in PE to afford the title compound as a colourless oil (25 mg, 0.052 mmol, 52%).

 $R_f = 0.2$ (10% EtOAc in PE)

¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 6.7 Hz, 5H), 7.34 – 7.29 (m, 1H), 7.16 – 7.11 (m, 1H), 6.77 (dd, *J* = 8.8, 2.1 Hz, 1H), 4.68 (d, *J* = 2.2 Hz, 2H), 4.34 – 4.22 (m, 3H), 3.76 (d, *J* = 2.1 Hz, 3H), 2.42 (dd, *J* = 7.2, 2.0 Hz, 1H), 2.35 – 2.28 (m, 2H), 2.17 (t, *J* = 9.2 Hz, 1H), 2.02 – 1.91 (m, 1H), 1.84 – 1.75 (m, 2H), 1.63 – 1.51 (m, 1H) ppm.
¹³C NMR (126 MHz, CDCl₃) δ 170.7, 168.3, 152.5, 137.1, 130.4, 128.5 (2C), 128.4, 127.7, 127.1, 126.1 (2C), 124.3, 114.8, 86.7, 79.6, 66.5, 65.6, 52.7, 52.1, 50.0, 42.0, 29.3, 25.4 ppm.

HRMS (ESI) calculate: C₂₄H₂₅Cl₂O₆+ (M+H)+: 479.1023, found: 479.1026. Methyl-3-(3-((4-([1,1'-biphenyl]-4-yl)-4-oxobutanoyl)oxy)propyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

26 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 12% EtOAc in PE to afford the title compound as a colourless oil (31 mg, 0.060 mmol, 60%).

 $R_f = 0.3$ (20% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 8.06 (d, *J* = 8.2 Hz, 2H), 7.68 (d, *J* = 8.1 Hz, 2H), 7.63 (d, *J* = 7.3 Hz, 2H), 7.47 (app. t, J = 7.5 Hz, 2H), 7.43 – 7.34 (m, 5H), 7.33 – 7.29 (m,

1H), 4.30 (dd, *J* = 9.5, 3.3 Hz, 1H), 4.25 – 4.15 (m, 2H), 3.77 (s, 3H), 3.35 (t, *J* = 6.7 Hz, 2H), 2.80 (t, *J* = 6.7 Hz, 2H), 2.42 (d, *J* = 7.0 Hz, 1H), 2.36 – 2.28 (m, 2H), 2.21 (dd, *J* = 10.3, 7.7 Hz, 1H), 1.97 (d, *J* = 5.9 Hz, 1H), 1.87 – 1.74 (m, 2H), 1.67 – 1.57 (m, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 197.8, 173.1, 170.8, 145.9, 140.0, 137.2, 135.4, 129.1
(2C), 128.8 (2C), 128.4 (2C), 128.3, 128.3, 127.4 (4C), 126.2 (2C), 86.6, 79.8, 64.7,
52.7, 52.1, 50.0, 41.9, 33.5, 29.5, 28.4, 25.4 ppm.

HRMS (ESI) calculate: C₃₂H₃₃O₆ (M+H)⁺: 513.2272, found: 513.2269.

Methyl-3-(3-((2-(3-fluoro-[1,1'-biphenyl]-4-yl)propanoyl)oxy)propyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

27 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 8% EtOAc in PE to afford the title compound as a colourless oil (30 mg, 0.060 mmol, 60%).

 $R_f = 0.3$ (10% EtOAc in PE)

¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 2H), 7.43 (app. t, J = 7.8 Hz, 2H),
7.40 - 7.33 (m, 6H), 7.31 (d, *J* = 6.1 Hz, 1H), 7.14 (app. t, J = 11.2 Hz, 2H), 4.27 (d, *J* = 9.4 Hz, 1H), 4.22 - 4.16 (m, 2H), 3.79 - 3.74 (m, 1H), 3.72 (d, *J* = 2.5 Hz, 3H), 2.41 (d, *J* = 7.2 Hz, 1H), 2.33 - 2.26 (m, 2H), 2.14 (s, 1H), 1.99 - 1.89 (m, 1H), 1.76 (d, *J* = 3.5 Hz, 2H), 1.55 (s, 2H), 1.53 (d, *J* = 2.5 Hz, 2H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 174.1, 170.8, 159.8 (d, *J* = 248.1 Hz), 142.0 (d, *J* = 7.8 Hz), 137.2, 135.6, 130.9 (d, *J* = 3.8 Hz), 129.1 (d, *J* = 2.9 Hz, 2C), 128.5 (2C), 128.5 (2C), 128.4, 127.9, 127.7, 126.1 (2C), 123.7, 115.4 (d, *J* = 23.7 Hz), 86.6, 79.8, 52.7, 52.0, 50.0, 45.2, 41.9, 41.9, 29.3, 25.4, 18.5 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -117.65 ppm.

HRMS (ESI) calculate: C₃₁H₃₂FO₅⁺ (M+H)⁺: 503.2228, found: 503.2230.

Methyl-3-(3-((2-acetoxybenzoyl)oxy)propyl)-1-phenyl-2-oxabicyclo[2.1.1] hexane-4-carboxylate

28 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 10% EtOAc in PE to afford the title compound as a colourless oil (33 mg, 0.075 mmol, 75%).

 $R_f = 0.4$ (20% EtOAc in PE)

¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.58 – 7.53 (m, 1H), 7.42
- 7.34 (m, 4H), 7.34 – 7.28 (m, 2H), 7.10 (dd, *J* = 8.1, 1.2 Hz, 1H), 4.40 – 4.31 (m, 3H), 3.75 (s, 3H), 2.43 (d, *J* = 7.0 Hz, 1H), 2.33 (d, *J* = 10.2 Hz, 5H), 2.24 (dd, *J* = 10.3, 7.7 Hz, 1H), 2.12 – 2.03 (m, 1H), 1.94 – 1.84 (m, 2H), 1.72 – 1.63 (m, 1H) ppm.
¹³C NMR (126 MHz, CDCl₃) δ 170.8, 169.8, 164.6, 150.7, 137.1, 133.9, 131.9, 128.4 (2C), 128.3, 126.1 (2C), 126.1, 123.9, 123.5, 86.7, 79.7, 65.2, 52.7, 52.0, 50.1, 41.9, 29.5, 25.5, 21.2 ppm.

HRMS (ESI) calculate: C₂₅H₂₇O₇+ (M+H)+: 439.1751, found: 439.1754.

Methyl-3-(3-((2-(4-benzoylphenyl)propanoyl)oxy)propyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

29 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 15% EtOAc in PE to afford the title compound as a colourless oil (29 mg, 0.057 mmol, 57%).

 $R_f = 0.3$ (20% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (d, *J* = 7.6 Hz, 2H), 7.75 (d, *J* = 2.5 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.60 – 7.52 (m, 2H), 7.50 – 7.45 (m, 2H), 7.42 (d, *J* = 7.4 Hz, 1H), 7.39 – 7.32 (m, 4H), 7.32 – 7.27 (m, 1H), 4.28 – 4.22 (m, 1H), 4.21 – 4.11 (m, 2H), 3.84 – 3.76 (m, 1H), 3.72 (d, *J* = 2.3 Hz, 3H), 2.40 (dd, *J* = 7.1, 2.3 Hz, 1H), 2.29 (t, *J* = 10.0 Hz, 2H), 2.13 (t, *J* = 9.1 Hz, 1H), 1.95 – 1.86 (m, 1H), 1.78 – 1.70 (m, 2H), 1.54 (d, *J* = 2.3 Hz, 2H), 1.52 (d, *J* = 2.3 Hz, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 196.6, 174.2, 170.8, 141.0, 138.0, 137.6, 137.1, 132.6, 131.7, 130.2 (2C), 129.4, 129.1, 128.7, 128.5 (2C), 128.4 (2C), 128.3, 126.1 (2C), 86.6, 79.7, 65.0, 52.7, 52.0, 50.0, 45.6, 41.9, 29.3, 25.4, 18.6 ppm.

HRMS (ESI) calculate: C₃₂H₃₃O₆⁺ (M+H)⁺: 513.2272, found: 513.2274.

Methyl-3-(3-(((*S*)-2-(4-isobutylphenyl)propanoyl)oxy)propyl)-1-phenyl-2oxabicyclo[2.1.1]hexane-4-carboxylate

30 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 5% EtOAc in PE to afford the title compound as a colourless oil (31 mg, 0.067 mmol, 67%).

 $R_f = 0.5 (10\% \text{ EtOAc in PE})$

¹**H NMR** (500 MHz, CDCl₃) δ 7.40 – 7.34 (m, 4H), 7.34 – 7.29 (m, 1H), 7.20 (d, J = 7.7 Hz, 2H), 7.07 (dd, J = 7.5, 5.0 Hz, 2H), 4.25 (dd, J = 9.4, 3.0 Hz, 1H), 4.19 – 4.10 (m, 2H), 3.75 – 3.72 (m, 3H), 3.72 – 3.66 (m, 1H), 2.45 – 2.38 (m, 3H), 2.30 (dd, J = 15.7, 8.3 Hz, 2H), 2.17 – 2.10 (m, 1H), 1.94 – 1.86 (m, 1H), 1.86 – 1.78 (m, 1H), 1.77 – 1.67 (m, 2H), 1.57 – 1.46 (m, 4H), 0.90 (d, J = 2.4 Hz, 3H), 0.88 (s, 3H) ppm. ¹³**C NMR** (126 MHz, CDCl₃) δ 174.9, 170.8, 140.6, 137.9, 137.2, 129.4 (2C), 128.5 (2C), 128.3, 127.3 (2C), 126.1 (2C), 86.6, 79.8, 64.7, 52.7, 52.0, 50.0, 45.3, 45.2, 41.9, 30.3, 29.3, 25.4, 22.5 (2C), 18.7 ppm.

HRMS (ESI) calculate: C₂₉H₃₈O₅+ (M+H)+: 465.2636, found: 465.2637.

Methyl-(3-(2-(11-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-2-yl)acetoxy)propyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

31 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 15% EtOAc in PE to afford the title compound as a colourless oil (28 mg, 0.053 mmol, 53%).

 $R_f = 0.5$ (30% EtOAc in PE)

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, *J* = 2.3 Hz, 1H), 7.88 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.60 – 7.52 (m, 1H), 7.50 – 7.40 (m, 2H), 7.40 – 7.27 (m, 6H), 7.02 (d, *J* = 8.5 Hz, 1H), 5.17 (s, 2H), 4.28 (dd, *J* = 9.6, 3.1 Hz, 1H), 4.25 – 4.13 (m, 2H), 3.75 (s, 3H), 3.64 (s, 2H), 2.41 (d, *J* = 7.0 Hz, 1H), 2.35 – 2.25 (m, 2H), 2.18 (dd, *J* = 10.2, 7.7 Hz, 1H), 2.01 – 1.89 (m, 1H), 1.84 – 1.72 (m, 2H), 1.63 – 1.51 (m, 1H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ 191.0, 171.6, 170.8, 160.6, 140.6, 137.2, 136.5, 135.7, 132.9, 132.6, 129.6, 129.4, 128.5 (2C), 128.4, 128.0, 127.9, 126.2 (2C), 125.2, 121.2, 86.6, 79.8, 73.7, 65.0, 52.7, 52.1, 50.0, 42.0, 40.4, 29.4, 25.4 ppm. **HRMS** (ESI) calculate: C₃₂H₃₀O7⁺ (M+H)⁺: 527.2064, found: 527.2066.

Methyl-1-phenyl-3-(3-((2-propylpentanoyl)oxy)propyl)-2-oxabicyclo[2.1.1] hexane-4-carboxylate

32 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 3% EtOAc in PE to afford the title compound as a colourless oil (29 mg, 0.072 mmol, 72%).

 $R_f = 0.4 (10\% \text{ EtOAc in PE})$

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 4H), 7.34 – 7.28 (m, 1H), 4.30 (dd, *J* = 9.6, 3.3 Hz, 1H), 4.15 (t, *J* = 6.4 Hz, 2H), 3.76 (s, 3H), 2.42 (d, *J* = 7.0 Hz, 1H), 2.40 – 2.28 (m, 3H), 2.21 (dd, *J* = 10.2, 7.7 Hz, 1H), 1.99 – 1.90 (m, 1H), 1.85 – 1.70 (m, 2H), 1.64 – 1.52 (m, 3H), 1.46 – 1.34 (m, 2H), 1.32 – 1.25 (m, 4H), 0.94 – 0.85 (m, 6H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 176.8, 170.8, 137.2, 128.5 (2C), 128.4, 126.2 (2C), 86.6, 79.9, 64.0, 52.7, 52.0, 50.0, 45.5, 41.9, 34.8 (2C), 29.5, 25.6, 20.8 (2C), 14.2 (2C) ppm.

HRMS (ESI) calculate: C₂₄H₃₅O₆+ (M+H)+: 403.2479, found: 403.2480.

Methyl-1,3-diphenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

33 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a pale-yellow solid. (25 mg, 0.085 mmol, 85%).

 $R_f = 0.6$ (10% EtOAc in PE)

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.49 (m, 2H), 7.48 – 7.39 (m, 4H), 7.39 – 7.32 (m, 3H), 7.32 – 7.27 (m, 1H), 5.51 (s, 1H), 3.74 (s, 3H), 2.64 – 2.58 (m, 1H), 2.55 (d, *J* = 7.0 Hz, 1H), 2.31 (dd, *J* = 10.0, 8.0 Hz, 1H), 2.23 (d, *J* = 8.1 Hz, 1H) ppm. ¹³**C NMR** (126 MHz, CDCl₃) δ 170.6, 139.6, 137.1, 128.6 (2C), 128.5, 128.2 (2C), 127.8, 126.6 (2C), 126.3 (2C), 86.9, 80.4, 54.7, 52.0, 51.0, 39.9 ppm. **HRMS** (ESI) calculate: C₁₉H₁₉O_{3⁺} (M+H)⁺: 295.1329, found: 295.1330.

Methyl-1-phenyl-3-(p-tolyl)-2-oxabicyclo[2.1.1]hexane-4-carboxylate

34 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a pale-yellow solid. (23 mg, 0.076 mmol, 76%).

R_f = 0.6 (10% EtOAc in PE)

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.49 (m, 2H), 7.46 – 7.30 (m, 5H), 7.16 (d, *J* = 7.9 Hz, 2H), 5.49 (s, 1H), 3.74 (s, 3H), 2.63 – 2.51 (m, 2H), 2.35 (s, 3H), 2.31 (dd, J = 10.1, 8.1 Hz, 1H), 2.22 (d, *J* = 8.0 Hz, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 170.6, 137.4, 137.1, 136.5, 128.9 (2C), 128.5 (2C),

128.4, 126.4 (2C), 126.2 (2C), 86.8, 80.3, 54.6, 51.8, 50.8, 39.9, 21.2 ppm.

HRMS (ESI) calculate: C₂₀H₂₁O₃⁺ (M+H)⁺: 309.1485, found: 309.1482.

Methyl-3-([1,1'-biphenyl]-4-yl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

35 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a pale-yellow solid. (29 mg, 0.079 mmol, 79%).

R_f = 0.6 (10% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 – 7.57 (m, 4H), 7.56 – 7.51 (m, 4H), 7.47 – 7.41 (m, 4H), 7.40 – 7.33 (m, 2H), 5.56 (s, 1H), 3.77 (s, 3H), 2.63 (dd, *J* = 10.1, 7.1 Hz, 1H), 2.57 (d, *J* = 7.0 Hz, 1H), 2.35 (dd, *J* = 10.1, 8.1 Hz, 1H), 2.27 (d, *J* = 8.1 Hz, 1H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 170.6, 140.9, 140.6, 138.6, 137.0, 128.8 (2C), 128.5 (2C), 128.4, 127.3, 127.2 (2C), 127.0 (2C), 126.9 (2C), 126.2 (2C), 86.9, 80.2, 54.7, 51.9, 51.0, 40.0 ppm.

HRMS (ESI) calculate: C₂₅H₂₃O₃+ (M+H)+: 371.1642, found: 371.1638.

Methyl-3-(4-fluorophenyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carbox-ylate

36 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a pale-yellow solid. (22 mg, 0.059 mmol, 59%).

 $R_f = 0.6$ (10% EtOAc in PE).

¹**H NMR** (600 MHz, CDCl₃) δ 7.52 – 7.48 (m, 2H), 7.45 – 7.39 (m, 4H), 7.39 – 7.34 (m, 1H), 7.04 (t, *J* = 8.7 Hz, 2H), 5.47 (s, 1H), 3.74 (s, 3H), 2.61 – 2.52 (m, 2H), 2.28 – 2.22 (m, 2H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 169.3, 161.4 (d, J = 245.8 Hz), 135.8, 134.2 (d, J = 3.1 Hz), 127.4 (2C), 127.4, 127.2 (d, J = 8.1 Hz, 2C), 125.1 (2C), 114.0 (d, J = 21.7 Hz, 2C), 85.9, 78.7, 53.6, 50.8, 49.9, 38.7 ppm.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -114.88 ppm.

HRMS (ESI) calculate: C₁₉H₁₈FO₃+ (M+H)+: 313.1234, found: 313.1227. Methyl-3-(4-chlorophenyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

37 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a pale-yellow solid (18 mg, 0.055 mmol, 55%).

R_{*f*} = 0.6 (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.5 Hz, 2H), 7.45 – 7.35 (m, 5H), 7.32 (d, *J* = 8.2 Hz, 2H), 5.46 (s, 1H), 3.73 (s, 3H), 2.65 – 2.49 (m, 2H), 2.30 – 2.18 (m, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 170.3, 138.0, 136.7, 133.6, 128.5, 128.3, 128.0, 126.2,
87.1, 79.7, 54.6, 51.9, 51.0, 39.7 ppm.

HRMS (ESI) calculate: C₁₉H₁₈ClO₃⁺ (M+H)⁺: 329.0939, found: 329.0941.

Methyl-3-(4-bromophenyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carbox-ylate

38 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a pale yellow solid. (23 mg, 0.061 mmol, 61%).

 $R_f = 0.6$ (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.52 – 7.45 (m, 4H), 7.45 – 7.40 (m, 2H), 7.40 – 7.36 (m, 1H), 7.34 (dd, *J* = 8.6, 2.8 Hz, 2H), 5.45 (d, *J* = 2.7 Hz, 1H), 3.74 (s, 3H), 2.62 – 2.52 (m, 2H), 2.26 – 2.19 (m, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 170.3, 138.6, 136.7, 131.3 (2C), 128.5 (3C), 128.3 (2C), 126.2 (2C), 121.8, 87.1, 79.7, 54.6, 52.0, 51.0, 39.7 ppm.

HRMS (ESI) calculate: C₁₉H₁₈BrO₃+ (M+H)+: 373.0434, found: 373.0428.

Methyl-1-phenyl-3-(4-(trifluoromethoxy)phenyl)-2-oxabicyclo[2.1.1]hexane-4-carboxylate

39 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 5% EtOAc in PE to afford the title compound as a pale-yellow oil. (22 mg, 0.058 mmol, 58%).

R_f = 0.5 (10% EtOAc in PE).

¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.47 (m, 4H), 7.46 – 7.34 (m, 3H), 7.20 (d, J = 8.3 Hz, 2H), 5.50 (s, 1H), 3.75 (s, 3H), 2.64 – 2.54 (m, 2H), 2.30 – 2.20 (m, 2H) ppm.
¹³C NMR (151 MHz, CDCl₃) δ 169.2, 147.7, 137.1, 135.7, 127.5 (3C), 127.0 (2C), 125.1 (2C), 119.5 (2C), 119.4 (q, J = 256.8 Hz), 86.1, 78.5, 53.6, 50.9, 50.0, 38.7 ppm.
¹⁹F NMR (471 MHz, CDCl₃) δ -57.76 ppm.

HRMS (ESI) calculate: C₂₀H₁₈F₃O₄⁺ (M+H)⁺: 379.1152, found: 379.1155.

Methyl-3-(4-phenoxyphenyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

40 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (23 mg, 0.0609 mmol, 60%).

R_f = 0.5 (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.53 – 7.48 (m, 2H), 7.45 – 7.38 (m, 4H), 7.38 – 7.31 (m, 3H), 7.14 – 7.08 (m, 1H), 7.04 – 6.96 (m, 4H), 5.49 (s, 1H), 3.75 (s, 3H), 2.62 – 2.52 (m, 2H), 2.34 – 2.22 (m, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 170.5, 157.1, 156.9, 136.9, 134.2, 129.8 (2C), 128.5 (2C), 128.4, 128.0 (2C), 126.2 (2C), 123.4, 119.1 (2C), 118.4 (2C), 86.9, 80.0, 54.6, 51.9, 50.9, 39.9 ppm.

HRMS (ESI) calculate: C₂₅H₂₃O₄⁺ (M+H)⁺: 387.1591, found: 387.1589.

Methyl-3-(4-(tert-butyl)phenyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

41 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow solid. (27 mg, 0.077 mmol, 77%).

R*f* = 0.6 (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.53 – 7.49 (m, 2H), 7.43 – 7.39 (m, 2H), 7.38 – 7.34 (m, 5H), 5.48 (s, 1H), 3.76 (s, 3H), 2.61 – 2.53 (m, 2H), 2.32 (dd, *J* = 10.0, 8.0 Hz, 1H), 2.23 (d, *J* = 8.1 Hz, 1H), 1.32 (s, 9H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 170.7, 150.5, 137.1, 136.5, 128.4 (2C), 128.3, 126.2 (4C), 125.1 (2C), 86.7, 80.2, 54.5, 51.9, 50.9, 40.1, 34.6, 31.4 (3C) ppm.

HRMS (ESI) calculate: C₂₃H₂₇O₃+ (M+H)+: 351.1955, found: 351.1948.

Methyl-3-(3-methoxyphenyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

42 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow solid. (19 mg, 0.063s mmol, 63%).

R_f = 0.5 (10% EtOAc in PE).

¹H NMR (600 MHz, CDCl₃) δ 7.53 – 7.48 (m, 2H), 7.43 – 7.35 (m, 5H), 6.89 (d, *J* = 8.4 Hz, 2H), 5.46 (s, 1H), 3.81 (s, 3H), 3.73 (s, 3H), 2.58 (dd, *J* = 10.1, 7.1 Hz, 1H), 2.53 (d, *J* = 7.0 Hz, 1H), 2.30 (dd, *J* = 10.1, 8.0 Hz, 1H), 2.23 (d, *J* = 8.0 Hz, 1H) ppm.
¹³C NMR (151 MHz, CDCl₃) δ 169.5, 158.1, 136.0, 130.5, 127.4 (2C), 127.3, 126.7 (2C), 125.1 (2C), 112.5 (2C), 85.7, 79.1, 54.2, 53.5, 50.8, 49.8, 38.8 ppm.

HRMS (ESI) calculate: C₂₀H₂₁O₄+ (M+H)+: 325.1434, found: 325.1431.

Methyl-3-(3-methoxyphenyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

43 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (20 mg, 0.061 mmol, 61%).

R_f = 0.5 (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.36 – 7.27 (m, 3H), 7.19 – 7.14 (m, 1H), 6.96 – 6.91 (m, 2H), 6.75 (dd, *J* = 8.3, 2.5 Hz, 1H), 5.39 (s, 1H), 3.72 (s, 3H), 3.66 (s, 3H), 2.54 – 2.43 (m, 2H), 2.26 – 2.11 (m, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 170.5, 159.5, 141.2, 137.0, 129.2, 128.5 (2C), 128.4, 126.2 (2C), 118.7, 113.1, 112.3, 86.9, 80.2, 55.2, 54.6, 51.9, 50.9, 40.0 ppm.

HRMS (ESI) calculate: C₂₀H₂₁O₄+ (M+H)+: 325.1434, found: 325.1431.

Methyl-3-(3,4-dimethoxyphenyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4carboxylate

44 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 10% EtOAc in PE to afford the title compound as a pale-yellow solid. (22 mg, 0.063 mmol, 63%).

R_f = 0.3 (10% EtOAc in PE).

¹**H NMR** (400 MHz, CDCl₃) δ δ 7.53 – 7.47 (m, 2H), 7.45 – 7.33 (m, 3H), 7.03 – 6.96 (m, 2H), 6.85 (d, *J* = 8.2 Hz, 1H), 5.46 (s, 1H), 3.87 (d, *J* = 2.6 Hz, 6H), 3.74 (s, 3H), 2.62 – 2.50 (m, 2H), 2.33 – 2.21 (m, 2H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 170.6, 148.6, 148.5, 137.0, 132.0, 128.5 (2C), 128.4 (2C), 126.2, 118.7, 110.7, 109.7, 86.8, 80.1, 55.9, 55.9, 54.6, 51.9, 50.9, 39.9 ppm.

HRMS (ESI) calculate: C₂₁H₂₃O₅+ (M+H)+: 355.1540, found: 355.1534. Methyl-1-phenyl-3-(3,4,5-trimethoxyphenyl)-2-oxabicyclo[2.1.1]hexane-4carboxylate

45 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 10% EtOAc in PE to afford the title compound as a pale-yellow solid. (26 mg, 0.067 mmol, 67%).

 $\mathbf{R}_{f} = 0.2$ (10% EtOAc in PE).

¹H NMR (500 MHz, CDCl₃) δ 7.51 – 7.47 (m, 2H), 7.45 – 7.35 (m, 3H), 6.68 (s, 2H),
5.45 (s, 1H), 3.84 (s, 9H), 3.75 (s, 3H), 2.63 – 2.51 (m, 2H), 2.33 – 2.22 (m, 2H) ppm.
¹³C NMR (126 MHz, CDCl₃) δ 170.6, 153.0 (2C), 137.3, 136.9, 135.2, 128.5 (2C),
128.5, 126.2 (2C), 103.4 (2C), 86.9, 80.2, 60.9, 56.1 (2C), 54.7, 51.9, 51.1, 39.9 ppm.
HRMS (ESI) calculate: C₂₂H₂₅O_{6⁺} (M+H)⁺: 385.1646, found: 385.1637.

Methyl-3-(2-fluoro-4-methylphenyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

46 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (21 mg, 0.066 mmol, 66%).

 $R_f = 0.5$ (10% EtOAc in PE).

¹H NMR (500 MHz, CDCl₃) δ 7.54 – 7.32 (m, 7H), 6.98 (d, J = 7.8 Hz, 1H), 6.86 (d, J = 11.5 Hz, 1H), 5.60 (s, 1H), 3.73 (s, 3H), 2.62 – 2.49 (m, 2H), 2.38 – 2.31 (m, 4H), 2.19 (d, J = 8.1 Hz, 1H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 170.6, 160.1 (d, *J* = 246.7 Hz), 140.0 (d, *J* = 8.27 Hz), 136.7, 128.6, 128.5 (2C), 128.5, 126.3 (2C), 124.6, 123.4 (d, *J* = 13.8 Hz), 115.5 (d, *J* = 21.2 Hz), 86.4, 76.1, 53.7, 51.9, 49.3, 41.1, 21.1 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -118.31 ppm.

HRMS (ESI) calculate: C₂₀H₂₀FO₃⁺ (M+H)⁺: 327.1391, found: 327.1386.

Methyl-3-(3-fluoro-4-methylphenyl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

47 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a pale-yellow oil. (23 mg, 0.069 mmol, 69%).

R_{*f*} = 0.5 (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.55 – 7.32 (m, 6H), 7.24 – 7.17 (m, 1H), 6.97 (app. t, *J* = 8.9 Hz, 1H), 5.44 (s, 1H), 3.74 (s, 3H), 2.61 – 2.49 (m, 2H), 2.30 – 2.22 (m, 5H) ppm.

¹³**C NMR** (151 MHz, CDCl₃) δ 170.5, 160.9 (d, *J* = 242.6 Hz), 136.9, 134.9, 129.6 (d, *J* = 5.1 Hz), 128.5 (2C), 128.5, 126.2 (2C), 125.4 (d, *J* = 8.4 Hz), 124.6 (d, *J* = 17.5 Hz), 114.7 (d, *J* = 22.5 Hz), 86.9, 79.9, 54.6, 51.9, 51.0, 39.7, 14.8 ppm.

 ^{19}F NMR (471 MHz, CDCl₃) δ -119.16 ppm.

HRMS (ESI) calculate: C₂₀H₂₀FO₃⁺ (M+H)⁺: 327.1391, found: 327.1386.

Methyl 3-(benzofuran-4-yl)-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

48 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 5% EtOAc in PE to afford the title compound as a pale yellow solid. (28 mg, 0.083 mmol, 83%).

 $R_f = 0.3$ (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.73 (d, *J* = 1.7 Hz, 1H), 7.62 (d, *J* = 2.2 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.49 – 7.33 (m, 6H), 6.76 (d, *J* = 2.2 Hz, 1H), 5.62 (s, 1H), 3.73 (s, 3H),

2.64 (dd, *J* = 10.2, 7.1 Hz, 1H), 2.56 (d, *J* = 7.0 Hz, 1H), 2.36 (dd, *J* = 10.2, 8.1 Hz, 1H), 2.24 (d, *J* = 8.1 Hz, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 170.6, 154.6, 145.4, 137.0, 134.1, 128.5 (2C), 128.4, 127.3, 126.3 (2C), 122.8, 119.4, 111.0, 106.8, 86.8, 80.6, 54.8, 51.9, 51.0, 39.7 ppm.
HRMS (ESI) calculate: C₂₁H₁₉O₄⁺ (M+H)⁺: 335.1278, found: 335.1273.

Methyl-3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-phenyl-2-oxabicyclo [2.1.1]hexane-4-carboxylate

49 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 5% EtOAc in PE to afford the title compound as a pale yellow solid. (21 mg, 0.063 mmol, 63%).

 $R_f = 0.4$ (10% EtOAc in PE).

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.45 (m, 2H), 7.44 – 7.31 (m, 3H), 6.99 (d, J = 2.1 Hz, 1H), 6.93 – 6.80 (m, 2H), 5.40 (s, 1H), 4.25 (s, 4H), 3.75 (s, 3H), 2.59 – 2.49 (m, 2H), 2.30 (t, J = 9.2 Hz, 1H), 2.21 (d, J = 8.0 Hz, 1H) ppm.

¹³**C NMR** (101 MHz, CDCl₃) δ 170.5, 143.2, 143.1, 137.0, 132.8, 128.4 (2C), 128.3, 126.2 (2C), 119.4, 116.9, 115.6, 86.7, 79.9, 64.4, 54.6, 51.9, 50.8, 39.9 ppm.

HRMS (ESI) calculate: C₂₁H₂₁O₅+ (M+H)⁺: 353.1384, found: 353.1387.

Methyl-3-phenethyl-1-(o-tolyl)-2-oxabicyclo[2.1.1]hexane-4-carboxylate

50 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (21 mg, 0.065 mmol, 65%).

R_{*f*} = 0.6 (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.30 (app. t, J = 7.5 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 3H), 7.22 – 7.16 (m, 4H), 4.33 (dd, *J* = 9.6, 3.5 Hz, 1H), 3.75 (s, 3H), 2.97 – 2.89 (m, 1H),
2.75 – 2.66 (m, 1H), 2.56 – 2.48 (m, 5H), 2.43 (d, *J* = 6.6 Hz, 1H), 2.28 (d, *J* = 7.3 Hz, 1H), 2.09 – 2.00 (m, 1H), 1.95 – 1.84 (m, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 171.0, 142.0, 137.9, 134.5, 131.1, 128.9, 128.5 (2C), 128.4 (2C), 127.6, 125.9, 125.7, 87.3, 79.8, 52.2, 51.9, 49.1, 41.3, 34.9, 32.2, 20.1 ppm.

HRMS (ESI) calculate: C₂₂H₂₅O₃⁺ (M+H)⁺: 337.1798, found: 337.1794.

Methyl-3-phenethyl-1-(o-tolyl)-2-oxabicyclo[2.1.1]hexane-4-carboxylate

51 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (24 mg, 0.072 mmol, 72%).

 $R_f = 0.6$ (10% EtOAc in PE).

¹**H NMR** (600 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.24 (dd, *J* = 8.2, 1.6 Hz, 3H), 7.21 – 7.17 (m, 2H), 7.14 (d, *J* = 7.5 Hz, 1H), 4.33 (dd, *J* = 9.5, 3.6 Hz, 1H), 3.74 (s, 3H), 2.98 – 2.90 (m, 1H), 2.76 – 2.69 (m, 1H), 2.42 – 2.36 (m, 4H), 2.36 – 2.28 (m, 2H), 2.26 – 2.20 (m, 1H), 2.07 – 2.00 (m, 1H), 1.92 – 1.84 (m, 1H) ppm.

¹³**C NMR** (151 MHz, CDCl₃) δ 170.9, 142.0, 138.1, 137.1, 129.0, 128.5 (2C), 128.4 (2C), 128.3, 126.7, 125.8, 123.1, 86.5, 79.6, 52.6, 51.9, 49.9, 41.9, 34.8, 32.2, 21.4 ppm.

HRMS (ESI) calculate: C₂₂H₂₅O₃⁺ (M+H)⁺: 337.1798, found: 337.1792.

Methyl-3-phenethyl-1-(o-tolyl)-2-oxabicyclo[2.1.1]hexane-4-carboxylate

52 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (26 mg, 0.078 mmol, 78%).

 $R_f = 0.6$ (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.30 (dd, *J* = 11.0, 7.6 Hz, 4H), 7.27 – 7.23 (m, 2H), 7.23 – 7.17 (m, 3H), 4.33 (dd, *J* = 9.5, 3.5 Hz, 1H), 3.75 (s, 3H), 2.99 – 2.90 (m, 1H), 2.78 – 2.67 (m, 1H), 2.42 – 2.31 (m, 5H), 2.30 (d, *J* = 7.5 Hz, 1H), 2.27 – 2.21 (m, 1H), 2.09 – 1.99 (m, 1H), 1.92 – 1.84 (m, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 170.9, 142.0, 138.1, 134.3, 129.0 (2C), 128.5 (2C), 128.4 (2C), 126.0 (2C), 125.9, 86.4, 79.5, 52.6, 51.9, 49.9, 41.9, 34.9, 32.2, 21.3 ppm.
HRMS (ESI) calculate: C₂₂H₂₅O₃⁺ (M+H)⁺: 337.1798, found: 337.1795.

Methyl-1-(4-fluorophenyl)-3-phenethyl-2-oxabicyclo[2.1.1]hexane-4-carb-oxylate

53 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (14 mg, 0.040 mmol, 40%).

R_f = 0.6 (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.31 – 7.27 (m, 2H), 7.24 (d, *J* = 7.6 Hz, 2H), 7.22 – 7.17 (m, 1H), 7.09 – 7.02 (m, 2H), 4.32 (dd, *J* = 9.6, 3.5 Hz, 1H), 3.74 (s, 3H), 2.97 – 2.89 (m, 1H), 2.76 – 2.68 (m, 1H), 2.39 (dd, *J* = 7.0, 1.7 Hz, 1H), 2.35 – 2.28 (m, 2H), 2.26 – 2.20 (m, 1H), 2.05 – 2.00 (m, 1H), 1.91 – 1.81 (m, 1H) ppm.

¹³**C NMR** (151 MHz, CDCl₃) δ 170.7, 162.6 (d, *J* = 246.9 Hz), 141.9, 133.1 (d, *J* = 3.4 Hz), 128.5 (2C), 128.4 (2C), 127.9 (d, *J* = 8.0 Hz, 2C), 125.9, 115.3 (d, *J* = 21.3 Hz, 2C), 85.8, 79.6, 52.6, 51.9, 49.9, 42.0, 34.7, 32.1 ppm.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -113.62 ppm.

HRMS (ESI) calculate: C₂₁H₂₂FO₃⁺ (M+H)⁺: 341.1547, found: 341.1544.

Methyl-1-(4-chlorophenyl)-3-phenethyl-2-oxabicyclo[2.1.1]hexane-4-carb-oxylate

54 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (30 mg, 0.084 mmol, 84%).

 $R_f = 0.6$ (10% EtOAc in PE).

¹**H NMR** (600 MHz, CDCl₃) δ 7.35 (s, 4H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.27 – 7.23 (m, 2H), 7.23 – 7.18 (m, 1H), 4.33 (dd, *J* = 9.5, 3.5 Hz, 1H), 3.75 (s, 3H), 2.98 – 2.90 (m, 1H), 2.78 – 2.70 (m, 1H), 2.41 (d, *J* = 6.9 Hz, 1H), 2.32 (dd, *J* = 9.9, 7.2 Hz, 2H), 2.23 (dd, *J* = 10.3, 7.6 Hz, 1H), 2.10 – 2.00 (m, 1H), 1.93 – 1.83 (m, 1H) ppm. ¹³**C NMR** (151 MHz, CDCl₃) δ 170.6, 141.8, 135.8, 134.1, 128.6 (2C), 128.5 (2C), 128.4 (2C), 127.6 (2C), 125.9, 85.8, 79.6, 52.6, 52.0, 50.0, 42.1, 34.7, 32.2 ppm. **HRMS** (ESI) calculate: C₂₁H₂₂ClO₃⁺ (M+H)⁺: 357.1252, found: 357.1254.

Methyl-1-(naphthalen-1-yl)-3-phenethyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

55 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (20 mg, 0.054 mmol, 54%).

 $R_f = 0.6$ (10% EtOAc in PE).

¹H NMR (500 MHz, CDCl₃) δ 8.39 (d, J = 8.3 Hz, 1H), 7.85 (dd, J = 13.5, 8.1 Hz, 2H),
7.57 - 7.48 (m, 2H), 7.46 - 7.41 (m, 1H), 7.37 (d, J = 7.0 Hz, 1H), 7.31 (t, J = 7.5 Hz,
2H), 7.26 (s, 2H), 7.23 - 7.18 (m, 1H), 4.48 (dd, J = 9.4, 3.6 Hz, 1H), 3.77 (s, 3H),
3.02 - 2.93 (m, 1H), 2.79 - 2.71 (m, 2H), 2.67 (t, J = 8.9 Hz, 1H), 2.53 (d, J = 6.9 Hz,
1H), 2.41 (d, J = 7.6 Hz, 1H), 2.18 - 2.09 (m, 1H), 2.06 - 1.98 (m, 1H) ppm.

¹³C NMR (151 MHz, CDCl₃) δ 171.0, 142.1, 134.1, 132.9, 131.8, 129.8, 128.7 (2C),
128.6 (2C), 128.6 (2C), 126.3, 126.0, 126.0, 125.7, 125.1, 87.6, 80.4, 52.4, 52.1, 50.0,
42.2, 35.2, 32.3 ppm.

HRMS (ESI) calculate: C₂₅H₂₅O₃⁺ (M+H)⁺: 373.1798, found: 373.1800.

Tert-Butyl-3-phenethyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

56 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (31 mg, 0.085 mmol, 85%).

 $R_f = 0.5$ (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.41 (d, *J* = 6.9 Hz, 2H), 7.39 – 7.35 (m, 2H), 7.33 – 7.27 (m, 3H), 7.26 – 7.23 (m, 2H), 7.21 – 7.17 (m, 1H), 4.28 (dd, *J* = 9.5, 3.5 Hz, 1H), 2.99 – 2.91 (m, 1H), 2.79 – 2.71 (m, 1H), 2.36 (d, *J* = 6.9 Hz, 1H), 2.29 (dd, *J* = 10.1, 7.0 Hz, 1H), 2.25 (d, *J* = 7.6 Hz, 1H), 2.19 (dd, *J* = 10.1, 7.6 Hz, 1H), 2.08 – 2.00 (m, 1H), 1.92 – 1.83 (m, 1H), 1.47 (s, 9H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 169.9, 142.2, 137.6, 128.6 (2C), 128.5 (2C), 128.4 (2C), 128.2, 126.2 (2C), 125.9, 86.2, 81.4, 79.6, 53.8, 50.0, 41.8, 34.9, 32.3, 28.2 (3C) ppm.

HRMS (ESI) calculate: C₂₄H₂₉O₃⁺ (M+H)⁺: 365.2111, found: 365.2113.

Phenyl-3-phenethyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

57 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (26 mg, 0.068 mmol, 68%).

 $R_f = 0.5$ (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.46 (d, *J* = 7.2 Hz, 2H), 7.43 – 7.37 (m, 4H), 7.37 – 7.32 (m, 1H), 7.31 – 7.22 (m, 5H), 7.22 – 7.17 (m, 1H), 7.09 (d, *J* = 7.9 Hz, 2H), 4.48 (dd, *J* = 9.5, 3.6 Hz, 1H), 3.06 – 2.95 (m, 1H), 2.86 – 2.75 (m, 1H), 2.59 (d, *J* = 7.0 Hz, 1H), 2.49 (dd, *J* = 10.7, 7.2 Hz, 2H), 2.38 (dd, *J* = 10.3, 7.7 Hz, 1H), 2.24 – 2.12 (m, 1H), 2.04 – 1.93 (m, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 168.9, 150.4, 141.9, 137.1, 129.7 (2C), 128.6 (2C), 128.6 (3C), 128.5, 126.3 (2C), 126.2 (2C), 126.0, 121.5 (2C), 86.7, 79.7, 52.9, 50.3, 42.3, 35.0, 32.3 ppm.

HRMS (ESI) calculate: C₂₆H₂₅O₃⁺ (M+H)⁺: 385.1798, found: 385.1796.

(1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl3-phenethyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

58 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford the title compound as a yellow oil. (41 mg, 0.089 mmol, 89%).

 $R_f = 0.8$ (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.43 (dd, *J* = 7.5, 2.9 Hz, 2H), 7.41 – 7.35 (m, 2H), 7.35 – 7.27 (m, 3H), 7.24 (dd, *J* = 7.4, 2.5 Hz, 2H), 7.20 (app. t, *J* = 7.3 Hz, 1H), 4.79 – 4.71 (m, 1H), 4.33 (dd, *J* = 9.6, 2.4 Hz, 1H), 3.01 – 2.92 (m, 1H), 2.82 – 2.70 (m, 1H), 2.41 – 2.37 (m, 1H), 2.37 – 2.28 (m, 2H), 2.27 – 2.22 (m, 1H), 2.08 – 1.98 (m, 2H), 1.93 – 1.79 (m, 2H), 1.74 – 1.66 (m, 2H), 1.56 – 1.47 (m, 1H), 1.45 – 1.37 (m, 1H), 1.12 – 1.04 (m, 1H), 1.03 – 0.95 (m, 1H), 0.94 – 0.86 (m, 7H), 0.76 (dd, *J* = 7.0, 3.4 Hz, 3H). ppm.

¹³C NMR (126 MHz, CDCl₃) Mixer of isomer 1 and isomer 2 δ 170.2, 170.1, 142.1, 137.5, 128.6, 128.6, 128.5, 128.3, 126.3, 126.2, 125.9, 86.5, 86.5, 79.7, 79.6, 74.9, 53.2, 50.1, 50.0, 47.1, 41.9, 41.8, 41.0, 35.0, 34.8, 34.3, 32.4, 32.3, 31.5, 26.7, 26.5, 23.7, 23.5, 22.2, 22.1, 20.9, 20.8, 16.6, 16.3 ppm.

HRMS (ESI) calculate: C₃₀H₃₉O₃+ (M+H)+: 447.2894, found: 447.2896. (3*S*,8*S*,10*R*,13*S*,14*S*,17*S*)-17-Acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13, 14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 3-phenethyl-1-phenyl-2-oxabicyclo[2.1.1]hexane-4-carboxylate

59 was synthesized according to the general procedure C and purified by flash column chromatography (silica gel), eluting with 6% EtOAc in PE to afford the title compound as a yellow oil. (45 mg, 0.076 mmol, 76%).

 $R_f = 0.2$ (10% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.42 (dd, *J* = 8.3, 1.6 Hz, 2H), 7.40 – 7.35 (m, 2H), 7.34 – 7.27 (m, 3H), 7.25 (d, *J* = 6.7 Hz, 2H), 7.21 – 7.17 (m, 1H), 5.39 (d, *J* = 4.9 Hz, 1H), 4.73 – 4.65 (m, 1H), 4.32 (dd, *J* = 9.4, 3.5 Hz, 1H), 2.95 (s, 1H), 2.79 – 2.70 (m, 1H), 2.57 – 2.51 (m, 1H), 2.40 (d, *J* = 6.9 Hz, 1H), 2.35 – 2.28 (m, 4H), 2.23 (dd, *J* = 10.0, 7.6 Hz, 1H), 2.18 (dd, *J* = 11.1, 1.9 Hz, 1H), 2.13 (s, 3H), 2.08 – 1.98 (m, 3H), 1.93 – 1.84 (m, 3H), 1.72 – 1.60 (m, 4H), 1.54 – 1.44 (m, 3H), 1.28 – 1.13 (m, 4H), 1.03 (s, 4H), 0.64 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 209.7, 170.0, 142.1, 139.5, 137.4, 128.6 (2C), 128.5 (2C), 128.5 (2C), 128.3, 126.2 (2C), 126.0, 122.7, 86.4, 79.6, 74.4, 63.8, 56.9, 53.0, 50.1, 50.0, 44.1, 41.9, 38.9, 38.1, 37.1, 36.7, 34.8, 32.3, 31.9, 31.9, 31.7, 27.8, 24.6, 23.0, 21.2, 19.5, 13.3 ppm.

HRMS (ESI) calculate: C₄₁H₅₁O₄⁺ (M+H)⁺: 607.3782, found: 607.3782.

4 Mechanistic Studies

4.1 Radical cation trapping experiment

An oven-dried two-dram vials equipped with PTFE-coated stir bar and Teflon® septum were used. Mes₂Acr-*t*Bu₂BF₄ (**PC1**, 0.6 mg, 0.005 mmol) and **1a** (38 mg, 0.2 mmol) were added into the vial and was dissolved in DCE (0.5 mL) under oxygen atmosphere. The vial was set to stir (500 rpm) and irradiated with a 30 W 450 nm blue LED lamp (approximate 3 cm away, with cooling fan to keep the reaction at room temperature). After 12 hours, the reaction mixture was transferred to a 100mL round-bottom flask and concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with 10% EtOAc in PE to afford **60** as a pale-yellow oil (9 mg, 0.042 mmol, 21%) **R**_f = 0.6 (20% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.98 – 7.92 (m, 2H), 7.63 – 7.56 (m, 1H), 7.48 (app. t, *J* = 7.8 Hz, 2H), 3.76 (s, 3H), 3.61 – 3.51 (m, 2H), 3.29 (d, *J* = 5.6 Hz, 1H), 2.92 (d, *J* = 5.6 Hz, 1H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 195.9, 170.3, 136.2, 133.8, 128.9 (2C), 128.2 (2C), 54.0, 53.0, 51.7, 41.7 ppm.

HRMS (ESI) calculate: C₁₂H₁₃O₄+ (M+H)+: 221.0808, found: 221.0807.

An oven-dried two-dram vials equipped with PTFE-coated stir bar and Teflon® septum were used. Mes₂Acr-*t*Bu₂BF₄ (**PC1**, 0.6 mg, 0.005 mmol), **1a** (38 mg, 0.2 mmol) and MeOH (41 μ L, 0.5 mmol) were added into the vial and was dissolved in DCE (1 mL). The vial was set to stir (500 rpm) and irradiated with a 30 W 450 nm blue LED lamp (approximate 3 cm away, with cooling fan to keep the reaction at room temperature). After 12 hours, the reaction mixture was transferred to a 100mL round-bottom flask and concentrated in vacuo. The crude reaction mixture

was purified by flash column chromatography (silica gel), eluting with 3% EtOAc in PE to afford **61** as a pale-yellow oil (13 mg, 0.030 mmol, 30%)

 $R_f = 0.6$ (10% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 – 7.33 (m, 2H), 7.32 – 7.26 (m, 3H), 3.66 (s, 3H),

3.41 – 3.33 (m, 1H), 2.98 (s, 3H), 2.65 (d, *J* = 8.8 Hz, 5H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 175.8, 142.5, 128.4 (2C), 127.6, 126.2 (2C), 80.0, 51.9, 51.1, 35.1 (2C), 32.2 ppm.

HRMS (ESI) calculate: C₁₃H₁₇O₃+ (M+H)+: 221.1172, found: 221.1173.

Figure S6. HMBC spectrum of compound 61

Note: the highlighted correlation (in red square) on the HMBC spectra belongs to H₁₅ and C₁₄, and no correlations between H₁₅ and any aromatic carbons could be observed. As such, the methoxy group should be adjacent to the benzyl group therefore suggesting the resulted trapping compound by MeOH is **61**.

4.2 Radical trapping experiment

According to general procedure C, depends on specific conditions, Mes₂Acr*t*Bu₂BF₄ (**PC1**, 0.6 mg, 0.001 mmol), CoCl₂ (1 mg, 0.0075 mmol), **1a** (38 mg, 0.2 mmol), 2a (12 µL, 0.1 mmol), PBN (89 mg, 0.5 mmol) or TEMPO (78 mg, 0.5 mmol) were selectively used.

Condition A: Mes₂Acr-*t*Bu₂BF₄ (**PC1**, 0.6 mg, 0.001 mmol), CoCl₂ (1 mg, 0.0075 mmol), **1a** (38 mg, 0.2 mmol), **2a** (12 μ L, 0.1 mmol), PBN (89 mg, 0.5 mmol) under reaction conditions in general procedure C.

62 was detected by HRMS as illustrated below. **3** was purified by flash column chromatography (silica gel), eluting with 3% EtOAc in PE to afford **3** as a white solid (18 mg, 0.056 mmol, 56%). All analytical data match to the previous reported **3**.

Figure S7. HRMS spectrum and formula prediction of compound **62 Condition B:** Mes₂Acr-*t*Bu₂BF₄ (**PC1**, 0.6 mg, 0.001 mmol), **1a** (38 mg, 0.2 mmol), **2a** (12 μL, 0.1 mmol), PBN (89 mg, 0.5 mmol) under reaction conditions in general procedure C.

62 was detected by HRMS as illustrated below. **3** was purified by flash column chromatography (silica gel), eluting with 3% EtOAc in PE to afford **3** as a white solid (8 mg, 0.025 mmol, 25%). All analytical data match to the previous reported

Figure S8. HRMS spectrum and formula prediction of compound **62 Condition C:** Mes₂Acr-*t*Bu₂BF₄ (**PC1**, 0.6 mg, 0.0005 mmol), CoCl₂ (1 mg, 0.00375 mmol), **1a** (38 mg, 0.2 mmol), PBN (89 mg, 0.25 mmol) under reaction conditions in general procedure C.

62 was purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford **63** as a pale-yellow oil (9 mg, 0.024 mmol, 12%).

 $R_f = 0.7 (10\% \text{ EtOAc in PE})$

¹**H NMR** (500 MHz, CDCl₃) δ 7.34 – 7.24 (m, 2H), 7.09 – 6.91 (m, 6H), 6.65 – 6.58 (m, 2H), 4.43 (s, 1H), 3.77 (s, 3H), 3.34 – 3.27 (m, 1H), 2.60 (dd, *J* = 9.3, 3.1 Hz, 1H), 2.35 – 2.26 (m, 2H), 1.08 (s, 9H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 170.3, 144.6, 142.2, 127.9, 127.6 (2C), 127.4 (2C), 126.8, 126.2 (2C), 126.1 (2C), 78.6, 72.6, 60.5, 52.4, 48.0, 45.0, 35.5, 26.8 (3C) ppm.
HRMS (ESI) calculate: C₂₃H₂₇NO₃⁺ (M+H)⁺: 366.2064, found: 366.2064.

Figure S9. HMBC spectrum of compound 62

Note: the highlighted correlation (in red square) on the HMBC spectra belongs to H_5 and C_2 , and no correlations between H_5 and C_1 (in blue square) could be observed. As such, the oxygen was linked to C_1 therefore suggesting the resulted trapping compound by PBN is **62**.

Condition D: Mes₂Acr-*t*Bu₂BF₄ (**PC1**, 0.6 mg, 0.0005 mmol), **1a** (38 mg, 0.2 mmol), PBN (87 mg, 0.25 mmol) under reaction conditions in general procedure C.

62 under condition D was purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to afford **62** as a pale-yellow oil (9 mg, 0.024 mmol, 12%). All analytical data match to the previous reported **62**.

Condition E: Mes₂Acr-*t*Bu₂BF₄ (**PC1**, 0.6 mg, 0.001 mmol), CoCl₂ (1 mg, 0.0075 mmol), **1a** (38 mg, 0.2 mmol), **2a** (12 μ L, 0.1 mmol), TEMPO (78 mg, 0.5 mmol) under reaction conditions in general procedure C.

No **3** could be observed but **63** on HRMS was detected as below.

Figure S10. HRMS spectrum and formula prediction of compound 63

4.3 Ketyl Radical-trapping Experiment

According to general procedure C, Mes₂Acr-*t*Bu₂BF₄ (**PC1**, 0.6 mg, 0.001 mmol), CoCl₂ (1 mg, 0.0075 mmol), **1a** (38 mg, 0.2 mmol) and **(±)-trans 2x** (15 mg, 0.1 mmol) were used.

64 was purified by flash column chromatography (silica gel), eluting with 3% EtOAc in PE to afford **64** as a pale-yellow oil (21 mg, 0.063 mmol, 63%, 1.2:1 dr). $\mathbf{R}_{f} = 0.5$ (10% EtOAc in PE)

¹H NMR (500 MHz, CDCl₃) Mixer of isomer 1 and isomer 2 δ 7.45 – 7.28 (m, 10H), 7.26 – 7.23 (m, 4H), 7.18 – 7.13 (m, 2H), 7.13 – 7.08 (m, 2H), 7.08 – 7.02 (m, 2H), 3.84 – 3.80 (m, 2H), 3.79 (s, 3H), 3.62 (s, 3H), 2.43 – 2.32 (m, 8H), 1.33 – 1.28 (m, 2H), 1.19 (dd, *J* = 8.8, 5.3 Hz, 1H), 1.17 – 1.13 (m, 1H), 1.03 – 0.95 (m, 2H) ppm. Isomer 1 δ 2.13 – 2.07 (m, 1H), 1.03 – 0.95 (m, 2H) ppm. Isomer 2 δ 1.98 – 1.93 (m, 1H), 1.19 (dd, *J* = 8.8, 5.3 Hz, 1H), 1.17 – 1.13 (m, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃) Mixer of isomer 1 and isomer 2 δ 171.1, 170.9, 142.4, 142.0, 137.0, 136.9, 128.5, 128.4, 128.4, 126.3, 126.1, 125.9, 125.8, 86.6, 86.4, 84.6, 84.5, 53.4, 53.3, 52.0, 49.9, 49.7, 42.1, 41.8, 24.7, 24.6, 21.4, 20.9, 13.7, 12.7 ppm.

HRMS (ESI) calculate: C₂₂H₂₃O₃+ (M+H)+: 335.1642, found: 335.1639.

4.4 UV-Vis Absorption Spectra Analysis

UV-visible absorption spectra were carried out on the Agilent Cary 5000 UV-Vis-NIR spectrophotometer, equipped with a temperature control unit at 25 °C. All samples were measured in cuvettes (volume: 2.0 mL, path length: 10 mm) equipped with a PTFE stopper. The spectra were acquired from 350 to 700 nm using 1.0 nm steps. All measurements were performed in 2 mL of dry DCE with consistent concentration of 2.5 mM.

Figure S11. UV-Vis absorption spectra

4.5 Stern-Volmer Luminescence Quenching Analysis

Emission intensities were recorded using a Fluorolog-3 luminescence spectrometer. Solutions of different components were prepared and introduced to a 10 mm path length quartz cuvette in glovebox. Excitation bandwidth = 1 nm, data interval = 0.2 nm, scan speed = 500 nm/min, dwell time = 0.03 s. All the solution was excited at 400 nm and the emission intensity was collected at 510 nm. The solution of **PC1** (0.5 mM, 20 mL), **1a** (50 mM, 20 mL), **2a** (50 mM, 20 mL) were prepared in glovebox using a mixture of dry DCE. I₀ is the luminescence intensity without quenching substrates, and I is the intensity in the presence of quenching substrates. All intensity values were normalized by subtracting the basal intensity of blank DCE solvent.

For Experiment 1: Constant photocatalyst; Varied concentration of 1a

Add 100 μ L of **PC1** solution and 0 μ L, 100 μ L, 300 μ L, 500 μ L, 700 μ L and 900 μ L **1a** solution respectively in the quartz cuvette and then diluted the solution to 2 mL by using the mixture of dry DCE.

Comment: **1a** could quench the excited photocatalyst.

Figure S12. Emission of PC1 with varying 1a quencher concentrations
For Experiment 2: Constant photocatalyst; Varied concentration of 2a
Add 100 μL of PC1 solution and 0 μL, 100 μL, 300 μL, 500 μL, 700 μL and 900 μL
2a solution respectively in the quartz cuvette and then diluted the solution to 2 mL by using the mixture of dry DCE.

Comment: **2a** could not quench the excited photocatalyst.

Figure S13. Emission of PC1 with varying 2a quencher concentrations

Figure S14. Stern-Volmer plots of 1a and 2a

4.6 Quantum Yield Experiment

According to our previous literature procedure, the photo flux of the 30 W 450 nm LED lamp was first determined by standard ferrioxalate actinometry.^[7]

Preparation of 0.15 M solution of ferrioxalate (0.15 M):

Potassium ferrioxalate trihydrate (1474 mg) was dissolved in H₂SO₄ aq. (20 mL, 0.2M).

Preparation of buffered solution (0.15 M):

1,10-phenanthroline (541 mg, 3.0 mmol), NaOAc (1.23 g, 15.0 mmol) were dissolved in H₂SO₄ aq. (20 mL, 0.2M). To two 8 mL vials added ferrioxalate solution (1 mL) respectively and irradiated one of the vials with an LED lamp (30W, 450 nm) while the other kept in dark. After 30 s, buffered solution (3 mL) and H₂SO₄ aq. (2 mL, 0.2M) were added immediately to both vials. The resulting mixtures were kept in dark for another 1 h to allow the formed ferrous ions completely coordinate to the phenanthroline. Then, 25 μ L of each resulting mixture was transferred to a cuvette (l = 10 mm) and diluted with H₂SO₄ aq. (2 mL, 0.2 M). The absorbance at 510 nm was measured by UV-vis spectrometry. The photo flux was measured by following equation:

mol Fe²⁺ =
$$\frac{V \times \Delta A \ (510 \ nm)}{l \times \varepsilon}$$

Where V is the total volume (0.486 L) of the solution after addition of phenanthroline, $\Delta A = 0.1895$ is the difference in absorbance at 510 nm between

the irradiated and non-irradiated solutions, l is the path length (1.0 cm), and ε is the molar absorptivity at 510 nm (11,100 L·mol⁻¹·cm⁻¹). The photon flux can be calculated as following equation:

photon flux =
$$\frac{\text{mol Fe}^{2+}}{\phi \times t \times f}$$

Where Φ is the quantum yield for the ferrioxalate actinometer (approximate 0.845 for a 0.15 M solution at λ = 450 nm), t is the time (30 s), and f is the fraction of light absorbed at λ = 450 nm by the ferrioxalate actinometer. This value is calculated using the following equation where A (450 nm) is the absorption of the ferrioxalate solution at 450 nm. An absorption spectrum gave an A (450 nm) = 0.1343, indicating that the fraction of absorbed light (*f*) = 0.26601.

 $f = 1 - 10^{-A(450 nm)} = 1 - 10^{-0.1343} = 0.2660$

The photon flux was calculated to be 1.230×10^{-6} einstein \cdot s⁻¹.

Figure S15. UV-Vis spectrum of quantum yield

Determination of quantum yield

An oven-dried two-dram vials equipped with PTFE-coated stir bar and Teflon® septum were used. To the vial was added **1a** (38 mg, 0.2 mmol), **2a** (13 μ L, 0.1 mmol), CoCl₂ (1.0 mg, 0.075 mmol), Mes₂Acr-*t*Bu₂BF₄ (**PC1**, 0.7 mg, 0.001 mmol) and were dissolved by DCE (0.5 mL). The mixture was set to stir (500 rpm) and

irradiated with a 30 W 450 nm blue LED lamp (approximate 3 cm away, with cooling fan to keep the reaction at room temperature). After 3 minutes, the reaction mixture was transferred to a 100 mL round-bottom flask and concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with 2% EtOAc in PE to give the desired product as a pale-yellow oil (10 mg, 0.033 mmol, 33%) and the quantum yield is calculated by the following equation:

$$\phi = \frac{\text{mol product}}{flux \times t \times f}$$

where flux is the photon flux determined by ferrioxalate actinometry (1.230 × 10⁻⁶ einsteins. s⁻¹), t is the time (180 s), and f is the fraction of light absorbed by the reaction mixture at 450 nm. This value is calculated using eq. 3 where A (450nm) is the absorption of the ferrioxalate solution at 450 nm. f is the fraction of light absorbed at λ = 450 nm (0.935, A= 1.18591).

$$\phi = \frac{\text{mol product}}{flux \times t \times f} = \frac{3.3 \times 10^{-5} \text{ mol}}{1.230 \times 10^{-6} \text{ einstein} \cdot 10^{-1} \times 600 \text{ s} \times 0.935} = 0.1594$$

5 Gram-scale experiment

According to the General procedure C, **1a** (1.88 g, 10 mmol) and **2a** (0.66 mL, 5 mmol) were used and reacted in 200 mL Schlenk tubes instead of two-dram vials. Upon completion, the crude reaction mixture was purified by flash column chromatography (silica gel), eluting with 3% EtOAc in PE to give compound **3** (1.48 g, 4.60 mmol, 92%).

Figure S16. Pictures of gram-scale reaction and compound **3**

6 Synthetic Transformation

Compound **65** was synthesized according to published procedures.^[2] Compound **3** (32 mg, 0.1 mmol) was dissolved in anhydrous toluene (3 mL). Morpholine (18 μ L, 0.2 mmol) and LiHMDS (0.2 mL from 1 M solution in THF, 0.2 mmol) were added under nitrogen atmosphere. The mixture was stirred for 12 hours under nitrogen atmosphere at RT. The reaction mixture was quenched with H₂O (20 mL) and extracted with EtOAc (3 × 20 mL). The organic phases were combined, dried over NaSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with 15% EtOAc in PE to give **65** (31 mg, 0.082 mmol, 82%) as a pale-yellow oil.

 $R_f = 0.4$ (40% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 (dd, *J* = 13.0, 5.7 Hz, 4H), 7.35 – 7.27 (m, 3H), 7.25 – 7.18 (m, 3H), 4.21 (dd, *J* = 8.9, 3.9 Hz, 1H), 3.75 – 3.67 (m, 2H), 3.67 – 3.53 (m, 3H), 3.39 (dd, *J* = 18.9, 10.4 Hz, 3H), 2.96 – 2.88 (m, 1H), 2.77 – 2.68 (m, 1H), 2.46 (d, *J* = 7.1 Hz, 1H), 2.40 (dd, *J* = 10.3, 7.9 Hz, 1H), 2.30 (dd, *J* = 15.9, 7.3 Hz, 2H), 2.09 – 1.99 (m, 1H), 1.93 – 1.83 (m, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 168.8, 141.6, 137.0, 128.7 (2C), 128.6 (2C), 128.5 (2C), 128.4, 126.2 (2C), 126.1, 85.4, 79.4, 67.0, 66.9, 54.7, 50.5, 45.8, 43.4, 42.6, 34.6, 32.1 ppm.

HRMS (ESI) calculate: C₂₄H₂₈NO₃⁺ (M+H)⁺: 378.2064, found: 378.2058.

Compound **66** was synthesized according to adapted procedures.^[8] Compound **3** (32 mg, 0.1 mmol) was dissolved in anhydrous THF (5 mL). BH₃ (0.25 mL from 1 M solution in THF) were added under nitrogen atmosphere. The mixture was stirred for 12 hours under nitrogen atmosphere at 60 °C. The reaction mixture was quenched with H_2O (20 mL) and extracted with EtOAc (3 × 20 mL). The organic phases were combined, dried over NaSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with 15% EtOAc in PE to give **66** (28 mg, 0.096 mmol, 96%) as a pale-yellow oil.

 $R_f = 0.5$ (30% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.36 (dd, *J* = 8.5, 6.7 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.27 – 7.23 (m, 2H), 7.22 – 7.16 (m, 1H), 4.08 (dd, *J* = 9.6, 3.5 Hz, 1H), 3.83 (d, *J* = 1.3 Hz, 2H), 3.03 – 2.92 (m, 1H), 2.78 – 2.67 (m, 1H), 2.09 (d, *J* = 6.8 Hz, 1H), 2.03 (dd, *J* = 10.1, 7.0 Hz, 1H), 1.99 – 1.86 (m, 3H), 1.85 – 1.76 (m, 1H), 1.70 (s, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 142.4, 138.3, 128.6 (2C), 128.5 (2C), 128.4 (2C), 128.0, 126.2 (2C), 125.9, 86.8, 79.5, 61.4, 53.2, 46.4, 40.4, 34.8, 32.5 ppm.
HRMS (ESI) calculate: C₂₀H₂₃O₃+(M+H)+: 295.1693, found: 295.1690.

Compound **67** was synthesized according to adapted procedures.^[2]

Compound **66** (29 mg, 0.1 mmol) was dissolved in anhydrous THF (5 mL). DPPA (43 μ L, 0.2 mmol) and DBU (45 μ L, 0.3 mmol) were added under nitrogen atmosphere. The mixture was stirred for 48 hours under nitrogen atmosphere at 60 °C. The reaction mixture was quenched with H₂O (20 mL) and extracted with EtOAc (3 × 20 mL). The organic phases were combined, dried over NaSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with 6% EtOAc in PE to give **67** (22 mg, 0.069 mmol, 69%) as a pale-yellow oil.

 $R_f = 0.8$ (20% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.36 (d, *J* = 6.9 Hz, 2H), 7.30 (app. t, *J* = 7.4 Hz, 2H), 7.24 (dd, *J* = 9.3, 5.4 Hz, 3H), 7.21 – 7.16 (m, 2H), 7.16 – 7.11 (m, 1H), 4.00 (dd, *J* =

9.9, 3.3 Hz, 1H), 3.50 (d, *J* = 5.5 Hz, 2H), 2.92 (dd, *J* = 6.8, 3.6 Hz, 1H), 2.74 – 2.60 (m, 1H), 2.08 (d, *J* = 7.0 Hz, 1H), 2.02 (dd, *J* = 10.1, 6.9 Hz, 1H), 1.95 (dd, *J* = 10.2, 7.2 Hz, 1H), 1.90 (d, *J* = 7.3 Hz, 1H), 1.81 (dd, *J* = 6.6, 3.4 Hz, 1H), 1.78 – 1.67 (m, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 142.2, 137.9, 128.6 (2C), 128.6 (2C), 128.4 (2C), 128.2, 126.2 (2C), 126.0, 87.0, 79.6, 51.4, 51.2, 47.5, 41.6, 34.5, 32.4 ppm.
HRMS (ESI) calculate: C₂₀H₂₂NO⁺(M+H-N₂)⁺: 292.1696, found: 292.1692.

68 was synthesized according to the general procedure B and purified by flash column chromatography (silica gel), eluting with 3% MeOH in DCM to afford **68** as a colourless oil (30 mg, 0.097 mmol, 97%).

 $R_f = 0.6$ (6% MeOH in DCM)

¹H NMR (500 MHz, MeOD) δ 7.45 – 7.40 (m, 2H), 7.39 – 7.34 (m, 2H), 7.33 – 7.29 (m, 1H), 7.29 – 7.22 (m, 4H), 7.18 – 7.13 (m, 1H), 4.26 (dd, *J* = 9.3, 3.7 Hz, 1H), 2.94 – 2.85 (m, 1H), 2.77 – 2.68 (m, 1H), 2.44 (d, *J* = 6.6 Hz, 1H), 2.30 (d, *J* = 7.2 Hz, 1H), 2.29 – 2.19 (m, 2H), 2.09 – 2.00 (m, 1H), 1.92 – 1.82 (m, 1H) ppm.
¹³C NMR (126 MHz, MeOD) δ 174.6, 143.2, 138.7, 129.5 (2C), 129.4 (2C), 129.3

(2C), 129.2, 127.2 (2C), 126.9, 87.8, 81.0, 54.2, 50.7, 42.6, 36.0, 33.2 ppm.

HRMS (ESI) calculate: C₂₂H₂₇O₂+ (M+H)+: 309.1485, found: 309.1486.

Compound 69 was synthesized according to adapted procedures.^[9]

Compound **3** (32 mg, 0.1 mmol) was dissolved in anhydrous THF (3 mL). MeLi (0.25 mL from 2 M solution in THF, 0.5 mmol) was added under nitrogen atmosphere. The mixture was stirred for 12 hours under nitrogen atmosphere at 40 °C. The reaction mixture was quenched with H_2O (20 mL) and extracted with EtOAc (3 × 20 mL). The organic phases were combined, dried over NaSO₄, filtered

and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with 10% EtOAc in PE to give **69** (30 mg, 0.093 mmol, 93%) as a pale-yellow oil.

 $R_f = 0.5$ (20% EtOAc in PE)

¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 7.5 Hz, 2H), 7.37 (app. t, J = 7.5 Hz, 2H), 7.33 – 7.24 (m, 5H), 7.19 (app. t, J = 6.8 Hz, 1H), 4.12 (dd, J = 11.0, 2.5 Hz, 1H), 3.08 – 2.98 (m, 1H), 2.79 – 2.70 (m, 1H), 2.17 – 2.06 (m, 2H), 2.04 – 1.98 (m, 2H), 1.98 – 1.95 (m, 1H), 1.88 – 1.75 (m, 1H), 1.30 (s, 3H), 1.27 (s, 3H) ppm.
¹³C NMR (126 MHz, CDCl₃) δ 142.7, 138.7, 128.7 (2C), 128.5 (2C), 128.4 (2C),

127.9, 126.2 (2C), 125.8, 84.5, 79.5, 70.0, 59.0, 46.5, 38.7, 35.9, 32.7, 27.8, 26.6 ppm. **HRMS** (ESI) calculate: C₂₂H₂₇O₂+(M+H)+: 323.2006, found: 323.2004.

Compound **70** was synthesized according to published procedures.^[10]

Compound **3** (32 mg, 0.1 mmol) was dissolved in anhydrous THF (5 mL). Ti(OiPr)₄ (41 μ L, 0.14 mmol) and EtMgBr (0.14 mL from a 2M solution in THF, 0.28 mmol) were added under nitrogen atmosphere. The mixture was stirred for 12 hours under nitrogen atmosphere at RT. The reaction mixture was quenched with H₂O (20 mL) and extracted with EtOAc (3 × 20 mL). The organic phases were combined, dried over NaSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with 10% EtOAc in PE to give **70** (18 mg, 0.056 mmol, 56%) as a pale-yellow oil. **R**_f = 0.4 (20% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) δ 7.42 (d, *J* = 7.2 Hz, 2H), 7.37 (app. t, *J* = 7.4 Hz, 2H), 7.30 (d, *J* = 6.7 Hz, 5H), 7.23 – 7.18 (m, 1H), 4.30 (dd, *J* = 9.6, 3.4 Hz, 1H), 3.06 – 2.97 (m, 1H), 2.86 – 2.76 (m, 1H), 2.24 – 2.11 (m, 2H), 1.96 – 1.89 (m, 2H), 1.89 – 1.79 (m, 2H), 1.61 (s, 1H), 0.90 – 0.82 (m, 1H), 0.81 – 0.73 (m, 1H), 0.70 – 0.64 (m, 1H), 0.64 – 0.54 (m, 1H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 142.7, 138.4, 128.7 (2C), 128.5 (2C), 128.4 (2C), 128.1, 126.2 (2C), 125.9, 85.7, 80.2, 54.8, 54.7, 47.1, 41.0, 35.2, 32.7, 12.4, 11.1 ppm.
HRMS (ESI) calculate: C₂₂H₂₄O₂+(M+H)+: 321.1849, found: 321.1849.

Compound **68** (31 mg, 0.1 mmol) was dissolved in DCM (5 mL). Atomoxetine hydrochloride (35 mg, 0.12 mmol), EDCI·HCl (29 mg, 0.15 mmol) and DMAP (2 mg, 0.02 mmol) were added under nitrogen atmosphere. The mixture was stirred for 12 hours under nitrogen atmosphere at RT. The reaction mixture was quenched with H_2O (20 mL) and extracted with EtOAc (3 × 20 mL). The organic phases were combined, dried over NaSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with 20% EtOAc in PE to give **71** (50 mg, 0.092 mmol, 92%) as a colorless oil.

 $R_f = 0.6$ (50% EtOAc in PE).

¹**H NMR** (500 MHz, CDCl₃) **Mixer of isomer 1 and isomer 2** δ 7.42 – 7.29 (m, 15H), 7.28 – 7.21 (m, 10H), 7.21 – 7.15 (m, 5H), 7.12 (dd, *J* = 12.1, 6.0 Hz, 2H), 7.00 – 6.90 (m, 2H), 6.83 – 6.74 (m, 2H), 6.61 – 6.50 (m, 2H), 5.24 – 5.12 (m, 2H), 3.48 – 3.32 (m, 2H), 2.97 – 2.79 (m, 8H), 2.75 – 2.58 (m, 2H), 2.34 (d, *J* = 4.9 Hz, 9H), 2.29 – 2.10 (m, 8H), 2.09 – 1.92 (m, 3H), 1.92 – 1.77 (m, 2H) ppm. **Isomer 1** δ 4.32 – 4.27 (m, 1H), 3.73 – 3.62 (m, 1H) ppm. **Isomer 2** δ 4.23 – 4.12 (m, 1H), 3.59 – 3.48 (m, 1H) ppm.

¹³C NMR (126 MHz, CDCl₃) Mixer of isomer 1 and isomer 2 δ 170.2, 170.1, 155.9, 155.5, 141.9, 141.8, 141.7, 141.7, 140.8, 137.4, 131.1, 130.9, 129.1, 128.9, 128.7, 128.6, 128.5, 128.4, 128.2, 127.9, 127.1, 126.9, 126.9, 126.4, 126.3, 126.1, 125.9, 125.8, 125.7, 120.9, 120.6, 112.9, 112.8, 112.7, 112.6, 85.3, 85.2, 85.2, 79.7, 79.7, 79.4, 77.7, 77.7, 76.8, 55.1, 54.8, 50.6, 50.6, 46.3, 46.0, 45.9, 43.6, 43.5, 43.4, 43.3, 37.9, 37.7, 36.4, 35.4, 35.2, 34.8, 34.7, 34.6, 33.9, 33.9, 32.3, 32.3, 17.1, 17.0, 16.8. HRMS (ESI) calculate: C₃₇H₄₀NO₃+(M+H)⁺: 546.3003, found: 546.3003.

Compound **72** was synthesized according to published procedures.^[2]

Compound **3** (32 mg, 0.1 mmol) was dissolved in anhydrous toluene (3 mL). Leelamine (143 mg, 0.5 mmol) and LiHMDS (0.5 mL from 1 M solution in THF, 0.5 mmol) were added under nitrogen atmosphere. The mixture was stirred for 12 hours under nitrogen atmosphere at RT. The reaction mixture was quenched with H₂O (20 mL) and extracted with EtOAc (3 × 20 mL). The organic phases were combined, dried over NaSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with 15% EtOAc in PE to give **72** (45 mg, 0.078 mmol, 78%) as a pale-yellow oil.

 $R_f = 0.7$ (30% EtOAc in PE)

¹**H NMR** (500 MHz, CDCl₃) δ 7.42 – 7.34 (m, 4H), 7.34 – 7.28 (m, 1H), 7.24 (d, *J* = 7.0 Hz, 2H), 7.17 (app. t, *J* = 6.9 Hz, 3H), 7.13 (d, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 8.1 Hz, 1H), 6.87 (d, *J* = 9.7 Hz, 1H), 5.58 – 5.47 (m, 1H), 4.29 (dd, *J* = 9.9, 3.3 Hz, 1H), 3.32 – 3.11 (m, 2H), 2.95 – 2.85 (m, 2H), 2.85 – 2.63 (m, 3H), 2.40 – 2.32 (m, 1H), 2.32 – 2.21 (m, 3H), 2.13 (dd, *J* = 7.6, 3.0 Hz, 1H), 2.01 – 1.93 (m, 1H), 1.92 – 1.70 (m, 4H), 1.42 – 1.26 (m, 4H), 1.24 – 1.18 (m, 10H), 0.93 (s, 3H) ppm.

¹³**C NMR** (126 MHz, CDCl₃) δ 170.2, 147.0, 145.8, 141.9, 137.2, 134.7, 128.6 (2C), 128.5 (3C), 128.4, 127.0, 126.2 (2C), 125.9, 124.4, 124.1, 85.9, 80.2, 80.2, 54.7, 50.0, 49.7, 46.4, 41.5, 38.5, 37.7, 37.5, 36.5, 35.1, 34.9, 33.6, 32.2, 32.2, 30.6, 25.5, 24.1, 19.2, 18.7 ppm.

HRMS (ESI) calculate: C₄₀H₅₀NO₂⁺(M+H)⁺: 576.3836, found: 576.3839.

7 Physicochemical Property Assessment

The physicochemical property of Atomoxetine, 71, Leelamine and 72 were calculated and predicted by different software and program. ClogP and tPSA values were generated by ChemDraw Office. pKa Values were predicted by a published graph-convolutional neural network program MolGpKa.^[11] Human plasma stabilities were predicted by a published attention-based graph neural network program PredPS.^[12] 71 and 72 were further measured the stability under different acidic conditions. Compound (55 mg for 71, 58 mg for 72, 0.1 mmol) were dissolved in THF (0.5 mL). Different concentration of HCl (2 mL from 0.2 M, 2 M or concentrated HCl aqueous solution) were added under nitrogen atmosphere. The mixture was stirred for 24 hours under nitrogen atmosphere at 37 °C. The reaction mixture was quenched with saturated NaHCO₃ aqueous solution (20 mL) and extracted with EtOAc (3 × 20 mL). The organic phases were combined, dried over NaSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with indicated solvent system to give the desired compound and calculated the recovery ratio based on recovered **71** and **72**.

8 Phrenological Property Assessment

75 (15 mg, 0.032 mmol) was dissolved in DCM (5 mL). **76** (11 mg, 0.038 mmol), EDCI·HCl (9 mg, 0.048 mmol) and DMAP (0.8 mg, 0.006 mmol) were added under nitrogen atmosphere. The mixture was stirred for 12 hours under nitrogen atmosphere at RT. The reaction mixture was quenched with H₂O (10 mL) and extracted with EtOAc (3×10 mL). The organic phases were combined, dried over NaSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with 1% MeOH in DCM to give **73** (14 mg, 0.019 mmol, 59%) as a colorless oil.

 $R_f = 0.6$ (6% MeOH in DCM)

¹**H NMR** (500 MHz, CDCl₃) δ 7.45 (d, *J* = 7.4 Hz, 2H), 7.41 (d, *J* = 7.5 Hz, 2H), 7.34 (app. t, *J* = 7.5 Hz, 2H), 7.31 – 7.25 (m, 3H), 7.23 (d, *J* = 7.7 Hz, 3H), 7.20 – 7.15 (m, 3H), 6.69 – 6.61 (m, 2H), 6.50 (d, *J* = 8.1 Hz, 1H), 5.47 (s, 1H), 4.51 (s, 1H), 3.78 (s, 3H), 3.19 – 3.06 (m, 4H), 3.02 – 2.91 (m, 3H), 2.65 – 2.54 (m, 2H), 2.51 (d, *J* = 7.4 Hz, 1H), 2.25 (tt, *J* = 33.2, 11.1 Hz, 5H), 2.06 (dd, *J* = 13.0, 7.3 Hz, 2H), 1.66 (d, *J* = 12.7 Hz, 1H), 1.62 – 1.53 (m, 1H), 1.37 (td, *J* = 13.1, 5.7 Hz, 1H), 1.27 – 1.20 (m, 1H), 0.83 – 0.76 (m, 1H), 0.71 – 0.64 (m, 1H), 0.37 (p, *J* = 9.8 Hz, 2H), 0.04 – -0.04 (m, 2H) ppm.

¹³C NMR (126 MHz, CDCl₃) δ 168.0, 147.1, 141.9, 139.4, 138.9, 136.9, 135.3, 132.9, 130.1 (2C), 128.8, 128.6 (2C), 128.6, 128.4 (2C), 128.1, 126.7 (2C), 126.3 (2C), 120.0 (2C), 119.1, 113.7, 93.3, 86.1, 80.9, 77.1, 60.0, 58.7, 57.0, 56.7, 51.2, 49.9, 46.2, 44.0, 43.4, 40.4, 36.5, 36.2, 35.8, 29.8, 22.9, 18.8, 9.6, 4.2, 3.5 ppm.
HRMS (ESI) calculate: C₄₈H₅₁N₂O_{5⁺} (M+H)⁺: 735.3792, found: 735.3794.

76 (15 mg, 0.032 mmol) was dissolved in DCM (5 mL). **77** (10 mg, 0.038 mmol), EDCI·HCl (9 mg, 0.048 mmol) and DMAP (0.8 mg, 0.006 mmol) were added under nitrogen atmosphere. The mixture was stirred for 12 hours under nitrogen atmosphere at RT. The reaction mixture was quenched with H_2O (10 mL) and extracted with EtOAc (3 × 10 mL). The organic phases were combined, dried over NaSO₄, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash column chromatography (silica gel), eluting with 1% MeOH in DCM to give **74** (15 mg, 0.021 mmol, 66%) as a colorless oil.

 $R_f = 0.6$ (6% MeOH in DCM)

¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 2.0 Hz, 1H), 7.76 (dd, *J* = 8.0, 2.0 Hz, 1H),
7.68 (dd, *J* = 7.8, 1.5 Hz, 2H), 7.54 – 7.37 (m, 9H), 7.21 (d, *J* = 8.2 Hz, 2H), 7.09 (d, *J* = 8.3 Hz, 2H), 6.99 (s, 1H), 6.72 (d, *J* = 8.1 Hz, 1H), 6.58 (d, *J* = 8.1 Hz, 1H), 4.59 (d, *J* = 2.0 Hz, 1H), 3.87 (s, 3H), 3.16 (s, 4H), 3.10 – 2.99 (m, 3H), 2.65 (dd, *J* = 11.9, 5.2 Hz, 1H), 2.32 (d, *J* = 6.5 Hz, 2H), 2.28 (d, *J* = 6.8 Hz, 1H), 2.14 (d, *J* = 5.4 Hz, 1H), 1.77 – 1.71 (m, 1H), 1.59 (dd, *J* = 13.9, 6.0 Hz, 2H), 1.49 – 1.41 (m, 1H), 1.35 – 1.27 (m, 2H), 0.90 – 0.84 (m, 1H), 0.81 – 0.71 (m, 1H), 0.51 – 0.41 (m, 2H), 0.08 (d, *J* = 5.0 Hz, 2H) ppm.

¹³**C NMR** (151 MHz, CDCl₃) δ 167.1, 147.1, 142.0, 140.9, 139.8, 139.8, 138.7, 138.5, 135.9, 135.9, 133.0, 131.1, 130.0 (2C), 129.2, 129.2 (2C), 129.1 (2C), 129.0 (2C), 128.8, 128.3 (2C), 128.0, 127.2 (2C), 120.0 (2C), 119.1, 113.8, 93.4, 77.1, 60.0, 58.8, 56.8, 51.2, 46.2, 44.0, 43.4, 36.5, 36.2, 35.8, 29.8, 22.9, 18.8, 9.6, 4.2, 3.5 ppm.

HRMS (ESI) calculate: C₄₉H₄₉N₂O₄+ (M+H)+: 729.3684, found: 729.3685.

Cell Membrane Preparation. Chinese hamster ovary (CHO) cells stably expressing human KOR, rat MOR or rat DOR were clustered in F12 medium with 10% fetal calf serum and 0.25 mg/mL G418. Cells were incubated in a humidified atmosphere consisting of 5% CO₂ and 95% air at 37 °C and detached by incubation

with phosphate buffered saline (PBS) containing 1 mM EDTA and then centrifuged at 1000g for 10 min, when cell growth reached 90% confluence. The cell pellets were suspended in ice-cold homogenization buffer (pH 7.4) containing 50 mM HEPES, 1 mM MgCl₂ and 1 mM EGTA. After homogenization with a glass dounce homogenizer, the pellets were centrifuged at 40,000 g for 30 min (4 °C). This producer including resuspension, homogenization, and centrifugation was repeated for twice more. The final pellets were resuspended in a 50 mM Tris-HCl buffer, pH 7.4. Protein concentration was determined, and aliquots were stored at -80 °C.

Radioligand Binding Assays. Ki value was measured according to a published literature.^[13] Competitive binding assays were carried out using [³H]U69593 (39.1 Ci/mmol) for KOR with Kd values of 0.7 ± 0.2 nM and Bmax values of 871.3 ± 80.4 fmol/mg protein. Competition inhibition by compounds showing [³H]-labeled ligand binding to opioid receptors was performed in the absence or presence of test compounds at various concentrations. U50,488H at a concentration of 10 μ M was used to define nonspecific binding. Assay was performed in 50 mM Tris-HCl buffer (pH 7.4) at 37 °C for 30 min in triplicate with a final volume of 0.5 mL containing 30 μ g of membrane protein. After reaching equilibrium, bound and free [³H]-labeled ligands were separated by filtration under reduced pressure with GF/B filters. The radioactivity retained on the filters was counted by liquid scintillation counting. Binding data and Ki values were determined using the GraphPad Prism 10.2.

9 Docking Analysis

Docking analysis of **73** and **74** were followed to a published protocal.^[13] To reveal the binding model of compound **73** and **74**, we built a complex of compound **73** and **74** and opioid receptors based on the published crystal structures of KOR (PDB entry: 6B73). Original compound MP1104 were removed from the crystal structure and all hydrogen atoms added. The chemical structures of compounds **73** and **74** were sketched in SYBYL (Tripos, St Louis, MO, USA) and protonated, if appropriate, before energy minimization using the Tripos force field (Gasteiger–Hückel charges, distance-dependent dielectric constant = 4.0, nonbonded interaction cutoff = 8 Å and termination criterion = energy gradient < 0.05 kcal / (mol × Å) for 10 000 iterations). The molecular docking was performed using GOLD Suite 5.1 (Cambridge Crystallographic Data Centre, Cambridge, U.K.). The original ligand was extracted and the new ligands (compound **73** and **74**) were fit into the binding pocket of MP1104 in KOR. The ChemScore and GoldScore fitness scoring functions were utilized to identify lowest energy binding poses. The exported complexes were edited using UCSF Chimera.

10 X-Ray Structure of Compound 33

CCDC 2389698

Bond precision:	C-C = 0.0023 A	Wavelength=1.34138	
Cell:	a=10.8872(3)	b=8.5462(3)	c=32.7304(10)
	alpha=90	beta=90	gamma=90
Temperature:	150 K		
	Calculated	Reported	d
Volume	3045.37(17)	3045.37(16)	
Space group	Pbca	Pbca	
Hall group	-P 2ac 2ab	-P 2ac 2ab	
Moiety formula	C19 H18 O3	C19 H18 O3	
Sum formula	C19 H18 O3	C19 H18 O3	
Mr	294.33	294.33	
Dx,g cm-3	1.284	1.284	
Z	8	8	
Mu (mm-1)	0.440	0.440	
F000	1248.0	1248.0	
F000′	1250.87		
h,k,lmax	13,10,40	13,10,40	
Nref	3129	3104	
Tmin,Tmax		0.635,0.751	
Tmin'			
Correction metho	od= # Reported T Lin	mits: Tmin=0.635	[max=0.751
AbsCorr = NONE			
Data completenes	ss= 0.992	Theta(max) = 57.0	018
R(reflections)=	0.0538(2737)		wR2 (reflections) =
S = 1 112	Nnar- 20	10	0.1224(3104)
· · · · · · · · · · · · · · · · · · ·	npar- 20	,0	

Figure S17. Crystal structure of compound **33** and XRD information

11 Unsuccessful Cases

Figure S18. Unsuccessful cases in scope section

12 NMR Spectra of Starting Materials

Figure S22. ¹³C NMR spectra of **2aa**

Figure S24. ¹³C NMR spectra of **2ad**

Figure S28. ¹³C NMR spectra of **76**

13 NMR Spectra of Desired Compounds

Figure S44. ¹H NMR spectra of **9**

Figure S48. ¹H NMR spectra of **11**

Figure S74. ¹H NMR spectra of ${f 24}$

Figure S78. 13 C NMR spectra of $\mathbf{25}$

Figure S80. $^{\rm 13}{\rm C}$ NMR spectra of ${\bf 26}$

Figure S82. ¹³C NMR spectra of **27**

Figure S102. ¹⁹F NMR spectra of **36**

Figure S104. $^{\rm 13}{\rm C}$ NMR spectra of $\bf 37$

Figure S106. $^{\rm 13}{\rm C}$ NMR spectra of $\bf 38$

Figure S108. $^{\rm 13}{\rm C}$ NMR spectra of ${\bf 39}$

---57.76

S120

Figure S126. $^{\rm 13}C$ NMR spectra of ${\bf 47}$

Figure S140. $^{\rm 19}{\rm F}$ NMR spectra of ${\bf 53}$

Figure S144. $^{\rm 13}{\rm C}$ NMR spectra of ${\bf 55}$

Figure S146. $^{\rm 13}{\rm C}$ NMR spectra of ${\bf 56}$

Figure S148. $^{\rm 13}C$ NMR spectra of ${\bf 57}$

Figure S150. $^{\rm 13}{\rm C}$ NMR spectra of ${\bf 58}$

Figure S152. ¹³C NMR spectra of **59**

Figure S154. $^{\rm 13}{\rm C}$ NMR spectra of ${\bf 60}$

Figure S156. ¹³C NMR spectra of **61**

Figure S158. $^{\rm 13}{\rm C}$ NMR spectra of 62

Figure S160. $^{\rm 13}{\rm C}$ NMR spectra of $\bf 64$

Figure S166. ¹³C NMR spectra of **67**

Figure S168. ¹³C NMR spectra of **68**

Figure S172. ¹³C NMR spectra of **70**

Figure S174. $^{\rm 13}{\rm C}$ NMR spectra of $\bf 71$

Figure S176. $^{\rm 13}C$ NMR spectra of $\bf 72$

Figure S178. $^{\rm 13}{\rm C}$ NMR spectra of ${\bf 73}$

Figure S180. $^{\rm 13}C$ NMR spectra of $\bf 74$

14 References

- [1] Z. X. Xing, S. S. Chen, H. M. Huang, Org. Lett. **2024**, 0–5.
- [2] X. W. Chen, C. Li, Y. Y. Gui, J. P. Yue, Q. Zhou, L. L. Liao, J. W. Yang, J. H. Ye, D.
 G. Yu, Angew. Chemie Int. Ed. 2024, 63, 1–8.
- [3] J. L. Tyler, F. Schäfer, H. Shao, C. Stein, A. Wong, C. G. Daniliuc, K. N. Houk, F. Glorius, *J. Am. Chem. Soc.* **2024**, *146*, 16237–16247.
- [4] L. Xiao, Y. Wang, M. Zhang, W. Wu, L. Kong, Y. Ma, X. Xu, X. Liu, Q. He, Y.
 Qian, H. Sun, H. Wu, C. Lin, H. Huang, R. Ye, S. Jiang, R. F. Ye, C. Yuan, S.
 Fang, D. Xue, X. Yang, H. Chen, Y. Zheng, L. Yu, Q. Xie, L. Zheng, W. Fu, W. Li,
 Z. Qiu, J. Liu, L. Shao, *J. Med. Chem.* 2019, *62*, 11054–11070.
- [5] M. Golfmann, M. Reinhold, J. D. Steen, M. S. Deike, B. Rodemann, C. Golz, S. Crespi, J. C. L. Walker, ACS Catal. 2024, 13987–13998.
- [6] M. Xu, Z. Wang, Z. Sun, Y. Ouyang, Z. Ding, T. Yu, L. Xu, P. Li, *Angew. Chemie Int. Ed.* **2022**, *61*, DOI 10.1002/anie.202214507.
- [7] Y. Zhang, S. S. Chen, K. D. Li, H. M. Huang, *Angew. Chemie Int. Ed.* **2024**, e202401671.
- [8] Z. Huang, J. E. Reilly, R. N. Buckle, *Synlett* **2007**, 1026–1030.
- [9] A. Iwanami, S. Komori, Y. Ura, *Chem. Commun.* **2024**, *60*, 7495–7498.
- [10] D. A. V. Oleg G. Kulinkovich*, Sergei V. Sviridov, *Synthesis (Stuttg)*. **1991**, *3*, 234.
- [11] X. Pan, H. Wang, C. Li, J. Z. H. Zhang, C. Ji, J. Chem. Inf. Model. 2021, 61, 3159–3165.
- [12] W. D. Jang, J. Jang, J. S. Song, S. Ahn, K. S. Oh, *Comput. Struct. Biotechnol. J.* 2023, 21, 3532–3539.
- [13] L. Kong, X. Shu, S. Tang, R. Ye, H. Sun, S. Jiang, Z. Li, J. Chai, Y. Fang, Y. Lan, L. Yu, Q. Xie, W. Fu, Y. Wang, W. Li, Z. Qiu, J. Liu, L. Shao, *J. Med. Chem.* 2022, 65, 10377–10392.