Stereoselective chemoenzymatic phytate transformations provide access to diverse inositol phosphate derivatives

Georg Markus Häner^a, Guizhen Liu^a, Esther Lange^b, Nikolaus Jork^a, Klaus Ditrich^c, Ralf Greiner^d, Gabriel Schaaf^b, Henning J. Jessen^{a*}

Supporting Information

Contents

1.	General Informations	3
1.1.	Capillary Electrophoresis	4
2.	Experimental	6
2.1.	Phytase dephosphorylation assay	6
2.1.1.	Naturnos dephosphorylations	6
2.2.	Tetrabutylammonium salt formation	6
23	Synthesis of 1-OH-InsP-2	7
2.5.	Salt metathesis of 1-OH-Insp. 2	,
2.1.	Swithesis of 1 1-dichloro. N. N. dicycloheyylahosahanamine 22	,
2.5.	Synthesis of his((9H-fluoren-9-v))methyl) dievelohevylphosphoramidite 1	0
2.0.	Synthesis of N N' N' tetraiopronul 1 phonymboxymosphonalmatic 1	0
2.7.	Synthesis of $(9,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7$	10
2.0.	Synthesis of (//i-hudorie/-)/i/incur/i picty i and optopyphotophotamite /	11
2.9.	Synthesis of (dictivily $(1)^{-4} - (1)^{-4} - (1)^{-4} - (1)^{-2$	11
2.10.	Synthesis of (-(utetry)animo-2-0x0-217-cmonten-4-y1)metry) phenyi disopropyiphosphoramidite 10	12
2.11.	Synthesis of non-leading to the second	12
2.12.	Synthesis of 1-Fm-InSP6 8	13
2.13.	Synthesis of 1-DEACM-InsP ₆ 11	14
2.14.	Synthesis of 2-InsP ₁ 12.	15
2.15.	Synthesis of I-Fm-InsP ₁ 13.	16
2.16.	Synthesis of I-InsP ₁ 14	17
2.17.	Synthesis of 1,2-InsP ₂ 15	.17
2.18.	Synthesis of Co(III) catalyst 19	.18
2.19.	Synthesis of 2-glycerophosphoinositol 20	.19
2.20.	Synthesis of 1-glycerophosphoinositol 21	.19
3.	Transient Phosphitylation monitored by ³¹ P-NMR	.21
3.1.	Transient Phosphitylation of ADP	.21
3.2.	Transient Phosphitylation of 1-OH-InsP ₅ with P-amidite 1	.22
3.3.	Transient Phosphitylation of 1-OH-InsP ₅ with P-amidite 9	.23
4.	Towards the linearization of cyclic inositolpyrophosphates to InsP ₆ derivatives	.24
4.1.	Screening for conditions to ring open the cyclic pyrophosphates of inositoltrispyrophosphate (ITPP)	.24
4.1.1.	Attempted nucleophilic ring-opening of ITPP with amines	.24
4.1.2.	Towards hydrolysis of ITPP to InsP ₆	.25
4.2.	NMR monitoring of the hydrolysis of ITPP	.26
4.3.	³¹ P-NMR monitoring of the hydrolysis of 1-Fm-InsP ₆ 8	.27
4.4.	³¹ P-NMR monitoring of the hydrolysis of 1-DEACM-InsP6 11	.28
4.5.	2D-NMR of 1-Fm-InsP ₆ 8	.29
5.	Naturphos digest of InsP6	.31
5.1.	Purification of 2-InsP, via precipitation monitored via ³¹ P-NMR monitoring	.32
5.2	Naturhos digest of 1-Fm-InSP & monitored vig ³¹ P-NMR	33
6	Identification of the formed InsP, isomers obtained by dephosphorylation of 1-Fm-InsP, 8	34
61	hv Naturhos – sniking experiments with InsP, standards	34
6.2	by future from <i>Escherichia</i> and $(7500 U/mL) = sniking experiments with IneP2 standards$	35
7	by or insues from <i>Escherichia</i> con (7000 c/mE) - spiking experiments with hist 2 standards.	36
7.1	Identification of the formed InsP. via spiking experiments	37
7.1. Q	Colling activities acrossing	38
0. 9 1	Co(iii) data yasi se counting.	20
0.1.	NMR monitoring for extend reaction times.	39
9. 10	Conillant Electrophonois Interaction	40
10.	Capitally Electrophotesis integration	41
10.1.	Blank	41
10.2.	Deprosphorylation of phytate with 6-phytase from <i>Citrobacter brackil</i> (30000 U/mL)	.41
10.3.	Deprosphorylation of phytate with 6-phytase from <i>Escherichia coli</i> (7500 U/mL)	42
10.4.	Deprosphorylation of phytate with 6-phytase from <i>Escherichia coli</i> (5000 U/mL).	42
10.5.	Deprosphorylation of phytate with 3-phytase from Aspergillus niger (10000 U/mL)	43
11.	NMR Spectra	.43

1. General Informations

All solvents and reagents (analytical grade) were obtained from commercial sources (VWR/Merck, Alfa Aeser, ChemPur, Roth, TCI, Acros, Sigma Aldrich) and used without further purifications, if not stated otherwise.

Dry solvents were either obtained from commercial sources (VWR/Merck, Alfa Aeser, ChemPur, Roth, TCI, Acros, Sigma Aldrich) or purified on a *Braun Solvent Purification System 800* and stored over activated molecular sieves (3Å) und an argon atmosphere.

Flame dried glass ware was used for all reactions. If moisture sensitive reagents were applied, the reactions were conducted under an atmosphere of Argon.

Strong Anion Exchange (SAX) chromatography was performed on an $\Bar{A}\Bar{A}\Bar{TM}$ pure system. Samples were eluted from the solid phase (Q-sepharose fast flow (Cytiva) columns) using a gradient of NaClO₄ (1 M), NH₄HCO₃ (1 M, pH = 8) or NH₄COOH (1 M, pH = 7).

A PuriFlash[®] 5.125 (Interchim[®]) was used for reverse phase medium pressure liquid chromatography (RP-MPLC), using prepacked columns, obtained from Interchim[®], as stationary phase.

Christ Alpha 1-4 LDplus or *Alpha 1-2 LDplus* freeze drier were used for lyophilisation of samples. *Bruker Avance III HD 300 MHz, Avance 400 MHz* or *Avance III HD 500 MHz* spectrometers were used measure nuclear magnetic resonante (NMR) spectra. Deuterated solvents were purchased from commercial suppliers (Eurisotop, Deutero), used without further purifications and stored over activated molecular sieves (3Å). *MestreNova 12.01* was used to analyse the resulting spectra, referenced to the respective deuterated solvent peaks (for ¹H-NMR: CDCl₃: δ = 7.26 ppm, DMSOd₆: δ = 2.50, MeCN-d₃: δ = 1.94, DMF-d₇: δ = 2.92 ppm, D₂O: δ = 4.79 ppm; for ³¹C-NMR: CDCl₃: δ = 77.16 ppm, DMSO-d₆: δ = 39.52, MeCN-d₃: δ = 1.32 ppm, DMF-d₇: δ = 34.9 ppm.).¹

1.1. Capillary Electrophoresis

Capillary electrophoresis (CE) was measured on a fused silica capillary (100 cm, 50 μ m, internal diameter and 365 μ m outer diameter) on an *Agilent 7100* capillary electrophoresis system coupled to an *Agilent 6520* Q-TOF- or *Agilent 6495C* QQQ-mass spectrometer, equipped with an *Agilent Jet Stream* electrospray ionization source. Data acquisition was performed with *Agilent OpenLAB CDS Chemstation 2.3.53*, the resulting data was analyzed with *Agilent MassHunter Workstation Version B.08.00*. The capillary was flushed with NaOH (1 N, 10 min) and water (10 min) for equilibration. The capillary was equilibrated with back ground electrolyte (BGE) (10 min) prior to every measurement. The following BGE were used: NH4OAc (35 mM, pH = 9.9, titrated with NH₃) and NH4OAc (40 mM, pH = 9.1, titrated with NH₃). Isopropanol:water (1:1), spiked with mass references (TFA anion, [M-H]⁻: 1112.9855 and HP-0921, [M-H+CH₃COOH]⁻: 980.0163) for qTOF measurements, was deployed as sheath liquid using an isocratic pump with constant flow rate (1.5 μ L/min).

Samples were applied *via* pressure (100 mbar, 10-15 s, 20-30 μ L), followed by BGE injection (50 mbar, 2 s) and voltage (30 kV) was applied over the capillary to establish a constant current (23 μ A). The following source parameters (Supplementary Table 1) were used for measurements in negative ionization mode.

Analytes were identified based on exact m/z ratios, for qTOF measurements and based on characteristic fragmentation patterns (Supplementary Table 2), for QQQ measurements.

Supplementary Table 1 ESI source parameters.

	q-TOF	QQQ
Capillary Voltage	-3000 V	-2000 V
Fragmentor	140 V	166 V
Drying Gas Temperature	250°C	150°C
Drying Gas Flow	8 L/min	11 L/min
Nebulizer	8 psi	8 psi

Supplementary Table 2 Optimized fragmentation source parameters, used for CE-QQQ-MS measurements.

Analyte	Precursor Ion	Product Ion	dwell	Fragmentor (V)	Collision Energy (V)	Cell Accelerator Voltage	Polarity
InsP ₁	259	79.1	50	166	41	4	Negative
$[^{18}O]-1-InsP_1$	263	83	50	166	17	1	Negative
[¹⁸ O]-2-InsP ₁	263	83	50	166	17	1	Negative
$[^{18}O]$ -5-InsP ₁	263	83	50	166	17	1	Negative
$[^{13}C_6]$ -InsP ₁	265	79.1	50	166	41	4	Negative
InsP ₂	339	241	50	166	21	4	Negative
$[^{13}C_6]$ -InsP ₂	345	247	50	166	21	4	Negative
InsP ₃	418.9	320.8	50	166	17	4	Negative
$[^{13}C_6]$ -InsP ₃	424.9	326.8	50	166	17	4	Negative
InsP ₄	249	418.9	50	166	5	1	Negative
$[^{13}C_6]$ -InsP ₄	252	424.9	50	166	5	1	Negative
InsP ₅	289	498.9	50	166	9	3	Negative
$[^{13}C_6]$ -InsP ₅	292	504.9	50	166	9	3	Negative
InsP ₆	328.9	480.9	50	166	13	4	Negative
$[^{13}C_6]$ -InsP ₆	331.9	486.9	50	166	13	4	Negative
$[^{18}O_{12}]$ -InsP ₆	340.9	494.9	50	166	13	4	Negative
InsP ₇	368.9	319.9	50	166	9	3	Negative
$[^{13}C_6]$ -InsP ₇	371.9	322.9	50	166	9	3	Negative
InsP ₈	408.9	359.8	50	166	9	1	Negative
$[^{13}C_6]$ -InsP ₈	411.9	362.8	50	166	9	1	Negative

2. Experimental

2.1. Phytase dephosphorylation assay

The phytase assay was performed by incubating the respecting InsP₆ derivatives (15 mM, 0.66 μ L) and 1U enzyme in buffer (HEPES 50 mM, NaCl, 10 mM, glycerol 5%, DTT 2 mM, MgCl₂ 0.5 mM, pH = 4, total reaction volume 15 μ L) at 28°C for 45 min and the reaction outcome was analysed by CE-MS.

Supplementary Table 3 Screened phytases. The activity was expressed as $U = \mu mol$ phosphate released per min. All phytases are commercially available and purified prior to use.

Entry	Phytase	Origin	optimal pH	Activity
1	6-phytase	Citrobakter braaki	2.5 to 5.5	30000 U/mL
2	6-phytase	Escherichia coli	3 to 6	7500 U/mL
3	6-phytase	Escherichia coli	2.5 to 6	5000 U/mL
4	3-phytase	Aspergillus niger	4 to 6	10000 U/mL

2.1.1. Natuphos dephosphorylations

InsP₆ derivatives were dissolved in NH₄OAc (pH = 6.3), Natuphos (kindly provided by BASF, Art.Nr.: 52587753, Lot.Nr.: 52913677L0, 10500 U/mL at pH = 6.3 with U = μ mol phosphate released per minute) was added and the reaction mixture was incubated at 37°C. The reaction was monitored by ³¹P{¹H}-NMR and the reaction mixture was precipitated in EtOH upon completion.

2.2. Tetrabutylammonium salt formation

To exchange the cations of the here used phosphates, a solution of the respective anion was passed through a column loaded with activated $\text{Dowex}^{\text{(R)}}$ 50WX8 H⁺ form, a solution of tetrabutylammonium hydroxide (TBA-OH) was added to the eluate and the solution was lyophilized to obtain the resulting TBA salt. The solid residue was equilibrated before and after use with aq. HCl (1 M) and washed with miliQ water until neutral subsequently.

2.3. Synthesis of 1-OH-InsP₅ 2

*The procedure was adapted from literature:*²

InsP₆ (10 g, 8.95 mmol) in NH₄OAc (800 mL, 150 mM, pH = 7) was incubated in the presence of XopH (0.13 μ g/mL, 14*10⁻⁶ U/ μ g with U = μ mol phosphate released per minute²) at 28°C for 8 h. The enzyme was deactivated by incubation at 95°C for 15 min and portioned for storage.

A portion (50 mL) was diluted with water (4 × 50 mL), applied onto a Q-sepharose columne (*XK26*) and eluted using a NH₄HCO₃ (1 M, pH = 8) gradient. The fractions were analyzed by ³¹P-NMR and product containing fractions were lyophilized thrice to obtain 1-OH-InsP₅ (255 mg, 383 µmol, 69% for the pentaammonium salt) as a white solid.

Analytical data is in accordance with literature.²

2.4. Salt metathesis of 1-OH-InsP₅ 2

The salt metathesis was performed according to the general procedure (see chapter 2.2).

1-OH-InsP₅ (255 mg, 383 μ mol, 1.0 equiv.) was dissolved in water (5 mL), and applied to an activated Dowex[®] 50WX8 H⁺ column. The column was eluted with water until neutral, TBA-OH (20wt% in water, 0.75 mL, 150 mg, 578 μ mol, 1.5 equiv.) was added and the solution was lyophilized to obtain a white solid (300 mg, 316 μ mol, 82% for 1.5 equiv. TBA⁺).

¹**H** NMR (400 MHz, Deuterium Oxide) $\delta = 4.70$ (dt, J = 9.2, 2.6 Hz, 1H), 4.41 (q, J = 9.5 Hz, 1H), 4.33 – 4.14 (m, 3H), 3.75 (dt, J = 9.8, 2.2 Hz, 1H), 3.09 – 2.92 (m, 12H), 1.61 – 1.38 (m, 12H), 1.20 (h, J = 7.4 Hz, 12H), 0.78 (t, J = 7.4 Hz, 18H) ppm. ³¹**P** NMR (162 MHz, Deuterium Oxide) $\delta = 0.09$ (d, J = 9.2 Hz), -0.16 (d, J = 9.3 Hz), -0.61 (d, J = 9.2 Hz), -0.89 (d, J = 9.0 Hz) ppm.

2.5. Synthesis of 1,1-dichloro-*N*,*N*-dicyclohexylphosphanamine 22

Distilled PCl₃ (5.0 mL, 7.9 g, 58 mmol, 1.0 equiv.) was dissolved in Et₂O (100 mL) in a sulphuration flask and cooled to 0°C. Dicyclohexylamine (23.0 mL, 20.9 g, 115 mmol, 2.0 equiv.) in Et₂O (150 mL) was added dropwise. The reaction mixture was stirred for 2 h and then filtered over neutral Al₂O₃. The solution was concentrated to 80 mL under reduced pressure and incubated at -20°C for 2 days. The formed crystals were filtered, the supernatant was concentrated *in vacuo* and crystalized and the target compound was obtained as colorless crystals (12.0 g, 42.8 mmol, 78%).

¹H NMR (300 MHz, Chloroform-*d*): δ = 3.52-3.35 (m, 2H), 1.94-0.95 (m, 20H) ppm. ¹³C NMR (101 MHz, Chloroform-*d*): δ = 29.44, 26.34, 25.48, 24.96 ppm. ³¹P{¹H} NMR (122 MHz, Chloroform-*d*): δ = 169.65 ppm.

2.6. Synthesis of bis((9H-fluoren-9-yl)methyl) dicyclohexylphosphoramidite 1

9-Fluroenylmethanol (5.25 g, 16.8 mmol, 1.0 equiv.) was dried in a desiccator, dissolved in THF (150 mL), NEt₃ (5.46 mL, 3.97 g, 39.2 mmol, 2.1 equiv.) was added and the mixture was stirred at 0°C for 30 min. 1,1-dichloro-*N*,*N*-dicyclohexylphosphanamine **22** (5.25 g, 16.8 mmol, 1.0 equiv.)

was added, the mixture was stirred at 0°C for 30 min and allowed to reach RT overnight. The reaction mixture was filtered over neutral Al_2O_3 and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography on SiO₂ (cyclohexane:Et₂O, 9:1) to obtain **1** as a colourless sticky solid (9.78 g, 15.5 mmol, 92%).

¹**H** NMR (300 MHz, Chloroform-*d*): $\delta = 7.73-7.63$ (m, 4H), 7.63-7.52 (m, 4H), 7.31 (qd, J = 7.5, 1.2 Hz, 4H), 7.26-7.20 (m, 4H), 4.12 (t, J = 7.0 Hz, 2H), 3.95 (dt, J = 9.8, 6.7 Hz, 2H), 3.75 (dt, J = 9.9, 7.2 Hz, 2H), 3.15-2.94 (m, 2H), 1.71-1.47 (m, 10H), 1.37 (ddd, J = 15.3, 12.6, 6.5 Hz, 4H), 1.29-1.07 (m, 4 H), 0.97 (qt, J = 12.8, 3.3 Hz, 2H) ppm.

¹³**C NMR** (101 MHz, Chloroform-*d*): $\delta = 144.97$ (d, J = 29.6 Hz), 141.37, 127.49, 127.45, 126.94 (d, J = 1.9 Hz), 125.61, 125.33, 119.95, 119.88, 68.12, 66.07 (d, J = 17.5 Hz), 52.31 (d, J = 10.2 Hz), 49.31 (d, J = 8.0 Hz), 35.68 (d, J = 7.3), 26.81, 25.78, 25.76 ppm ³¹P{¹H} **NMR** (122 MHz, Chloroform-*d*): $\delta = 146.55$ ppm.

HRMS (ESI) for $C_{40}H_{44}O_2NP [M+H]^+$: calculated 602.3182, found 602.3180.

2.7. Synthesis of *N*,*N*,*N'*,*N'*-tetraisopropyl-1-phenoxyphosphanediamine 23

Phenol (1.68 g, 17.9 mmol, 1.0 equiv.) was dried under high vacuum for 2 h, dissolved in dry Et₂O (40 mL), NEt₃ (2.6 mL, 1.89 g, 18.6 mmol, 1.04 equiv.) was added, the reaction mixture was cooled to -20°C (ice/NaCl) and bis-(diisopropylamino)-chlorophosphine (4.79 g, 17.9 mmol, 1.0 equiv.) was added. The reaction mixture was diluted with Et₂O (50 mL) after 1.5 h and filtered over neutral Al₂O₃, the residue was washed with Et₂O (4×100 mL) and the solvent was removed under reduced pressure to obtain colorless crystals (5.43 g, 16.7 mmol, 94%, 97% purity).

¹**H NMR** (400 MHz, Chloroform-*d*): δ = 7.22 (dd, *J* = 8.6, 7.4 Hz, 2H), 7.04 (ddt, *J* = 7.8, 2.0, 1.1 Hz, 2H), 6.90 (tt, *J* = 7.3, 1.1 Hz, 1H), 3.61 (dp, *J* = 11.3, 6.8 Hz, 4H), 1.20 (d, *J* = 6.8 Hz, 12H), 1.15 (d, *J* = 6.7 Hz, 12H) ppm.

³¹**P** NMR (162 MHz, Chloroform-*d*): $\delta = 120.11$ (t, J = 11.5 Hz) ppm.

¹³**C NMR** (101 MHz, Chloroform-*d*): δ = 156.19 (d, *J* = 10.1 Hz), 129.20, 120.72 (d, *J* = 1.5 Hz), 118.88 (d, *J* = 11.8 Hz), 45.01 (d, *J* = 12.5 Hz), 24.41 (d, *J* = 8.9 Hz), 24.05 (d, *J* = 5.4 Hz) ppm.

HRMS (ESI) for C₁₈H₃₃N₂OP [M+H]⁺: calculated 325.2404, found 325.2406.

2.8. Synthesis of (9*H*-fluoren-9-yl)methyl phenyl diisopropylphosphoramidite 9

Chemical Formula: C₂₆H₃₀NO₂P Molecular Weight: 419.5048

9-Fluorenylmethanol (1.23 g, 6.27 mmol, 1.0 equiv.) and **23** (2.04 g, 6.27 mmol, 1.0 equiv.) were dried *in vacuo* for 2 h. The reagents were dissolved in dry Et₂O (60 mL) and ETT (100 mg/mL in dry MeCN, 8.2 mL, 820 mg, 6.23 mmol, 1.0 equiv.) was added at 0°C. The reaction mixture was diluted with dry Et₂O (20 mL) after 19 h, filtered over neutral Al₂O₃, the stationary phase was washed with Et₂O (100 mL) and the solvents were removed under reduced pressure to obtain the crude as a colorless oil (2.26 g, 5.38 mmol, 86%, containing 10% unreacted starting material).

The crude was purified by DCVC on SiO_2 using a cyclohexan:EtOAc solvent mixture containing NEt₃ (5 %) and solvents were removed *in vacuo* to obtain a colorless oil (587 mg, 1.40 mmol, 22%).

¹**H NMR** (400 MHz, Chloroform-*d*): δ = 7.77 (dq, *J* = 7.6, 1.1 Hz, 2H), 7.69 (dq, *J* = 7.5, 0.9 Hz, 1H), 7.61 (dq, *J* = 7.5, 0.9 Hz, 1H), 7.40 (tddd, *J* = 7.5, 3.5, 1.2, 0.7 Hz, 2H), 7.34 – 7.23 (m, 4H), 7.10 – 7.04 (m, 2H), 7.04 – 6.99 (m, 1H), 4.28 – 4.22 (m, 1H), 4.11 (dt, *J* = 9.9, 6.7 Hz, 1H), 3.92 (dt, *J* = 9.9, 7.4 Hz, 1H), 3.78 (dp, *J* = 10.5, 6.8 Hz, 2H), 1.21 (d, *J* = 3.6 Hz, 6H), 1.20 (d, *J* = 3.6 Hz, 6H) ppm.

¹³**C NMR** (101 MHz, Chloroform-*d*): δ = 154.86 (d, *J* = 7.4 Hz), 144.95, 144.58, 141.47 (d, *J* = 7.9 Hz), 129.48, 127.61, 127.58, 127.04, 126.99, 125.60, 125.39, 122.39 (d, *J* = 1.6 Hz), 120.31, 120.22, 119.98, 119.95, 66.61 (d, *J* = 17.2 Hz), 49.20 (d, *J* = 7.9 Hz), 43.73, 43.60, 24.78, 24.71, 24.63, 24.55 ppm.

³¹**P**{¹**H**}-**NMR** (162 MHz, Chloroform-*d*): δ = 145.79 ppm.

HRMS (ESI) for C₂₆H₃₀O₂NP [M+H]⁺: calculated 420.2087, found 420.2084.

2.9. Synthesis of (diethylamino)-4-(hydroxymethyl)-2H-chromen-2-one 24

20 was synthesized according to literature.³

2.10. Synthesis of (7-(diethylamino)-2-oxo-2*H*-chromen-4-yl)methyl phenyl diisopropylphosphoramidite 10

19 (349 mg, 1.08 mmol, 1.0 equiv.) and DEACM-OH **24** (267 mg, 1.08 mmol, 1.0 equiv.) were dried *in vacuo* for 4.5 h. The reagents were dissolved in dry $Et_2O:CH_2Cl_2$ (1:1, 30 mL) and ETT (100 mg/mL in dry MeCN, 1.4 mL, 1.08 mmol, 1.0 equiv.) was added at 0°C. The reaction mixture was diluted with Et_2O (50 mL) after 17.5 h, filtered over neutral Al₂O₃, the stationary phase was washed with Et_2O (100 mL) and the solvents were removed under reduced pressure to obtain a yellow oil (440 mg, 935 µmol, 87%).

¹**H** NMR (400 MHz, Chloroform-*d*): $\delta = 7.33 - 7.22$ (m, 3H), 7.10 - 6.98 (m, 3H), 6.58 - 6.49 (m, 2H), 6.28 (t, J = 1.4 Hz, 1H), 4.86 (ddd, J = 7.6, 6.7, 1.4 Hz, 2H), 3.79 (dp, J = 10.7, 6.8 Hz, 2H), 3.40 (q, J = 7.1 Hz, 4H), 1.26 (d, J = 6.8 Hz, 6H), 1.20 (t, J = 7.1 Hz, 6H), 1.20 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.41, 156.30, 154.54 (d, J = 7.2 Hz), 152.58 (d, J = 7.6 Hz), 150.58, 129.59, 124.53, 122.70 (d, J = 1.7 Hz), 120.17 (d, J = 8.9 Hz), 108.57, 106.55, 97.96, 62.05 (d, J = 18.7 Hz), 44.87, 43.93 (d, J = 12.9 Hz), 24.91 (d, J = 7.1 Hz), 24.53 (d, J = 7.2 Hz), 12.59 ppm.

³¹**P**{¹**H**} **NMR** (162 MHz, Chloroform-*d*): $\delta = 147.30$ ppm.

¹³**C NMR** (101 MHz, Chloroform-*d*): δ = 162.41, 156.30, 154.54 (d, *J* = 7.2 Hz), 152.58 (d, *J* = 7.6 Hz), 150.58, 129.59, 124.53, 122.70 (d, *J* = 1.7 Hz), 120.17 (d, *J* = 8.9 Hz), 108.57, 106.55, 97.96, 62.05 (d, *J* = 18.7 Hz), 44.87, 43.93 (d, *J* = 12.9 Hz), 24.91 (d, *J* = 7.1 Hz), 24.53 (d, *J* = 7.2 Hz), 12.59 ppm.

HRMS (ESI) for C₂₆H₃₅O₄N₂P [M+Na]⁺: calculated 493.2227, found 493. 2232.

2.11. Synthesis of Inositoltrispyrophosphate 25

Based on literature procedures^{4,5}:

Myo-inositolhexakisphosphate dodecasodium salt (1.07 g, 0.96 mmol, 1.0 equiv.) was passed through an activated DOWEX H⁺ column, the eluate was adjusted to pH = 8 with pyridine and the solution was lyophilised. The obtained *myo*-inositolhexakisphosphate pyridinium salt was dissolved in water (10 mL) and added to a solution of dicyclohexylcarbodiimid (1.8 g, 8.72 mmol, 9.1 equiv.) in pyridine (30 mL) and heated to 70°C for 8 h. After stirring at RT overnight dicyclohexylcarbodiimide (750 mg, 3.63 mmol, 3.8 equiv.) was added and the reaction mixture was heated to 70°C for 10 h. After stirring at RT overnight dicyclohexylcarbodiimide (1.4 g, 6.79 mmol, 7.1 equiv.) was added and the reaction mixture was heated to 70°C for 8 h. The solvents were evaporated under reduced pressure, the resulting solid was suspended in water (20 mL) and filtered, the white residue was washed with water (4 × 20 mL) and the filtrate was lyophilized to obtained a white hygroscopic solid (988 mg, 0.82 mmol, 86%).

¹**H** NMR (400 MHz, Deuterium Oxide): $\delta = 8.87 - 8.76$ (m, 15H), 8.65 (tt, J = 7.8, 1.4 Hz, 8H), 8.10 (t, J = 6.9 Hz, 15H), 5.21 - 5.11 (m, 1H), 4.70 (dt, J = 9.0, 4.3 Hz, 1H), 4.56 - 4.49 (m, 2H), 4.44 - 4.31 (m, 2H) ppm.

³¹P{¹H} NMR (162 MHz, Deuterium Oxide): $\delta = -9.69$ (d, J = 22.1 Hz), -10.75 - -11.14 (m), -11.26, -14.49 (d, J = 21.9 Hz) ppm.

HRMS (ESI) for C₆H₁₂O₂₁P₆ [M-2H]²⁻: calculated 301.9075, found 301.9082.

2.12. Synthesis of 1-Fm-InsP₆ 8

1-OH-InsP₅ × 1.15 tetrabutylammonium salt **2** (165 mg, 172 µmol, 1.0 equiv.) and **9** (579 mg, 1.38 mmol, 8.0 equiv.) were dissolved in dry MeCN (5.0 mL) and co-evaporated. ETT (300 mg, 2.31 mmol, 13.4 equiv.) was dissolved in dry MeCN (5.0 mL) and co-evaporated. The reagents were dissolved in dry DMF (16.0 mL), ETT was dissolved in dry MeCN (3.0 mL) and added to the reaction mixture at RT. Pyridinium Hydrobromide (244 mg, 1.53 mmol, 8.9 equiv.) was added after 22 h, *m*CPBA (70%wet, 235 mg, 953 µmol, 5.5 equiv.) was added at 0°C after 15 min and the reaction mixture was precipitated in ice cold Et₂O (8 vol.) in portions after 30 min. The solid residue was washed with acetone (30 mL) and dried under ambient conditions to obtain an off-white solid. The crude was dissolved in D₂O (5 mL), HBr (33% in acetic acid, 0.7 mL) was added and the reaction was heated at 80°C. The reaction mixture was purified by SAX on a Q-sepharose column (*XK16/20*) on a NaClO4 (1 M) gradient. Product containing fractions were lyophilised, the residue was washed with acetone (2 × 20 mL), dissolved in water and lyophilised to obtain a white solid (75 mg, 77 µmol, 45% for the hexasodium salt).

NMR for NH₄⁺ cations

¹**H NMR** (400 MHz, Deuterium Oxide): $\delta = 7.98 - 7.86$ (m, 4H), 7.60 - 7.46 (m, 4H), 5.01 (d, J = 9.7 Hz, 1H), 4.58 - 4.35 (m, 5H), 4.23 (q, J = 9.5 Hz, 1H), 4.15 (t, J = 9.5 Hz, 1H), 4.05 (t, J = 9.4 Hz, 1H) ppm.

³¹**P** NMR (162 MHz, Deuterium Oxide): $\delta = 1.75$ (d, J = 9.9 Hz), 1.01 (d, J = 9.9 Hz), 0.36 (d, J = 9.6 Hz), -0.51 (d, J = 9.3 Hz), -0.75 (dd, J = 6.3 Hz) ppm.

¹³C NMR (101 MHz, Deuterium Oxide): δ : = 144.35, 144.23, 140.96, 140.91, 127.95, 127.91, 127.56, 127.53, 125.81, 125.60, 120.04, 120.01, 77.30, 76.26, 75.17 (d, *J* = 7.5 Hz), 75.04 (d, *J* = 3.4 Hz), 73.36, 73.17, 67.54 (d, *J* = 5.9 Hz), 48.05 (d, *J* = 8.0 Hz) ppm.

NMR for Na⁺ cations

¹**H** NMR (400 MHz, Deuterium Oxide): $\delta = 7.99 - 7.85$ (m, 4H), 7.59 - 7.45 (m, 4H), 5.01 (t, J = 2.4 Hz, 1H), 4.55 (t, J = 9.4 Hz, 1H), 4.51 (t, J = 9.4 Hz, 1H), 4.58 - 4.38 (m, 3H), 4.25 (t, J = 9.4 Hz, 1H), 4.17 (dd, J = 9.8, 2.5 Hz, 1H), 4.07 (dd, J = 10.0, 2.3 Hz, 1H) ppm.

³¹**P** NMR (162 MHz, Deuterium Oxide): $\delta = 1.80$ (d, J = 9.7 Hz), 1.09 (d, J = 9.7 Hz), 0.42 (d, J = 9.5 Hz), 0.39 (d, J = 9.2 Hz), -0.37 - -0.76 (m) ppm.

¹³C NMR (101 MHz, Deuterium Oxide): $\delta = 144.36$, 144.26, 140.95, 140.89, 127.94, 127.89, 127.57, 127.53, 125.85, 125.63, 120.02, 119.99, 77.37, 76.19 (td, J = 6.2, 2.6 Hz), 75.21 (d, J = 6.5 Hz), 75.05 (dq, J = 6.4, 3.0 Hz), 73.46 (dd, J = 5.8, 2.8 Hz), 73.20 (dd, J = 6.1, 3.2 Hz), 67.55 (d, J = 5.7 Hz), 48.05 (d, J = 8.1 Hz) ppm.

HRMS (ESI) for C₂₀H₂₈O₂₄P₆ [M-H]⁻: calculated 836.9323, found 836.9328.

 $[\alpha]^{20}_D = 3.6 \ (0.25, \text{ water}).$

2.13. Synthesis of 1-DEACM-InsP₆ 11

1-OH-InsP₅ × 1.57 tetrabutylammonium salt **2** (23 mg, 24 μ mol, 1.0 equiv.) was co-evaporated with dry MeCN (2 × 3 mL), the reagent was dissolved in dry DMF (1.0 mL) and **10** (88 mg, 187 μ mol, 7.8 equiv.) and ETT (100 mg/mL in dry MeCN, 0.4 mL, 40 mg, 307 μ mol, 12.8 equiv.) were added. Pyridinium hydrobromide (32 mg, 200 μ mol, 8.3 quiv.) was added after 16 h, *m*CPBA (70%wet, 62 mg, 252 μ mol, 10.5 equiv.) was added at 0°C after 45 min, the reaction mixture was precipitated in ice cold Et₂O (40 mL) after 30 min. The residue was dissolved in D₂O (1 mL), ZnCl₂ (114 mg, 837 μ mol, 34.9 equiv.) and HCl_{conc.} (0.35 mL, 154 mg, 4.24 mmol, 177 equiv.) were

added and the reaction mixture was incubated at 37°C for 19 h. The solution was diluted with water (20 mL) and NH₄HCO₃ buffer (1 M, 5 mL, pH = 8) and purified by SAX on a Q-sepharose column (*XK16/20*) on a NaClO₄ (1 M) gradient. Product containing fractions were lyophilised, washed with acetone (2×5 mL) and dried *in vacuo* to obtain a yellow solid (8 mg, 8 µmol, 35% for the hexasodium salt).

¹**H** NMR (400 MHz, D₂O): $\delta = 7.75$ (d, J = 9.1 Hz, 1H), 6.92 (dd, J = 9.1, 2.4 Hz, 1H), 6.72 (d, J = 2.5 Hz, 1H), 6.37 (d, J = 1.4 Hz, 1H), 5.40 (d, J = 8.5 Hz, 2H), 5.08 (d, J = 9.5 Hz, 1H), 4.61 – 4.43 (m, 3H), 4.30 – 4.11 (m, 4H), 3.50 (q, J = 7.1 Hz, 6H), 1.22 (t, J = 7.1 Hz, 9H) ppm.

¹³**C NMR** (101 MHz, D₂O): δ = 166.03, 155.66, 155.60, 155.55, 151.27, 125.88, 110.31, 106.18, 103.54, 97.34, 77.41, 74.51, 73.61, 63.84 (d, *J* = 5.0 Hz), 44.48, 11.52 ppm.

³¹**P** NMR (162 MHz, D₂O): δ = 2.79 (d, *J* = 10.0 Hz), 1.85, 1.18 (d, *J* = 9.7 Hz), 0.77 (d, *J* = 9.9 Hz), -0.20 (dt, *J* = 9.1, 9.1 Hz) ppm.

HRMS (ESI) for C₂₀H₃₃NO₂₆P₆ [M-2H]²⁻: calculated 443.4785, found 443.4789.

2.14. Synthesis of 2-InsP₁ 12

Molecular Weight: 298.1968

InsP₆-dodecasodium salt (1.00 g, 901 μ mol) was dissolved in NH₄OAc buffer (50 mM, pH = 6.3, 6.0 mL) Natuphos (300 μ L, 10500 U/mL) was added and the solution was incubated at 37°C for 10 min. The reaction mixture was precipitated in EtOH (4 vol.), the precipitate was dissolved in water (20 mL) and precipitated by addition of CaCl₂ (640 mg, 5.77 mmol, 6.4 equiv.). The motherliquor was precipitated by addition of acetone (4 vol.) in two portions to obtain a white solid. The CaCl₂-precipitation of inorganic calcium phosphate and the following acetone precipitate obtain a white solid (231 mg, 775 μ mol, 86% for the calcium salt).

¹**H** NMR (400 MHz, D₂O) δ = 4.56 (dt, *J* = 7.5, 2.5 Hz, 1H), 3.73 (t, *J* = 9.6 Hz, 2H), 3.54 (ddd, *J* = 9.9, 2.5, 1.2 Hz, 2H), 3.29 (t, *J* = 9.3 Hz, 1H) ppm.

¹³C NMR (101 MHz, D₂O) δ = 76.13 (d, *J* = 5.6 Hz), 74.42, 72.88, 71.32, 71.29 ppm.

³¹**P** NMR (162 MHz, D₂O) δ = 3.02 (d, *J* = 7.5 Hz) ppm. HRMS (ESI) for C₆H₁₃O₉P [M-H]⁻: calculated 259.0224, found 259.0231.

2.15. Synthesis of 1-Fm-InsP₁ 13

1-Fm-InsP₆ **8** (50 mg, 52 µmol) was dissolved in NH₄OAc (50 mM in D₂O, pH = 6.3, 0.8 mL), Natuphos (0.2 mL, 10500 U/mL) was added and the reaction as incubated at 37°C for 2 days. The reaction mixture was precipitated in EtOH (30 mL), the precipitate was dissolved in water (1 mL), purified by MPLC on a C₁₈-Aq column using a Water:MeCN gradient (containing 10% triethylammonium acetate buffer and product containing fractions were lyophilised twice to obtain a white solid (3 mg). The motherliquor was concentrated *in vacuo*, the residue was dissolved in water (1 mL), purified by MPLC and product containing fractions were lyophilised twice to obtain a white solid. The material was used directly for subsequent basic deprotection.

¹**H** NMR (400 MHz, Deuterium Oxide): $\delta = 7.96$ (dt, J = 8.0, 0.9 Hz, 2H), 7.84 – 7.76 (m, 2H), 7.55 (td, J = 7.5, 1.3 Hz, 2H), 7.51 – 7.44 (m, 2H), 4.50 – 4.42 (m, 1H), 4.41 – 4.31 (m, 2H), 3.91 (t, J = 2.8 Hz, 1H), 3.71 – 3.52 (m, 2H), 3.32 (dd, J = 10.0, 2.9 Hz, 1H), 3.23 (q, J = 7.3 Hz, 6H, HNEt₃⁺), 3.18 (t, J = 9.2 Hz, 1H), 1.31 (t, J = 7.3 Hz, 9H, HNEt₃⁺) ppm.

¹³C NMR (101 MHz, Deuterium Oxide): $\delta = 144.23$, 144.11, 141.03, 140.99, 128.02, 127.48, 125.32, 125.16, 120.16 (d, J = 2.5 Hz), 76.04 (d, J = 6.1 Hz), 73.83, 72.19, 71.29, 70.95, 70.62, 66.93 (d, J = 5.6 Hz), 46.69, 8.22 ppm.

³¹P{¹H} NMR (162 MHz, Deuterium Oxide): $\delta = -0.34$ ppm.

HRMS (ESI) for C₂₀H₂₃O₉P [M-H]⁻: calculated 437.1006, found 437.1008.

1-Fm-InsP₁ **13** (Starting from 1-Fm-InsP₆ **8** 50 mg, 52 μ mol) was dissolved in water (5 mL), piperidine (0.5 mL) was added and the reaction mixture was incubated at RT for 30 min. The reaction mixture was precipitated in acetone (8 vol.), washed with acetone (10 mL) and the precipitate was discarded. The motherliquor was concentrated *in vacuo* to obtain a brown solid. (13 mg, 30 μ mol, 58% starting from **158**; containing 2 equiv. piperidinium ions based on NMR.) ¹**H NMR** (400 MHz, D₂O): $\delta = 4.15$ (t, J = 2.8 Hz, 1H), 3.83 (ddd, J = 9.8, 8.5, 2.8 Hz, 1H), 3.68

(t, J = 9.6 Hz, 1H), 3.57 (dd, J = 10.0, 9.1 Hz, 1H), 3.50 (dd, J = 10.0, 2.9 Hz, 1H), 3.26 (t, J = 9.2 Hz, 1H), 3.13 - 3.02 (m, 8H), 1.76 - 1.65 (m, 8H), 1.63 - 1.53 (m, 4H) ppm.

¹³**C NMR** (101 MHz, D₂O): δ = 74.42, 74.31 (d, *J* = 5.1 Hz), 72.33, 72.25 (d, *J* = 3.8 Hz), 71.71 (d, *J* = 3.0 Hz), 70.85, 44.52, 22.21, 21.49 ppm.

³¹**P** NMR (162 MHz, D₂O): δ = 3.96 (d, *J* = 8.4 Hz) ppm.

HRMS (ESI) for C₆H₁₃O₉P [M-H]⁻: calculated 259.0224, found 259.0230.

 $[\alpha]^{20}_D = 3.1 \ (0.45, \text{ water, pH} = 9).$

2.17. Synthesis of 1,2-InsP₂ 15

1-Fm-InsP₆ (15 mM, 0.66 μ L) was digested by 6-Phytase from *Escherichia coli* (7500 U/mL, 1 U) in buffer (HEPES 50 mM, NaCl, 10 mM, glycerol 5%, DTT 2 mM, MgCl₂ 0.5 mM, pH = 4, total reaction volume 15 μ L) at 28°C for 45 min and the solution was purified by MPLC on a C₁₈-Aq column using a Water:MeCN gradient (containing 10% triethylammonium acetate buffer and

product containing fractions were lyophilised twice to obtain a white solid (**HRMS** (CE-ESI-MS) for $C_{20}H_{23}O_{12}P_2$ [M-H]⁻: calculated 517.0670, found 517.0671.).

The solid was dissolved in water (0.5 mL), piperidine (50 μ L) was added and the resulting suspension was filtered after 30 min. The solution was lyophilized to obtain a brown solid. The crude was purified by SAX on a Q-sepharose column (*Capto Q-ImpRes, 1 mL*) on a NH₄HCO₃ gradient and product containing fractions were lyophilized to obtain a colorless solid (0.4 mg, quant.).

HRMS (CE-ESI-MS) for C₆H₁₄O₁₂P₂ [M-H]⁻: calculated 338.9888, found 338.9892.

³¹P NMR (162 MHz, Deuterium Oxide) $\delta = 4.85, 4.55$ ppm.

2.18. Synthesis of Co(III) catalyst 19

Chemical Formula: C₄₃H₅₉CoN₂O₅S Molecular Weight: 774.9472

Based on literature⁶:

S,*S*-Co(II)-Salen (105 mg, 0.174 mmol, 1.0 equiv.) and pTsOH (36 mg, 0.189 mmol, 1.09 equiv.) were dissolved in CH₂Cl₂ (3 mL) and stirred with an open flask for 1.15 h. The reaction mixture was precipitated in ice cold pentane (24 mL), the motherliquor was concentrated *in vacuo*, the precipitates were combined, washed with pentante (25 mL) and dried under reduced pressure to obtain a green solid.

Analytical data is in accordance with literature⁶:

¹**H** NMR (300 MHz, DMSO- d_6): $\delta = 7.78$ (s, 2H), 7.52 – 7.40 (m, 6H), 7.15 – 7.06 (m, 2H), 3.66 – 3.56 (m, 2H), 3.11 – 3.01 (m, 2H), 2.28 (s, 3H), 2.05 – 1.87 (m, 2H), 1.74 (s, 18H), 1.66 – 1.64 (m, 2H), 1.67 – 1.54 (m, 2H), 1.30 (s, 18H) ppm.

2.19. Synthesis of 2-glycerophosphoinositol 20

A stocksolution of **19** (1 mg/mL, 99 μ L, 767 μ g, 1 μ mol, 10 mol%) in MeCN was added to a solution of 2-InsP₁ × 2.0 TBA **12** (8.5 mg, 10 μ mol, 1.0 equiv., 0.5 equiv. of TBA-OH were present as minor impurity) in MeCN (1.0 mL), DIPEA (2 μ L; 1.48 mg, 12 μ mol, 1.2 equiv.) and *S*-(-)-glycidol (2 μ L, 2.23 mg, 30 μ mol, 3.1 equiv.) was added and the reaction mixture was stirred with an open flask for 5 min, closed to the atmosphere with an septum and stirred overnight. The reaction mixture was diluted with water (8 mL) and purified by SAX on a Q-sepharose column (*Capto Q-ImpRes, 1 mL*) on a NH₄HCO₃ gradient. Fractions were analyzed by CE-qTOF-MS and product containing fractions were lyophilized thrice to obtain a white solid (1 mg, 3 μ mol, 29% for the ammonium salt).

¹**H NMR** (400 MHz, Deuterium Oxide): $\delta = 4.61$ (dt, J = 7.8, 2.4 Hz, 2H), 4.09 – 4.00 (m, 2H), 4.02 – 3.91 (m, 3H), 3.76 – 3.67 (m, 4H), 3.68 – 3.56 (m, 5H), 3.32 (t, J = 9.3 Hz, 2H) ppm. ³¹**P NMR** (162 MHz, Deuterium Oxide): $\delta = 1.06$ (ddd, J = 6.6 Hz) ppm. **HRMS** (ESI) for C₉H₁₉O₁₁P [M-H]⁻: calculated 333.0592, found 333.0568.

2.20. Synthesis of 1-glycerophosphoinositol 21

A stocksolution of **19** in MeCN (10 mM, 123 μ L, 10 mol%) was added to 1-InsP₁ × 2.0 TBA **14** (10.0 mg, 12 μ mol, 1.0 equiv., 0.3 equiv. of TBA-OH were present as minor impurity) in MeCN (1.0 mL), DIPEA (2.5 μ L, 14 μ mol, 1.2 equiv.) and *S*-(-)-glycidol (2.5 μ L, 28 μ g, 3.1 equiv.) were added and the reaction mixture was stirred with an open flask for 5 min, closed to the atmosphere

with an septum and stirred overnight. The reaction mixture was diluted with water (8 mL) and purified by SAX on a Q-sepharose column (*Capto Q-ImpRes, 1 mL*) on a NH₄HCO₃ gradient. Fractions were analyzed by CE-qTOF-MS and product containing fractions were lyophilized thrice to obtain a white solid (1 mg, 3 μ mol, 25% for the ammonium salt).

Analytical data is in accordance with literature⁷:

¹H{³¹P}NMR (400 MHz, Deuterium Oxide): $\delta = 4.29$ (dd, J = 2.8 Hz, 1H), 4.00 (dd, J = 9.9, 2.8 Hz, 1H), 4.04 – 3.90 (m, 3H), 3.78 (dd, J = 9.7 Hz, 1H), 3.74 – 3.61 (m, 3H), 3.58 (dd, J = 10.0, 2.8 Hz, 1H), 3.36 (dd, J = 9.4 Hz, 1H) ppm.

¹³C NMR (101 MHz, Deuterium Oxide): δ = 76.29, 73.94, 72.22, 71.36 (d, *J* = 6.8 Hz), 71.18, 70.79, 70.74, 66.40 (d, *J* = 5.9 Hz), 62.07 ppm.

³¹P{¹H} NMR (162 MHz, Deuterium Oxide): $\delta = -0.05$ ppm.

HRMS (ESI) for C₉H₁₉O₁₁P [M-H]⁻: calculated 333.0592, found 333.0588.

3. Transient Phosphitylation monitored by ³¹P-NMR

3.1. Transient Phosphitylation of ADP

Supplementary Figure 1 Transient Phosphitylation of ADP monitored *via* 31 P-NMR. Coupling of ADP with commercially available dibenzyl-*N*,*N*-diisopropyl-P-amidite led to a P(III)-P(V) anhydride. Subsequent addition of pyridinium hydrobromide led to cleavage of the P(III)-P(V) anhydride. The chemical shifts of the observed intermediates are in accordance with literature.⁸

3.2. Transient Phosphitylation of 1-OH-InsP₅ with P-amidite 1

Supplementary Figure 2 Transient Phosphitylation of 1-OH-InsP₅ **2** monitored *via* ${}^{31}P{}^{1}H{}$ -NMR. Coupling of **2** with P-amidite **1** led to a complex mixture of P(III)-P(V) anhydrides and to a P(OR)₃-species. Subsequent addition of pyridinium hydrobromide led to cleavage of the P(III)-P(V) anhydrides, while the P(OR)₃-species stayed intact. The chemical shifts of the observed intermediates are in accordance with literature.⁸

3.3. Transient Phosphitylation of 1-OH-InsP₅ with P-amidite 9

Supplementary Figure 3 Transient Phosphitylation of 1-OH-InsP₅ **2** monitored *via* ³¹P-NMR. Coupling of **2** with P-amidite **9** led to a $P(OR)_3$ -species, while no P(III)-P(V)-anhydrides were detectable. Subsequent addition of pyridinium hydrobromide led to complete consumption of unreacted P-amidite, $P(OR)_3$ -species stayed intact. The chemical shifts of the observed intermediates are in accordance with literature.⁸

- 4. Towards the linearization of cyclic inositolpyrophosphates to InsP₆ derivatives
- 4.1. Screening for conditions to ring open the cyclic pyrophosphates of inositoltrispyrophosphate (ITPP)

4.1.1. Attempted nucleophilic ring-opening of ITPP with amines

Supplementary Table 4 Ring-opening screening of ITPP **25** with amine nucleophiles at RT. If not otherwise stated, 20 vol% amine were used. ¹Based on CE-qTOF-MS analysis (BGE: NH4OAc 35 mM pH 9.7, CE voltage 30 kV, CE current: 23μ A, injection 100 mbar, 15 s (30 nL)) and ³¹P-NMR. ²Based on CE-qTOF-MS analysis (BGE: NH4OAc 35 mM pH = 9.7, CE voltage 30 kV, CE current: 23μ A, injection 100 mbar, 15 s (30 nL)) ring opening occurred to some degree, but was not quantifiable by NMR.

Entry	Amine	Reaction Time	Solvent	Outcome ¹
1	Dimethyl amine	Overnight	Watan	/*
1	(40 vol%)	Overnight	water	1
2	o-Hydroxylaniline	Orrentialit	Weter DMSO (5-2)	1
2	(128 equiv.)	Overnight	water:DMSO (5:2)	/
	Hydroxylamine			
3	Hydrochloride	Overnight	Water	/
	(103 equiv.)			
4	Morpholine	Overnight	Water	/2
5	Morpholine	Overnight	MeCN	/
	YY 1	2.1	XX7 4	One opened
6	Hydrazine	3 days	water	pyrophosphate
7	Hydrazine	Overnight	MeCN	/
8	Propargyl Amine	3 days	Water	/2
9	Ammonia	3 days	Water	/2
10	Piperidine	Overnight	MeCN	/
11	Piperidine	Overnight	DMF	/

4.1.2. Towards hydrolysis of ITPP to InsP₆

Supplementary Table 5 Ring-opening screening of ITPP **25**. The reaction outcome was analyzed by CE-qTOF-MS (BGE: NH4OAc 35 mM pH = 9.7, CE voltage 30 kV, CE current: 23 μ A, injection 100 mbar, 15 s (30 nL)) and ³¹P{¹H}-NMR. ¹No complete conversion was observed. ²Dephosphorylation was observed by ³¹P-NMR. ³Based on ³¹P{¹H}-NMR the 1/3'-2' pyrophosphate was hydrolysed.⁴

25

Entry	X	Т	Reaction Time	Solvent	Outcome
1	DBU	65°C	60 min	DMSO:water (6:1)	/
2	DABCO	65°C	60 min	DMSO:water (6:1)	/
3	Morpholine	65°C	60 min	DMSO:water (6:1)	/
4	Hydrazine	65°C	60 min	DMSO:water (6:1)	/
5	NaI	65°C	60 min	DMSO:water (6:1)	/
6	TMS-Cl	65°C	60 min	DMSO:water (6:1)	Complete ring- opening ¹
7	AcCl	0°C to RT	overnight	МеОН	Complete ring- opening
8	AcCl	0°C to RT	overnight	BnOH:DMSO:water (5:2.5:1)	/
9	AcCl	65°C	60 min	DMSO:water (6:1)	Complete ring- opening ¹
10	TfOH	65°C	60 min	DMSO:water (6:1)	Complete ring- opening ²
11	$pTSA \times H_2O$	65°C	60 min	DMSO:water (6:1)	Partial ring-opening ³
12	CSA	65°C	60 min	DMSO:water (6:1)	Partial ring-opening ³
13	Dichloroacetic acid	65°C	60 min	DMSO:water (6:1)	Partial ring-opening ³
14	TFA	65°C	60 min	DMSO:water (6:1)	Partial ring-opening ³
15	AgOTf	65°C	60 min	DMSO:water (6:1)	/
16	<i>Amberlite</i> 15 H ⁺ -Form	65°C	60 min	DMSO:water (6:1)	/
17	Conc. HCl (40vol%)	65°C	2 days	water	/
18	HBr (30% in acetic acid, 30vol%)	80°C	2 h	water	Complete ring- opening
19	Phenyl Phosphate (6 equiv.)	RT	overnight	water	/
20	Benzyl Phosphate (6 equiv.)	RT	overnight	water	/

4.2. NMR monitoring of the hydrolysis of ITPP

Supplementary Figure 4 31 P-NMR comparison of (partial)-ring openings of ITPP **25** with organic acids in DMSO:water (see Supplementary Figure 5 Entry 6 and 9 – 14).

Supplementary Figure 5 The ring opening of cyclic 1-Fm-InsP₆ derivatives by HBr treatment was monitored by ³¹P-NMR.

4.4. ³¹P-NMR monitoring of the hydrolysis of 1-DEACM-InsP6 11

4.5. 2D-NMR of 1-Fm-InsP₆ 8

Supplementary Figure 7 ${}^{31}P^{-1}H$ -HMBC-NMR of 1-Fm-InsP₆ 8.

Supplementary Figure 8

{³¹P}-¹H-¹H-DQF-COSY-NMR of 1-Fm-InsP₆8.

5. Natuphos digest of InsP₆

Supplementary Table 6Screening for optimal conditions for the Natuphos (10500 U/mL) digest of InsP6. 5vol% of Natuphos(10500 U/mL) solution (270 mg/mL) was used. ¹Conditions used in literature.⁹

1	.5-1	150)mm

Entry	[InsP6]	[NH4OAc]	Main Product after 10 min
1	150 mM	500 mM	2-InsP ₁
2	150 mM	50 mM	$2-InsP_1$
3	150 mM	5 mM	$2-InsP_1$
4	150 mM	50 mM	2-InsP ₁
5 ¹	15 mM	50 mM	2-InsP ₁
6	1.5 mM	50 mM	2-InsP ₁

5.1. Purification of 2-InsP₁ via precipitation monitored via ³¹P-NMR monitoring

$^{31}P{^{1}H}-NMR's$ of the Ca₃(PO₄)₂ precipitation progress

3 CaCl₂ precipitations

Supplementary Figure 9 The $Ca_3(PO_4)_2$ precipitation progress during 2-InsP₁ purification was monitored by ${}^{31}P{}^{1}H$ -NMR.

5.2. Natuphos digest of 1-Fm-InsP₆ 8 monitored via ³¹P-NMR

 $\begin{array}{ll} \mbox{Supplementary Figure 10} \\ \mbox{monitored by $^{31}P\{^{1}H\}-NMR} \end{array} \mbox{The Naturphos (10500 U/mL) digest of 1-Fm-InsP_6 $ to 1-Fm-InsP_1 13 and inorganic phosphate was $1000 U/mL$ and $1000 U/mL$ and$

- 6. Identification of the formed $InsP_2$ isomers obtained by dephosphorylation of 1-Fm-InsP₆ 8
- 6.1. by Natuphos spiking experiments with InsP₂ standards

Supplementary Figure 11 CE-QQQ-MS (BGE: NH₄OAc 35 mM pH = 9.7, CE voltage: 30 kV, CE current: 23 μ A, injection: 100 mbar, 10 s (20 nL)) analysis of the digest of 1-Fm-InsP₆ **8** by Natuphos (10500 U/mL) after subsequent basic deprotection. Spiking experiments with defined isomers allowed to identification of 1,2-InsP₂.¹⁰

6.2. by 6-Phytase from *Escherichia coli* (7500 U/mL) – spiking experiments with $InsP_2$ standards

Supplementary Figure 12 CE-QQQ-MS (BGE: NH4OAc 35 mM pH = 9.7, CE voltage: 30 kV, CE current: 23 μ A, injection: 100 mbar, 10 s (20 nL)) analysis of the digest of 1-Fm-InsP₆ **8** with 6-Phytase from *Escherichia coli (7500 U/mL)* after subsequent basic deprotection. Spiking experiments with defined isomers allowed to identification of 1,2-InsP₂.¹⁰

7. Phytase Screen

Supplementary Figure 13 CE-qTOF-MS (BGE: NH4OAc 35 mM pH = 9.7, CE voltage: 30 kV, CE current: 23μ A, injection: 100 mbar, 15 s (30 nL)) analysis of the digest of modified InsP₆ derivatives with different phytases (6-phytase from *Citrobakter braaki*, 30000 U/mL; 6-Phytase from *Escherichia coli*, 5000 U/mL; 3-phytase from *Asperigillus niger*, 10000 U/mL).

[¹⁸O]-2-InsP₁ 2-InsP₁ Phytate digested with 6-phytase 7800 from Citrobakter braakii (30000 U/mL 5200 2600 0 Phytate digested with 6-phytase 17100 from Escherichia coli (7500 U/mL) 11400 5700 0 Phytate digested with 6-phytase 5700 from Escherichia coli (5000 U/mL) 3800 1900 0 Phytate digested with 3-phytase 1530 from Aspergillus niger (10000 U/mL) 1020 510 0 10 15 t/min

7.1. Identification of the formed InsP₁ via spiking experiments

Supplementary Figure 14 CE-QQQ-MS (BGE: NH4OAc 35 mM pH = 9.7, CE voltage: 30 kV, CE current: 23 μ A, injection: 100 mbar, 10 s (20 nL)) spiking experiments with [¹⁸O]-2-InsP₁ allowed identification of 2-InsP₁ as product of the InsP₆ digests of the tested phytases.

8. Co(III) catalysis screening

Supplementary Table 7 Reaction screening of the ring opening of *S*-(-)-glycidol with 2-InsP₁ **12** under Co(III) catalysis using JACOBSENS catalyst **19**.¹Based on ³¹P{¹H}-NMR integration. ²2-InsP₁ × 1.3 TBA was poorly soluble in MeCN. ³Based on ¹H-NMR 0.6 equiv. TBA-OH were present.

$x TBA^{+} HO + OH + OH + HO'' + OH + HO''' + OH + HO'' + OH + HO'' + OH + HO'' + OH + HO$										
Entry	TBA ⁺	S-(-)-glycidol	19	t	12:20 ¹					
12	1.3 equiv.	1.0 equiv.	10mol%	Overnight	/					
2 ²	1.3 equiv.	1.5 equiv.	10mol%	Overnight	/					
3 ²	1.3 equiv.	2.0 equiv.	10mol%	Overnight	/					
4 ²	1.3 equiv.	1.0 equiv.	5mol%	Overnight	/					
5 ²	1.3 equiv.	1.5 equiv.	5mol%	Overnight	/					
6 ²	1.3 equiv.	2.0 equiv.	5mol%	Overnight	1.0:0.16					
7	1.5 equiv.	0.7 equiv.	35mol%	8 days	1.0:0.3					
8	1.5 equiv.	1.0 equiv.	35mol%	2 days	1.0:0.3					
9	1.5 equiv.	1.4 equiv.	35mol%	8 days	1.0:0.3					
10	1.5 equiv.	0.7 equiv.	21mol%	8 days	1.0:0.3					
11	1.5 equiv.	0.7 equiv.	7mol%	8 days	1.0:0.4					
12 ³	2.6 equiv.	1.0 equiv.	10mol%	Overnight	1.0:0.1					
13 ³	2.6 equiv.	1.5 equiv.	10mol%	Overnight	1.0:0.1					
14 ³	2.6 equiv.	2.0 equiv.	10mol%	overnight	1.0:0.1					
					1					

8.1. NMR monitoring for extend reaction times

Supplementary Figure 15 $^{31}P{^{1}H}$ -NMR of the ring opening of *S*-(-)-glycidol with 2-InsP₁ **12** catalysed by **19** (Supplementary Table 7, Entry 11).

9. Literature

- 1 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176–2179.
- D. Blüher, D. Laha, S. Thieme, A. Hofer, L. Eschen-Lippold, A. Masch, G. Balcke, I. Pavlovic, O. Nagel, A. Schonsky, R. Hinkelmann, J. Wörner, N. Parvin, R. Greiner, S. Weber, A. Tissier, M. Schutkowski, J. Lee, H. Jessen, G. Schaaf and U. Bonas, *Nat. Commun.*, 2017, 8, 2159.
- 3 T. Weinrich, M. Gränz, C. Grünewald, T. F. Prisner and M. W. Göbel, *European J. Org. Chem.*, 2017, **2017**, 491–496.
- 4 L. F. Johnson and M. E. Tate, *Can. J. Chem.*, 1969, **47**, 63–73.
- 5 K. C. Fylaktakidou, J.-M. Lehn, R. Greferath and C. Nicolau, *Bioorg. Med. Chem. Lett.*, 2005, **15**, 1605–1608.
- 6 L. P. C. Nielsen, C. P. Stevenson, D. G. Blackmond and E. N. Jacobsen, *J. Am. Chem. Soc.*, 2004, **126**, 1360–1362.
- 7 K. S. Bruzik, Z. Guan, S. Riddle and M.-D. Tsai, J. Am. Chem. Soc., 1996, 118, 7679–7688.
- 8 H. J. Jessen, T. Dürr-Mayer, T. M. Haas, A. Ripp and C. C. Cummins, *Acc. Chem. Res.*, 2021, **54**, 4036–4050.
- 9 R. Greiner, Prep. Biochem. Biotechnol., 2021, **51**, 985–989.
- 10 G. Liu, E. Riemer, R. Schneider, D. Cabuzu, O. Bonny, C. A. Wagner, D. Qiu, A. Saiardi, A. Strauss, T. Lahaye, G. Schaaf, T. Knoll, J. P. Jessen and H. J. Jessen, *RSC Chem. Biol.*, 2023, 4, 300–309.

10. Capillary Electrophoresis Integration

10.1. Blank

Supplementary Table 8 CE-qTOF-MS (CE-qTOF-MS (BGE: NH₄OAc 35 mM pH = 9.7, CE voltage: 30 kV, CE current: 23μ A, injection: 100 mbar, 15 s (30 nL)) analysis of the blank of InsP₆ derivatives incubated under dephosphorylation conditions in the absence of phytase.

				Blank					
		InsP ₆			1-Fm-InsP ₆		1-	DEACM-Ins	P ₆
InsP ₁									
InsP ₂									
InsP ₃		0.04240							
InsP ₄	0 10514	0.1711	0 10348						
InsP ₆	0.89486	0.78641	0.89652	0.08378	0.09227	0.08797	0.31129	0.32104	0.32252
$R-InsP_1$									
R-InsP ₂									
R-InsP ₃									
R-InsP ₄									
R-InsP₅				0.03735	0.03946	0.03851	0.0071	0.67006	0 (7740
R-InsP ₆				0.87887	0.86827	0.8/351	0.68871	0.67896	0.67748

10.2. Dephosphorylation of phytate with 6-phytase from *Citrobacter braakii* (30000 U/mL)

Supplementary Table 9 CE-qTOF-MS (CE-qTOF-MS (BGE: NH₄OAc 35 mM pH = 9.7, CE voltage: 30 kV, CE current: 23μ A, injection: 100 mbar, 15 s (30 nL)) analysis digest of InsP₆ derivatives with 6-phytase from *Citrobacter braakii* (30000 U/mL).

				I nytast 0					
InsP ₆			1-Fm-InsP ₆			1-DEACM-InsP ₆			
InsP ₁	1.000	1.000	1.000	0.03347	0.04877	0.03255	0.29791	0.27684	0.30418
InsP ₂				0.03168	0.01397	0.03319			
InsP ₃									
InsP ₄									
InsP ₅									
InsP ₆									
R-InsP ₁							0.04121	0.05571	0.02471
R-InsP ₂				0.72665	0.89827	0.72564	0.6484	0.65481	0.65543
R-InsP ₃				0.20821	0.039	0.20861	0.01248	0.01265	0.01568
R-InsP ₄									
R-InsP ₅									
R-InsP ₆									

Phytase 6

10.3. Dephosphorylation of phytate with 6-phytase from *Escherichia coli* (7500 U/mL)

Supplementary Table 10 CE-qTOF-MS (CE-qTOF-MS (BGE: NH₄OAc 35 mM pH = 9.7, CE voltage: 30 kV, CE current: 23μ A, injection: 100 mbar, 15 s (30 nL)) analysis digest of InsP₆ derivatives with 6-phytase from *Escherichia coli* (7500 U/mL).

Phytase 9										
	InsP ₆			1-Fm-InsP ₆			1-DEACM-InsP ₆			
InsP ₁	1.000	1.000	1.000	0.06348	0.06870	0.05893	0.11411	0.04383	0.04181	
$InsP_2$										
InsP ₃										
InsP ₄										
InsP ₅										
InsP ₆										
R-InsP ₁				0.01495	0.01316	0.01642	0.33670	0.63468	0.64847	
R-InsP ₂				0.83251	0.81683	0.88445	0.54919	0.32149	0.30972	
R-InsP ₃				0.03087	0.03256	0.21370				
R-InsP ₄				0.05819	0.06876	0.01884				
R-InsP ₅										
R-InsP ₆										

10.4. Dephosphorylation of phytate with 6-phytase from *Escherichia coli* (5000 U/mL)

Supplementary Table 11 CE-qTOF-MS (CE-qTOF-MS (BGE: NH4OAc 35 mM pH = 9.7, CE voltage: 30 kV, CE current: 23μ A, injection: 100 mbar, 15 s (30 nL)) analysis digest of InsP₆ derivatives with 6-phytase from *Escherichia coli* (5000 U/mL).

Phytase 20										
	$InsP_6$			1-Fm-InsP ₆			1-DEACM-InsP ₆			
InsP ₁	1	1	1	0.05105	0.04681	0.04371	0.12857			
InsP ₂										
InsP ₃										
InsP ₄										
InsP ₅										
InsP ₆										
$R-InsP_1$				0.01131	0.00944	0.00637	0.37333			
R-InsP ₂				0.92078	0.92377	0.90794	0.49809			
R-InsP ₃				0.01686	0.01997	0.02569				
R-InsP ₄										
R-InsP ₅										
R-InsP ₆										

Phytase 20

10.5. Dephosphorylation of phytate with 3-phytase from *Aspergillus niger* (10000 U/mL)

Supplementary Table 12 CE-qTOF-MS (CE-qTOF-MS (BGE: NH₄OAc 35 mM pH = 9.7, CE voltage: 30 kV, CE current: 23μ A, injection: 100 mbar, 15 s (30 nL)) analysis digest of InsP₆ derivatives with 3-phytase from *Aspergillus niger* (10000 U/mL).

Phytase 21											
	InsP ₆				1-Fm-InsP ₆			1-DEACM-InsP ₆			
InsP ₁	1	1	1	0.06391	0.06366	0.06560	0.06079	0.06406	0.06451		
InsP ₂											
InsP ₃					0.00530	0.00726					
InsP ₄											
InsP ₅											
InsP ₆											
R-InsP ₁							0.34033	0.30993	0.33751		
R-InsP ₂				0.77362	0.74720	0.71100	0.59888	0.62603	0.59798		
R-InsP ₃				0.01532	0.01490	0.01496					
R-InsP ₄				0.03641	0.03488	0.03663					
R-InsP ₅											
R-InsP ₆				0.11074	0.13406	0.16455					

11. NMR Spectra

Supplementary Figure 16 1 H-NMR of the TBA salt of 1-OH-InsP₅ 2.

Supplementary Figure 17 31 P-NMR of the TBA-salt of 1-OH-InsP₅ **2**.

Supplementary Figure 18 ¹H-NMR of **22**.

23.4 23.4 24.96 24.96 24.96

Supplementary Figure 27 ¹H-NMR of **9**.

Supplementary Figure 29 13 C-NMR of **9**.

Supplementary Figure 30 ¹H-NMR of **10**.

Supplementary Figure 33 ¹H-NMR of **25**.

ÄKTA/HeJeJl29-410600,Haener,MH153-F14,H2O+D2O,31P HeJeJl29-410600,Haener,MH153-F14,H2O+D2O,31P

Supplementary Figure 34 ${}^{31}P{}^{1}H$ -NMR of 25.

Supplementary Figure 35 ¹H-NMR of **8**.

Supplementary Figure 36 31 P-NMR of 8.

Supplementary Figure 37 13 C-NMR of 8.

Supplementary Figure 38 ¹H-NMR of **8**.

Supplementary Figure 41 ¹H-NMR of **11**.

Supplementary Figure 42 ³¹P-NMR of **11**.

Supplementary Figure 43 ¹³C-NMR of **11**.

Supplementary Figure 44 ¹H-NMR of **12**.

Supplementary Figure 45 ³¹P-NMR of **12**.

Supplementary Figure 46 ¹³C-NMR of **12**.

Supplementary Figure 47 ¹H-NMR of **13**.

400MHz/HeJeSe08-410801,Haener,MH419,D2O,31P HeJeSe08-410801,Haener,MH419,D2O,31P

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 f1 (ppm)

 $^{31}P{^{1}H}-NMR \text{ of } 13.$ Supplementary Figure 48

$-\frac{144.12}{144.0.30} < -\frac{144.12}{144.0.30} < -\frac{144.0.30}{144.0.30} < -\frac{144.0.30}{125.236.02} < -\frac{140.00}{125.128} < -\frac{1225.122}{120.13} < -\frac{1225.123}{120.13} < -\frac{1225.123}{120.13} < -\frac{100.00}{120.13} < -\frac{100.$

Supplementary Figure 49 ¹³C-NMR of **13**.

Supplementary Figure 50 ¹H-NMR of **14**.

Supplementary Figure 52 ¹³C-NMR of **14**.

Supplementary Figure 54 ¹H-NMR of **19**.

Supplementary Figure 55 ¹H-NMR of **20**.

 $^{31}P{^{1}H}-NMR of 21.$ Supplementary Figure 58

Supplementary Figure 59 ³¹P-NMR of **21**.

76.29 73.94 71.40 71.18 71.18 71.18 71.18 71.18 71.18 71.18 71.18 71.18 71.18 71.18 71.18 71.18 71.18 70.79 66.37

Supplementary Figure 60 13 C-NMR of **21**.