1	Supplementary information
2	
3	Dual-engine-driven synthesis of unsaturated esters over channel-
4	expanding Cu-Cs catalysts
5	
6	Jiaqi Fan, ^{a,b} Lishu Shao, ^{*,b,c} Weizhe Gao, ^b Yitong Han, ^b Wenjie Xiang, ^b Hao
7	Huang, ^b Zhihao Liu, ^b Chufeng Liu, ^b Bo Wang, ^b Kangzhou Wang, ^d Guangbo Liu, ^e
8	Jiancai Sui, ^f Qiang Liu, ^f Tao Li, ^g Tao Xing, ^g Shuhei Yasuda, ^b Zhixin Yu, ^{*,a} Guohui
9	Yang, ^{*,b,h} Peipei Zhang, ^{*,i} Noritatsu Tsubaki ^{*,a}
10	
11	^a Institute of New Energy, School of Chemistry and Chemical Engineering, Shaoxing
12	University, Shaoxing 312000, China.
13	^b Department of Applied Chemistry, School of Engineering, University of Toyama,
14	Gofuku 3190, Toyama 930-8555, Japan.
15	^c Ministry of Forestry Bioethanol Research Center, School of Materials Science and
16	Engineering, Central South University of Forestry and Technology, Changsha, 410004,
17	China.
18	^d School of Materials and New Energy, Ningxia University, Yinchuan, Ningxia 750021,
19	China.
20	^e Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology,
21	Chinese Academy of Sciences, Qingdao 266101, China.
22	^f Shandong Energy Group Co., Ltd, Jinan, Shandong 250101, China.
23	^g Shandong Energy Group Coal Gasification New Materials Technology Co., Ltd.,
24	Jinan, Shandong 250220, China.

- ^b State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian
- 26 University of Technology, Dalian, 116024, China.
- ⁱ CNOOC Institute of Chemical & Advanced Materials, Beijing 102209, China.
- 28
- 29 **Corresponding authors:*
- 30 tsubaki@eng.u-toyama.ac.jp (N. Tsubaki)
- 31 *zhangpp15@cnooc.com.cn (P. Zhang)*
- 32 *thomas@eng.u-toyama.ac.jp (G. Yang)*
- 33 *zhixin.yu@uis.no (Z. Yu)*
- 34 *lishushao@csuft.edu.cn (L. Shao)*

35 Supplementary Figures and Tables

Figure S1. SEM images of (A) 10Cs-7Cu/Q10, (B) 33Cs-22Cu/Q10, (C) 7Cu/10Cs/Q10-I, (D) 7Cu/10Cs/Q10-A, (E) 10Cs/7Cu/Q10, (F) 33Cs/22Cu/Q10.

Figure S2. EDS mapping analysis of (A) 10Cs-7Cu/Q10, (B) 33Cs-22Cu/Q10, (C) 7Cu/10Cs/Q10-I, (D) 7Cu/10Cs/Q10-A, (E) 10Cs/7Cu/Q10, (F) 33Cs/22Cu/Q10.

Figure S3. The N₂ adsorption-desorption isotherms of as-synthesized samples.

Figure S4. XPS of (A) Cu containing samples, (C) Cs 3d in 10Cs/7Cu/Q10.

42

Figure S5. 3D In-situ FTIR spectra of as-synthesized samples during reduction and reaction; Reduction of 7Cu/Q10 (A), 10Cs/Q10 (B), and 10Cs/7Cu/Q10 (C); Reaction over 7Cu/Q10 (D), 10Cs/Q10 (E), and 10Cs/7Cu/Q10 (F).

Figure S6. The catalytic performance of 10Cu/Q10 (A) and 7Cs/Q10 (B). Reaction conditions: 0.1 g catalyst loaded, GHSV = 3000 ml/gh, 400 °C, 0.1 MPa, MeOH/MAc = 2/1, N₂ flow rate 20 mL/min.

Figure S7. NH₃-TPD profiles of (A) 22Cu-33Cs/Q10, (B) 7Cu/10Cs-Al/Q10; CO₂-TPD profiles of (C) 22Cu-33Cs/Q10, (D) 7Cu/10Cs-Al/Q10.

Figure S8. Stability of 10Cs/7Cu/Q10 catalyst in the synthesis system of unsaturated esters.

Reaction conditions: dual layer catalytic bed with 0.1 g sample loaded in upper layer and 0.2 g Cs-Al/Q10 in lower layer, GHSV = 3000 ml/gh, 400 °C, 0.1 MPa, MeOH/MAc = 2/1, N₂ flow rate 20 mL/min.

53

 V_0 C_0 C_1 C_x m_0 \mathbf{f}^{d} Samples Element (ml)^b (mg/L)^e mg/kg^f $(g)^a$ (ppm)^c Fresh 0.2533 3.776 100 377.562 37264.3 25 Cu 10Cs/7Cu/Q10 Fresh 0.1503 505.685 25 Cs 5.057 100 84112.6 10Cs/7Cu/Q10 Spent 0.2533 25 Cu 3.572 100 357.205 35255.1 10Cs/7Cu/Q10 Spent 0.1522 25 Cs 5.105 100 510.521 83856.9 10Cs/7Cu/Q10

54 **Table S1.** The concentration of Cu in the samples determined by ICP-OES.

^a Mass of samples.

^b Constant volume.

^c Concentration of diluted liquid.

^d Factor of dilution.

^e Concentration of original solution.

- 60 ^fElemental content.
- 61

Table S2. Fragment m/z values for relevant chemicals and their relative intensities in

64	MS.[1,	2]

Chemicals	M_r	Fragment m/z (relative intensities, %)
CH ₃ OH	32	31 (100 %), 32 (75 %), 29 (45 %), 15 (14 %), 30 (8 %)
CH ₃ COOCH ₃	74	43 (100 %), 74 (26 %), 42 (15 %)
CH ₂ =CHCOOCH ₃	86	55 (100 %), 27 (44 %), 15 (13 %), 85 (12 %)
CH ₃ CH ₂ COOCH ₃	88	57 (100 %), 29 (77 %), 59 (32 %), 88 (32 %), 27 (20 %),
CH ₂ =C(CH ₃)COOCH ₃	100	4 1 (100 %), 69 (63 %), 39 (37 %), 100 (32 %)

 M_r : Relative molecular mass. The m/z values of the species employed in this work were

66 marked in red.

68 **References**

- 69 [1] L. Yang, C. Wang, W. Dai, G. Wu, N. Guan, L. Li, Progressive steps and catalytic
- 70 cycles in methanol-to-hydrocarbons reaction over acidic zeolites, Fundamental
- 71 Research, 2 (2022) 184-192.
- 72 [2] J.-M. Jehng, I.E. Wachs, G.S. Patience, Y.-M. Dai, Experimental methods in
- chemical engineering: Temperature programmed surface reaction spectroscopy—TPSR,
- The Canadian Journal of Chemical Engineering, 99 (2021) 423-434.