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Additional Methodological Details

The input files, initial and representative configurations for all the performed MD simula-
tions, as well as the raw computational data for all figures have been deposited in Zenodo

(https://zenodo.org/records/14810689).

The Au (111) surface was constructed using the CHARMM software package,>? with a
box dimension of 3.75x4.00x7.02 nm, containing 2,381 SPC/E? water molecules confined
between two identical planar Au electrodes. Similar to the Au (100), all simulations for the
Au (111) were performed using the constant potential classical MD code MetalWalls.*

For the three silica-water interfaces, Born-Oppenheimer DFT-MD simulations were car-
ried using CP2K /Quickstep® with the PBE-D3 functional,®” GTH pseudopotentials,® and a
hybrid basis set consisting of plane waves (cutoff of 400 Ry) and DZVP-MOLOPT-SR. The
simulation cell dimensions were 9.8 A x 8.5 A x 32 A for 9.6 SiOH/nm?water, 13.4 A x
13.3 A x 37 A for 4.5 SiOH/nm?-water, and 12.67 A x 13.27 A x 37 A for 3.5 SiOH/nm?>
water, consistent with previous studies 9-12, which utilized amorphous slab models from ref.
13. The simulations were conducted in the NVT ensemble at 300 K using a Nosé-Hoover
thermostat !4 (chain length = 3, time constant = 100 fs), running for a minimum of 160 ps
following 10 ps of equilibration.

The calculation of the contact angle  was performed based on the criteria in ref.'> where

it is related to the cavitation free energy through Eq.1
5:ucavity(z*) =m [COS(Q) - COS(QO)] ) (1)

where z* represents the position of the first minima in the cavitation free energy profile,

m = Apb"* /2(1 + cos(45°)), and @y = 45° represents the boundary between hydrophobic

v,S

and hydrophilic interactions.



Additional Analysis
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Figure S1: Why are z;,, (in A) variations insufficient to induce or prevent amphiphilic behav-
ior? (A) ¢-induced changes (represented by the corresponding z;,,) in water oxygen density
profiles (for €4,-0 = 3.79kJ/mol and AV = 0V). (B) Representation of the width of the
atom-centered Gaussian distribution over Au, which is varied to tune surface metallicity
(smaller ¢ results in a wider Gaussian). (C) Water dipole orientation distributions for differ-
ent z;,. (D) Accompanying changes in the number of inter-layer hydrogen bonds per water
molecule (HBs/w) formed between the adlayer and the adjacent water layer: the total den-
sity of inter-layer HBs/w—which dictates dficavity(2)—Temains constant at 0.6 HBs/w. Error
bars for HBs/w values are < £0.05 HBs/w.



Table S1: The effects of the degree of hydroxylation of the three studies silica surfaces on the
HBs per water (HBs/w) formed between water and the surface, as well as on the intra-layer
(adlayer) and inter-layer HBs.

Silica HBs/w (surface-water) | HBs/w (Intra-layer) | HBs/w (Inter-layer)
3.5 SiOH /nm? 0.2 1.0 1.6
4.5 SiOH /nm? 0.3 1.7 0.9
9.6 SIOH /um? 0.5 23 0.6
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Figure S2: Contact angle 6 (in degrees) as a function of surface—water interaction strengths
(€au—0, in kJ/mol), at z;, = 1.0 A, and AV = 0V. At low interaction strength, large
contact angle values indicate non-wetting behavior. As the interaction strength increases,
the contact angle decreases and eventually reaches zero, signifying complete wetting.
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Figure S3: The effect of surface topology ((001) vs (111)) on interfacial water properties in
the hydrophobic (€4,—0 = 0.12 kJ/mol) and amphiphilic (€4,—0 = 5.36 kJ/mol) domain: (A)
Density profiles. (B) Water chemical potential  iyater across the interface. Both hydrophobic
and amphiphilic interfaces are studied at z;, = 1.0 A, and AV = 0V conditions.
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