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Additional Methodological Details

The input files, initial and representative configurations for all the performed MD simula-

tions, as well as the raw computational data for all figures have been deposited in Zenodo

(https://zenodo.org/records/14810689).

The Au (111) surface was constructed using the CHARMM software package,1,2 with a

box dimension of 3.75×4.00×7.02 nm, containing 2,381 SPC/E3 water molecules confined

between two identical planar Au electrodes. Similar to the Au (100), all simulations for the

Au (111) were performed using the constant potential classical MD code MetalWalls.4

For the three silica-water interfaces, Born–Oppenheimer DFT-MD simulations were car-

ried using CP2K/Quickstep5 with the PBE–D3 functional,6,7 GTH pseudopotentials,8 and a

hybrid basis set consisting of plane waves (cutoff of 400 Ry) and DZVP-MOLOPT-SR. The

simulation cell dimensions were 9.8 Å × 8.5 Å × 32 Å for 9.6 SiOH/nm2-water, 13.4 Å ×

13.3 Å × 37 Å for 4.5 SiOH/nm2-water, and 12.67 Å × 13.27 Å × 37 Å for 3.5 SiOH/nm2-

water, consistent with previous studies 9–12, which utilized amorphous slab models from ref.

13. The simulations were conducted in the NVT ensemble at 300 K using a Nosé–Hoover

thermostat14 (chain length = 3, time constant = 100 fs), running for a minimum of 160 ps

following 10 ps of equilibration.

The calculation of the contact angle θ was performed based on the criteria in ref.15 where

it is related to the cavitation free energy through Eq.1

δµcavity(z
∗) = m [cos(θ)− cos(θ0)] , (1)

where z∗ represents the position of the first minima in the cavitation free energy profile,

m = ∆µbulk
v,s /2(1 + cos(45◦)), and θ0 = 45◦ represents the boundary between hydrophobic

and hydrophilic interactions.
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Additional Analysis
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Figure S1: Why are zim (in Å) variations insufficient to induce or prevent amphiphilic behav-
ior? (A) ζ-induced changes (represented by the corresponding zim) in water oxygen density
profiles (for ϵAu−O = 3.79 kJ/mol and ∆V = 0V ). (B) Representation of the width of the
atom-centered Gaussian distribution over Au, which is varied to tune surface metallicity
(smaller ζ results in a wider Gaussian). (C) Water dipole orientation distributions for differ-
ent zim. (D) Accompanying changes in the number of inter-layer hydrogen bonds per water
molecule (HBs/w) formed between the adlayer and the adjacent water layer: the total den-
sity of inter-layer HBs/w—which dictates δµcavity(z)—remains constant at 0.6HBs/w. Error
bars for HBs/w values are < ±0.05HBs/w.
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Table S1: The effects of the degree of hydroxylation of the three studies silica surfaces on the
HBs per water (HBs/w) formed between water and the surface, as well as on the intra-layer
(adlayer) and inter-layer HBs.

Silica HBs/w (surface-water) HBs/w (Intra-layer) HBs/w (Inter-layer)
3.5 SiOH/nm2 0.2 1.0 1.6
4.5 SiOH/nm2 0.3 1.7 0.9
9.6 SiOH/nm2 0.5 2.3 0.6

Figure S2: Contact angle θ (in degrees) as a function of surface–water interaction strengths
(ϵAu−O, in kJ/mol), at zim = 1.0 Å, and ∆V = 0V . At low interaction strength, large
contact angle values indicate non-wetting behavior. As the interaction strength increases,
the contact angle decreases and eventually reaches zero, signifying complete wetting.
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Figure S3: The effect of surface topology ((001) vs (111)) on interfacial water properties in
the hydrophobic (ϵAu−O = 0.12 kJ/mol) and amphiphilic (ϵAu−O = 5.36 kJ/mol) domain: (A)
Density profiles. (B) Water chemical potential δµwater across the interface. Both hydrophobic
and amphiphilic interfaces are studied at zim = 1.0 Å, and ∆V = 0V conditions.
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