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Additional explanations of the Solvent/Base clusters. Additional plots and metrics for

the trained models.

Solvent /Base Classes

Following the lead of Beker et al., the ‘fine-grained’ solvent classification consisted of 13

distinct classes:
e Alcohols

e Alcohols/Aromatics

e Alcohols/Aromatics/Water
e Alcohols/Water

e Amides

e Amides/Water

e Aromatics

e Aromatics/Water

e Ethers



e Ether/Water
e Low Boiling Point/Water (e.g. MeCN and Water)
o Water

e Other
While the ‘coarse-grained’ solvent classification contained 6 distinct classes:

e Alcohols/Aromatics (consisting of the Aromatics/Water, Alcohols/Aromatics and Al-

cohols/Aromatics/Water classes from the ‘fine-grained’ solvent classification)
e Aromatics
e Dthers
e Ether/Water

e Polar (consisting of the Alcohols, Low Boiling Point/Water, Alcohols/Water, Amides/Water,

Water and Amide classes from the ‘fine-grained’ solvent classification)
e Other
The bases were split into 7 different classes:

e Acetates
e Amines

Carbonates

Fluorides

Hydroxides

Phosphates

Other (e.g. Alkoxides)



Modelling Overview
Additional diagrams describing the modelling workflow,
Likelihood Ranking.

Predicting Conditions With CGRs
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Figure S1: The workflow for the CGR condition prediction case study and an explanation

of a CGR. Our workflow differs from Beker et al. in the

choice of representation, where we

use a different representation, the CGR, which that work did not examine.®

Additional Modelling Figures and Metrics

Additional figures from the models trained in the Case Study.



Creating A Condensed Graph Of Reaction
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Figure S2: The creation of a CGR. The key advantage of a CGR, over other reaction represen-
tations such as Morgan fingerprints, is that it explicitly encodes the chemical transformation
occurring in the reaction, contained within the ’dynamic bonds’.

EXPLAINING THE LIKELIHOOD RANKING APPROACH

I. Enumerate Conditions Il. Assign Probs. To All Conditions lll. Re-Rank Conditions + Return
Create a list of MHE ‘condition’ vectors  Multiply individual reagent probs. together Sort by probability.
(per condition set). Repeat for each prediction Repeat for each prediction
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Figure S3: Explaining likelihood ranking. In the case where all tasks are multi-class clas-
sification (which is the case in our case study), there are n; possible options per reagent
type, where 7 is the number of classes for that reagent type. This means that there are
Nsolvs X NMpases total combinations (therefore there are 6 x 7 = 42 for ‘coarse-grained’ solvent
classification, and 13 x 7 = 91 for ‘fine-grained’ solvent classification).



Top-K Independent Reagent Accuracies
Independent = No Likelihood Ranking
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Figure S4: Box plots of the distribution of top-k accuracies reported for the predictions of
the solvent and base independently, i.e. no likelihood ranking was performed. The CGR
multi-task network is highlighted in yellow, and outperforms the literature baseline, as well
as similarity and best existing ML method (tested by Beker et al.).!



Top-K Independent Reagent Accuracies

CGR-Based Methods Only
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Figure S5: Independent accuracies, using only the CGR-based methods. Although the
traditional ML models (CGR GBM in particular) showed comparable performance, the CGR
MTNN was selected due to its strong performance on other metrics (see Fig. S8), and fast

inference times.



Top-K'Overall' Accuracies

CGR-Based Methods Only
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Figure S6: Overall accuracies, considering only CGR-based modelling methods.



Alternative Classification Metrics
Computed For The Top 1 Predictions Only
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Figure S7: Alternative classification metrics for the models. Here, ‘macro’ averaging refers
to the calculation of the metric for each individual class in multi-class classification, before
taking the mean. We use equal weighting for all classes, since all classes (e.g. solvent
classes are equally valid). Despite the strong accuracy scores (see Fig. S4), here scores on
other classification metrics beyond accuracy are poorer. This highlights how further work is
required to improve these models to predict correct conditions across all reagent clusters.



Alternative Classification Metrics
CGR-Based Methods Only

Coarse Solvent Classification
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Figure S8: Alternative classification metrics for the
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Statistical Significance of Top-K Accuracies - Coarse Solvent Classification
Both Base and Solvent Accuracies Computed From Independent Predictions.
p-Values Calculated Using Holm-Bonferroni Method.
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Figure S9: p-Values from statistical testing following the workflow set out by Ash et al..? A
Holm-Bonferroni method is used, implemented using SciPy. Here, the accuracies for Base and
Solvent are taken from the independent predictions (no likelihood re-ranking is performed),
since this is what Beker et al. use in their work. Yellow indicates a non-significant difference
between the distributions of values from the method corresponding to the row, and the
method corresponding to the column. We can see that for the Top-1 accuracies, the CGR-
MTNN results are statistically significant (p < 0.001) with all other methods. Crucially,
the improvement from the CGR-MTNN to the popularity baseline and Morgan fingerprint
baseline is statistically significant (p < 0.001) for all accuracy metrics.
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Statistical Significance of Top-K Accuracies - FineSolvent Classification
Both Base and Solvent Accuracies Computed From Independent Predictions.
p-Values Calculated Using Holm-Bonferroni Method.
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Figure S10: p-Values from statistical testing following the workflow set out by Ash et al..?
Same as Fig. S9, but using the ‘fine’ solvent classification.
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for the different models across different metrics,

using ‘coarse’ solvent classification. Shows the mean rank of each model across the 5x5
CV. A line between methods indicates a non-significant difference. We can clearly see that

the CGR MTNN is the best model for most of these metrics, outperforming the literature

Figure S11: Critical difference diagrams
baseline and Morgan fingerprint model.
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Figure S12: Critical difference diagrams for the different models across different metrics,
using ‘fine’ solvent classification. Like Fig. S11 the CGR-MTNN outperforms literature

baseline and Morgan fingerprint model across most folds in a statistically significant way.
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Statistical Significance of Alternative Metrics - Coarse Solvent Classification
Both Base and Solvent Metrics Computed From The Top-1 Independent Prediction.
p-Values Calculated Using Holm-Bonferroni Method.
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Figure S14: p-Values from statistical testing following the workflow set out by Ash et al..?
Comparing differences in the distributions of the alternative classification metrics, for the
‘coarse’ solvent classification.



Statistical Significance of Alternative Metrics - Fine Solvent Classification
Both Base and Solvent Metrics Computed From The Top-1 Independent Prediction.
p-Values Calculated Using Holm-Bonferroni Method.
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Figure S15: p-Values from statistical testing following the workflow set out by Ash et al..?
Same as Fig. S14, but using the ‘fine’ solvent classification.
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Figure S16: Critical difference diagrams for the different models across the alternative clas-

sification metrics, using

‘coarse’ solvent classification. Shows the mean rank of each model

across the bxb CV. A line between methods indicates a non-significant difference. We can
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clearly see that the CGR MTNN is among the best models for all of these metrics, outper-

forming the literature baseline and Morgan fingerprint model.
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Figure S17: Critical difference diagrams for the different models across the alternative clas-

sification metrics, using ‘fine’ solvent classification. Like Fig. S17 the CGR-MTNN outper-

forms literature baseline and Morgan fingerprint model across most folds in a statistically

significant way.
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Clustering Impact on Top-K Accuracies
'Exact’ Base Predicted, Then Clustered.
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Figure S18: The impact of clustering on base Top-K accuracies. Like Fig. 7, clustering causes
a large increase in model performance, suggesting that they are successfully predicting the
correct solvent class, even if the counter-ion is incorrect.
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