Supporting Information for Sercel and Marek

Supporting Information for

General Palladium-Catalyzed Cross Coupling of Cyclopropenyl Esters

Zachary P. Sercel and Ilan Marek*

Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis Technion – Israel Institute of Technology Technion City, Haifa 3200009, Israel

chilanm@technion.ac.il

Table of Contents:

Materials and Methods	
Cross-Coupling Reactions	
Large-Scale Preparation of Cyclopropene 3a	
Preparation of Starting Materials	
Kinetic Isotope Effect Determination	
Derivatization of Cross-Coupling Products	
Additional Optimization Details	
Limitations	
References	
NMR Spectra of New Compounds	

Materials and Methods

EtOAc and CH₂Cl₂ (AR grade) were purchased from Bio-Lab Ltd. and used as received. THF and Et₂O were dried by passage through an activated alumina column under argon.¹ Reaction progress was monitored by thin-layer chromatography (TLC), which was performed using E. Merck silica gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV (254 nm) fluorescence quenching or by staining with KMnO₄ or anisaldehyde. Silica gel flash chromatography was performed using Zeochem ZEOprep 60 silica gel (40-63 µm). Automated flash chromatography was performed using a Teledyne ISCO CombiFlash Rf+ system with RediSep Rf cartridges (silica gel). NMR spectra were recorded on Bruker Avance III 400 MHz and Bruker Avance NEO 500 MHz spectrometers. Shifts are reported relative to residual CHCl₃ (¹H NMR: δ 7.26 ppm; ¹³C NMR: δ 77.16 ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet. Data for ¹³C NMR are reported in terms of chemical shifts (δ ppm). Some reported spectra include minor solvent impurities of water (δ 1.56 ppm), ethyl acetate (δ 4.12, 2.05, 1.26 ppm), methylene chloride (δ 5.30 ppm), acetone (δ 2.17 ppm), grease (δ 1.26, 0.86 ppm), and/or silicon grease (δ 0.07 ppm), which do not impact product assignments. The optical rotation of compound 3i was measured with a UniPol L1000 polarimeter operating on the sodium D-line (589 nm), using a 50 mm path-length cell. High resolution mass spectra (HRMS) were obtained in the Technion Mass Spectrometry Lab using a Bruker maXis Impact QTof instrument in atmospheric pressure chemical ionization (APCI+) mode. Chiral HPLC was performed using an Agilent 1260 Infinity analytical HPLC system equipped with a Daicel Chiralpak AD-H column (4.6 mm x 250 mm).

Cross-Coupling Reactions

General Procedure for Cross-Coupling

To a 4 mL glass vial equipped with a PTFE-coated magnetic stir bar were added $Pd(PPh_3)_4$ (29 mg, 0.025 mmol, 5 mol %) and Me₄NOAc (133 mg, 1.00 mmol, 2.0 equiv). The ammonium salt was weighed out and transferred rapidly due to its hygroscopic nature. In cases where the aryl iodide and/or the cyclopropene were solids at ambient temperature, the solid reagents were also

added at this stage (1.1 and 1.0 equiv, respectively). The vial was sealed with a rubber septum, evacuated, and backfilled with argon (3x). EtOAc (2 mL, sparged for 15 min with argon prior to use) was injected, followed by the appropriate aryl iodide (1.1 equiv) and cyclopropene starting material (1.0 equiv) (when the latter reagents were liquid). The rubber septum was replaced with a PTFE/silicone septum cap under a stream of argon, and the vial was heated with stirring in a 90 °C metal heating block. After the indicated time, the reaction mixture was allowed to cool to room temperature. The vial was then opened to air, and water (1.5 mL) and saturated aq. NaHCO₃ (0.5 mL) were added. The phases were separated, and the aqueous phase was extracted with EtOAc (3 x 1 mL). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and purified as indicated.

Ethyl 2-butyl-3-phenylcycloprop-2-ene-1-carboxylate (3a)

Prepared according to the general procedure using cyclopropene **2a** and iodobenzene with a 15 h reaction time. Purification by automated silica gel flash chromatography $(0\rightarrow 3\rightarrow 18\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (102 mg, 0.417 mmol, 84% yield). All characterization data matched those reported in the literature.²

¹H NMR (400 MHz, CDCl₃): δ 7.49 – 7.44 (m, 2H), 7.42 – 7.36 (m, 2H), 7.35 – 7.28 (m, 1H), 4.23 – 4.05 (m, 2H), 2.68 (td, J = 7.3, 1.6 Hz, 2H), 2.43 (s, 1H), 1.73 (p, J = 7.4 Hz, 2H), 1.51 – 1.39 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H).

Ethyl 2-butyl-3-(p-tolyl)cycloprop-2-ene-1-carboxylate (3b)

Prepared according to the general procedure using cyclopropene **2a** and 4-iodotoluene with a 15 h reaction time. Purification by automated silica gel flash chromatography $(0\rightarrow 3\rightarrow 25\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (98.2 mg, 0.380 mmol, 76% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.39 – 7.33 (m, 2H), 7.20 (d, J = 8.1 Hz, 2H), 4.21 – 4.07 (m,

S4

2H), 2.66 (td, *J* = 7.2, 1.5 Hz, 2H), 2.41 (s, 1H), 2.36 (s, 3H), 1.77 – 1.66 (m, 2H), 1.51 – 1.40 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 176.2, 138.7, 129.5, 129.3, 124.4, 109.2, 104.6, 60.1, 29.6, 25.2, 22.5, 22.2, 21.5, 14.5, 13.9.

HRMS (APCI+): *m/z* calculated for C₁₇H₂₃O₂ [M+H]⁺: 259.1693, found 259.1706.

Ethyl 2-butyl-3-(4-cyanophenyl)cycloprop-2-ene-1-carboxylate (3c)

Prepared according to the general procedure using cyclopropene **2a** and 4-cyano-1-iodobenzene with a 15 h reaction time. Purification by automated silica gel flash chromatography ($0 \rightarrow 5 \rightarrow 40\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (91.4 mg, 0.339 mmol, 68% yield). All characterization data matched those reported in the literature.³

¹**H NMR (500 MHz, CDCl₃):** δ 7.70 – 7.64 (m, 2H), 7.56 – 7.50 (m, 2H), 4.15 (qd, *J* = 7.2, 4.3 Hz, 2H), 2.71 (t, *J* = 7.3 Hz, 2H), 2.48 (s, 1H), 1.77 – 1.68 (m, 2H), 1.49 – 1.40 (m, 2H), 1.25 (t, *J* = 7.2 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H).

Ethyl 2-(4-bromophenyl)-3-butylcycloprop-2-ene-1-carboxylate (3d)

Prepared according to the general procedure using cyclopropene **2a** and 1-bromo-4-iodobenzene with a 15 h reaction time. Purification by automated silica gel flash chromatography ($0 \rightarrow 2 \rightarrow 25\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (121 mg, 0.374 mmol, 75% yield). ¹H NMR (**500 MHz, CDCl₃**): δ 7.54 – 7.49 (m, 2H), 7.34 – 7.29 (m, 2H), 4.20 – 4.08 (m, 2H), 2.66 (td, *J* = 7.2, 1.3 Hz, 2H), 2.42 (s, 1H), 1.75 – 1.66 (m, 2H), 1.49 – 1.38 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.95 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 175.6, 132.0, 130.8, 126.3, 122.8, 111.8, 104.0, 60.3, 29.5, 25.3,

22.6, 22.3, 14.5, 13.9.

HRMS (APCI+): m/z calculated for C₁₆H₂₀BrO₂ [M+H]⁺: 323.0641, found 323.0651.

Prepared according to the general procedure using cyclopropene **2a** and 2-iodothiophene with a 15 h reaction time. Purification by automated silica gel flash chromatography $(0\rightarrow 3\rightarrow 25\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (81.5 mg, 0.326 mmol, 65% yield). All characterization data matched those reported in the literature.³

¹**H NMR (500 MHz, CDCl₃):** δ 7.41 (dd, J = 5.1, 1.3 Hz, 1H), 7.10 (dd, J = 3.7, 1.4 Hz, 1H), 7.05 (dd, J = 5.0, 3.7 Hz, 1H), 4.22 – 4.07 (m, 2H), 2.68 – 2.56 (m, 2H), 2.48 (s, 1H), 1.76 – 1.65 (m, 2H), 1.50 – 1.41 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.3 Hz, 3H).

Ethyl 2-butyl-3-(1-tosyl-1*H*-indol-3-yl)cycloprop-2-ene-1-carboxylate (3f)

Prepared according to the general procedure using cyclopropene **2a** and *N*-tosyl-3-iodoindole⁴ with a 17 h reaction time. Purification by automated silica gel flash chromatography $(0 \rightarrow 5 \rightarrow 20\%$ EtOAc/petroleum ether, 12 g "gold" column) afforded the product (130 mg, 0.297 mmol, 59% yield).

¹**H NMR (500 MHz, CDCl₃):** δ 7.98 (dt, *J* = 8.4, 0.9 Hz, 1H), 7.82 – 7.76 (m, 2H), 7.67 (dt, *J* = 7.8, 1.1 Hz, 1H), 7.65 (s, 1H), 7.36 (ddd, *J* = 8.4, 7.2, 1.4 Hz, 1H), 7.30 (td, *J* = 7.4, 1.1 Hz, 1H), 7.25 – 7.21 (m, 2H), 4.22 – 4.11 (m, 2H), 2.81 – 2.69 (m, 2H), 2.46 (s, 1H), 2.34 (s, 3H), 1.73 – 1.65 (m, 2H), 1.49 – 1.39 (m, 2H), 1.26 (t, *J* = 7.2 Hz, 3H), 0.95 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 175.8, 145.4, 135.3, 135.0, 130.1, 129.4, 127.1, 126.4, 125.5, 123.9, 120.5, 113.8, 110.9, 108.9, 96.2, 60.4, 29.2, 25.6, 22.6, 21.7, 21.7, 14.5, 13.9.

HRMS (APCI+): *m/z* calculated for C₂₅H₂₈NO₄S [M+H]⁺: 438.1734, found 438.1739.

Ethyl 2-butyl-3-(2-methoxyphenyl)cycloprop-2-ene-1-carboxylate (3g)

Prepared according to the general procedure using cyclopropene **2a** and 2-iodoanisole with a 15 h reaction time. Purification by automated silica gel flash chromatography ($0 \rightarrow 35\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (117 mg, 0.426 mmol, 85% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.34 – 7.21 (m, 2H), 6.96 (td, *J* = 7.5, 1.0 Hz, 1H), 6.89 (d, *J* = 8.3 Hz, 1H), 4.22 – 4.06 (m, 2H), 3.90 (s, 3H), 2.72 (td, *J* = 7.4, 2.6 Hz, 2H), 2.37 (s, 1H), 1.69 – 1.58 (m, 2H), 1.47 – 1.36 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 176.4, 158.2, 130.7, 130.2, 120.6, 116.6, 111.3, 110.3, 100.8, 60.1, 55.5, 29.0, 25.3, 22.5, 21.2, 14.6, 13.9.

HRMS (APCI+): m/z calculated for C₁₇H₂₃O₃ [M+H]⁺: 275.1642, found 275.1634.

Ethyl 2-butyl-3-(3-methoxyphenyl)cycloprop-2-ene-1-carboxylate (3h)

Prepared according to the general procedure using cyclopropene **2a** and 3-iodoanisole with a 15 h reaction time. Purification by automated silica gel flash chromatography $(0\rightarrow 3\rightarrow 35\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (118 mg, 0.430 mmol, 86% yield). All characterization data matched those reported in the literature.⁵

¹**H NMR (400 MHz, CDCl₃):** δ 7.30 (t, *J* = 7.9 Hz, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 6.97 (t, *J* = 2.1 Hz, 1H), 6.87 (dd, *J* = 8.3, 2.8 Hz, 1H), 4.20 – 4.07 (m, 2H), 3.83 (s, 3H), 2.71 – 2.62 (m, 2H), 2.43 (s, 1H), 1.72 (p, *J* = 7.3 Hz, 2H), 1.51 – 1.39 (m, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H).

Ethyl 2-butyl-3-(4-methoxyphenyl)cycloprop-2-ene-1-carboxylate (3i)

Prepared according to the general procedure using cyclopropene **2a** and 4-iodoanisole with a 15 h reaction time. Purification by automated silica gel flash chromatography $(0\rightarrow 3\rightarrow 35\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (124 mg, 0.452 mmol, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.42 – 7.36 (m, 2H), 6.94 – 6.89 (m, 2H), 4.19 – 4.07 (m, 2H), 3.82 (s, 3H), 2.64 (td, *J* = 7.3, 1.4 Hz, 2H), 2.39 (s, 1H), 1.75 – 1.64 (m, 2H), 1.51 – 1.37 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 176.3, 160.0, 130.8, 119.9, 114.3, 107.7, 104.1, 60.1, 55.4, 29.7, 25.2, 22.6, 22.3, 14.5, 13.9.

HRMS (APCI+): m/z calculated for C₁₇H₂₃O₃ [M+H]⁺: 275.1642, found 275.1667.

Ethyl (S)-2-butyl-1,3-diphenylcycloprop-2-ene-1-carboxylate (3j)

Prepared according to the general procedure using enantioenriched cyclopropene **2b** (81% ee) and iodobenzene with a 15 h reaction time. Purification by automated silica gel flash chromatography $(0\rightarrow 2\rightarrow 20\% \text{ Et}_2\text{O}/\text{petroleum ether}, 12 \text{ g "gold" column})$ afforded the product (122 mg, 0.381 mmol, 76% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.56 – 7.48 (m, 2H), 7.43 – 7.28 (m, 5H), 7.24 (t, *J* = 7.6 Hz, 2H), 7.19 – 7.12 (m, 1H), 4.24 – 4.09 (m, 2H), 2.73 (t, *J* = 7.4 Hz, 2H), 1.73 (p, *J* = 7.4 Hz, 2H), 1.48 – 1.36 (m, 2H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.92 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 174.9, 141.5, 129.4, 128.9, 128.8, 128.3, 128.1, 126.9, 126.2, 115.7, 107.8, 60.6, 35.6, 29.8, 24.7, 22.6, 14.5, 13.9.

HRMS (APCI+): *m/z* calculated for C₂₂H₂₅O₂ [M+H]⁺: 321.1849, found 321.1881.

 $[\alpha]_{D}^{20.0} - 81.62 (c \ 1.0, \text{CHCl}_3).$

HPLC: AD-H, *i*-PrOH/*n*-hexane = 0.6/99.4, flow rate = 1.0 mL/min, 40 °C column temperature,

Methyl 1-(4-bromophenyl)-2-butyl-3-phenylcycloprop-2-ene-1-carboxylate (3k)

Prepared according to the general procedure using cyclopropene **2c** and iodobenzene with a 17 h reaction time. Purification by automated silica gel flash chromatography $(0\rightarrow 2\rightarrow 20\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (177 mg, 0.459 mmol, 92% yield). **¹H NMR (400 MHz, CDCl₃):** δ 7.55 – 7.48 (m, 2H), 7.45 – 7.39 (m, 2H), 7.39 – 7.33 (m, 3H), 7.27 – 7.21 (m, 2H), 3.69 (s, 3H), 2.72 (td, *J* = 7.3, 1.3 Hz, 2H), 1.72 (p, *J* = 7.4 Hz, 2H), 1.48 – 1.36 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 175.0, 140.4, 131.2, 130.0, 129.4, 129.07, 129.09, 126.3, 120.1, 115.3, 107.3, 52.1, 34.9, 29.7, 24.6, 22.6, 13.9.

HRMS (APCI+): *m/z* calculated for C₂₁H₂₂BrO₂ [M+H]⁺: 385.0798, found 385.0790.

Dimethyl 2,3-diphenylcycloprop-2-ene-1,1-dicarboxylate (31)

Prepared according to the general procedure using cyclopropene **2d** and iodobenzene with a 15 h reaction time. Purification by automated silica gel flash chromatography ($0 \rightarrow 70\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (112 mg, 0.363 mmol, 73% yield). All characterization data matched those reported in the literature.⁶

¹H NMR (400 MHz, CDCl₃): δ 7.78 – 7.69 (m, 4H), 7.54 – 7.39 (m, 6H), 3.73 (s, 6H).

Dimethyl 2-butyl-3-phenylcycloprop-2-ene-1,1-dicarboxylate (3m)

Prepared according to the general procedure using cyclopropene **2e** and iodobenzene with a 6 h reaction time. Purification by automated silica gel flash chromatography ($0 \rightarrow 55\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (91.4 mg, 0.317 mmol, 63% yield). All characterization data matched those reported in the literature.⁷

¹**H NMR (400 MHz, CDCl₃):** δ 7.54 – 7.49 (m, 2H), 7.44 – 7.33 (m, 3H), 3.71 (s, 6H), 2.71 (t, *J* = 7.4 Hz, 2H), 1.75 (p, *J* = 7.5 Hz, 2H), 1.51 – 1.39 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H).

Ethyl 2-butyl-3-(3-methoxyphenyl)-1-methylcycloprop-2-ene-1-carboxylate (3n)

Prepared according to the general procedure using cyclopropene **2f** and 3-iodoanisole with a 15 h reaction time. Purification by automated silica gel flash chromatography $(0\rightarrow 3\rightarrow 25\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (106 mg, 0.368 mmol, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.30 (t, J = 7.9 Hz, 1H), 7.02 (dt, J = 7.6, 1.3 Hz, 1H), 6.93 (dd, J = 2.6, 1.5 Hz, 1H), 6.86 (ddd, J = 8.3, 2.7, 0.9 Hz, 1H), 4.18 – 3.99 (m, 2H), 3.82 (s, 3H), 2.63 (t, *J* = 7.3 Hz, 2H), 1.74 – 1.62 (m, 2H), 1.51 – 1.39 (m, 5H), 1.17 (t, *J* = 7.1 Hz, 3H), 0.96 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 177.2, 159.8, 129.8, 128.7, 121.7, 116.3, 114.3, 114.2, 110.2, 60.3, 55.4, 29.8, 26.8, 24.6, 22.6, 18.7, 14.5, 13.9.

HRMS (APCI+): *m/z* calculated for C₁₈H₂₅O₃ [M+H]⁺: 289.1798, found 289.1824.

Ethyl 2-(3-methoxyphenyl)-1-methyl-3-phenylcycloprop-2-ene-1-carboxylate (30)

Prepared according to the general procedure using cyclopropene **2g** and 3-iodoanisole with a 19 h reaction time. Purification by automated silica gel flash chromatography $(0\rightarrow 5\rightarrow 35\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (117 mg, 0.379 mmol, 76% yield). ¹H NMR (**500 MHz, CDCl₃**): δ 7.66 – 7.60 (m, 2H), 7.49 – 7.44 (m, 2H), 7.41 – 7.35 (m, 2H), 7.25 (dt, *J* = 7.0, 1.3 Hz, 1H), 7.14 (dd, *J* = 2.7, 1.6 Hz, 1H), 6.94 (ddd, *J* = 8.2, 2.7, 0.9 Hz, 1H), 4.12 (q, *J* = 7.0 Hz, 2H), 3.87 (s, 3H), 1.67 (s, 3H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (**126 MHz, CDCl₃**): δ 176.2, 160.0, 130.1, 129.8, 129.2, 129.0, 128.6, 127.3, 122.4,

114.92, 114.87, 113.4, 113.0, 60.6, 55.5, 26.8, 18.1, 14.5.

HRMS (APCI+): m/z calculated for C₂₀H₂₁O₃ [M+H]⁺: 309.1485, found 309.1501.

Ethyl 2-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)-1,3-diphenylcycloprop-2-ene-1-carboxylate (3p)

Prepared according to the general procedure using cyclopropene **2h** and iodobenzene with a 15 h reaction time. Purification by automated silica gel flash chromatography $(0\rightarrow2.5\rightarrow12\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (128 mg, 0.303 mmol, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.62 – 7.55 (m, 2H), 7.43 – 7.30 (m, 5H), 7.26 – 7.22 (m, 2H), 7.20 – 7.14 (m, 1H), 4.24 – 4.10 (m, 2H), 4.02 – 3.90 (m, 2H), 2.95 (t, *J* = 6.9 Hz, 2H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.88 (s, 9H), 0.06 (d, *J* = 5.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 174.7, 141.3, 129.6, 129.0, 128.8, 128.2, 128.1, 126.7, 126.2, 112.4, 108.9, 60.9, 60.7, 35.3, 29.0, 26.0, 18.4, 14.5, -5.2.

HRMS (APCI+): *m/z* calculated for C₂₆H₃₅O₃Si [M+H]⁺: 423.2350, found 423.2349.

Ethyl 2-(3-chloropropyl)-3-phenylcycloprop-2-ene-1-carboxylate (3q)

Prepared according to the general procedure using cyclopropene **2i** and iodobenzene with a 19 h reaction time. Purification by automated silica gel flash chromatography ($0 \rightarrow 50\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (51.3 mg, 0.194 mmol, 39% yield).

¹H NMR (500 MHz, CDCl₃): δ 7.49 – 7.44 (m, 2H), 7.43 – 7.38 (m, 2H), 7.37 – 7.32 (m, 1H), 4.21 – 4.08 (m, 2H), 3.72 – 3.60 (m, 2H), 2.98 – 2.79 (m, 2H), 2.46 (s, 1H), 2.20 (p, J = 6.7 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 175.7, 129.5, 129.1, 128.9, 126.8, 108.6, 106.4, 60.4, 44.2, 30.3, 22.9, 22.3, 14.5.

HRMS (APCI+): *m/z* calculated for C₁₅H₁₈ClO₂ [M+H]⁺: 265.0990, found 265.0999.

Ethyl 2-cyclohexyl-3-phenylcycloprop-2-ene-1-carboxylate (3r)

Prepared according to the general procedure using cyclopropene **2j** and iodobenzene with a 15 h reaction time. Purification by automated silica gel flash chromatography $(0\rightarrow2.5\rightarrow11\%$ Et₂O/petroleum ether, 12 g "gold" column) afforded the product (92.2 mg, 0.341 mmol, 68% yield).

¹**H NMR (500 MHz, CDCl₃):** δ 7.48 (d, *J* = 7.0 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 2H), 7.34 – 7.27 (m, 1H), 4.22 – 4.07 (m, 2H), 2.74 (td, *J* = 9.8, 5.2 Hz, 1H), 2.44 (s, 1H), 2.11 – 1.97 (m, 2H), 1.81 – 1.70 (m, 2H), 1.69 – 1.62 (m, 1H), 1.61 – 1.49 (m, 2H), 1.46 – 1.37 (m, 2H), 1.36 – 1.28 (m, 1H),

1.24 (t, J = 7.2 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 176.2, 129.6, 128.74, 128.65, 127.3, 114.2, 103.9, 60.2, 35.0, 31.0, 30.9, 26.1, 25.55, 25.49, 21.7, 14.5.

HRMS (APCI+): m/z calculated for C₁₈H₂₃O₂ [M+H]⁺: 271.1693, found 271.1695.

Ethyl 2-(tert-butyl)-3-phenylcycloprop-2-ene-1-carboxylate (3s)

Prepared according to the general procedure using cyclopropene **2k** and iodobenzene with a 15 h reaction time. Purification twice by automated silica gel flash chromatography $(0\rightarrow2.5\rightarrow11\%$ Et₂O/petroleum ether, then $0\rightarrow100\%$ polar component/petroleum ether where the polar component is 2% EtOAc/CH₂Cl₂, 12 g "gold" column) afforded the product (98.2 mg, 0.402 mmol, 80% yield). All characterization data matched those reported in the literature.⁸

¹H NMR (400 MHz, CDCl₃): δ 7.51 – 7.46 (m, 2H), 7.42 – 7.35 (m, 2H), 7.35 – 7.29 (m, 1H), 4.24 – 4.05 (m, 2H), 2.45 (s, 1H), 1.32 (s, 9H), 1.23 (t, *J* = 7.1 Hz, 3H).

Ethyl (*E*)-2-butyl-3-styrylcycloprop-2-ene-1-carboxylate (3t)

To a 7 mL flame-dried reaction tube with a PTFE needle-valve stopcock and containing a PTFE magnetic stir bar were added Ag₂O (116 mg, 0.500 mmol, 1.0 equiv) and Pd(PPh₃)₄ (29 mg, 0.025 mmol, 5 mol %). The tube was evacuated and backfilled with argon (3x). THF (5.0 mL, 0.1 M) was added, followed immediately by (*E*)- β -iodostyrene^{9,10} (0.10 mL, 0.75 mmol, 1.5 equiv) and cyclopropene **2a** (88 wt%, 95.6 mg, 0.500 mmol, 1.0 equiv). The reaction tube was sealed and heated with stirring in a 50 °C metal vial block for 20 h. Then, the reaction mixture was allowed to cool to ambient temperature and filtered through a PTFE syringe filter, which was subsequently rinsed with Et₂O. The filtrate was concentrated under reduced pressure and purified by automated silica gel flash chromatography (0 \rightarrow 12% Et₂O/petroleum ether, 12 g "gold" column) to afford the

product (104 mg, 0.385 mmol, 77% yield). All characterization data matched those reported in the literature.³

¹**H NMR (400 MHz, CDCl₃):** δ 7.48 – 7.41 (m, 2H), 7.37 – 7.31 (m, 2H), 7.30 – 7.26 (m, 1H), 6.90 (d, *J* = 15.6 Hz, 1H), 6.71 (d, *J* = 15.6 Hz, 1H), 4.21 – 4.06 (m, 2H), 2.59 (t, *J* = 7.3 Hz, 2H), 2.32 (s, 1H), 1.68 – 1.59 (m, 2H), 1.47 – 1.37 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.94 (t, *J* = 7.3 Hz, 3H).

Ethyl (*E*)-2-butyl-1-phenyl-3-styrylcycloprop-2-ene-1-carboxylate (3u)

To a 7 mL flame-dried reaction tube with a PTFE needle-valve stopcock and containing a PTFE magnetic stir bar were added Ag₂O (116 mg, 0.500 mmol, 1.0 equiv) and Pd(PPh₃)₄ (29 mg, 0.025 mmol, 5 mol %). The tube was evacuated and backfilled with argon (3x). THF (5.0 mL, 0.1 M) was added, followed immediately by (*E*)- β -iodostyrene^{9,10} (0.10 mL, 0.75 mmol, 1.5 equiv) and cyclopropene **rac-2b** (122 mg, 0.500 mmol, 1.0 equiv). The reaction tube was sealed and heated with stirring in a 50 °C metal vial block for 24 h. Then, the reaction mixture was allowed to cool to ambient temperature and filtered through a PTFE syringe filter, which was subsequently rinsed with Et₂O. The filtrate was concentrated under reduced pressure and purified by automated silica gel flash chromatography (0 \rightarrow 20% Et₂O/petroleum ether, 12 g "gold" column) to afford the product (123 mg, 0.355 mmol, 71% yield).

¹**H NMR (400 MHz, CDCl₃):** δ 7.44 (d, *J* = 8.1 Hz, 2H), 7.39 – 7.30 (m, 4H), 7.29 – 7.23 (m, 3H), 7.20 – 7.14 (m, 1H), 6.94 (d, *J* = 15.8 Hz, 1H), 6.85 (d, *J* = 15.8 Hz, 1H), 4.26 – 4.10 (m, 2H), 2.64 (t, *J* = 7.4 Hz, 2H), 1.63 (p, *J* = 7.3 Hz, 2H), 1.46 – 1.33 (m, 2H), 1.22 (t, *J* = 7.1 Hz, 3H), 0.93 – 0.87 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 174.7, 141.4, 137.6, 136.3, 128.8, 128.7, 128.4, 128.1, 127.1, 126.1, 117.4, 112.3, 106.4, 60.6, 35.3, 29.4, 24.8, 22.5, 14.5, 13.9.

HRMS (APCI+): *m/z* calculated for C₂₄H₂₇O₂ [M+H]⁺: 347.2006, found 347.1997.

Large-Scale Preparation of Cyclopropene 3a

A 250 mL Schlenk vessel with a PTFE needle-valve stopcock and containing a PTFE magnetic stir bar was charged with Pd(PPh₃)₄ (580 mg, 0.500 mmol, 5 mol %) and Me₄NOAc (2.66 g, 20.0 mmol, 2.0 equiv). The vessel was evacuated and purged with argon (3x). EtOAc (40 mL, sparged for 15 min with argon prior to use) was added, followed by iodobenzene (1.2 mL, 11.0 mmol, 1.1 equiv) and cyclopropene **2a** (88 wt%, 1.91 g, 10.0 mmol, 1.0 equiv). The vessel was sealed and stirred at 90 °C in an oil bath for 18 h. The reaction mixture was then allowed to cool to ambient temperature and washed with a mixture of saturated aqueous NaHCO₃ (40 mL) and water (20 mL). The aqueous phase was extracted with EtOAc (3 x 15 mL), and the combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by automated silica gel flash chromatography (0 \rightarrow 3 \rightarrow 25% Et₂O/petroleum ether, 80 g column) afforded the product (1.98 g, 8.10 mmol, 81% yield) as a colorless oil. All characterization data matched those reported above for **3a** and in the literature.²

Preparation of Starting Materials

Cyclopropenes **2a**,¹¹ **2b**,¹² **2c**,¹³ **2d**,¹⁴ **2e**,¹⁴ **2f**,² **2g**,¹⁵ **2i**,¹⁶ **2j**,¹⁶ and **2k**¹⁷ were prepared by literature procedures.

Ethyl 2-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)-1-phenylcycloprop-2-ene-1-carboxylate (2h)

To a 25 mL round-bottom flask containing a PTFE-coated magnetic stir bar was added Rh₂(OAc)₄ (6.6 mg, 0.015 mmol, 0.3 mol %). The flask was purged with argon, and CH₂Cl₂ (4 mL) and (but-3-yn-1-yloxy)(*tert*-butyl)dimethylsilane¹⁸ (1.84 g, 10.0 mmol, 2.0 equiv) were added. Then, a solution of ethyl diazo(phenyl)acetate¹⁹ (951 mg, 5.00 mmol, 1.0 equiv) in CH₂Cl₂ (3.5 mL) was added dropwise with stirring over 15 h via syringe pump. The reaction mixture was then concentrated under reduced pressure and purified twice by automated silica gel flash chromatography (0 \rightarrow 20% Et₂O/petroleum ether, 24 g column) to afford the product (458 mg, 1.32 mmol, 26% yield) as a thick, colorless oil.

¹H NMR (500 MHz, CDCl₃): δ 7.30 – 7.27 (m, 4H), 7.22 – 7.16 (m, 1H), 6.73 (t, *J* = 1.5 Hz, 1H),

4.15 (qd, *J* = 7.1, 1.5 Hz, 2H), 3.83 (t, *J* = 6.9 Hz, 2H), 2.79 (td, *J* = 7.0, 1.6 Hz, 2H), 1.23 (t, *J* = 7.1 Hz, 3H), 0.88 (s, 9H), 0.04 (d, *J* = 4.3 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃): δ 175.4, 141.8, 128.3, 128.1, 126.3, 118.1, 98.4, 60.8, 60.5, 32.8, 28.6, 26.0, 18.4, 14.5, -5.3.

HRMS (APCI+): *m/z* calculated for C₂₀H₃₁O₃Si [M+H]⁺: 347.2037, found 347.2057.

Kinetic Isotope Effect Determination

Ethyl 2-butylcycloprop-2-ene-1-carboxylate-3-d (2a-D)

To a flame-dried 50 mL round-bottom flask containing a PTFE-coated magnetic stir bar was added cyclopropene **2a** (88 wt%, 956 mg, 5.00 mmol, 1.0 equiv). The flask was sealed with a rubber septum and evacuated and backfilled with argon (3x). THF (17 mL) was added, and the resulting solution was cooled to -78 °C in a dry ice/acetone bath. *t*-BuLi (3.7 mL, 1.47 M in pentane, 5.5 mmol, 1.1 equiv) was then added dropwise over 8 min. After stirring for an additional 3 min, CD₃OD (0.41 mL, 10 mmol, 2.0 equiv) was rapidly added, followed by saturated aq. NaHCO₃ (10 mL). The resulting mixture was diluted with water and extracted with Et₂O (3 x 15 mL). The combined organic extracts were dried over Na₂SO₄, concentrated under reduced pressure, and purified by automated silica gel flash chromatography (0 \rightarrow 25% Et₂O/petroleum ether, 80 g column) to afford the product (299 mg, 1.77 mmol, 35% yield, 97% D by ¹H NMR).

¹**H NMR (400 MHz, CDCl₃):** δ 4.19 – 4.05 (m, 2H), 2.50 (t, *J* = 7.3 Hz, 2H), 2.12 (s, 1H), 1.59 – 1.55 (m, 2H), 1.44 – 1.34 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 3H), 0.92 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 176.8, 115.5, 94.0, 93.8, 93.5, 60.3, 28.9, 24.8, 22.3, 19.7, 14.5, 13.9.

HRMS (APCI+): m/z calculated for C₁₀H₁₆DO₂ [M+H]⁺: 170.1286, found 170.1289.

Procedure for KIE Determination

To two parallel 7 mL flame-dried reaction tubes with PTFE needle-valve stopcocks and containing PTFE magnetic stir bars were added Pd(PPh₃)₄ (29 mg, 0.025 mmol, 5 mol %), Me₄NOAc (133 mg, 1.00 mmol, 2.0 equiv), and 1,3,5-trimethoxybenzene (28.0 mg, 0.167 mmol, 0.33 equiv). The tubes were evacuated and backfilled with argon (3x). EtOAc (2 mL, sparged for 15 min with argon prior to use) was injected, followed by iodobenzene (62 μ L, 0.55 mmol, 1.1 equiv) and either **2a** or **2a-D** (0.500 mmol, 1.0 equiv). The tubes were sealed and heated with stirring in a 90 °C metal heating block. ~50 μ L aliquots were taken at reaction times of 20 min, 49 min, 81 min, and 112 min. The time during which the reaction mixtures were cooled to ambient temperature to enable aliquoting was not counted in the overall reaction time. Each reaction aliquot was concentrated under reduced pressure, taken up in CDCl₃, and passed through a PTFE syringe filter, then subjected to ¹H NMR analysis. The product yield and amount of unreacted starting material were determined relative to the 1,3,5-trimethoxybenzene internal standard. The natural log of the fraction of unreacted starting material was plotted against the reaction time for both reactions, revealing a linear relationship, and taking the ratio of the slopes of the resulting lines gave k_H/k_D = 2.5.

Derivatization of Cross-Coupling Products

Ethyl 2-butyl-3-(2-methoxyphenyl)cyclopropane-1-carboxylate (8)

A 30 mL glass vial containing cyclopropene **3g** (117 mg, 0.426 mmol, 1.0 equiv) was charged with a PTFE-coated magnetic stir bar and EtOAc (4.3 mL), covered with a rubber septum, and

purged with argon. 5% Pd/C (117 mg, 5 wt% Pd) was added under a flow of argon, whereafter the vial was purged with H₂ from a balloon and stirred under an H₂ atmosphere. After 28 min, the reaction mixture was filtered through a PTFE syringe filter, which was subsequently rinsed with EtOAc. The filtrate was concentrated under reduced pressure. A crude ¹H NMR spectrum was measured, indicating product formation in >20:1 dr. Purification by automated silica gel flash chromatography (0 \rightarrow 40% Et₂O/petroleum ether, 12 g "gold" column) afforded the product (80.4 mg, 0.291 mmol, 68% yield, >20:1 dr) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.25 – 7.16 (m, 2H), 6.89 (t, *J* = 7.5 Hz, 1H), 6.82 (d, *J* = 8.1 Hz, 1H), 4.00 (qd, *J* = 7.1, 1.3 Hz, 2H), 3.76 (s, 3H), 2.40 (t, *J* = 8.6 Hz, 1H), 2.13 – 2.04 (m, 1H), 1.84 – 1.75 (m, 1H), 1.72 – 1.58 (m, 2H), 1.38 – 1.25 (m, 4H), 1.14 (t, *J* = 7.1 Hz, 3H), 0.87 (t, *J* = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 171.4, 159.0, 131.3, 127.9, 124.1, 120.0, 109.9, 59.6, 55.1, 32.3, 26.0, 24.5, 23.9, 22.7, 22.4, 14.4, 14.3.

HRMS (APCI+): *m/z* calculated for C₁₇H₂₅O₃ [M+H]⁺: 277.1798, found 277.1790.

A Schlenk tube was charged with cyclopropene **3n** (106 mg, 0.368 mmol, 1.0 equiv). Toluene (~1 mL) was added and removed under reduced pressure in order to azeotropically remove traces of water. CuI (7.0 mg, 0.037 mmol, 0.1 equiv) and a PTFE-coated magnetic stir bar were then added to the tube, which was subsequently sealed with a rubber septum and evacuated and backfilled with argon (3x). Et₂O (3.7 mL) was added, and the reaction mixture was cooled in a -25 °C acetone bath. MeMgBr in Et₂O (0.25 mL, 3.0 M, 0.74 mmol, 2.0 equiv) was added dropwise over 7 min with stirring, and the reaction mixture was stirred for an additional 2 hours at -25 °C. Then, saturated aq. NH₄Cl (4 mL) and 28% aq. NH₄OH were added, and the mixture was extracted with Et₂O (3x5 mL). The combined organic phases were dried over Na₂SO₄, concentrated under reduced pressure, and purified by automated silica gel flash chromatography (0 \rightarrow 25% Et₂O/petroleum ether, 12 g "gold" column) to afford the product (73.1 mg, 0.240 mmol, 65% yield,

>20:1 dr) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.20 (t, *J* = 7.9 Hz, 1H), 6.79 – 6.71 (m, 2H), 6.71 – 6.67 (m, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 2.77 (s, 1H), 1.53 (ddd, *J* = 14.5, 9.8, 4.7 Hz, 2H), 1.32 – 1.23 (m, 9H), 1.22 (s, 3H), 1.14 (td, *J* = 14.3, 4.8 Hz, 1H), 0.87 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 174.7, 159.5, 138.1, 129.2, 123.2, 116.5, 111.7, 60.7, 55.3, 37.6, 33.2, 32.6, 31.4, 28.8, 23.4, 20.3, 14.6, 14.3, 13.4.

HRMS (APCI+): *m/z* calculated for C₁₉H₂₉O₃ [M+H]⁺: 305.2111, found 305.2122.

Additional Optimization Details

General Procedure for Reaction Optimization

To either a 7 mL flame-dried reaction tube with a PTFE needle-valve stopcock or a 4 mL glass vial, containing a PTFE magnetic stir bar, were added the appropriate palladium source and other appropriate solid reagents. The reaction vessel was evacuated and backfilled with argon (3x). The solvent, phenyl halide or triflate, and then cyclopropene 2a (0.2–0.3 mmol) were added, and the reaction vessel was sealed and stirred at the indicated temperature for the indicated reaction time. Ag₂O/Cu₂O-mediated reactions were filtered through a PTFE syringe filter and concentrated under reduced pressure, while other reactions were subjected to an extractive workup, dried over magnesium sulfate, and concentrated under reduced pressure. Conversion and yield were determined relative to a 1,3,5-trimethoxybenzene internal standard.

CO₂Et

ÇO₂Et

			Pd/L, base, Ph–X	_	I				
	_	A sol	solvent, temperature, time		A				
	В	5u ^r 2a		E	Bu Ph 3a				
entry	Pd/L	base	additive	Ph–X	solvent	temperature	time	% RSM	% yield
1	Pd(QAc) ₂ (14.5 mol %)	K-CO-	-	Phi	DME	30 °C	3 d	1%	1%
2	$Pd(PPh_{o})$, (14.5 mol %)		Agi (29 mol %)	Phi	DME	23 °C	17 h	n.d.	
3	$Pd(PPh_{2})_{4}$ (14.5 mol %)		Agl (29 mol %)	Phi	THE	20°C	17 h	n.d.	
4	Pd(PPh ₂) ₄ (14.5 mol %)	Cs ₂ CO ₂	Agl (29 mol %)	Phi	THE	70 °C	23 h	n.d.	
5	Pd(PPh ₂) ₄ (7.2 mol %)	AgOAc		Phi	THE	70 °C	18 h		39%
6	Pd(PPh ₂) ₄ (7.2 mol %)	Ag _o O		Phi	THE	70 °C	2 h		84%
7	Pd(PPh ₂) ₄ (7.2 mol %)	Ag ₂ O		Phi	THE	23 °C	18 h	51%	28%
8	Pd(PPh ₂) ₄ (7.2 mol %)	Cu ₂ O		Phi	THE	70 °C	23 h	n.d.	
9	Pd(PPh ₂) ₄ (7.2 mol %)	Ag ₂ O		PhBr	THE	70 °C	4 h		
10	Pd_2dba_3 (3.6 mol %), JohnPhos (14.5 mol %)	Ag ₂ O	-	Phi	THF	70 °C	17 h		4%
11	Pd(PPh ₃)₄ (7.2 mol %)	TBAF		Phi	THF	70 °C	21 h	42%	22%
12	Pd(PPh ₃) ₄ (7.2 mol %)	KOPh		Phi	THF	70 °C	16 h	20%	33%
13	Pd(PPh ₃) ₄ (7.2 mol %)	CsOAc		Phi	THF	70 °C	17 h	23%	20%
14	Pd(PPh ₃) ₄ (7.2 mol %)	Me₄NOAc	Agl (29 mol %)	Phi	THF	70 °C	16 h	19%	68%
15	Pd(PPh ₃) ₄ (7.2 mol %)	Me₄NOAc	Agl (29 mol %)	Phi	THF	70 °C	3 d		84%
16	Pd(PPh ₃) ₄ (5.7 mol %)	Me₄NOAc	Agl (23 mol %)	Phi	THF	90 °C	17 h		84%
17	Pd(PPh ₃) ₄ (5.7 mol %)	Me₄NOAc	Agl (23 mol %)	Phi	EtOAc	90 °C	17 h		85%
18	Pd(PPh ₃) ₄ (5.7 mol %)	TBAOAc	Agl (23 mol %)	Phi	EtOAc	90 °C	17 h		51%
19	Pd(PPh ₃) ₄ (5.7 mol %)	Me ₄ NOAc	_	Phi	EtOAc	90 °C	19 h		86%
20	Pd(PPh ₃) ₄ (7.2 mol %)	Me₄NOAc + KOPh		Phi	EtOAc	70 °C	15 h	35%	41%
21	Pd(PPh ₃) ₄ (2.8 mol %)	Me₄NOAc		Phl	EtOAc	90 °C	19 h		86%
22	Pd(PPh ₃) ₄ (1.1 mol %)	Me₄NOAc		Phl	EtOAc	90 °C	15 h		77%
23	Pd(OAc) ₂ (1.1 mol %), PPh ₃ (4.5 mol%)	Me₄NOAc		Phl	EtOAc	90 °C	15 h		60%
24	Pd(OAc) ₂ (1.1 mol %), P(2-furyl) ₃ (4.5 mol%)	Me₄NOAc		Phl	EtOAc	90 °C	15 h		57%
25	Pd(OAc) ₂ (1.1 mol %)	Me₄NOAc		Phi	EtOAc	90 °C	15 h		
26	PEPPSI-IPr (1.1 mol %)	Me₄NOAc		Phl	EtOAc	90 °C	15 h	9%	5%
27	Pd(dppf)Cl ₂ (1.1 mol %)	Me₄NOAc		Phl	EtOAc	90 °C	15 h		35%
28	Pd(PPh ₃) ₄ (5.7 mol %)	Me₄NOAc	Agl (23 mol %)	PhBr	EtOAc	90 °C	5 h		6%
29	Pd ₂ dba ₃ (2.8 mol %), P(<i>t</i> -Bu) ₃ ·HBF ₄ (11.4 mol %)	Me ₄ NOAc	-	Phi	THF	70 °C	25 h		20%
30	Pd(PPh ₃) ₄ (5 mol %)	Me ₄ NOAc		PhBr	EtOAc	90 °C	19 h		
31	Pd(PPh ₃) ₄ (5 mol %)	Me ₄ NOAc		PhOTf	EtOAc	90 °C	19 h		

Control Experiment Demonstrating that Ag-Mediated C-H Activation is Inoperative

To a 7 mL flame-dried reaction tube with a PTFE needle-valve stopcock and containing a PTFE magnetic stir bar was added Ag₂O (69.5 mg, 0.300 mmol, 1.0 equiv). The vessel was evacuated and backfilled with argon (3x). Then, THF (3.0 mL) and cyclopropene **2a** (88 wt%, 57.4 mg, 0.300 mmol, 1.0 equiv) were added, and the vessel was sealed and heated with stirring in a 70 °C metal vial block for 2 hours. The reaction mixture was then allowed to cool to ambient temperature. CD₃OD (0.5 mL) was added, and the mixture was passed through a PTFE syringe filter and concentrated under reduced pressure. 1,3,5-trimethoxybenzene (16.8 mg, 0.100 mmol, 0.33 equiv) and CDCl₃ were then added, and the ¹H NMR spectrum of the resulting mixture was measured. No consumption or deuteration of cyclopropene **2a** was observed.

Limitations

References

- [1] A. M. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, 1996, **15**, 1518–1520.
- [2] P. Müller and C. Gränicher, *Helv. Chim. Acta*, 1995, 78, 129–144.
- [3] Y. Cohen, A. U. Augustin, L. Levy, P. G. Jones, D. B. Werz and I. Marek, *Angew. Chem. Int. Ed.*, 2021, **60**, 11804–11808.
- [4] R. Y. Huang, P. T. Franke, N. Nicolaus and M. Lautens, *Tetrahedron*, 2013, **69**, 4395–4402.
- [5] Z. P. Sercel and I. Marek, Angew. Chem. Int. Ed., 2025, 64, e202421235.
- [6] B. Muriel, A. Gagnebin and J. Waser, *Chem. Sci.*, 2019, **10**, 10716–10722.
- [7] S. Chuprakov, M. Rubin and V. Gevorgyan, J. Am. Chem. Soc., 2005, 127, 3714–3715.

- [8] H-P. Wu, T. J. R. Weakley and M. M. Haley, *Chem. Eur. J.*, 2005, **11**, 1191–1200.
- [9] C. Drescher and R. Brückner, Org. Lett., 2021, 23, 6194–6199.
- [10] S. Wang, L. Li, Y. Zheng, L. Li, Y. Wang, F. Peng and Z. Shao, Org. Chem. Front., 2024, 11, 3033–3040.
- [11] N. Petiniot, A. J. Anciaux, A. F. Noels, A. J. Hubert and P. Teyssié, *Tetrahedron Lett.*, 1978, **19**, 1239–1242.
- [12] Y. Cohen and I. Marek Org. Lett., 2019, 21, 9162–9165.
- [13] C. S. Teschers, A. Cohen and I. Marek, Angew. Chem. Int. Ed., 2025, 64, e202421476.
- [14] L-a. Liao, F. Zhang, N. Yan, J. A. Golen and J. M. Fox, *Tetrahedron*, 2004, 60, 1803– 1816.
- [15] V. A. Sadaphal and R-S. Liu, Org. Lett., 2021, 23, 5496–5500.
- [16] H. Sommer and I. Marek, *Chem. Sci.*, 2018, **9**, 6503–6508.
- [17] A. G. Dalling, T. Yamauchi, N. G. McCreanor, L. Cox and J. F. Bower, *Angew. Chem. Int. Ed.*, 2019, **58**, 221–225.
- [18] G. H. Posner, M. Weitzberg, T. G. Hamill, E. Asirvatham, H. Cun-heng and J. Clardy, *Tetrahedron*, 1986, **42**, 2919–2929.
- [19] Q-H. Deng, H-W. Xu, A. W-H. Yuen, Z-J. Xu and C-M. Che, *Org. Lett.*, 2008, **10**, 1529–1532.

-0 07 -0.96 -0.98 -0.52

-1.24 -1.26 -1.42

1.44

0

۰ں مع 10.94 96.0 22.1

1.25 -1.25 -1.25 -1.25 -1.26 -1.26 -1.26 -1.27 -

27.1 27.1 27.1 27.1 27.1 57.1 57.1 65.1 19.1 20.1

29.1 29.1

4.19 4.20 4.20

ዋ CO₂Et Зt n-Bu

≖S8.0

1.80⊣I

F71.5

₽.6.0 **⊢**76.0

18'0 ₹_51'2 ₹_51'2

m

¹H NMR (400 MHz, CDCl₃) of compound **3t**.

bpm 4

Ь

9

~

8

