SUPPLEMENTARY INFORMATION

Decarboxylative sulfation by persulfates

Zhen Xia, Ting Deng, Chunlan Song and Jiakun Li*

CONTENTS

MATERIALS AND METHODS	3
EXPERIMENTAL DATA	3
1 General procedure for decarboxylative sulfation	3
2 Physicochemical properties between carboxylic acids and organosulfates	5
3 Screening reaction conditions for decarboxylative sulfation	6
4 Preparation of starting materials1	10
5 Gram-scale reaction1	10
6 Compound characterization 1	11
7 Mechanistic experiments2	29
CRYSTAL DATA	38
REFERENCES	14
SPECTROSCOPIC DATA	15

MATERIALS AND METHODS

All glasswares were oven dried at 110 °C for several hours and cooled down under vacuum. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. The sulfation reactions were performed in 4.0 mL (15 x 45 mm) glass vials on Synthware H221520 heating block (15.3 x 20 mm) for heat transmission. Flash chromatography columns were packed with 200 mesh silica gel in petroleum (bp. 60-90 °C). Na⁺ resin (Dowex[®] 50WX8 200-400 mesh, cas: 11119-67-8) were obtained from commercial suppliers. ¹H, ¹³C and ¹⁹F NMR data were recorded with Bruker Advance III (400 MHz) spectrometers with tetramethylsilane as an internal standard. Chemical shifts are reported in ppm with the solvent resonance as the internal standard. For ¹H NMR: CDCl₃, 7.26; CD₃OD, 3.31; DMSO-*d*₆, 2.50; D₂O, 4.79; For ¹³C NMR: CDCl₃, 77.16; CD₃OD, 49.00; DMSO-*d*₆, 39.52. Data is reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentamer, h = hexamer, m = multiplet, br = broad; coupling constants in Hz. High resolution mass spectra (HRMS) were measured on a Finnigan-MAT95XP equipped with EI ion source and double-focusing mass analyzer, or a Bruker APEX III 7.0 Tesla FTMS with ESI ion source.

EXPERIMENTAL DATA

1 General procedure for decarboxylative sulfation

			AgNO ₂ (5 mol%), L1 (5 mol%)	
			KH ₂ PO ₄ (1.2 equiv)	
			^{<i>n</i>} Bu ₄ NHSO ₄ (1.2 equiv)	
R-COOH	+	(NH ₄) ₂ S ₂ O ₈		R—OSO ₃ ⁻ Na⁺
			DCM (0.2 M), Ar, rt, 11 h	
		3.0 equiv	then Na⁺ resin	

To a 4 mL borosilicate vial equipped with a stir bar was added carboxylic acid (0.2 mmol, 1.0 equiv), AgNO₂ (1.5 mg, 0.01 mmol, 5 mol%), 4,7-diphenyl-1,10-phenanthroline **L1** (3.3 mg, 0.01 mmol, 5 mol%), ammonium persulfate (136.9 mg, 0.6 mmol, 3.0 equiv), tetrabutylammonium hydrogen sulfate (81.5 mg, 0.24 mmol, 1.2 equiv) and potassium phosphate monobasic (32.6 mg, 0.24 mmol, 1.2 equiv). The vial was evacuated and backfilled with argon for three times. 1 mL CH₂Cl₂ was added, and the reaction mixture was stirred at room temperature for 11 h. 200 mg NaHCO₃ was added to quench the reaction and filtered with CH₂Cl₂ (3 × 30 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by flash chromatography on

silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford the product in the form of tetrabutylammonium sulfate salt.

The tetrabutylammonium sulfate salt product was dissolved in a small amount of MeOH, and then passed through an activated Na⁺ resin (Dowex[®] 50WX8 200-400 mesh, cas: 11119-67-8) using MeOH as the eluent at a flow rate of about 1 drop per second. The resulting organic phase was collected and evaporated under vacuum, then diluted with CH₂Cl₂ (50 mL). The desired product organosulfate sodium precipitated in CH₂Cl₂ solution. These solids were separated from the liquid phase through a sand core funnel equipped with a short cotton pad, and then the solid were washed repeatedly with CH₂Cl₂. The solid product and organic phase containing tetrabutylammonium sulfate salt were collected separately. The unexchanged tetrabutylammonium sulfate salt solution was concentrated by rotary evaporation and re-dissolved in a small amount of MeOH. It was then passed through an activated Na⁺ resin using MeOH as the eluent. This process was continued until no desired product precipitated from CH₂Cl₂ solution. Finally, the pure product was obtained after each ion exchange step was combined.

Note:

Organosulfate is labile to acid and temperature.^[1] In most cases, two rounds of flash chromatography are necessary to isolate tetrabutylammonium sulfate salt, resulting in some loss of product. Additionally, five to ten rounds of ion exchange are required, with a small amount of primary tetrabutylammonium sulfate remaining exchanged. Due to the higher solubility of the secondary product in CH₂Cl₂ compared to the primary product, 10% to 20% of the secondary product remains soluble in CH₂Cl₂ as the tetrabutylammonium sulfate salt. This portion of the mixture containing sodium salt and tetrabutylammonium salt will establish a dynamic equilibrium during ion exchange, making it unattainable as final product. These various factors collectively contribute to a decrease in the overall isolated yield.

2 Physicochemical properties between carboxylic acids and organosulfates.

	ibuprofen						
	Me Me Me	Me Me Me					
logD _{7.4}	1.01	1.31					
logPapp	3.46	2.25					
р <i>К</i> а	4.39	0.12					

	isoxepac					
	CCOO-					
logD _{7.4}	0.29	0.54				
logP _{app}	2.54	1.42				
р <i>К</i> а	4.32	0.06				

	flurbiprofen						
	Ph Me COO-	Ph Me OSO3					
logD _{7.4}	1.07	1.25					
logPapp	3.44	2.25					
р <i>К</i> а	4.36	0.12					

Calculated pK_a , $logD_{7.4}$ and P_{app} values were obtained with ChemAxon. https://chemaxon.com/calculators-and-predictors.

3 Screening reaction conditions for decarboxylative sulfation

3.1 Optimization of catalysts

Соон		[Catalyst] (5 mol%), L (5 mol%) ⁿ Bu ₄ NHSO ₄ (1.2 equiv) KH ₂ PO ₄ (1.2 equiv)	OSO3 ⁻ ″Bu₄N⁺
CI +	3.0 equiv	DCM (0.2 M), rt, Ar, 11 h	CI 1'
Entry		Catalysts	Yield (%)
1		AgOAc	25
2		AgNO ₂	27
3		AgOTf	24
4		CuCl	trace
5		Cu(OAc) ₂	trace
6		FeCl ₂	trace
7		FeCl ₃	trace
8		NiCl ₂	trace
9		Pd(OAc) ₂	trace
10	20 n	nol % AgNO ₂ +20 mol% L	30

L = 3,4,7,8-tetramethyl-1,10-phenanthroline, yields were determined by ¹H NMR using 0.2 mmol dibromomethane as an internal standard.

3.2 Optimization of ligands

Yields were determined by ¹H NMR using 0.2 mmol dibromomethane as an internal standard.

3.3 Optimization of persulfates

L1 = 4,7-diphenyl-1,10-phenanthroline, yields were determined by ¹H NMR using 0.2 mmol dibromomethane as an internal standard.

3.4 Optimization of additives

Соон		AgNO ₂ (5 mol%), L1 (5 mol%) additive (1.2 equiv) KH ₂ PO ₄ (1.2 equiv)	OSO3 ⁻ M⁺
	+ (NH ₄) ₂ S ₂ O ₈	DCM (0.2 M), rt, Ar, 11 h	
1s	3.0 equiv		1'
Entry		Additives	Yield (%)
1		without additive	trace
2ª	E	$t_3N (M^+ = Et_3NH^+)$	48
3	E	$t_4NCI (M^+ = Et_4N^+)$	12
4	Et	$4NOAc (M^+ = Et_4N^+)$	trace
5	Et	$_4\text{NBF}_4 (\text{M}^+ = \text{Et}_4\text{N}^+)$	33
6	"Bu	$u_4 NCI (M^+ = {}^n Bu_4 N^+)$	trace
7	"Bu	$_4NOAc (M^+ = {}^nBu_4N^+)$	26
8	"Bu	$4NBF_4 (M^+ = {}^nBu_4N^+)$	24
9	Me ₄	$NHSO_4 (M^+ = Me_4N^+)$	<10
10	Et ₄	$NHSO_4 (M^+ = Et_4N^+)$	16
11	ⁿ Pr ₄	$NHSO_4\left(M^+ = {}^nPr_4N^+\right)$	48
12	ⁿ Bu ₄	$NHSO_4\left(M^+ = {}^nBu_4N^+\right)$	75
13	ⁿ Hex ₄	$NHSO_4 \; (M^+ = {}^nHex_4N^+)$	51

L1 = 4,7-diphenyl-1,10-phenanthroline, yields were determined by ¹H NMR using 0.2 mmol dibromomethane as an internal standard.

a: without KH₂PO₄

3.5 Optimization of solvents

L1 = 4,7-diphenyl-1,10-phenanthroline, yields were determined by ¹H NMR using 0.2 mmol dibromomethane as an internal standard.

3.6 Optimization of bases

L1 = 4,7-diphenyl-1,10-phenanthroline, yields were determined by ¹H NMR using 0.2 mmol dibromomethane as an internal standard.

3.7 Optimization of temperatures and atmospheres

	СООН	AgNO ₂ (5 n ⁿ Bu ₄ NH KH ₂ P	mol%), L1 (5 mol%) HSO ₄ (1.2 equiv) PO ₄ (1.2 equiv)		∕oso₃ ⁻ ″Bu₄N⁺	
CI 1s	3.0 equiv	DCM (0.2 M), [temperature] [atmosphere], 11 h				
Entry	Temperature (°C)	Yield (%)	Entry	Atmosphere	Yield (%)	
1	r.t.	75	4	Ar	75	
2	0	30	5	Air	52	
3	50	50	6	O ₂	trace	

L1 = 4,7-diphenyl-1,10-phenanthroline, yields were determined by ¹H NMR using 0.2 mmol dibromomethane as an internal standard.

3.8 Unsuccessful substrates or poor results for sulfation

3.9 Comparative analysis of this method with traditional methods

Decarboxylative hydroxylation-O-sulfonation strategy: 3 steps, 44% total yield

Decarboxylative hydroxylation-O-sulfonation strategy: 3 steps, 28% total yield

4 Preparation of starting materials

To a THF solution (9 mL) of Pd(PPh₃)₂Cl₂ (210.6 mg, 0.30 mmol, 0.06 equiv), Cul (95.3 mg, 0.50 mmol, 0.1 equiv) and DIPEA (3.5 mL, 20 mmol, 4.0 equiv) was added methyl 4iodophenylacetate (1.38 g, 5 mmol, 1.0 equiv) and stirred for 5 min. Subsequently, 3,3dimethyl-1-butyne (1.25 mL, 10 mmol, 2.0 equiv) was added dropwise and the mixture was stirred at 70 °C for 24 hours. Upon completion of the reaction, the mixture was filtered through a short celite bed and concentrated under reduced pressure. The residue was then eluted through a silica column (PE/EA=15:1) to afford sonogashira coupling product (1.23 g, 99%) as a dark brown liquid oil. This product was further hydrolyzed with 6 equivalents of LiOH·H₂O to yield **25s** (833.3 mg, 72%).

NMR Spectroscopy:

¹H NMR (400 MHz, CDCl₃, 298 K, δ): 7.34 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H),
3.62 (s, 2H), 1.31 (s, 9H) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K, δ): 177.0, 132.5, 131.9, 129.3, 123.4, 99.0, 78.8, 40.9, 31.2, 28.1 ppm.

HRMS (ESI+) calculated for C₁₄H₁₆O₂Na⁺, 239.1043; found, 239.1036 [M + Na]⁺.

5 Gram-scale reaction

To a 50 mL schlenk bottle equipped with a stir bar was added 1,4-benzodioxan-2carboxylic acid **28s** (1.08 g, 6 mmol, 1.0 equiv), AgNO₂ (46 mg, 0.3 mmol, 5 mol%), 4,7diphenyl-1,10-phenanthroline **L1** (100 mg, 0.3 mmol, 5 mol%), ammonium persulfate (4.11 g, 18 mmol, 3.0 equiv), tetrabutylammonium hydrogen sulfate (2.44 g, 7.2 mmol, 1.2 equiv), H₂O (540 μ L, 30 mmol, 5.0 equiv) and K₂CO₃ (1.00 g, 7.2 mmol, 1.2 equiv). The schlenk bottle was evacuated and backfilled with Argon for three times. 30 mL CH₂Cl₂ was added, and the reaction mixture was stirred at room temperature for 11 h. After reaction, 6 g NaHCO₃ was added to quench the reaction and filtered using CH₂Cl₂ (200 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 1,4-benzodioxan-2-sulfate **28**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 1,4-benzodioxan-2-sulfate **28** (1.02 g, 4.02 mmol, 67%) as white solid.

NMR Spectroscopy:

¹H NMR (400 MHz, CD₃OD, 298 K, δ): 6.94 – 6.88 (m, 1H), 6.88 – 6.81 (m, 3H), 6.04 (t, J = 1.8 Hz, 1H), 4.29 (dd, J = 11.5, 2.1 Hz, 1H), 4.11 (dd, J = 11.5, 1.5 Hz, 1H) ppm.
¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 144.6, 142.1, 123.1, 122.8, 118.7, 117.8, 92.8, 66.9 ppm.

HRMS (ESI-) calculated for C₈H₇O₆S⁻, 230.9969; found, 230.9960 [M - Na]⁻.

6 Compound characterization

Sodium 4-chlorobenzyl sulfate (1)

CI OSO3⁻ Na⁺

The reaction was carried out according to general procedure. The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 4-chlorobenzyl sulfate **1**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-chlorobenzyl sulfate **1** (33.6 mg, 0.138 mmol, 69%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.42 – 7.37 (m, 2H), 7.37 – 7.32 (m, 2H), 4.99 (s, 2H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 136.8, 134.8, 130.6, 129.5, 69.8 ppm.
 HRMS (ESI-) calculated for C₇H₆ClO₄S⁻, 220.9681; found, 220.9669 [M - Na]⁻.
 Sodium 4-fluorobenzyl sulfate (2)

F OSO3⁻ Na⁺

The reaction was carried out according to general procedure. The residue was purified by flash chromatography on silica gel eluting with $CH_2Cl_2/MeOH$ (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium4-fluorobenzyl sulfate **2**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-fluorobenzyl sulfate **2** (34.5 mg, 0.151 mmol, 76%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.46 – 7.40 (m, 2H), 7.11 – 7.03 (m, 2H), 4.99 (s, 2H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 164.0 (d, J = 244.7 Hz), 134.0 (d, J = 3.1 Hz), 131.2 (d, J = 8.3 Hz), 116.0 (d, J = 21.8 Hz), 70.0 ppm.

¹⁹**F NMR** (376 MHz, CD₃OD, 298 K, δ): -116.67 (ddd, *J* = 14.4, 9.2, 5.4 Hz) ppm.

¹⁹F{¹H } NMR (376 MHz, CD₃OD, 298 K, δ): -116.64 ppm.

HRMS (ESI-) calculated for C₈H₇O₆S⁻, 204.9976; found, 204.9960 [M - Na]-.

Sodium 4-bromobenzyl sulfate (3)

Br OSO3⁻ Na⁺

The reaction was carried out according to general procedure, and potassium phosphate monobasic was replaced by potassium phosphate dibasic (41.8 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 4-bromobenzyl sulfate **3'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-bromobenzyl sulfate **3** (41.9 mg, 0.146 mmol, 73%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.54 – 7.47 (m, 2H), 7.37 – 7.30 (m, 2H), 4.97 (s, 2H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 137.3, 132.5, 130.8, 122.8, 69.8 ppm.
HRMS (ESI-) calculated for C₇H₆BrO₄S⁻, 264.9176; found, 264.9174 [M - Na]⁻.
Sodium benzyl sulfate (4)

OSO3⁻ Na⁺

The reaction was carried out according to general procedure. The residue was purified by flash chromatography on silica gel eluting with $CH_2Cl_2/MeOH$ (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to

tetrabutylammonium benzyl sulfate **4**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium benzyl sulfate **4** (22.7 mg, 0.108 mmol, 54%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.43 – 7.38 (m, 2H), 7.37 – 7.26 (m, 3H), 5.01 (s, 2H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 137.8, 129.3, 129.0(2), 129.0(1), 70.7 ppm.
 HRMS (ESI+) calculated for C₇H₆FO₄SNa₂⁺, 232.9855; found, 232.9853 [M + Na]⁺.
 Sodium 4-phenylbenzyl sulfate (5)

Ph

The reaction was carried out according to general procedure, and potassium phosphate monobasic and tetrabutylammonium hydrogen sulfate were replaced by triethylamine (30.4 mg, 0.3 mmol, 1.5 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford quaternary ammonium 4-phenylbenzyl sulfate **5**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-phenylbenzyl sulfate **5** (17.2 mg, 0.06 mmol, 30%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.64 – 7.59 (m, 4H), 7.51 – 7.47 (m, 2H), 7.45 – 7.40 (m, 2H), 7.36 – 7.30 (m, 1H), 5.06 (s, 2H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 142.2, 142.1, 136.9, 129.8, 129.6, 128.4, 128.0, 70.5 ppm.

HRMS (ESI-) calculated for $C_{13}H_{11}O_4S^-$, 263.0384; found, 263.0377 [M - Na]⁻.

Sodium 4-iodobenzyl sulfate (6)

The reaction was carried out according to general procedure, and potassium phosphate monobasic and tetrabutylammonium hydrogen sulfate were replaced by triethylamine (30.4 mg, 0.3 mmol, 1.5 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford quaternary ammonium 4-iodobenzyl sulfate **6**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-iodobenzyl sulfate **6** (35.5 mg, 0.106 mmol, 53%) as a yellow solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.70 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 4.96 (s, 2H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 138.6, 137.9, 130.9, 94.0, 69.9 ppm.
HRMS (ESI+) calculated for C₇H₆O₄INa₂S⁺, 358.8821; found, 358.8827 [M + Na]⁺.
Sodium 4-(tosyloxy)benzyl sulfate (7)

ISO OSO3- Na+

The reaction was carried out according to general procedure, and potassium phosphate monobasic was replaced by potassium phosphate dibasic (41.8 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 4-(tosyloxy)benzyl sulfate **7**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-(tosyloxy)benzyl sulfate **7** (35.7 mg, 0.094 mmol, 47%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.72 – 7.67 (m, 2H), 7.46 – 7.34 (m, 4H), 7.00 – 6.93 (m, 2H), 4.99 (s, 2H), 2.46 (s, 3H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 150.7, 147.2, 137.3, 133.5, 131.0, 130.2, 129.6, 123.3, 69.6, 21.6 ppm.

HRMS (ESI+) calculated for $C_{14}H_{13}O_7Na_2S^+$, 402.9893; found, 402.9889 [M + Na]⁺. Sodium 4-(methylsulfonyl)benzyl sulfate (8)

OSO3⁻ Na⁺

The reaction was carried out according to general procedure. The residue was purified by flash chromatography on silica gel eluting with $CH_2Cl_2/MeOH$ (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 4-(methylsulfonyl)benzyl sulfate **8**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-(methylsulfonyl)benzyl sulfate **8** (35.7 mg, 0.124 mmol, 62%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.95 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 8.1 Hz, 2H), 5.13 (s, 2H), 3.12 (s, 3H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 144.7, 141.3, 129.3, 128.5, 69.4, 44.4 ppm.
 HRMS (ESI-) calculated for C₈H₉O₆S₂⁻, 264.9846; found, 264.9841 [M - Na]⁻.

Sodium 4-nitrobenzyl sulfate (9)

OSO₃ Na⁺

The reaction was carried out according to general procedure, and potassium phosphate monobasicwas replaced by potassium phosphate dibasic (41.8 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 4-nitrobenzyl sulfate **9**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-nitrobenzyl sulfate **9** (31.6 mg, 0.124 mmol, 62%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 8.27 – 8.19 (m, 2H), 7.70 – 7.62 (m, 2H), 5.14 (s, 2H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 148.9, 145.9, 129.3, 124.4, 69.1 ppm. HRMS (ESI-) calculated for C₇H₆NO₆S⁻, 231.9921; found, 231.9917 [M - Na]⁻.

Sodium 4-cyanobenzyl sulfate (10)

NC OSO3" Nat

The reaction was carried out according to general procedure. The residue was purified by flash chromatography on silica gel eluting with $CH_2Cl_2/MeOH$ (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 4-cyanobenzyl sulfate **10**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-cyanobenzyl sulfate **10** (24.5 mg, 0.104 mmol, 52%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.74 – 7.68 (m, 2H), 7.63 – 7.57 (m, 2H), 5.09 (s, 2H) ppm.

¹³**C NMR** (101 MHz, CD₃OD, 298 K, δ): 144.0, 133.3, 129.3, 119.7, 112.5, 69.4 ppm. **HRMS (ESI-)** calculated for C₈H₆NO₄S⁻, 212.0023; found, 212.0016 [M - Na]⁻.

Sodium 4-(trifluoromethyl)benzyl sulfate (11)

OSO3 Na⁺

The reaction was carried out according to general procedure. The residue was purified by flash chromatography on silica gel eluting with $CH_2Cl_2/MeOH$ (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 4-(trifluoromethyl)benzyl sulfate **11'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-(trifluoromethyl)benzyl sulfate **11** (18.9 mg, 0.068 mmol, 34%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.65 (d, *J* = 8.3 Hz, 2H), 7.60 (d, *J* = 8.3 Hz, 2H),

5.10 (s, 2H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 142.6, 130.95 (q, J = 32.2 Hz), 129.1, 126.2 (q, J = 3.8 Hz), 125.7 (q, J = 272.1 Hz), 69.6 ppm.

¹⁹**F NMR** (376 MHz, CD₃OD, 298 K, δ): -64.05 ppm.

HRMS (ESI+) calculated for C₈H₆O₄F₃Na₂S⁺, 300.9729; found, 300.9725 [M + Na]⁺.

Sodium 4-methylbenzyl sulfate (12)

OSO3⁻ Na⁺

The reaction was carried out according to general procedure. The residue was purified by flash chromatography on silica gel eluting with $CH_2Cl_2/MeOH$ (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 4-methylbenzyl sulfate **12'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-methylbenzyl sulfate **12** (25.0 mg, 0.112 mmol, 56%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.28 (d, *J* = 8.1 Hz, 2H), 7.15 (d, *J* = 7.9 Hz, 2H), 4.96 (s, 2H), 2.33 (s, 3H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 138.9, 134.8, 130.0, 129.2, 70.7, 21.2 ppm.
 HRMS (ESI-) calculated for C₈H₉O₄S⁻, 201.0227; found, 201.0223 [M - Na]⁻.

Sodium 4-(*tert*-butyl)benzyl sulfate (13)

t-Bu

The reaction was carried out according to general procedure, and potassium phosphate monobasic was replaced by potassium phosphate dibasic (41.8 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 4-(*tert*-butyl)benzyl sulfate **13**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-(*tert*-butyl)benzyl sulfate **13** (33.5 mg, 0.126 mmol, 63%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.41 – 7.36 (m, 2H), 7.36 – 7.31 (m, 2H), 4.98 (s, 2H), 1.31 (s, 9H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 152.2, 134.8, 129.0, 126.2, 70.6, 35.4, 31.7 ppm.
 HRMS (ESI-) calculated for C₁₁H₁₅O₄S⁻, 243.0697; found, 243.0690 [M - Na]⁻.

Sodium 4-methoxybenzyl sulfate (14)

MeO

The reaction was carried out according to general procedure, and potassium phosphate monobasic was replaced by potassium phosphate dibasic (41.8 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 4-methoxybenzyl sulfate **14'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-methoxybenzyl sulfate **14** (20.2 mg, 0.084 mmol, 42%) as a white solid.

NMR Spectroscopy:

¹H NMR (400 MHz, CD₃OD, 298 K, δ): 7.36 – 7.30 (m, 2H), 6.94 – 6.86 (m, 2H), 4.94 (s, 2H), 3.79 (s, 3H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 161.1, 130.9, 129.8, 114.7, 70.7, 55.7 ppm.
 HRMS (ESI+) calculated for C₈H₉O₅Na₂S⁺, 262.9961; found, 262.9966 [M + Na]⁺.

Sodium 4-acetoxybenzyl sulfate (15)

AcO

The reaction was carried out according to general procedure, and potassium phosphate monobasic was replaced by potassium phosphate dibasic (41.8 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 4-acetoxybenzyl sulfate **15'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-acetoxybenzyl sulfate **15** (29.5 mg, 0.110 mmol, 55%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.47 – 7.41 (m, 2H), 7.12 – 7.05 (m, 2H), 5.01 (s, 2H), 2.27 (s, 3H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 171.1, 152.0, 135.6, 130.1, 122.6, 70.1, 20.9 ppm.
 HRMS (ESI+) calculated for C₉H₉O₆Na₂S⁺, 290.9910; found, 290.9907 [M + Na]⁺.

Sodium 4-azidobenzyl sulfate (16)

N3 OSO3 Na⁺

The reaction was carried out according to general procedure, and potassium phosphate monobasic and tetrabutylammonium hydrogen sulfate were replaced by triethylamine (30.4 mg, 0.3 mmol, 1.5 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford quaternary ammonium 4-

azidobenzyl sulfate **16'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-azidobenzyl sulfate **16** (25.1 mg, 0.100 mmol, 50%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.44 (d, *J* = 8.3 Hz, 2H), 7.05 (d, *J* = 8.5 Hz, 2H), 4.99 (s, 2H) ppm.

¹³**C NMR** (101 MHz, CD₃OD, 298 K, δ): 141.2, 134.9, 130.8, 119.9, 70.1 ppm.

HRMS (ESI+) calculated for C₇H₆O₄N₃Na₂S⁺, 273.9869; found, 273.9868 [M + Na]⁺.

Sodium 3,5-difluorobenzyl sulfate (17)

The reaction was carried out according to general procedure. The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH ($100:1\rightarrow50:1\rightarrow20:1$, v/v) to afford tetrabutylammonium 3,5-difluorobenzyl sulfate **17'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 3,5-difluorobenzyl sulfate **17** (22.6 mg, 0.092 mmol, 46%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.06 – 7.00 (m, 2H), 6.85 (tt, *J* = 9.2, 2.4 Hz, 1H), 5.01 (s, 2H) ppm.

¹³**C NMR** (101 MHz, CD₃OD, 298 K, δ): 164.4 (dd, *J* = 247.9, 12.7 Hz), 142.8 (t, *J* = 9.3 Hz), 111.2 (dd, *J* = 19.0, 7.0 Hz), 103.7 (t, *J* = 25.8 Hz), 69.0 ppm.

¹⁹**F NMR** (376 MHz, CD₃OD, 298 K, δ): -112.03 (t, *J* = 8.2 Hz) ppm.

HRMS (ESI+) calculated for $C_7H_5O_4F_2Na_2S^+$, 268.9667; found, 268.9664 [M + Na]⁺.

Sodium 3-ethoxy-4-(ethoxycarbonyl)benzyl sulfate (18)

EtO `OSO₃⁻ Na⁺ EtOOC

The reaction was carried out according to general procedure, and potassium phosphate monobasic and tetrabutylammonium hydrogen sulfate (81.5 mg, 0.24 mmol, 1.2 equiv) were replaced by triethylamine (30.4 mg, 0.3 mmol, 1.5 equiv). The residue was purified by flash chromatography on silica gel eluting with $CH_2Cl_2/MeOH$ (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford quaternary ammonium 4-iodobenzyl sulfate **18**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-iodobenzyl sulfate **18** (27.2 mg, 0.083 mmol, 42%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.68 (d, *J* = 7.9 Hz, 1H), 7.17 (s, 1H), 7.01 (d, *J* = 7.9 Hz, 1H), 5.04 (s, 2H), 4.32 (q, *J* = 7.1 Hz, 2H), 4.14 (q, *J* = 7.0 Hz, 2H), 1.42 (t, *J* = 7.0 Hz, 3H), 1.36 (t, *J* = 7.1 Hz, 3H) ppm.

¹³**C NMR** (101 MHz, CD₃OD, 298 K, δ): 168.3, 159.8, 144.2, 132.2, 121.3, 120.0, 113.5, 69.9, 65.8, 61.9, 15.0, 14.6 ppm.

HRMS (ESI+) calculated for $C_{12}H_{15}O_7Na_2S^+$, 349.0328; found, 349.0326 [M + Na]⁺.

Sodium 2-chlorobenzyl sulfate (19)

OSO3⁻ Na⁺

The reaction was carried out according to general procedure, and potassium phosphate monobasic was replaced by potassium carbonate (33.2 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with $CH_2Cl_2/MeOH$ (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 2-chlorobenzyl sulfate **19**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 2-chlorobenzyl sulfate **19** (26.3 mg, 0.108 mmol, 54%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.60 – 7.56 (m, 1H), 7.41 – 7.36 (m, 1H), 7.35 – 7.26 (m, 2H), 5.13 (s, 2H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 135.6, 133.8, 130.4, 130.3, 130.2, 128.1, 67.6 ppm.
 HRMS (ESI-) calculated for C₇H₆O₄ClS⁻, 220.9681; found, 220.9678 [M - Na]⁻.

Sodium 3-chlorobenzyl sulfate (20)

OSO₃⁻ Na⁺

The reaction was carried out according to general procedure, potassium phosphate monobasic was replaced by potassium carbonate (33.2 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 3-chlorobenzyl sulfate **20**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 3-chlorobenzyl sulfate **20** (31.6 mg, 0.130 mmol, 65%) as a white solid.

NMR Spectroscopy:

¹H NMR (400 MHz, CD₃OD, 298 K, δ): 7.44 (s, 1H), 7.35 – 7.28 (m, 3H), 5.00 (s, 2H) ppm.
 ¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 140.4, 135.2, 130.9, 128.9, 128.8, 127.1, 69.7 ppm.
 HRMS (ESI-) calculated for C₇H₆O₄ClS⁻, 220.9681; found, 220.9671 [M - Na]⁻.

Quaternary ammonium α-methylbenzyl sulfate (21')

The reaction was carried out according to general procedure, potassium phosphate monobasic and tetrabutylammonium hydrogen sulfate (81.5 mg, 0.24 mmol, 1.2 equiv) were replaced by triethylamine (30.4 mg, 0.3 mmol, 1.5 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford quaternary ammonium α -methylbenzyl sulfate **21'** (36.4 mg, 0.12 mmol, 60%) as a yellow oil.

NMR Spectroscopy:

¹H NMR (400 MHz, CDCl₃, 298 K, δ): 9.18 (br, 1H), 7.39 – 7.33 (m, 2H), 7.29 – 7.22 (m, 2H), 7.21 – 7.16 (m, 1H), 5.44 (q, J = 6.6 Hz, 1H), 2.94 (qd, J = 7.3, 4.8 Hz, 6H), 1.57 (d, J = 6.6 Hz, 3H), 1.17 (t, J = 7.4 Hz, 9H) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K, δ): 142.9, 128.1, 127.4, 126.2, 76.4, 46.5, 23.3, 8.7 ppm.

HRMS (ESI-) calculated for C₈H₉O₄S⁻, 201.0228; found, 201.0227 [M - HNEt₃]⁻.

Sodium α-methyl-4-nitrobenzyl sulfate (22)

Me OSO₃⁻ Na⁺

The reaction was carried out according to general procedure. The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium α -methyl-4-nitrobenzyl sulfate **22'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium α -methyl-4-nitrobenzyl sulfate **22** (26.9 mg, 0.100 mmol, 50%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 8.25 – 8.16 (m, 2H), 7.69 – 7.63 (m, 2H), 5.55 (q, J = 6.6 Hz, 1H), 1.60 (d, J = 6.6 Hz, 3H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 151.9, 148.6, 128.1, 124.4, 76.6, 23.7 ppm.
HRMS (ESI+) calculated for C₈H₈O₆NNa₂S⁺, 291.9862; found, 291.9861 [M + Na]⁺.
Sodium α-isopropyl-4-chlorobenzyl sulfate (23)

The reaction was carried out according to general procedure, potassium phosphate monobasic was replaced by potassium phosphate dibasic (41.8 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium α -isopropyl-4-chlorobenzyl sulfate **23'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium α -isopropyl-4-chlorobenzyl sulfate **23** (37.2 mg, 0.130 mmol, 65%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.34 – 7.26 (m, 4H), 5.00 (d, *J* = 6.4 Hz, 1H), 2.11 – 1.97 (m, *J* = 6.7 Hz, 1H), 0.96 (d, *J* = 6.7 Hz, 3H), 0.84 (d, *J* = 6.8 Hz, 3H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 140.9, 133.9, 129.8, 128.8, 85.8, 35.8, 18.9, 18.5 ppm.

HRMS (ESI-) calculated for C₁₀H₁₂O₄CIS⁻, 263.0150; found, 263.0149 [M - Na]⁻.

Sodium α-(1,3-dioxoisoindolin-2-yl)benzyl sulfate (24)

The reaction was carried out according to general procedure. The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium α -(1,3-dioxoisoindolin-2-yl)benzyl sulfate **24'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium α -(1,3-dioxoisoindolin-2-yl)benzyl sulfate **24** (47.6 mg, 0.134 mmol, 67%) as a white solid.

NMR Spectroscopy:

¹H NMR (400 MHz, CD₃OD, 298 K, δ): 7.92 – 7.82 (m, 2H), 7.85 – 7.76 (m, 2H), 7.57 – 7.52 (m, 2H), 7.40 – 7.30 (m, 3H), 7.29 (s, 1H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 168.3, 137.8, 135.7, 133.1, 129.4, 129.3, 127.1, 124.5, 78.7 ppm.

HRMS (ESI+) calculated for C₁₅H₁₀O₆NNa₂S⁺, 378.0019; found, 378.0015 [M + Na]⁺. Sodium 4-(3,3-dimethyl-1-yne)benzyl sulfate (25)

t-Bu OSO₃⁻ Na⁺

The reaction was carried out according to general procedure, potassium phosphate monobasic and tetrabutylammonium hydrogen sulfate were replaced by triethylamine (30.4 mg, 0.3 mmol, 1.5 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford quaternary ammonium 4-(3,3-dimethyl-1-yne)benzyl sulfate **25'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 4-(3,3-dimethyl-1-yne)benzyl sulfate **25** (20.3 mg, 0.08 mmol, 35%) as a white solid.

NMR Spectroscopy:

¹H NMR (400 MHz, CD₃OD, 298 K, δ): 7.36 – 7.28 (m, 4H), 4.99 (s, 2H), 1.31 (s, 9H) ppm.
¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 137.3, 132.3, 128.9, 125.1, 99.2, 80.0, 70.3, 31.4, 28.9 ppm.

HRMS (ESI+) calculated for C₁₃H₁₅O₄Na₂S⁺, 313.0481; found, 313.0476 [M + Na]⁺.

Sodium 1-(4-fluorophenyl)but-3-en-1-yl sulfate (26)

SO₃[−] Na

The reaction was carried out according to general procedure, potassium phosphate monobasic and tetrabutylammonium hydrogen sulfate were replaced by triethylamine (30.4 mg, 0.3 mmol, 1.5 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford quaternary ammonium 1- (4-fluorophenyl)but-3-en-1-yl sulfate **26'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 1-(4-fluorophenyl)but-3-en-1-yl sulfate **26** (25.7 mg, 0.096 mmol, 48%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.41 – 7.34 (m, 2H), 7.07 – 6.99 (m, 2H), 5.72 (ddt, *J* = 17.2, 10.3, 7.0 Hz, 1H), 5.31 (t, *J* = 6.6 Hz, 1H), 5.04 – 4.93 (m, 2H), 2.79 – 2.69 (m, 1H), 2.65 – 2.54 (m, 1H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 163.6 (d, J = 243.9 Hz), 138.3 (d, J = 3.2 Hz), 134.7, 129.7 (d, J = 8.1 Hz), 118.1, 115.6 (d, J = 21.7 Hz), 80.5, 42.7 ppm.

¹⁹**F NMR** (376 MHz, CD₃OD, 298 K, δ): -117.54 ppm.

HRMS (ESI+) calculated for C₁₀H₁₀O₄FNa₂S⁺, 291.0074; found, 291.0073 [M + Na]⁺.

Sodium (6-chloropyridin-3-yl)methyl sulfate (27)

[•]OSO₃⁻ Na⁺

The reaction was carried out according to general procedure, potassium phosphate monobasic was replaced by potassium phosphate dibasic (41.8 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium (6-chloropyridin-3-yl)methyl sulfate **27'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium (6-chloropyridin-3-yl)methyl sulfate **27** (24.5 mg, 0.100 mmol, 50%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 8.41 (d, *J* = 2.4 Hz, 1H), 7.89 (dd, *J* = 8.2, 2.5 Hz, 1H), 7.45 (d, *J* = 8.2 Hz, 1H), 5.05 (s, 2H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 151.7, 150.0, 140.6, 133.7, 125.4, 67.1 ppm. HRMS (ESI+) calculated for C₆H₅O₄ClNNa₂S⁺, 267.9418; found, 267.9412 [M + Na]⁺. Sodium 1,4-benzodioxan-2-sulfate (28)

OSO3⁻ Na⁺

The reaction was carried out according to general procedure, potassium phosphate monobasic was replaced by potassium carbonate (33.2 mg, 0.24 mmol, 1.2 equiv) and H₂O (18.0 mg, 1 mmol, 5 equiv.). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium 1,4-benzodioxan-2-sulfate sulfate **28'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium 1,4-benzodioxan-2-sulfate **28** (40.2 mg, 0.158 mmol, 79%) as a white solid.

NMR Spectroscopy:

¹H NMR (400 MHz, CD₃OD, 298 K, δ): 6.94 – 6.88 (m, 1H), 6.88 – 6.81 (m, 3H), 6.04 (t, J = 1.8 Hz, 1H), 4.29 (dd, J = 11.5, 2.1 Hz, 1H), 4.11 (dd, J = 11.5, 1.5 Hz, 1H) ppm.
¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 144.6, 142.1, 123.1, 122.8, 118.7, 117.8, 92.8, 66.9 ppm.

HRMS (ESI-) calculated for C₈H₇O₆S⁻, 230.9969; found, 230.9960 [M - Na]⁻.

Tetrabutylammonium α-(1,3-dioxoisoindolin-2-yl)benzyl sulfate (29')

The reaction was carried out according to general procedure. The residue was purified by

flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium α -(1,3-dioxoisoindolin-2-yl)benzyl sulfate **29'** (77.6 mg, 0.140 mmol, 70%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CDCl₃, 298 K, δ): 7.76 – 7.71 (m, 2H), 7.68 – 7.61 (m, 2H), 5.91 (s, 1H), 3.29 – 3.15 (m, 8H), 1.69 – 1.53 (m, 8H), 1.40 – 1.28 (m, 8H), 1.06 (s, 9H), 0.91 (t, J = 7.3 Hz, 12H). ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K, δ): 169.0, 167.0, 133.8, 133.5, 133.0, 131.8, 123.2, 123.0, 85.7, 58.4, 37.2, 26.4, 23.9, 19.7, 13.8 ppm.

HRMS (ESI-) calculated for C13H14O6NS⁻, 312.0547; found, 312.0542 [M - NBu4]⁺.

Tetrabutylammonium cyclohexyl sulfate (30')

OSO3[−] Bu₄N⁺

The reaction was carried out according to general procedure. and potassium phosphate monobasic and tetrabutylammonium hydrogen sulfate were replaced by triethylamine (30.4 mg, 0.3 mmol, 1.5 equiv), **L1** was replaced by 3,8-dibromo-1,10-phenanthroline. The yield of cyclohexyl sulfate was determined by ¹H NMR integration relative to the internal standard (15% yield, standard: δ 4.94 ppm, cyclohexyl sulfate: δ 4.36 (tt, *J* = 9.4, 4.0 Hz) ppm, CDCl₃). Tetrabutylammonium hydrogen sulfate (81.5 mg, 0.24 mmol, 1.2 equiv) was added to the residue and stir for 5 minutes. The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1→50:1→20:1, v/v) to afford tetrabutylammonium cyclohexyl sulfate **30'** as a light yellow oil.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CDCl₃, 298 K, δ): 4.29 (tt, *J* = 9.4, 4.0 Hz, 1H), 3.29 – 3.23 (m, 8H), 2.11 – 2.02 (m, 2H), 1.73 – 1.58 (m, 10H), 1.42 (p, *J* = 7.1 Hz, 11H), 1.33 – 1.21 (m, 2H), 1.19 – 1.10 (m, 1H), 0.97 (t, *J* = 7.3 Hz, 12H) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 298 K, δ): 76.0, 58.8, 33.3, 25.7, 24.4, 24.1, 19.8, 13.8 ppm. HRMS (ESI-) calculated for C₆H₁₁O₄S⁻, 179.0384; found, 179.0392 [M – NBu₄]⁻.

Sodium ibuprofen-sulfate (32)

The reaction was carried out according to general procedure, potassium phosphate monobasic was replaced by potassium carbonate (33.2 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with $CH_2Cl_2/MeOH$ (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium ibuprofen-sulfate **32**'. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium ibuprofen-sulfate **32** (24.5 mg, 0.087 mmol, 44%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.34 – 7.28 (m, 2H), 7.14 – 7.08 (m, 2H), 5.44 (q, J = 6.5 Hz, 1H), 2.45 (d, J = 7.2 Hz, 2H), 1.89 – 1.79 (m, 1H), 1.59 (d, J = 6.6 Hz, 3H), 0.89 (d, J = 6.6 Hz, 6H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 142.1, 141.4, 129.9, 126.9, 78.0, 46.1, 31.5, 23.5, 22.7 ppm.

HRMS (ESI-) calculated for C₁₂H₁₇O₄S⁻, 257.0853; found, 257.0853 [M - Na]⁻.

Sodium pranoprofen derivative-sulfate (33)

Me SO₃⁻ Na^⁴

The reaction was carried out according to general procedure, potassium phosphate

monobasic was replaced by potassium phosphate dibasic (41.8 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium pranoprofen derivative-sulfate **33'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium pranoprofen derivative-sulfate **33** (46.7 mg, 0.137 mmol, 68%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 8.72 (dd, *J* = 4.7, 2.1 Hz, 1H), 8.65 (dd, *J* = 7.8, 2.1 Hz, 1H), 8.24 (d, *J* = 2.3 Hz, 1H), 7.96 (dd, *J* = 8.7, 2.3 Hz, 1H), 7.66 – 7.51 (m, 2H), 5.62 (q, *J* = 6.6 Hz, 1H), 1.69 (d, *J* = 6.6 Hz, 3H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 177.5, 160.1, 154.9, 154.1, 139.9, 137.2, 134.2, 123.2, 121.3, 120.7, 118.2, 116.3, 75.4, 22.2 ppm.

HRMS (ESI+) calculated for C₁₄H₁₀O₆NNa₂S⁺, 366.0019; found, 366.0017 [M + Na]⁺. **Sodium isoxepac-sulfate (34)**

The reaction was carried out according to general procedure. The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH ($100:1\rightarrow50:1\rightarrow20:1, v/v$) to afford tetrabutylammonium isoxepac-sulfate **34'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium isoxepac-sulfate **34** (38.3 mg, 0.112 mmol, 56%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 8.20 (d, *J* = 2.3 Hz, 1H), 7.83 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.65 – 7.57 (m, 2H), 7.53 – 7.44 (m, 2H), 7.07 (d, *J* = 8.5 Hz, 1H), 5.23 (s, 2H), 5.02 (s, 2H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 192.2, 162.6, 141.5, 137.4, 136.6, 134.1, 132.3, 131.8, 130.2, 130.1, 129.1, 126.1, 122.0, 74.5, 69.9 ppm.

HRMS (ESI+) calculated for $C_{15}H_{11}O_6Na_2S^+$, 365.0066; found, 365.0059 [M + Na]⁺.

Tetrabutylammonium ketoprofen-sulfate (35')

OSO3" NBu4⁺

The reaction was carried out according to general procedure, potassium phosphate monobasic was replaced by potassium carbonate (33.2 mg, 0.24 mmol, 1.2 equiv). The

residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH $(100:1\rightarrow50:1\rightarrow20:1, v/v)$ to afford tetrabutylammonium ketoprofen-sulfate **35'** (53.5 mg, 0.098 mmol, 49%) as a yellow oil.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CDCl₃, 298 K, δ): 7.81 (s, 1H), 7.77 – 7.72 (m, 2H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.60 – 7.50 (m, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.7 Hz, 1H), 5.53 (q, *J* = 6.5 Hz, 1H), 3.23 – 3.13 (m, 8H), 1.60 (d, *J* = 6.6 Hz, 3H), 1.59 – 1.50 (m, 8H), 1.33 (h, *J* = 7.3 Hz, 8H), 0.91 (t, *J* = 7.3 Hz, 12H) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K, δ): 196.9, 144.7, 137.6, 137.3, 132.5, 130.8, 130.1, 128.7, 128.3, 127.9, 127.5, 74.6, 58.6, 23.9, 23.6, 19.7, 13.7 ppm.

HRMS (ESI-) calculated for C₁₅H₁₃O₅S⁻, 305.0489; found, 305.0486 [M - NBu₄]⁻.

Sodium flurbiprofen-sulfate (36)

The reaction was carried out according to general procedure. The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium flurbiprofen-sulfate **36'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium flurbiprofen-sulfate **36** (41.6 mg, 0.131 mmol, 65%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.54 – 7.49 (m, 2H), 7.46 – 7.39 (m, 3H), 7.38 – 7.31 (m, 1H), 7.31 – 7.22 (m, 2H), 5.49 (q, J = 6.6 Hz, 1H), 1.62 (d, J = 6.6 Hz, 3H) ppm. ¹³**C NMR** (101 MHz, CDCl₃, 298 K, δ): 160.9 (d, J = 246.2 Hz), 146.1 (d, J = 7.5 Hz), 137.0 (d, J = 1.2 Hz), 131.6 (d, J = 3.8 Hz), 130.0 (d, J = 2.9 Hz), 129.4, 129.2 (d, J = 13.8 Hz), 128.6, 123.1 (d, J = 3.4 Hz), 114.6 (d, J = 24.3 Hz), 76.8 (d, J = 1.4 Hz), 23.6 ppm. ¹⁹**F NMR** (376 MHz, CDCl₃, 298 K, δ): -120.24 ppm.

HRMS (ESI-) calculated for C₁₄H₁₂O₄FS⁻, 295.0446; found, 295.0445 [M - Na]⁻.

Quaternary ammonium loxoprofen-sulfate (37')

OSO3⁻ HNEt3⁺

The reaction was carried out according to general procedure, potassium phosphate

monobasic and tetrabutylammonium hydrogen sulfate were replaced by triethylamine (30.4 mg, 0.3 mmol, 1.5 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford quaternary ammonium loxoprofen-sulfate **37'** (49.5 mg, 0.124 mmol, 62%) as a colorless oil.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CDCl₃, 298 K, δ): 9.58 (br, 1H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.06 (d, *J* = 7.8 Hz, 2H), 5.46 (q, *J* = 6.6 Hz, 1H), 3.08 – 2.97 (m, 7H), 2.47 (dd, *J* = 13.9, 9.3 Hz, 1H), 2.35 – 2.22 (m, 2H), 2.12 – 1.99 (m, 2H), 1.97 – 1.87 (m, 1H), 1.76 – 1.64 (m, 1H), 1.59 (d, *J* = 6.5 Hz, 3H), 1.55 – 1.46 (m, 1H), 1.23 (t, *J* = 7.4 Hz, 9H) ppm.

¹³C NMR (101 MHz, CDCl₃, 298 K, δ): 220.4, 140.9, 139.2, 128.7, 126.6, 76.7, 51.1, 46.5, 38.3, 35.4, 29.3, 23.2, 20.7, 8.7 ppm.

HRMS (ESI-) calculated for C₁₄H₁₇O₅S⁻, 297.0802; found, 297.0802 [M - HNEt₃]⁻.

Sodium zaltoprofen-sulfate (38)

The reaction was carried out according to general procedure, potassium phosphate monobasic was replaced by potassium carbonate (33.2 mg, 0.24 mmol, 1.2 equiv). The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford the product in the form of tetrabutylammonium sulfate **36'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium **38** (40.9 mg, 0.110 mmol, 55%) as a white solid.

NMR Spectroscopy:

¹H NMR (400 MHz, CD₃OD, 298 K, δ): 8.13 (dd, J = 8.0, 1.6 Hz, 1H), 7.66 – 7.61 (m, 2H),
7.53 (d, J = 1.9 Hz, 1H), 7.49 (td, J = 7.6, 1.6 Hz, 1H), 7.39 – 7.29 (m, 2H), 5.49 – 5.43 (m, 1H),
4.36 (s, 2H), 1.58 (d, J = 6.6 Hz, 3H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 193.1, 146.8, 141.7, 138.9, 137.2, 134.6, 133.9, 132.3, 132.1, 131.9, 128.0, 126.2, 77.1, 51.7, 23.7 ppm.

HRMS (ESI+) calculated for C₁₆H₁₃O₅Na₂S₂⁺, 394.9994; found, 394.9998 [M + Na]⁺.

7 Mechanistic experiments

Me	+ (NH) S O	AgNO ₂ (5 mol%), L1 (5 mol%) Et ₃ N (1.5 equiv), TEMPO (x equiv	
	+ (NH4)23208	DCM (0.2 M), rt, Ar, 11 h	
21s	3.0 equiv		21'
Entry	TEMPO (x	equiv) Conv.(%)	Yield (%, ¹ H NMR)
1	0.2	100	72
2	1.0	80	50
3	2.0	<10	trace

7.1 Radical quenching experiments for decarboxylative sulfation

L1 = 4,7-diphenyl-1,10-phenanthroline, yields were determined by ¹H NMR using 0.2 mmol dibromomethane as an internal standard.

The reaction was found to be inhibited by TEMPO, suggesting that decarboxylative sulfation involves a radical process. The TEMPO adduct **21a** was detected by LC-MS.

Figure S1. Benzylic TEMPO adduct trapping

To a 4 mL borosilicate vial equipped with a stir bar was added carboxylic acid **21s** (0.2 mmol, 1.0 equiv), AgNO₂ (1.5 mg, 0.01 mmol, 5 mol%), 4,7-diphenyl-1,10-phenanthroline **L1** (3.3 mg, 0.01 mmol, 5 mol%), ammonium persulfate (136.9 mg, 0.6 mmol, 3.0 equiv), and triethylamine (30.4 mg, 0.3 mmol, 1.5 equiv). The vial was evacuated and backfilled with argon for three times. 1 mL CH₂Cl₂ was added, and the reaction mixture was stirred at room temperature for 10 min, then added DMPO (45.2 mg, 0.40 mmol, 2.0 equiv). The system was taken out by a capillary (borosilicate glass, 0.8-1.1×100 mm) and analyzed by EPR at room temperature. The samples were EPR spectra was recorded at room temperature on EPR spectrometer operated at 9.823 GHz. Typical spectrometer

parameters are shown as follows, scan range: 200 mT; center field set: 330.00 mT; time constant: 0.0300 s; scan time: 30.00 s; modulation amplitude: 800 mT; modulation frequency: 100 kHz; mod width: 1.00×0.1; microwave power: 0.99800 mW.

Figure S2. EPR of sulfate radical signal trapped by DMPO

AgNO₂ + L1 $(NH_4)_2S_2O_8$ (3.0 equiv) 2.0 equiv $(NH_4)_2SO_4$ (1.2 equiv) DCM (0.02 M), Ar, rt, 2 h L1Ag(II)•X

To a 25 mL borosilicate vial equipped with a stir bar was added AgNO₂ (30.8 mg, 0.20 mmol,), L1 (4,7-diphenyl-1,10-phenanthroline) (133.0 mg, 0.40 mmol, 2.0 equiv.) and (NH₄)₂S₂O₈ (136.9 mg, 0.60 mmol, 3.0 equiv.). The vial was evacuated and backfilled with argon. 10 ml CH₂Cl₂ were added respectively. The reaction mixture was stirred at room temperature for 2 h and a brown solid precipitated during the reaction. Filtration with CH₂Cl₂ (3 × 5 mL) and H₂O (3 × 5 mL) gave a brown solid, which was dried in vacuo for 6 h. The brown solid was taken out by a capillary (borosilicate glass, 0.8-1.1×100 mm) and analyzed by EPR at room temperature. The samples were EPR spectra was recorded at room temperature on EPR spectrometer operated at 9.823 GHz. Typical spectrometer parameters are shown as follows, scan range: 100 mT; center field set: 325.00 mT; time constant: 0.0300 s; scan time: 30.00 s; modulation amplitude: 100 mT; modulation frequency: 91.97 kHz; microwave power: 0.998 mW; g = 2.0248.

Figure S3. EPR of silver species

7.2 Radical clock experiments

To a 4 mL borosilicate vial equipped with a stir bar was added α -cyclopropylphenylacetic acid **39s** (35.2 mg, 0.2 mmol, 1.0 equiv), AgNO₂ (1.5 mg, 0.01 mmol, 5 mol%), 4,7-diphenyl-1,10-phenanthroline **L1** (3.3 mg, 0.01 mmol, 5 mol%), ammonium persulfate (136.9 mg, 0.6 mmol, 3.0 equiv), Et₃N (41.7 µL, 0.30 mmol, 1.5 equiv). The vial was evacuated and backfilled with Argon for three times. 1 mL CH₂Cl₂ was added, and the reaction mixture was stirred at room temperature for 11 h. 200 mg NaHCO₃ was added to quench the reaction and filtered using CH₂Cl₂ (30 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 20:1, v/v) to afford tetrabutylammonium sulfate **39'**. Subsequently, it underwent ion-exchanged with Na⁺ resin to yield sodium (E)-4-phenylbut-3-en-1-yl sulfate **39** (19.5 mg, 0.078 mmol, 39%) as a white solid.

NMR Spectroscopy:

¹**H NMR** (400 MHz, CD₃OD, 298 K, δ): 7.39 – 7.33 (m, 2H), 7.29 – 7.23 (m, 2H), 7.20 – 7.13 (m, 1H), 6.51 (dt, *J* = 15.9, 1.5 Hz, 1H), 6.28 (dt, *J* = 15.9, 6.9 Hz, 1H), 4.11 (t, *J* = 6.6 Hz, 2H), 2.58 (qd, *J* = 6.8, 1.5 Hz, 2H) ppm.

¹³C NMR (101 MHz, CD₃OD, 298 K, δ): 139.0, 133.3, 129.4, 128.1, 127.1, 126.6, 68.5, 34.1 ppm.

HRMS (ESI+) calculated for C₁₀H₁₁O₄Na₂S⁺, 273.0168; found, 273.0168 [M + Na]⁺.

7.3 Hammett plot experiment

-1-1- 04

To a 4 mL borosilicate vial equipped with a stir bar was added substituted phenylacetic acid (0.10 mmol, 0.5 equiv), phenylacetic acid (13.6 mg, 0.10 mmol, 0.5 equiv), AgNO₂ (1.5 mg, 0.01 mmol, 5 mol%), 4,7-diphenyl-1,10-phenanthroline **L1** (3.3 mg, 0.01 mmol, 5 mol%), ammonium persulfate (136.9 mg, 0.6 mmol, 3.0 equiv), tetrabutylammonium hydrogen sulfate (81.5mg, 0.24 mmol, 1.2 equiv) and KH₂PO₄ (32.7 mg, 0.24 mmol, 1.2 equiv). The vial was evacuated and backfilled with Argon for three times. 1 mL CH₂Cl₂ was added, and the reaction mixture was stirred at room temperature for 1 h. NaHCO₃ (200 mg) was added to quench the reaction and filtered using CH₂Cl₂ (3 × 30 mL) as eluent. The filtrate was collected and concentrated by rotary evaporation. The residue was analyzed by ¹H-NMR spectroscopy in CDCl₃. The resulting ¹H resonances of the benzylic protons of the *para*-substituted product (or **12** in case of X = Me) were integrated relative to the benzylic ¹H proton resonances of tolyl sulfate ($\delta = 5.06$ ppm) to calculate the ratio of products.

I able	51.	Reaction	rate	ratio	tor	competition	reactions	(K:	reaction	rate	tor	or	para
substit	uted	phenylace	etic a	cid; ko	: rea	action rate fo	r phenylace	etic	acid).				

Para-Substituent	σ _p + -		k/	k/k ₀	$\log(k/k)$		
(X)	effect	Entry 1	Entry 2	Entry 3	Entry 4	average	Ю(к/к₀)
Me	-0.31	2.1182	2.5920	2.4315	2.3292	2.3677	0.3743
<i>t</i> -Bu	-0.26	1.6230	1.7380	1.6745	1.7907	1.7065	0.2321
F	-0.07	1.0198	1.0163	1.0110	1.0215	1.0172	0.0074
Н	0						
CI	0.11	0.8854	0.9297	0.9311	0.9268	0.9183	-0.0370
Br	0.15	0.8305	0.8634	0.8850	0.9192	0.8745	-0.0582
CF₃	0.61	0.2097	0.2477	0.2472	0.2022	0.2267	-0.6445
CN	0.66	0.1514		0.1580		0.1547	-0.8105
NO ₂	0.79	0.0773	0.0517	0.0950	0.0628	0.0717	-1.1445

Figure S4. Hammett-plot for the decarboxylation of arylacetic acids

Me	:00H + [Oxi	dant] + (NH ₄) ₂ SO ₄	AgNO ₂ (5 mol%), L1 (5 mol%) Et ₃ N (1.5 equiv) → DCM (0.2 M), rt, Ar, 11 h	Me OSO3 ⁻ HNEt3 ⁻
21s	3.0) equiv 3.0 equiv		21'
Entry	Oxidants	Conv. (%)	Yield 21' (%, ¹ H NMR)	Byproducts
1	PIDA	22	n.d.	
2	PIFA	8	n.d.	
3	DDQ	34	n.d.	
4	CAN	100	n.d.	R-ONO ₂ (21%)
5	mCPBA	0	n.d.	
6	Dess-Martin	69	n.d.	R—OAc (4%)
7	H_2O_2	14	n.d.	
8	BPO	18	n.d.	
9	DTBP	8	n.d.	

7.4 Different oxidants in decarboxylative sulfation

L1 = 4,7-diphenyl-1,10-phenanthroline, yields were determined by ¹H NMR using 0.2 mmol dibromomethane as an internal standard.

When persulfate was replaced by other oxidants with sulfate anion, **21s** partially consumed. However, no sulfate product **21'** was observed. This suggests that persulfate serves as more than just an oxidant in the reaction system, and it is unlikely to undergo nucleophilic substitution of sulate anion towards carboncation.

7.5 Exogenous nucleophiles in decarboxylative sulfation

Entry	Nucleophilic reagents	Conv.(%)	Yield 3' (%, ¹ H NMR)	Yield R—X (%, ¹ H NMR)
1	NH4F	100	49	
2	NH₄CI	27	26	R—CI (3%)
3	NH ₄ OAc	95	56	R—OAc (9%)
4	″Bu₄NF	100	49	
5	″Bu₄NCI	0	0	
6	ⁿ Bu₄NOAc	100	53	R—OAc (9%)

L1 = 4,7-diphenyl-1,10-phenanthroline, yields were determined by ¹H NMR using 0.2 mmol dibromomethane as an internal standard.

Even when other nucleophilic reagents with stronger nucleophilicity than sulfate anion were present in the reaction system, sulfation products remained dominant. This observation suggests that the decarboxylative sulfation process might not involve nucleophilic attack as the primary mechanism.

7.6 Intramolecular competition experiments

Compound **40s** was synthesized from the reported literature. ^[2] To a 4 mL borosilicate vial equipped with a stir bar was added **40s** (100.3 mg, 0.2 mmol, 1.0 equiv), AgNO₂ (1.5 mg, 0.01 mmol, 5 mol%), 4,7-diphenyl-1,10-phenanthroline **L1** (3.3 mg, 0.01 mmol, 5 mol%), ammonium persulfate (136.9 mg, 0.6 mmol, 3.0 equiv), tetrabutylammonium hydrogen sulfate (81.5 mg, 0.24 mmol, 1.2 equiv) and potassium carbonate (33.2 mg, 0.24 mmol, 1.2 equiv). The vial was evacuated and backfilled with argon for three times. 1 mL CH₂Cl₂ was added, and the reaction mixture was stirred at room temperature for 11 h. The sulfate salts were diluted with CDCl₃ (2 mL), and 0.2 mmol of dibromomethane was added as the internal standard. The yield of **40'** was determined by ¹H NMR integration relative to the internal standard (54%, standard: $\delta = 4.94$ ppm, and **40'**: $\delta = 5.38$ (t, J = 6.7 Hz) ppm, CDCl₃,). The filtrate was collected and concentrated by rotary evaporation. The residue was purified by flash chromatography on silica gel eluting with CH₂Cl₂/MeOH (100:1 \rightarrow 50:1 \rightarrow 15:1, v/v) to afford tetrabutylammonium 1-phenylpropane-1,3-disulfate **40'** as a colorless oil.

NMR Spectroscopy of 40':

¹**H NMR** (400 MHz, CDCl₃, 298 K, δ): 7.34 (d, *J* = 7.2 Hz, 2H), 7.19 (t, *J* = 7.4 Hz, 2H), 7.12 (t, *J* = 7.3 Hz, 1H), 5.37 (t, *J* = 6.7 Hz, 1H), 4.12 – 4.02 (m, 1H), 3.96 – 3.87 (m, 1H), 3.21 – 3.07 (m, 16H), 2.33 – 2.21 (m, 1H), 2.12 – 2.02 (m, 1H), 1.59 – 1.46 (m, 16H), 1.33 (h, *J* = 7.5 Hz, 16H), 0.90 (t, *J* = 7.3 Hz, 24H) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 298 K, δ): 142.3, 127.9, 126.9, 126.6, 76.1, 63.9, 58.5, 37.6, 23.9, 19.6, 13.7 ppm.

HRMS (ESI-) calculated for [C₉H₁₀O₈S₂²⁻]/2, 154.9914; found, 154.9906 {[M - 2NBu₄]/2}-.

Compound **40a** was synthesized from the reported literature.^[3] To a 4 mL borosilicate vial equipped with a stir bar was added **40a** (42.8 mg, 0.2 mmol, 1.0 equiv), AgNO₂ (1.5 mg, 0.01 mmol, 5 mol%), 4,7-diphenyl-1,10-phenanthroline **L1** (3.3 mg, 0.01 mmol, 5 mol%), ammonium persulfate (136.9 mg, 0.6 mmol, 3.0 equiv), tetrabutylammonium hydrogen sulfate (81.5 mg, 0.24 mmol, 1.2 equiv) and potassium phosphate monobasic (32.6 mg, 0.24 mmol, 1.2 equiv). The vial was evacuated and backfilled with argon for three times. 1 mL CH₂Cl₂ was added, and the reaction mixture was stirred at room temperature for 11 h. 0.2 mmol of dibromomethane was added as the internal standard. Based on ¹H NMR analysis, a conversion of 38% was observed, and no traces of sulfation product **40'** was detected.

7.7 The reactivity of Ag(II)SO4

Ag(II)SO₄ was synthesized from the reported literature.^[4] To a 4 mL borosilicate vial equipped with a stir bar was added **4s** (27.2 mg, 0.2 mmol, 1.0 equiv), Ag(II)SO₄ (122.3 mg, 0.6 mmol, 3.0 equiv), 4,7-Diphenyl-1,1-phenanthroline (199.4 mg, 0.6 mmol, 3.0 equiv), potassium phosphate monobasic (32.7 mg, 0.24 mmol, 1.2 equiv), tetrabutylammonium hydrogen sulfate (81.5 mg, 0.24 mmol, 1.2 equiv). The vial was evacuated and backfilled with argon for three times. 1 mL CH₂Cl₂ was added, and the reaction mixture was stirred at room temperature for 11 h. 0.2 mmol of dibromomethane was added as the internal standard. The yield of **4'** was less than 1% by ¹H NMR integration relative to the internal standard.

7.8 Ag(III) trapping experiment

(L1)₂Ag(II)S₂O₈ Ag-1 was synthesized following the reported literature,^[5] and the synthesis of Ag-2 was based on known procedure as well.^[6] To a 4 mL borosilicate vial equipped with a stir bar was added Ag-1 (19.3 mg, 0.02 mmol, 1.0 equiv), CH₃CN (1 mL) and CD₃CN (1 mL). The brown reaction mixture was then transferred to a vial containing excess tetrabutylammonium persulfate (676.5 mg, 1 mmol, 50 equiv) and swirled for 10 min, resulting in an immediate color change to pale yellow. The reaction mixture was then chilled to -50 °C, and transferred to a pre-chilled J. Young NMR tube. The tube was sealed, rapidly transported out of the dry box, and flash-frozen by immersion in a dry ice/ethanol bath. The conversion of **Ag-1** in the system was monitored by ¹H NMR spectra at –20 °C to capture Ag-2. The ¹H NMR spectra at various timepoints were combined to generate the spectrum presented above, which visualizes the conversion of Ag-1. As Ag-2 is diamagnetic and Ag-1 is paramagnetic, Ag-2 may exhibit characteristic chemical shifts of the ligand on ¹H NMR spectra. However, the absence of characteristic chemical shifts of the ligand indicates that Ag-2 was not formed.

CRYSTAL DATA

Table S2. Crystal Data and Structure Refinement for Sodium 4-lodobenzyl Sulfate (6)

Identification code	CCDC 2255772
Empirical formula	C7H6INaO4S
Formula weight	336.07
Temperature	213.0 K
Wavelength	1.34139 Å
Crystal system	Monoclinic
Space group	P 1 21/c 1
	a = 20.6719(4) Å α= 90°
Unit cell dimensions	b = 6.04090(10) Å β= 97.7750(10)°
	c = 8.4029(2) Å γ = 90°
Volume	1039.68(4) Å ³
Z	4
Density (calculated)	2.147 Mg/m ³
Absorption coefficient	17.653 mm ⁻¹
F(000)	640
Crystal size	0.07 x 0.07 x 0.05 mm ³
Theta range for data collection	5.638 to 54.907°.
Index ranges	-24<=h<=25, -7<=k<=4, -10<=l<=10
Reflections collected	6074
Independent reflections	1931 [R(int) = 0.0494]
Completeness to theta = 53.594°	97.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7508 and 0.4155
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1931 / 0 / 127
Goodness-of-fit on F ²	1.161
Final R indices [I>2sigma(I)]	R1 = 0.0866, wR2 = 0.2460
R indices (all data)	R1 = 0.0893, wR2 = 0.2520
Extinction coefficient	n/a
Largest diff. peak and hole/2.074 and -2.072 e.Å $^{-3}$	

Table S3. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U(eq)
l(1)	597(1)	11870(1)	6956(1)	59(1)
S(1)	4144(1)	6086(2)	5156(2)	20(1)
Na(1)	4754(1)	1205(4)	6771(3)	28(1)
O(1)	4308(2)	4647(7)	6530(5)	30(1)
O(2)	4563(2)	8025(6)	5260(6)	33(1)
O(3)	4099(2)	4997(8)	3627(6)	37(1)
O(4)	3444(2)	6901(6)	5391(6)	28(1)
C(1)	3128(4)	8405(15)	4148(9)	48(2)
C(2)	2513(3)	9216(12)	4763(8)	34(1)
C(3)	2530(4)	11236(14)	5525(10)	42(2)
C(4)	1978(4)	11984(11)	6180(11)	40(2)
C(5)	1424(3)	10723(12)	6014(8)	33(1)
C(6)	1408(4)	8678(13)	5239(10)	41(2)
C(7)	1951(4)	7949(11)	4629(10)	43(2)

Table S4. Bond lengths [Å] and angles [°]

I(1)-C(5)	2.096(7)
S(1)-Na(1)#1	3.206(3)
S(1)-Na(1)#2	3.390(3)
S(1)-O(1)	1.449(4)
S(1)-O(2)	1.453(4)
S(1)-O(3)	1.435(5)
S(1)-O(4)	1.567(5)
Na(1)-Na(1)#1	3.365(2)
Na(1)-Na(1)#3	3.365(2)
Na(1)-Na(1)#4	3.582(5)
Na(1)-O(1)#3	2.437(5)
Na(1)-O(1)	2.272(4)
Na(1)-O(2)#3	2.911(6)
Na(1)-O(2)#5	2.307(5)
Na(1)-O(2)#2	2.403(5)
Na(1)-O(3)#6	2.316(5)
O(4)-C(1)	1.469(8)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-C(2)	1.516(10)
C(2)-C(3)	1.376(11)
C(2)-C(7)	1.384(12)
C(3)-H(3)	0.9400
C(3)-C(4)	1.407(11)
C(4)-H(4)	0.9400
C(4)-C(5)	1.367(10)

C(5)-C(6) 1.395(11) C(6)-H(6) 0.9400 C(6)-C(7) 1.368(12) C(7)-H(7) 0.9400 Na(1)#1-S(1)-Na(1)#2 85.60(7) O(1)-S(1)-Na(1)#2 124.8(2) O(1)-S(1)-Na(1)#1 46.12(19) O(1)-S(1)-O(2) 111.2(3) O(1)-S(1)-O(4) 102.1(2) O(2)-S(1)-Na(1)#2 37.4(2) O(2)-S(1)-Na(1)#1 65.2(2) O(2)-S(1)-O(4) 107.0(2) O(3)-S(1)-Na(1)#1 133.2(2) O(3)-S(1)-Na(1)#2 76.1(2) O(3)-S(1)-O(1) 114.7(3) O(3)-S(1)-O(2) 112.9(3) O(3)-S(1)-O(4) 107.9(3) O(4)-S(1)-Na(1)#2 126.93(17) O(4)-S(1)-Na(1)#1 117.36(19) S(1)#3-Na(1)-S(1)#2 86.84(7) S(1)#3-Na(1)-Na(1)#1 65.13(9) S(1)#3-Na(1)-Na(1)#4 114.14(11) S(1)#2-Na(1)-Na(1)#4 60.94(7) S(1)#3-Na(1)-Na(1)#3 62.57(8) Na(1)#1-Na(1)-S(1)#2 63.30(7) Na(1)#3-Na(1)-S(1)#2 114.66(11) Na(1)#1-Na(1)-Na(1)#4 124.13(13) Na(1)#3-Na(1)-Na(1)#4 80.32(8) Na(1)#1-Na(1)-Na(1)#3 127.66(15) O(1)-Na(1)-S(1)#2 78.82(13) O(1)#3-Na(1)-S(1)#2 86.16(13) 109.12(14) O(1)-Na(1)-S(1)#3 O(1)#3-Na(1)-S(1)#3 25.37(10) O(1)#3-Na(1)-Na(1)#1 87.44(14) O(1)-Na(1)-Na(1)#4 117.09(16) O(1)#3-Na(1)-Na(1)#4 92.10(14) O(1)#3-Na(1)-Na(1)#3 42.45(11) O(1)-Na(1)-Na(1)#3 162.34(17) O(1)-Na(1)-Na(1)#1 46.37(12) O(1)-Na(1)-O(1)#3 133.35(18) O(1)-Na(1)-O(2)#2 91.69(16) O(1)-Na(1)-O(2)#3 82.78(15) O(1)#3-Na(1)-O(2)#3 52.28(13)

O(1)-Na(1)-O(2)#5 O(1)-Na(1)-O(3)#6 O(2)#5-Na(1)-S(1)#2 O(2)#3-Na(1)-S(1)#2 O(2)#3-Na(1)-S(1)#3 O(2)#2-Na(1)-S(1)#3 O(2)#5-Na(1)-S(1)#3 O(2)#2-Na(1)-S(1)#2 O(2)#5-Na(1)-Na(1)#4 O(2)#2-Na(1)-Na(1)#4 O(2)#5-Na(1)-Na(1)#3 O(2)#3-Na(1)-Na(1)#3 O(2)#2-Na(1)-Na(1)#3 O(2)#5-Na(1)-Na(1)#1 O(2)#3-Na(1)-Na(1)#1 O(2)#2-Na(1)-Na(1)#1 O(2)#3-Na(1)-Na(1)#4 O(2)#2-Na(1)-O(1)#3 O(2)#5-Na(1)-O(1)#3 O(2)#5-Na(1)-O(2)#3 O(2)#5-Na(1)-O(2)#2 O(2)#2-Na(1)-O(2)#3 O(2)#5-Na(1)-O(3)#6 O(3)#6-Na(1)-S(1)#2 O(3)#6-Na(1)-S(1)#3 O(3)#6-Na(1)-Na(1)#4 O(3)#6-Na(1)-Na(1)#1 O(3)#6-Na(1)-Na(1)#3 O(3)#6-Na(1)-O(1)#3 O(3)#6-Na(1)-O(2)#3 O(3)#6-Na(1)-O(2)#2 S(1)-O(1)-Na(1) S(1)-O(1)-Na(1)#1 Na(1)-O(1)-Na(1)#1 S(1)-O(2)-Na(1)#7 S(1)-O(2)-Na(1)#1 S(1)-O(2)-Na(1)#2 Na(1)#7-O(2)-Na(1)#1 Na(1)#7-O(2)-Na(1)#2 Na(1)#2-O(2)-Na(1)#1 S(1)-O(3)-Na(1)#8 C(1)-O(4)-S(1) O(4)-C(1)-H(1A)

132.6(2) 94.60(19) 102.41(14) 86.99(11) 26.93(9) 98.88(16) 118.32(15) 21.53(11) 41.50(13) 39.49(11) 58.24(13) 86.50(13) 104.74(15) 165.59(18) 42.35(10) 84.65(13) 134.90(15) 89.62(18) 93.66(17) 144.39(16) 80.99(17) 105.78(19) 92.17(19) 164.78(16) 82.35(13) 133.63(18) 102.22(17) 69.45(15) 88.60(18) 78.52(16) 172.81(19) 132.0(3) 108.5(2) 91.18(15) 139.5(3) 87.9(2) 121.1(3) 79.41(16) 99.01(17) 114.7(2) 140.7(3) 115.7(4) 110.6

O(4)-C(1)-H(1B)	110.6
O(4)-C(1)-C(2)	105.6(5)
H(1A)-C(1)-H(1B)	108.7
C(2)-C(1)-H(1A)	110.6
C(2)-C(1)-H(1B)	110.6
C(3)-C(2)-C(1)	118.4(7)
C(3)-C(2)-C(7)	119.7(7)
C(7)-C(2)-C(1)	121.8(7)
C(2)-C(3)-H(3)	120.1
C(2)-C(3)-C(4)	119.8(7)
C(4)-C(3)-H(3)	120.1
C(3)-C(4)-H(4)	120.2
C(5)-C(4)-C(3)	119.6(6)
C(5)-C(4)-H(4)	120.2
C(4)-C(5)-I(1)	119.4(5)
C(4)-C(5)-C(6)	120.5(7)
C(6)-C(5)-I(1)	120.1(5)
C(5)-C(6)-H(6)	120.3
C(7)-C(6)-C(5)	119.5(7)
C(7)-C(6)-H(6)	120.3
C(2)-C(7)-H(7)	119.6
C(6)-C(7)-C(2)	120.9(6)
C(6)-C(7)-H(7)	119.6

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y+1/2,-z+3/2 #2 -x+1,-y+1,-z+1 #3 -x+1,y-1/2,-z+3/2 #4 -x+1,-y,-z+1 #5 x,y-1,z #6 x,-y+1/2,z+1/2 #7 x,y+1,z #8 x,-y+1/2,z-1/2

Table S5. Anisotropic displacement parameters ($Å^2 x \ 10^3$). The anisotropic displacement factor exponent takes the form: - $2p^2 [h^2 a^{*2} U^{11} + ... + 2h k a^* b^* U^{12}]$

	-					
U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	U ¹¹
l(1)	34(1)	91(1)	54(1)	-17(1)	16(1)	12(1)
S(1)	21(1)	20(1)	20(1)	0(1)	7(1)	1(1)
Na(1)	33(2)	21(1)	30(1)	2(1)	10(1)	1(1)
O(1)	29(2)	32(2)	31(2)	12(2)	8(2)	10(2)
O(2)	35(3)	24(2)	43(3)	-2(2)	21(2)	-5(2)
O(3)	31(2)	51(2)	31(3)	-15(2)	5(2)	7(2)
O(4)	24(3)	35(2)	25(2)	4(2)	7(2)	7(2)
C(1)	46(5)	79(5)	20(3)	22(3)	9(3)	31(4)
C(2)	29(3)	50(3)	25(3)	11(3)	6(2)	18(3)
C(3)	28(4)	56(4)	45(4)	4(3)	13(3)	1(3)
C(4)	25(4)	43(4)	52(5)	-8(3)	8(3)	3(3)
C(5)	21(3)	46(3)	31(3)	1(3)	1(2)	1(3)

C(6)	26(4)	54(4)	44(4)	-5(3)	7(3)	0(3)
C(7)	49(5)	40(4)	39(4)	-10(3)	2(3)	11(3)

, , ,	()	1 1 1	()	
	х	У	Z	U(eq)
H(1A)	3019	7621	3125	57
H(1B)	3416	9650	3987	57
H(3)	2908	12113	5607	51
H(4)	1990	13343	6729	48
H(6)	1028	7808	5137	49
H(7)	1942	6567	4111	51

Table S6. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters ($Å^2 x 10^3$).

Table S7. Torsion angles [°].

I(1)-C(5)-C(6)-C(7)	180.0(6)
S(1)-O(4)-C(1)-C(2)	-171.8(5)
Na(1)#2-S(1)-O(1)-Na(1)	-72.1(4)
Na(1)#2-S(1)-O(1)-Na(1)#1	37.1(3)
Na(1)#1-S(1)-O(1)-Na(1)	-109.3(4)
Na(1)#2-S(1)-O(2)-Na(1)#1	-117.8(3)
Na(1)#1-S(1)-O(2)-Na(1)#7	-71.0(4)
Na(1)#2-S(1)-O(2)-Na(1)#7	171.2(7)
Na(1)#1-S(1)-O(2)-Na(1)#2	117.8(3)
Na(1)#2-S(1)-O(3)-Na(1)#8	39.2(4)
Na(1)#1-S(1)-O(3)-Na(1)#8	-30.9(7)
Na(1)#1-S(1)-O(4)-C(1)	134.3(5)
Na(1)#2-S(1)-O(4)-C(1)	28.0(6)
O(1)-S(1)-O(2)-Na(1)#7	-68.8(5)
O(1)-S(1)-O(2)-Na(1)#1	2.1(3)
O(1)-S(1)-O(2)-Na(1)#2	119.9(3)
O(1)-S(1)-O(3)-Na(1)#8	-83.0(6)
O(1)-S(1)-O(4)-C(1)	-179.1(5)
O(2)-S(1)-O(1)-Na(1)	-111.9(4)
O(2)-S(1)-O(1)-Na(1)#1	-2.7(3)
O(2)-S(1)-O(3)-Na(1)#8	45.9(6)
O(2)-S(1)-O(4)-C(1)	63.9(6)
O(3)-S(1)-O(1)-Na(1)#1	127.1(3)
O(3)-S(1)-O(1)-Na(1)	17.8(5)
O(3)-S(1)-O(2)-Na(1)#1	-128.5(2)
O(3)-S(1)-O(2)-Na(1)#2	-10.7(4)
O(3)-S(1)-O(2)-Na(1)#7	160.5(4)
O(3)-S(1)-O(4)-C(1)	-57.9(6)
O(4)-S(1)-O(1)-Na(1)	134.2(3)
O(4)-S(1)-O(1)-Na(1)#1	-116.5(2)

C(3)- $C(4)$ - $C(5)$ - $I(1)$			-178.9(0)	
C(3)-C(4)-C(5)-C(6)			1.7(12)	
C(4)	-C(5)-C(6)-C(7)		-0.7(12)	
C(5)	-C(6)-C(7)-C(2)		-0.3(12)	
C(7)	-C(2)-C(3)-C(4)		0.9(11)	
C(5)	-C(6)-C(7)-C(2) -C(2)-C(3)-C(4)		-0.3(12) 0 9(11)	
C(5)	-C(6)-C(7)-C(2)		-0.3(12)	
C(5)	-C(6)-C(7)-C(2)		-0.3(12)	
C(5)	-C(6)-C(7)-C(2)		-0.3(12)	
C(5)	-C(6)-C(7)-C(2)		-0.3(12)	
C(5)	-C(6)-C(7)-C(2)		-0.3(12)	
C(5)	-C(6)-C(7)-C(2)		-0.3(12)	
C(4)	-C(3)-C(0)-C(7)		-0.7(12)	
C(4)	-C(5)-C(6)-C(7)		-0.7(12)	
0(0)			0.7(12)	
C(3)	-C(4)-C(5)-C(6)		1.7(12)	
C(3)-C(4)-C(5)-I(1)			-178.9(6)	
C(3)	-C(2)-C(7)-C(6)		0.2(12)	
C(2)	C(2) C(7) C(6)		0.2(12)	
C(2)	-C(3)-C(4)-C(5)		-1.8(12)	
C(1)	-C(2)-C(7)-C(6)		177.8(7)	
C(1)	-C(2)-C(3)-C(4)		-176.8(7)	
O(4)	-C(1)-C(2)-C(7)		-80.3(9)	
O(4)	-C(1)-C(2)-C(3)		97.4(8)	
O(4)-S	6(1)-O(3)-Na(1)#8		164.0(4)	
O(4)-S	O(4)-S(1)-O(2)-Na(1)#2			
O(4)-S(1)-O(2)-Na(1)#7			41.9(5)	
O(4) - S(1) - O(2) - Na(1) = 1				
O(4)-S(1)-O(2)-Na(1)#1				

REFERENCES

- [1] A. Liang, J. N. Thakkar, U. R. Desai, *J. Pharm. Sci.* **2010**, 99, 1207–1216.
- [2] S. Peat, D. M. Bowker, J. R. Turvey, Carbohydr. Res. 1968, 7, 225–231.
- [3] R. Ramírez-Contreras, B. Morandi, Org. Lett. 2016, 18, 3718–3721.
- [4] P. J. Malinowski, M. Derzsi, Z. Mazej, Z. Jagličić, B. Gaweł, W. Łasocha, W. Grochala,
- Angew. Chem. Int. Ed. 2010, 49, 1683–1686.
- [5] G. T. Morgan, F. H. Burstall, J. Chem. Soc. 1930, 2594–2598.
- [6] T. Elkoush, C. L. Mak, D. W. Paley, M. G. Campbell, ACS Catal. 2020, 10, 4820–4826.

SPECTROSCOPIC DATA

Sodium 4-chlorobenzyl sulfate (1)

¹H NMR of sodium 4-chlorobenzyl sulfate (1)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Sodium 4-fluorobenzyl sulfate (2)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2(f1(ppm)

¹⁹F NMR of sodium 4-fluorobenzyl sulfate (2)

376 MHz, ¹⁹F NMR CD₃OD, 298 K

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

— -116.64

-116.63 -116.64 -116.65 -116.67 -116.68 -116.69 -116.69

¹⁹F{¹H} NMR of sodium 4-fluorobenzyl sulfate (2)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Sodium 4-bromobenzyl sulfate (3)

¹H NMR of sodium 4-bromobenzyl sulfate (3)

Sodium benzyl sulfate (4)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Sodium 4-iodobenzyl sulfate (6)

Sodium 4-(tosyloxy)benzyl sulfate (7)

53

Sodium 4-(methylsulfonyl)benzyl sulfate (8)

¹H NMR of sodium 4-(methylsulfonyl)benzyl sulfate (8)

Sodium 4-nitrobenzyl sulfate (9)

¹H NMR of sodium 4-nitrobenzyl sulfate (9)

Sodium 4-cyanobenzyl sulfate (10)

¹H NMR of sodium 4-cyanobenzyl sulfate (10)

Sodium 4-(trifluoromethyl)benzyl sulfate (11)

¹H NMR of sodium 4-(trifluoromethyl)benzyl sulfate (11)

¹⁹F NMR of sodium 4-(trifluoromethyl)benzyl sulfate (11)

F ₃ C 376 MHz, ¹⁹ F NMR CD ₃ OD, 298 K	- 64.05

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Sodium 4-(*tert*-butyl)benzyl sulfate (13)

60

Sodium 4-azidobenzyl sulfate (16)

¹H NMR of sodium 4-azidobenzyl sulfate (16)

¹⁹F NMR of sodium 3,5-difluorobenzyl sulfate (17)

OSO₃⁻ Na⁺ F 376 MHz, ¹⁹F NMR CD₃OD, 298 K

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

--112.01 --112.03 --112.05

Sodium 3-chlorobenzyl sulfate (20)

Sodium α-methyl-4-nitrobenzyl sulfate (22)

Sodium 1-(4-fluorophenyl)but-3-en-1-yl sulfate (26)

0.50

2.01-

1.96

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.(f1(ppm)

¹⁹F NMR of sodium 1-(4-fluorophenyl)but-3-en-1-yl sulfate (26)

SO₃⁻ Na⁺ F

376 MHz, ¹⁹F NMR CD₃OD, 298 K

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

— -117.54

Tetrabutylammonium cyclohexyl sulfate (30')

¹H NMR of tetrabutylammonium cyclohexyl sulfate (30')

7.28 3.327 3.3286 3.328 3.328 3.328 3.328 3.328 3.328 3.328 3.328 3.328 3.328

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

Sodium ibuprofen-sulfate (32)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Sodium isoxepac-sulfate (34)

Tetrabutylammonium ketoprofen-sulfate (35')

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR of sodium flurbiprofen-sulfate (36)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Quaternary ammonium loxoprofen-sulfate (37')

¹H NMR of quaternary ammonium loxoprofen-sulfate (37')

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

Sodium (E)-4-phenylbut-3-en-1-yl sulfate (39)

¹H NMR of sodium (E)-4-phenylbut-3-en-1-yl sulfate (39)

 $\begin{array}{c} 7.37\\ 7.37\\ 7.37\\ 7.35\\ 7.335\\ 7.335\\ 7.335\\ 7.335\\ 7.335\\ 7.335\\ 7.725\\ 7.77\\ 7.725\\$

Tetrabutylammonium 1-phenylpropane-1,3-disulfate (40')

