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Part 1. The Detail Procedures of Constructing the Dataset of Photosensitizers.

a) For simplified molecular input line entry system (SMILES) format of molecules, 

removing duplicates, heavy atoms (atomic weight is less than 40, the first three periods 

of the periodic table) and metal atoms; b) Utilize the BRICS algorithm from 

cheminformatics toolkit RDKit, which is based on 16 common chemical reaction 

templates, to generate a molecular fragment library from the initial dataset source; c) 

Classify the molecular fragment library into scaffold fragments (ring numbers  2, 

reaction points (1~ 3) and discarding reaction points surpass 3 for simplicity), linker 

fragments (ring numbers  1, reaction points (2 ~ 3)), and terminal groups (ring 

numbers  1, reaction points is 1. The final data set contains 1.90109 molecules. 

Table S1. Comparison of Molecular Fragmentation with Two Representative Methods.

Methods Ring-cutting method Char-splitting 

method

Fragmentation molecules 3500000 3500000

Fragment vocabulary size 26628564 311190299

Average number of

fragments/tokens

7.6 88.9

Part 2. Prediction Models for Score Function in Reinforcement Learning.  

The ΔEST and Eabs are the label parameters of data, which were processed by zero-

mean normalization before training (the  = 1.1721,  = 0.6635 for ΔEST, the  = 

3.2070,  = 0.9691 for ΔEST). Moreover, to deal with sample imbalance, common data 

augmentation technique was used in this scenario for ΔEST was less than 0.30 eV. The 

training set (80%), valid set (10%) and test set (10%) were used in each cycle which 

was split according to the molecule fingerprint similarity cluster method by Chemfp 

keeping data independently. To tune the hyperparameters finely to obtain an accurate 



prediction model. Hyperparameters for initial prediction models were optimized by grid 

search method (searching through all possible combinations of the specified 

hyperparameters and evaluating each combination using cross-validation). The 

optimization process contains an early stopping strategy in which mean absolute error 

(MAE) of ΔEST not decrease 0.01 eV after continuous 6 trials. The optimization process 

was also stopped if minimize MAE optimization cycles till 400 trials have been done. 

The following hyperparameters were tuned:

a) Graph convolutional layers: a list of graph convolutional layers with each value 

representing the number of nodes in each layer which are [512, 512, 512], [512, 512, 

512, 512] and [512, 512, 512, 512,512];

b) Dense layers: a list of dense fully connected layers with each value representing 

the number of nodes in each layer which are [128, 128, 128] and [128, 128, 128, 128]; 

c) Dropout: probability (between 0 and 1) that neurons in the hidden layers are 

ignored; dropout is added to prevent overfitting which is 0.01, 0.05 and 0.1, 

respectively. 

d) Learning rate: The multiplier for gradient descent and determines how fast the 

parameter changes which is 0.0001 and 0.001, respectively. 

One of the best prediction model’s parameters are as follows: graph convolutional 

layers list is [512, 512, 512, 512], dense layers list is [128, 128, 128], dropout is 0.01 

and learning rate is 0.001. The relationship between training epochs and MAE values 

are presented in Fig. S1. 



Fig. S1. The relationship between training epochs and MAE values of a) ΔEST and b) 

Eabs of train data, valid data, test data and the important subset of above datasets (ΔEST 

 0.3 eV) for photosensitizers design. 

Part 3. Conjugate Motifs Diversity for All Model.  

Table S2. The Ring Numbers and the Atoms Numbers of Conjugated Motifs for the 

Unique Desired Molecules Generated by All Models. 

Task1 models Task2 models

MB MD GB GD
Frag-

MB

Frag-

MD

Frag-

GB

Frag-

GD

Ring 

Numbers

1.05 1.28 1.08 1.71 1.09 1.53 1.18 2.46

Atom 

Numbers

9.40 11.1

6

9.09 11.3

1

9.07 13.42 9.64 16.09



Note: This is the average value for the unique desired molecules generated by 3 

cycles. 

 

Fig. S2. Distributions of the ring numbers of conjugated motifs (left) as well as the 

atoms numbers of conjugated motifs (right) for the unique desired molecules.

Part 4. Distributions of QED and SA Properties of the Unique Desired 

Molecules Generated by All Models for Task 1 and Task 2



Fig. S3. Distributions of QED for the unique desired molecules generated by all models 

for task 1 (left) and task 2 (left).

Fig. S4. Distributions of SA for the unique desired molecules generated by all models 

for task 1 (left) and task 2 (left).

Part 5. Molecular Examples of Studied Models and Case studies of Ablation 

Experiments

 

 

 

Monomers D-A D-A-D (or A-D-A)



  

Fig. S5. Small part of selected design molecules.

Fig. S6. Selected of non-symmetry molecules (the conjugated motif keep same).



Fig. S7. The distribution of EST of molecules verified by DFT, TD-DFT and SOC 

calculations.

Fig. S8. Sampled generated molecules by different methods. a) de novo design method, 

b) fragment-based molecule generation method. 
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Fig. S9. Sampled generated molecules by different methods. a) de novo design method, 

b) fragment-based molecule generation method. 

b) fragment-based molecular generation method
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Fig. S10. Sampled generated molecules by different methods. a) de novo design 

method, b) fragment-based molecule generation method. 

b) fragment-based molecular generation method

a) de novo design method

Constrained Motif Designed known published triplet PSs

Designed unpublished compounds Constrained Motif
N189N17

N19

N21

N2010

N

S



N

SN

S

N+
B-
F F

N

Designed known published triplet PSs

N

S



Designed and similar published molecules

S

N

N

Designed unpublished compounds 

S

N

S

N

NS

N2211

N

O 

N

N
O

ON
O

N

N
O

ON
O

N

NON

Constrained Motif Designed and similar published moleculesDesigned unpublished compounds 
N23 N2512N24



Fig. S11. Sampled generated molecules by different methods. a) de novo design 

method, b) fragment-based molecule generation method. 

b) fragment-based molecular generation method

a) de novo design method
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Fig. S12. Sampled generated molecules by de novo design method for exploring 

enlarged conjugated structures. 
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