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1. Experimental Procedures
1.1 Reagents

All starting reagents were commercially available and analytical purity, which were used without
further treatment. Bis(pinacolato)diboron and Pd(PPhs), were purchased from Adamas Reagent Co.,
Ltd., 4-morpholinoaniline, 2-amino-6-methoxybenzothiazole and 2-benzothiazolamine were
purchased from Shanghai Mairuier Biochemical Technology Co., Ltd.(China), 4-bromo-2-
hydroxybenzaldehyde and 2,4-dinitrobenzenesulfonyl chloride were purchased from Aladdin Reagent
Co., Ltd., 2,3,4,6-tetra-0-acetyl-alpha-d-galactopyranosyl bromide was purchased from Bidepharm
Technology Co., Ltd., perfluorocyclopentene was purchased from J&K Scientific Ltd. TLC (Thin-
layer chromatography) analysis was performed on silica-gel plates, and column chromatography was
conducted using silica-gel column packages purchased from Qingdao Haiyang Chemical (China). The
human hepatocellular carcinomas (HepG2), human ovarian cancer cells (OVCAR3), and human
epithelioid cervical carcinoma cell (HeLa) were purchased from the Shanghai Fuheng Biotechnology
Co., Ltd (China). Cells were all propagated in T-75 flasks cultured at 37 °C under a humidified 5%
CO,; atmosphere in Dulbecco’s modified Eagle’s medium (DMEM) (GIBCO/Invitrogen, Camarillo,
CA), which was supplemented with 10% fetal bovine serum (FBS; Biological Industry, Kibbutz Beit
Haemek, Israel) and 1% penicillin—streptomycin (10,000 U mL™! penicillin and 10 mg mL™!

streptomycin; Solarbio Life Science, Beijing, China).

1.2 Instruments

NMR spectra were recorded on Bruker AM-400 spectrometers with tetramethylsilane (TMS) as
internal reference, CDCl3;, DMSO-d; as solvents. High resolution mass (HRMS) spectra were recorded
on Waters LCT Premier XE spectrometer. UV/Vis spectra were recorded on Varian Carry 500 (1 cm
quartz cell) at 293 K. Fluorescence spectra were recorded using HORIBA Fluoromax 4 at 293 K. The
photochromic reaction was induced in situ by continuous irradiation using an Hg/Xe lamp
(Hamamatsu, LC8 Lightningcure, 200 W) equipped with a narrow band interference filter (Shenyang
HB optical Technology) for 4;, = 546 nm, i, = 365 nm and 4;, = 450 nm. Confocal fluorescence
images were performed on Lecia TCS SP8 laser scanning confocal microscopy. STORM images were
performed on Nikon N-STORM Super Resolution Microscopic Imaging System (100 * TIRF oil

mirror, 488nm laser)
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1.3 Synthetic route of compounds
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Scheme S1. Synthetic routes of target system.
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Synthesis and characterization of M2

Br,, acetic acid

— NH,SCN /©:N\>—NH2
O\_/NA@*N% (\N o
M1 o M2
Scheme S2. Synthesis route of M2

To a 250 mL single necked bottle, M1 (10.0 g, 56.2 mmol, 1 eq), NH4;SCN (21.4 g, 280.0 mmol, 5 eq),
and acetic acid (100 mL) were added. The mixture was cooled to 10 °C and stirred for 20 min, and
then bromine (8.9 g, 56.2 mmol, 1 eq) was added drop wise at such a rate to keep the below 10 °C
throughout the addition. The reaction mixture was stirred overnight at room temperature, and then
poured into hot water, and basified to pH 11 with ammonia solution (NH4;OH). The resulting
precipitate was filtered, washed with water, dried and recrystallized from toluene in brown solid M2
3.9 g (yield: 30.3%). '"H NMR (400 MHz, DMSO-d;, ppm), J: 6.86 (d, J= 6.4 Hz, 1 H, Ar-H), 6.69
(d,J=8.4Hz, 1H, Ar-H), 6.51 (s, 1 H, Ar-H), 5.05 (s, 1 H, Ar-NH,), 3.65 (t, J=4.4, 4 H, morpholine-
CH,-CH,), 2.76 (t, J = 4.4, 4 H, morpholine-CH,-CH;). 3C NMR (151 MHz, DMSO-d,, ppm), ¢:
164.958, 146.909, 146.831, 132.472, 118.310, 115.379, 108.396, 66.687, 50.424.

Synthesis and characterization of M5

©:N\>—NH2 __KoH @NHZ
s H20 SH
M4 M5
Scheme S3. Synthesis route of M5

To a 250 mL single necked bottle, M4 (5.0 g, 33.1 mmol, 1 eq), KOH (18.5 g, 330.0 mmol, 10 eq) and
H,0 (100 mL) were added. The mixture was stirred at 120 °C overnight. After removing the scraps by
filtering, the filtrate was neutralized by acetic acid (30% in water), and the precipitate was collected
by filtration to give M5 brown solid 3.7 g (yield: 88.4%). '"H NMR (400 MHz, CDCl;, ppm), J: 7.28
(dd, J; =7.6,J,=1.6 Hz, 1 H, Ar-H), 7.02 (ddd, J, =8.0,J,=7.4,J3=1.6 Hz, 1 H, Ar-H), 6.57-6.70
(m, 2 H, Ar-H), 4.09 (s, 2 H, Ar-NH,), 2.85 (s, 1 H, Ar-SH). 3C NMR (151 MHz, DMSO-ds, ppm),
0:150.214, 135.884, 131.607, 116.937, 116.535, 115.265.

S5



Synthesis and characterization of M6

NH,

N KOH
L —e—
H,CO s H,0 H,CO SH

M3 M6
Scheme S4. Synthesis route of M6

To a 250 mL single necked bottle, M3 (5.0 g, 28.3 mmol, 1 eq), KOH (15.7 g, 280.1 mmol, 10 eq) and
H,0 (100 mL) were added. The mixture was stirred at 120 °C overnight. After removing the scraps by
filtering, the filtrate was neutralized by acetic acid (30% in water), and the precipitate was collected
by filtration to give M6 brown solid 3.2g (yield: 75.3%). 'H NMR (400 MHz, DMSO-d,, ppm), o:
6.77 (dd, J, =8.8 Hz, J, =2.8 Hz, 1 H, Ar-H), 6.70 (d, J = 8.0, 1 H, Ar-H), 6.59 (d, /J=2.8 Hz, 1 H,
Ar-H), 5.04(s, 2 H, Ar-NH,), 3.53 (s, 3 H, -O-CH3). >*C NMR (151 MHz, DMSO-ds, ppm), d: 150.572,
144.152, 119.088, 118.992, 117.525, 116.600, 55.732.

Synthesis and characterization of M7

N>_ KOH e
L —re X
S N S
[N H,0 Q H

0.
M2 M7

Scheme S5. Synthesis route of M7

To a 250 mL single necked bottle, M2 (5.0 g, 21.3 mmol, 1 eq), KOH (11.7 g, 210.3 mmol, 10 eq) and
H,0 (100 mL) were added. The mixture was stirred at 120 °C overnight. After removing the scraps by
filtering, the filtrate was neutralized by acetic acid (30% in water), and the precipitate was collected
by filtration to give M7 yellow solid 2.7 g (yield 60.3%). 'H NMR(400 MHz, DMSO-d,, ppm), J: 6.86
(dd, J; = 8.8 Hz, J, = 2.8 Hz, 1 H, Ar-H), 6.69 (d, /= 8.8 Hz, 1 H, Ar-H), 6.52 (d, J=2.6 Hz, 1 H,
Ar-H), 5.04 (s, 2 H, Ar-NH,), 3.65 (t, / = 8.0, 4 H, morpholine-CH,.CH,), 2.77 (t, J = 8.0, 8 H,
morpholine-CH,-CH,). 3C NMR (151 MHz, DMSO-d,, ppm), 0: 143.898, 142.689, 122.837, 121.527,
117.434, 116.439, 116.404, 66.654, 50.669.
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Synthesis and characterization of M8

NH, FeCls: 6H,0 N "o o
Cr - OOk
SH CH3CH,0H S 0
M5 M8
Scheme S6. Synthesis route of M8

To a 250 mL single necked bottle, M5 (5.0 g, 40.0 mmol, 1 eq), 4-formyl-3-hydroxyphenylboronic
acid pinacol ester (6.2 g, 25.2 mmol, 1.2 eq) and ethanol (100 mL) were added. The mixture was heated
to 95 °C for 4 h. The organic solvents were removed by vacuum rotary evaporation, the precipitate
was dissolved in THF solution, and was added dropwise into FeCls-6H20 (22.7 g, 84.0 mmol, 4 eq)
dissolved in ethanol, the mixture was heated to 80 °C, then the organic layer was concentrated in
vacuum. The residue was extracted with dichloromethane (50 mL X 3), The organic layer was
separated and dried by anhydrous Na,SO,. After concentrated in vacuum, the residue was purified by
column chromatography on silica gel (PE: EA = 10:1). A yellow solid M8 6.4 g was obtained in 43.8%
yield. '"H NMR (400 MHz, CDCl;, ppm), J: 12.39 (s, 1 H, -OH), 8.33 (d, /= 8.0 Hz, 1 H, Ar-H), 8.25
(d,/J=7.6 Hz, 1 H, Ar-H), 8.03 (d,/=7.6 Hz, 1 H, Ar-H), 7.89 (m, 1 H, Ar-H), 7.85 (t, /= 7.2 Hz, 1
H, Ar-H), 7.75 (t, J= 7.2 Hz, 1 H, Ar-H), 7.70 (d, J = 7.6 Hz, 1 H, Ar-H), 1.71 (s, 12 H, -CHj3). 3C
NMR (151 MHz, CDCl;, ppm), d: 169.283, 157.034, 151.790, 132.886, 127.561, 126.753, 125.681,
125.298, 124.194, 122.305, 121.555, 118.817, 84.152, 24.875.

Synthesis and characterization of M9

CH3CH,OH
M6 M

NHz FeCl3: 6H,0 N b e
9
Scheme S7. Synthesis route of M9
To a 250 mL single necked bottle, M6 (5.0 g, 32.3 mmol, 1 eq), 4-formyl-3-hydroxyphenylboronic
acid pinacol ester (9.6 g, 38.7 mmol, 1.2 eq) and ethanol (100 mL) were added. The mixture was heated

to 95 °C for 4 h. The organic solvents were removed by vacuum rotary evaporation, the precipitate
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was dissolved in THF solution, and was added dropwise into FeCls-6H20 (32.3 g, 129.2 mmol, 4 eq)
dissolved in ethanol, the mixture was heated at 80 °C for 2 h, then the organic layer was concentrated
in vacuum. The residue was extracted with dichloromethane (50 mL X 3). The organic layer was
separated and dried by anhydrous Na,SO,. After concentrated in vacuum, the residue was purified by
column chromatography on silica gel (PE: EA = 10:1). A yellow solid M9 5.4 g was obtained in 42.2%
yield. '"H NMR (400 MHz, DMSO-dg, ppm), o: 11.35 (s, 1 H, -OH), 8.18 (d, /= 7.6 Hz, 1 H, Ar-H),
7.96 (d,J=9.2 Hz, 1 H, Ar-H), 7.72 (d, /= 2.8 Hz, 1 H, Ar-H), 7.36 (s, 1 H, Ar-H), 7.29 (d, /= 8.0
Hz, 1 H, Ar-H), 7.15 (dd, J, =8.8 Hz, J, =2.8 Hz, 1 H, Ar-H), 3.86 (s, 3 H, -O-CH3), 1.32 (s, 12 H, -
CH3). 3C NMR (151 MHz, CDCl;, ppm), 6:172.801, 156.129, 129.102, 125.008, 113.380, 112.400,
107.570, 55.876.

Synthesis and characterization of M10

CH3CH,0OH
5 3Lz

t .
NH, N je
~ /@SH FeCls 6H,0 O /@:?_GB\O:é
M7 M10
Scheme S8. Synthesis route of M10
To a 250 mL single necked bottle, M7 (5.0 g, 23.8 mmol, 1 eq), 4-formyl-3-hydroxyphenylboronic
acid pinacol ester (7.1 g, 28.6 mmol, 1.2 eq) and ethanol (100 mL) were added. The mixture was heated
to 95 °C for 4 h. The organic solvents were removed by vacuum rotary evaporation, the precipitate
was dissolved in THF solution, and was added dropwise into FeCls-6H20 (23.8 g, 95.2 mmol, 4 eq)
dissolved in ethanol, the mixture was heated at 80 °C for 2 h, then the organic layer was concentrated
in vacuum. The residue was extracted with dichloromethane (50 mL X 3), The organic layer was
separated and dried by anhydrous Na,SO,. After concentrated in vacuum, the residue was purified by
column chromatography on silica gel (PE: EA = 10:1). A yellow solid M10 4.5 g was obtained in
42.1% yield. '"H NMR (400 MHz, DMSO-ds, ppm), 0: 11.40 (s, 1 H, -OH), 8.12 (d, /= 8.0 Hz, 1 H,
Ar-H), 7.90 (d, /= 8.8 Hz, 1 H, Ar-H), 7.60 (s, 1 H, Ar-H), 7.34 (s, 1 H, Ar-H), 7.27 (d, J= 8.4 Hz, 2
H, Ar-H), 3.78 (t, J = 4.4 Hz, 4 H, morpholine-CH,-CH,), 3.22 (t, J = 4.4 Hz, 4 H, morpholine-CH,-
CH,), 1.31 (s, 12 H, -CH3). BC NMR (151 MHz, CDCl3, ppm), 6: 166.085, 156.731, 149.832, 145.837,
134.706, 127.177, 125.270, 123.951, 122.498, 119.142, 116.909, 106.426, 84.095, 66.819, 49.703,
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24.820.

Synthesis and characterization of DH

R F
F F
I\ I\
HQ, Br S S Br KZCOS
@EN%GB;)]% DAE Pd(PPhs),
s o
THF H,0

Scheme S9. Synthesis route of DH

To a 100 mL single necked bottle, DAE (1.0 g, 1.9 mmol, 1 eq), M8 (1.7 g, 4.6 mmol, 2.4 eq), Pd
(PPh3)4 (220.2 mg, 0.2 mmol, 0.1 eq), K,CO;5 (790.1 mg, 5.7 mmol, 3 eq), THF (60 mL) and H,O (20
mL) were added. The mixture was heated to 85 °C under nitrogen atmosphere for 8 h, then the organic
layer was separated and concentrated in vacuum. The organic layer was separated and dried by
anhydrous Na,SO,. After concentrated in vacuum, the crude product was purified by column
chromatography (DCM: PE = 1:1) to afford the desired product DH 500 mg (yield: 32.3%). '"H NMR
(400 MHz, CDCl;, ppm) 0: 12.56 (s, 1 H, -OH), 8.00 (d, J= 8.0 Hz, 1 H, Ar-H), 7.92 (d, J = 8.0 Hz,
1 H, Ar-H), 7.70 (d, /= 8.4 Hz, 1 H, Ar-H), 7.53 (t,J=7.6 Hz, 1 H, Ar-H), 7.42 (t, /J=7.6 Hz, 1 H,
Ar-H), 7.40 (s, 1 H, Ar-H), 7.29 (s, 1 H, thiophene-H), 7.16 (d, /= 8.4 Hz, 1 H, Ar-H), 2.04 (s, 3 H, -
CH3). BC NMR (151 MHz, CDCls, ppm), 0: 168.58, 158.29, 142.63, 141.09, 137.37, 137.34, 132.52,
129.07, 126.92, 126.05, 125.72, 123.75, 122.07, 121.58, 116.82, 116.15, 114.26, 14.72. High-
resolution mass spectrometry (ESI positive ion mode for [M+H]"): Calcd. for C43H,7N,04F6Sy:
877.0775; Found: 877.0758.

Synthesis and characterization of DH-OMe

R F
R F
F F
| HO o o /s\ /s\ B K,COs
J@[»—(\ >—B(jé DAE Pd(PPhs)s
HaCO S o
M9 THF H,O

H3CO'

Scheme S10. Synthesis route of DH-OMe
To a 100 mL single necked bottle, DAE (1.0 g, 1.9 mmol, 1 eq), M9 (1.7 g, 4.6 mmol, 2.4 eq), Pd
(PPh3),4 (220.2 mg, 0.2 mmol, 0.1 eq), K,CO; (790.1 mg, 5.7 mmol, 3 eq), THF (60 mL) and H,O (20
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mL) were added. The mixture was heated to 85 °C under nitrogen atmosphere for 8 h, then the organic
layer was separated and concentrated in vacuum. The organic layer was separated and dried by
anhydrous Na,SO,. After concentrated in vacuum, the crude product was purified by column
chromatography (DCM: PE = 1:1) to afford the desired product DH-OMe 630.3 mg (yield: 37.7%).
'H NMR (400 MHz, CDCl;, ppm), d: 12.53 (s, 1 H, -OH), 7.88 (d, J=9.2 Hz, 1 H, Ar-H), 7.63 (d, J
=8.0 Hz, 1 H, Ar-H), 7.39 (s, 1 H, thiophene-H), 7.36 (d, /= 2.8 Hz, 1 H, Ar-H), 7.27 (d, J= 2.0 Hz,
1 H, Ar-H), 7.16-7.09 (m, 2 H, Ar-H), 3.91 (s, 3 H, -O-CH3), 2.00 (s, 3 H, -CH3). 3C NMR (151 MHz,
CDCl;, ppm), 6: 169.83, 166.10, 158.16, 157.91, 146.33, 142.43, 141.22, 136.75, 128.69, 126.03,
123.53, 122.76, 116.77, 116.51, 116.03, 114.15, 104.24, 55.90, 53.56, 14.71. High-resolution mass
spectrometry (ESI positive ion mode for [M+H]*): Calcd. for C4;3H7N,O4F¢S4: 877.0775; Found:
877.0758.

Synthesis and characterization of DH-Mor
FF

F
F F

HQ,
I\~ U\
N\ B/O Br™ g s~ Br K,COs
(\N 3; z) % DAE Pd(PPh3),
M10

o THF H,0

Scheme S11. Synthesis route of DH-Mor
To a 100 mL single necked bottle, DAE (1.0 g, 1.9 mmol, 1 eq), M10 (1.9 g, 4.6mmol, 2.4eq), Pd
(PPh3),4 (220.2 mg, 0.2 mmol, 0.1 eq), K,CO5 (790.3 mg, 5.7 mmol, 3 eq), THF (60 mL) and H,O (20
mL) were added. The mixture was heated to 85 °C under nitrogen atmosphere for 8 h, then the organic
layer was separated and concentrated in vacuum. The organic layer was separated and dried by
anhydrous Na,SO,. After concentrated in vacuum, the crude product was purified by column
chromatography (DCM: PE = 1:1) to afford the desired product DH-Mor 610.5 mg (yield: 32.6%). 'H
NMR (400 MHz, DMSO-dg, ppm), 0: 11.78 (s, 1 H, -OH), 8.08 (d, /=8.8 Hz, 1 H, Ar-H), 7.90 (d, J
=8.0 Hz, 1 H, Ar-H), 7.62 (s, 1 H, Ar-H), 7.59 (d, /= 2.4 Hz, 1 H, Ar-H), 7.35-7.21 (m, 3 H, Ar-H
and thiophene-H), 3.77 (t,/=4.8 Hz, 4 H, morpholine-CH,-CH,), 3.21 (t,J=4.8 Hz, 4 H, morpholine-
CH,-CH,), 2.02 (s, 3 H, -CH3). 13C NMR (101 MHz, CDCl3, ppm), d: 157.89, 146.05, 142.40, 141.25,
136.61, 134.46, 132.15, 128.64, 126.03, 123.51, 122.46, 122.40, 117.01, 116.58, 114.13, 114.01,
77.36, 77.04, 76.72, 66.77, 49.84, 14.73. High-resolution mass spectrometry (ESI positive ion mode
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for [M+H]"): Calcd. for C4H39N4O4FS4: 989.1784; Found: 989.1758.

Synthesis and characterization of DH-Mor-GSH

R F
F, F o

I

F F O.N s-ci
HO. OH 0
/\ /\ NO,

e —

ottty e
DCM, Et;N
Q_S DH-Mor S‘D

Scheme S12. Synthesis route of DH-Mor-GSH

To a 50 mL single necked bottle, DH-Mor (100.3 mg, 0.1 mmol, 1 eq) and dry dichloromethane were
added. The mixture was cooled in ice water bath, and then triethylamine (51.2 mg, 0.5 mmol, 5 eq)
was stirred and stirred for 5 min. 2,4-dinitrobenzenesulfonyl chloride (134.3 mg, 0.5 mmol, 5 eq) was
dissolved in dry dichloromethane and added to the mixture. The reaction system was stirred at room
temperature for 2 h. After the reaction, water was added, extracted with dichloromethane three times
(50 mL x 3). The organic layer was separated and dried by anhydrous Na,SO,. After concentrated in
vacuum, the crude product was separated by silica gel column chromatography (DCM: PE = 1:1) to
give 41.3 mg yellow solid DH-Mor-GSH in 28.6% yield. 'H NMR (400 MHz, CDCl;, ppm), J: 8.24
(d,/J=2.2Hz, 1 H, Ar-H), 7.95 (d, /= 8.8 Hz, 1 H, Ar-H), 7.88 (d, /= 8.6 Hz, 1 H, Ar-H), 7.80 (d, J
=8.0 Hz, 1 H, Ar-H), 7.63 (d, /= 8.6 Hz, 1 H, Ar-H), 7.58 (d, /= 8.0 Hz, 1 H, Ar-H), 7.54 (s, 1 H,
Ar-H), 7.33 (s, 1 H, thiophene-H), 7.12 (s, 1 H, Ar-H), 7.03 (d, J=9.1 Hz, 1 H, Ar-H), 3.88 (s, 4 H,
morpholine-CH,-CH,), 3.21 (s, 4 H, morpholine-CH,-CH,), 2.04 (s, 3 H, -CH3). 3C NMR (151 MHz,
DMSO-dg, ppm), d: 161.77, 156.66, 149.64, 147.92, 146.80, 145.37, 142.67, 141.10, 137.57, 136.23,
135.69, 133.52, 132.23, 132.03, 129.37, 128.47, 125.59, 124.00, 122.61, 121.47, 118.57, 117.17,
116.75, 113.26, 106.38, 66.46, 49.18, 14.58. High-resolution mass spectrometry (ESI positive ion
mode for [M+Na]"): Calcd. for C¢;H4oNgO6FsSgNa: 1471.0839; Found: 1471.0902.
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Synthesis and characterization of DH-Mor-4-Gal

RF

Br oac
OAc
o Cs,CO;

Ac0” OAC  Ng,S0,

CH3CN

Scheme S13. Synthesis route of DH-Mor-#-Gal

To a 550 mL single necked bottle, DH-Mor (100.6 mg, 0.1 mmol, 1 eq), Na,SO4 (71.4 mg, 0.5 mmol,
5 eq), Cs,CO; (164 mg, 0.5 mmol, 5 eq), CH;CN (10 mL), and 2,3,4,6-Tetra-O-acetyl-alpha-D-
galactopyranosyl bromide (207.8 mg, 0.5 mmol, 5 eq) were added. The mixture was stirred at room
temperature under argon protection for 12 h. The precipitate was removed by filtration and the solvent
was concentrated in vacuum to give the intermediate DH-Mor-Mid. Furthermore, compound DH-
Mor-Mid (100.1 mg, 0.06 mmol, 1 eq) was dissolved in the solution of DCM 20% and CH;OH 80%
(20 mL) at 0 °C. Then sodium methylate (16.4 mg, 0.3 mmol, 5 eq) was added to the reaction. After
refluxing for 30 min, a yellow precipitate was precipitated and the yellow solid DH-Mor-f-Gal 52.4
mg was obtained after filtration (39.2% yield over two steps). 'H NMR (400 MHz, DMSO-ds, ppm),
0:8.39(d,J=8.4Hz, 1 H, Ar-H), 7.89 (d, /= 8.8 Hz, 1 H, Ar-H), 7.66 (s, 1 H, thiophene-H), 7.53 (d,
J=284Hz, 1H, Ar-H), 7.46 (d, /= 8.4 Hz, 1 H, Ar-H), 7.25 (d, /J=8.0 Hz, 1 H, Ar-H), 5.29 (d, J =
7.6 Hz, 1 H, pyran-H), 5.16 (d, /= 5.6 Hz, 1 H, pyran-H), 4.99 (d, /= 5.8 Hz, 1 H, pyran-H), 4.72 (t,
J=15.6Hz, 1 H, pyran-H), 4.66 (d, /= 4.0 Hz, 1 H, pyran-H), 3.93 (m, 1 H, -OH), 3.81-3.70 (m, 6H,
morpholine-CH,-CH,, -CH,-OH ), 3.53 (m, 3 H, -OH), 3.21 (s, 4 H, morpholine-CH,-CH,), 2.03 (s, 3
H, -CH3). 3C NMR (101 MHz, CDCl;, ppm), o: 148.53, 146.88, 145.78, 142.49, 138.34, 136.66,
135.64, 133.11, 131.49, 130.86, 128.72, 125.25, 125.17, 124.94, 124.13, 123.56, 122.63, 120.44,
118.52, 115.68, 76.32, 76.21, 76.00, 75.68, 65.64, 48.24, 28.68, 13.83. High-resolution mass
spectrometry (ESI positive ion mode for [M+Na]"): Caled. for CgHsgN4O14F¢S4Na: 11335.2629;
Found: 1335.2623.
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1.4 Cell lines

The Hela, OVCAR3 and HepG2 cells were all propagated in T-25 flasks cultured at 37 °C under
a humidity 5% CO, atmosphere. DMEM medium (BIOAGRIO/ Shanghai Yuli Biotechnology Co,
Ltd), which were supplemented with 10% fetal bovine serum (FBS, BIOAGRIO) and 1% penicillin-
streptomycin (10,000 U mL-! penicillin and 10 mg mL-! streptomycin, BIOAGRIO).

1.5 Western blot

The Hela cells, OVCAR3 cells and HepG2 cells were lysed with cell lysis buffer (Beyotime
Institute of Biotechnology, Shanghai, China) assisted with 0.5 mM phenylmethanesulfonyl fluoride.
After centrifugation (12,000 rpm, 15 min, 4 °C). Sample lysates were separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDSPAGE) and transferred to polyvinylidene difluoride
(PVDF) membranes. Membranes were blocked for 2 h with 5% nonfat milk in Tris-buffered saline at
room temperature and then incubated with anti-beta-galactosidase rabbit polyclonal antibody (1:1000,
Cell Signaling Technology, 12713) at 4 °C overnight. The membranes were then incubated with
secondary antibody for 1 h. Protein bands were determined using an enhanced chemiluminescence

detection kit and photographed by a GE Amersham Imager 600 imaging system.

1.6 In vitro cytotoxicity assay

The cell cytotoxicity of DH-Mor-GSH and DH-Mor-$-Gal to Hela cells were measured by Cell
Counting Kit-8 (CCK-8) assay. Cells were plated in 96-well plates in 100 pL volume of DMEM
medium with 10% FBS, at a density of 5x103 cells/well and incubated with desired concentrations of
DH-Mor-GSH and DH-Mor-f-Gal for 24 h. 10 uL. CCK-8 solution was added into each well, and
further cultured for 1 h. The absorbance was measured at 450 nm with a Tecan GENios Pro
multifunction reader (Tecan Group Ltd., Maennedorf, Switzerland). Each concentration was measured
in triplicate and used in three independent experiments. The relative cell viability was calculated by

the equation: cell Vlablhty (%) = (OD treated'OD blank /OD control'OD blank) x 100%.

1.7 Confocal laser scanning microscopy
The Hela, OVCAR3 and HepG2 cells at 1x10° cells/well were seeded onto glass-bottom petri

dishes with complete medium (1.5 mL) for 6 h. Then the cells were exposed to desired concentration

S13



10 uM of DH-Mor-GSH for 30 min, 20 uM of DH-Mor-4-Gal for 1h. PBS (pH 7.4) was used to wash
cells for three times to clean the background. The images were then photographed by Leica TCS SP8
(63 x oil lens) with 405 nm as the excitation wavelength and 500-600 nm as the emission wavelength.
To test the photoresponse performance of the probe within cells, cells were irradiated with 450 and
561 nm laser cycles in a dark room and photographed under a microscope, and the irradiation was

repeated for at least three cycles.

1.8 STORM imaging protocol

Super-resolution STORM imaging was performed on a Nikon N-STORM microscope equipped
with an Ti2-E inverted microscope, an Apochromat TIRF 100 x oil immersion lens with a numerical
aperture of 1.49 (Nikon), an electron-multiplying charge-coupled device (EMCCD) camera (iXon3
DU-897E, Andor Technology), a quad band filter composed of a quad line beam splitter
(zt405/488/561/640rpc TIRF, Chroma Technology Corporation), and a quad line emission filter
(bright line HC 446, 523, 600, 677, Semrock, Inc.). Lasers used in experimental procedures: 488
Arlaser (50 mW: Melles Griot). The focus was kept stable during acquisition using a Nikon focus
system. During the imaging experiment, the fluorescence state was reversibly turned on and off under
visible light 488nm continuous to collect cell images, after acquiring 5000 frames (30 ms per frame),
the Gauss algorithm was used to reconstruct the images. To image intracellular GSH or f-Gal, cells
(on a glass bottom cell culture plate) were stained with DH-Mor-GSH (10 uM) for 30 min (DH-Mor-/-
Gal (20 uM) for 60 min), followed by three washes with PBS buffer, finally, the cells were fixed with
4% PFA. Super-resolution images were reconstructed using the N-STORM analysis module of NIS-

Elements Ar.

1.9 Data analysis

We used Image J to calculate average fluorescence intensity of different cells. For localization
number density, we reconstructed the raw image data using Nikon N-STORM Analysis Software. The
area of the cell was measured by setting the scale in Image J. Then the localization density could be
calculated by dividing the total localization number by the cell area. Analyzed cells were obtained
from three replicates. Statistical significances and sample sizes in all graphs are indicated in the

corresponding figure legends.
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1.10 The preparation of PSt-b-PEQO block copolymer micelles

The amphiphilic block copolymer PSt;g-b-PEO;;x and DHs were initially dissolved in
chloroform at a concentration of 10 mg/mL and 1.0 mg/mL, respectively. After complete dissolution,
0.1 mL solution of block copolymer PSt;g-b-PEO; and 0.02 mL solution of DHs were mixed with
I mL of SDS aqueous solution (1.0 mg/mL). After assuring a homogeneous mixture, chloroform was
evaporated slowly in the atmosphere in 24 h. The residue solution was centrifuged at 5000 rpm for 10

minutes and the precipitate was dispersed in water affording cylindrical micelles.!

1.11 The fluorescence quantum yield measurement

The relative fluorescence quantum yields (®,) were determined by a standard method?-3, which
involves measuring the sample's emission efficiency against a reference compound with a known
quantum yield. The relative quantum yield was calculated using the following formulas. The excitation
wavelength for fluorescence is 405 nm.

@, = @, x (F,/F,) x (AJA,).

@: fluorescent quantum yield; F: fluorescence integral region; A: absorbance; u: sample; s: reference
compound. Reference Compound: Rhodamine 6G (@, = 95% in water).
Procedure: a) Measure Absorbance: use a UV-Vis spectrophotometer to measure Ag and A, at . b)
Record Fluorescence Emission Spectra: Collect emission spectra for both sample and reference under
identical conditions (slit widths, detector gain, scan speed). ¢) Fluorescence Integral Region: Integrate

the area under the emission curve (F, and F;). d) Calculate the quantum yield according to formula.

1.12 The photoisomerization quantum yield measurement

Photochromic quantum yields were measured according to the standard procedure reported in
previous literatures*>. The experimental steps are as follows:

For the photocyclization quantum yields (irradiation wavelength: 365 nm and 450 nm) of DHs,
potassium ferrioxalate (K;[Fe(C,04);]) was used as reference compound. 2 mL. DMSO solution of
open form DHs (1x10* M, 2x104 M, 3x104 M) was irradiated with the same light source, and the
absorption changes at detection wavelength was measured immediately. Time-resolved absorption
spectra were recorded using a Maya2000 spectrometer with SpectraSuite software, with a

measurement interval of 0.1 s. The photocyclization quantum yields can be calculated via formula 1.
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dA
—x |/

dt
b =

0o-c¢ (1_10—lceo_i) P IO

1

dAvdt is the change rate of absorbance upon irradiation at excitation wavelength (Figure S4-S6), which
was obtained by linearly fitting the time-resolved absorption diagram at the early stage of the reaction
(5% of conversion rate) to avoid the interference of photoproducts/inner filter effects; V" is the volume
of liquid to be measured; / is the optical range; c is the initial concentration of the open form of DHs;
&o.i 18 the molar extinction coefficients of the open form at the wavelengths of the excitation light; &4
is the molar extinction coefficients at the detection wavelength (the detection wavelength at the Ayax
of the closed form) of the closed form; I is the light intensity (the error of direct measurement of [ is
generally high, thus the reference compound K;[Fe(C,04);] can be introduced for parallel experiments
to invert the /).
Reference compound K;[Fe(C,04);] : 1) 2 mL of 0.006 M (for 365 nm) or 0.012 M (for 450 nm)
K;[Fe(C,04)5] solution in 0.05 M H,SO, was irradiated for 180 s; ii) 0.5 mL phenanthroline (0.1 wt %
in 0.05 M H,SO, / 1.6M NaOAc) were added; iii) For K;[Fe(C,04)5], the detection wavelength is set
at 510 nm, €519, 18 11100 M! cm!, @, is the quantum yield at the irradiation wavelength (1.21 for
365 nm and 1.07 for 450 nm).

For the photocycloreversion quantum yields (irradiation wavelength: 600 nm) of DHs,
aberchrome 670 was used as reference compound. The test method is similar to the calculation of
photocyclization quantum yields. The photocycloreversion quantum yields can be calculated via

formula 2.

dA

—x

dt
cI)C—0= l

(1-10 "N s g _yx 1, )

dAsdt is the change rate of absorbance upon irradiating at excitation wavelength; V" is the volume of
liquid to be measured,;/ is the optical range, c is the initial concentration of the closed form of DHs,
& 1s the molar extinction coefficients of the closed form at the wavelengths of the excitation light; .4
is the molar extinction coefficients at the detection wavelength (the detection wavelength at the Amax

of the closed form) of closed form; I, is the light intensity (the error of direct measurement of I is
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generally high, thus the reference compound aberchrome 670 can be introduced for parallel
experiments to invert the /).

Reference compound aberchrome 670: i) 2 mL aberchrome 670 solution (10* M in toluene) was
irradiated with 365nm light; ii) irradiated it back with 600 nm light, iii) measuring the absorbance at
519 nm before and after the 600 nm light irradiation. For aberchrome 670, the detection wavelength is
set at 519 nm, €519y is 7760 M! cm™!, @, is the quantum yield at the irradiation wavelength (0.15
for 600 nm).

Three independent dilutions were made with a concentration of 1x10* M, 2x10* M, 3x10* M in
DMSO. As show in Figure S4-S6, we calculate the d4/dt (dA/dt can be obtained by linearly fitting the
A-t diagram at the early stage of the reaction) for three samples with different concentrations, and the
corresponding photochromic quantum yields are calculated by the formula (Table S1-S3), and the final

values presented in Table 1 are the average of three measurements.

1.13 The fatigue resistance measurement

DH, DH-OMe, DH-Mor were diluted in DMSO to the concentration of 10 uM, respectively,
then exposed to the light (Hamamatsu, LC8 Lightningcure, 200 W) with magnetic stirring the
solutions. The absorption spectrum was recorded at the beginning and regular time intervals. The

photostability experiment was repeated ten times independently.®
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2. Supporting Figures
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Figure S1. (a) Absorption changes of DH, DH-OMe, and DH-Mor at 640 nm upon alternate

irradiation with 450 nm and 600 nm for 10 cycles.
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Figure S2. Absorption (a) and fluorescence (b) spectra of DH (4, = 390 nm) under irradiation of

visible light (4 =450 nm) in DMSO solution. Inset images show the color changes.
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Figure S3. Absorption (a) and fluorescence (b) spectra of DH-OMe (Aex = 390 nm) under irradiation

of visible light (4 =450 nm) in DMSO solution. Inset images show the color changes.
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Figure S4. Absorption changes of DH in DMSO solution upon irradiation at different wavelengths.
(a) Irradiated at 365 nm. (b) Irradiated at 450 nm. (c) Irradiated at 600 nm. The absorption was

monitored at 640 nm for all experiments (a-c).
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Figure S5. Absorption changes of DH-OMe in DMSO solution upon irradiation at different
wavelengths. (a) Irradiated at 365 nm. (b) Irradiated at 450 nm. (¢) Irradiated at 600 nm. The absorption

was monitored at 640 nm for all experiments (a-c).
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Figure S6. Absorption changes of DH-Mor in DMSO solution upon irradiation at different
wavelengths. (a) Irradiated at 365 nm. (b) Irradiated at 450 nm. (¢) Irradiated at 600 nm. The absorption

was monitored at 640 nm for all experiments (a-c).
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Table S1. Photocyclization and photocycloreversion quantum yields data of DH

Photocyclization Photocycloreversion
Compound
ArPl [nm] ¢ [mol L' ®a %]  Podl[%] AP’ [nm]  c[mol L] @ d[%]  De.old[%]
1x10* 35
1x10* 7.1
365 2>< 10-4 37 37
3x10+ 39
1x104 25 '
450 2% 10-4 27 27
3x10+ 8.1
3x104 28

Table S2. Photocyclization and photocycloreversion quantum yields data of DH-OMe

Photocyclization Photocycloreversion
Compound
AT [nm] - c[mol L] ®odd[%] Do cl[%] A [nm] - c[mol L] ®coli[%] Do [%)]
1x10 35
1x104 53
365 2>< 10-4 40 40
3x104 44
DH-OMe 600 %104 52 5.5
1104 26 '
450 2% 10-4 29 29
3x10* 5.9
3x104 31

Table S3. Photocyclization and photocycloreversion quantum yields data of DH-Mor

Photocyclization Photocycloreversion
Compound
Airr[b] [nm] c [m0| L1] (Do-c[c] [%] q)o-c[c] [%] Airr[b] [nm] c [m0| L-1] ch-o[d] [%] (Dc-o[d] [O/O]
1x104 43
1x10* 2.1
365 2>< 10-4 38 42
3x104 44
DH-Mor 600 2x1 0-4 23 2.3
1x10* 34 '
450 2)( 10-4 36 36
3x104 2.6
3x10* 39

S20



Absorbance

0.5 | Iradiation at 450nm » DH
2 + DH-OMe
»  DH-Mor
0.4 i
0.3
/
024 /
{
1 ¢
I
014
0.0~ W z] = T - T T
0 50 100 150 200

Time (s)

Figure S7. Absorbance variation curves of open form of DH, DH-OMe, and DH-Mor over the

irradiation time of 450 nm visible light in DMSO solution.
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Figure S8. Absorption (a) and fluorescence (b) spectra of DH-Mor (4ex = 390 nm) under irradiation of
visible light (A = 450 nm) in aqueous PBS buffer solution (co-solubilized with 1% DMSO). (c)

Fluorescence changes of DH-Mor in aqueous PBS buffer solution (co-solubilized with 1% DMSO) at

550 nm upon alternate irradiation with 450 nm and 561 nm for 10 cycles.
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Figure S9. (a) Absorption and (b) fluorescence spectra of DH-Mor-GSH (10 uM) in PBS/DMSO
solution (1: 9, v/v) upon 450 nm irradiation. (¢) Absorption and (d) fluorescence spectra of DH-Mor-

GSH (10 uM) in PBS/DMSO solution (1: 9, v/v) after adding GSH upon 450 nm irradiation.
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Figure S10. The photocyclization reaction yields of DHs estimated by comparing 1HNMR before and
after 365 nm or 450 nm irradiation. The chemical shift of the methyl groups on the thiophene rings in
o-DH-Mor and c-DH-Mor are 1.99 ppm and 2.22 ppm (o-DH: 2.00 ppm, c-DH: 2.22 ppm, o-DH-OMe:
1.96 ppm, c-DH-OMe: 2.18 ppm). By comparing their integration area values, the photocyclization
reaction yield of DH-Mor upon 450 nm laser irradiation was calculated to be at least 93% (>99% upon
365 nm laser irradiation). the photocyclization reaction yield of DH upon 450 nm laser irradiation was
calculated to be at least 62% (>93% upon 365 nm laser irradiation). The photocyclization reaction
yield of DH-OMe upon 450 nm laser irradiation was calculated to be at least 69% (98% upon 365 nm

laser irradiation).
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Figure S13. Confocal imaging of OVCAR3 cells indubated with DH-Mor-f#-Gal (20 uM) for 60 min.

450 nm — Fluorescence turn-off

Scale bar: 50 um

561 nm <— Fluorescence turn-on

Figure S14. Photoactivation and photobleaching behaviors in fixed OVCAR3 cells recorded by

confocal laser scanning microscopy. Scale bar: 20 pm
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Figure S15. (a) Confocal imaging of DH, DH-OMe, DH-Mor in block polymer PSt;g-b-PEO 1.

Scale bar: 10 um. (b) Fluorescence intensity of block polymer of DH-Mor (b), DH-OMe (c), DH (d),

under 488 nm laser irradiation. Data are shown as mean + s.d. with n = 3.
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Figure S16. Conventional fluorescence image and super resolution imaging of PSt;g,-b-PEO; i block
polymer micelles labeled with DH (a), DH-OMe (c), DH-Mor (e). Scale bars, 5 um. The cross-
sectional profiles of conventional fluorescence and super resolution image of DH (b), DH-OMe (d),

DH-Mor (f).
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Figure S17. Fourier ring correlation (FRC) curve of the localizations presented in Figure S15 of super
resolution imaging: (red line) a smoothed FRC curve and (blue line) a resolution threshold criterion
1/7 (= 0.143). The spatial resolution of the super-resolved image is calculated from the intersection
between the FRC and the threshold, resulting in a value of about 70 nm of Figure S15 a, 64 nm of

Figure S15 ¢, 63 nm of Figure S15 e.

Conventional imaging Confocal imaging STORM imaging

Figure S18. Conventional wide-field, confocal and STORM imaging of the Hela cells incubated
with DH-Mor-GSH (10 uM) for 30 min. Scale bars, 2 um.

Wide-field

Figure S19. (a) Wide-field and (b) STORM images of the OVCAR3 cell incubated with DH-Mor-4-
Gal (20 uM) for 60 min. Scale bars, 5 um.
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Figure S21. (a) Confocal images of endogenous f-Gal level in Hela, HepG2, OVCAR3 cells
determined by DH-Mor-f-Gal (20 uM) staining for 60 min. Scale bars, 10 um. (b) Quantified

fluorescence intensities of cells as represented in confocal images of endogenous f-Gal level in Hela,

HepG2, OVCARS cells.
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Figure S22. (a) Confocal images of endogenous GSH level in OVCAR3, HepG2, Hela cells
determined by DH-Mor-GSH (10 uM) staining for 30 min. Scale bars, 10 um. (b) Quantified
fluorescence intensities of cells as represented in confocal images of endogenous GSH level in

OVCAR3, HepG2 and Hela cells.
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Figure S23. (a) STORM images of endogenous GSH level in Hela, HepG2 and OVCAR3 cells
determined by DH-Mor-GSH (10 uM) staining for 30 min. Scale bars, 4 pm. Scale of enlarged area,
2 um. (b) The number of GSH localizations per um? on cells as represented in panel (a). Error bars

represent standard deviation, n= 3.
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3. Characterization of compounds
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Figure S24. "H NMR spectrum of M5 in CDCl;,
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Figure S25. 3C NMR spectrum of M5 in DMSO-dj,
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S35



8GLT
0Ll2-
8le

Ay
069'E,
969y
189
Lzre!

L60'G—

Rm‘m
mmm.mp»
8899
okL9
CE]
268’9
1989
ri89!

o

6.50

6.65
ppm

'6.80

6.35

6.95

L9

|

o

1

0.0

10 05

20 15

25

30

35

4.0

45

50

55

6.0

b
6.5

7.0

80 75

85

ppm

Figure S34. 'H NMR spectrum of M7 in DMSO-d;

69906 —

5999

voFoLL
mmv.mrrw
veEFLLL
Pras i ARgs
mnm‘ww_v\v

689°CYL~
868°€Fl

NH;

SH

o]

20

40

70

110

140 130

150

ppm

Figure S35. 3C NMR spectrum of M7 in DMSO-dj

S36



60E’L—

ozt
14>
8zt
€9L'¢
whh.mW
181°¢

65Z°L
08Z'L

SEEL”
16SL—
1881~
606'L”
2018

th.

86€° L —

84 8280787674727068

i

ppm

\O
~ — e
1
=
.E £0L 6P —
[—]
=
G 61899—
o
£ o 96078 —
< 9]
o
v
z 9z+'90L —
T 606'9LL
. mﬁ.mzﬂ
86 ZTLA
% LGE'ETL~
wn EN.mmJ\s
LIVIZL
5]
S 0L ¥EL—
=
&N
1
= 1€8°GPL—
TEFBYL—
LEL'9GL—
580°99L—

X

o]

N

HO

N
1L
N S

O

20

30

T

40

50

60

80 70
ppm
Figure S37. 3C NMR spectrum of M10 in CDCl;,

50 150 140 130 120 110 100 90

160

170

10

S37



S00C—

\w Fore

— 1 fio

9r9Zl—

ppm

= oL
= ~go'L
M 1660

J“_‘o‘—
00’k

. _meo

oy

ppm

Figure S38. '"H NMR spectrum of DH in CDCl;

el —

24 =TTR
mhm.fmf,
m.mo‘wwf.f
LYLETEN

(AR AR
£

150'9z1 \
vZ6'9ZL \
£LO'6EL
BLGZEL
E‘Sm%
89E°LEL
060 L1
9z9'zhl

felera 0
LGl w—fﬁ

682961 —

119'89L—

170 160 150 140 130 120 110 100 90

180

0

10

70 680 50 40 30 20

80

ppm

Figure S39. 3C NMR spectrum of DH in CDCl;

S38



156'L—

olee—

625¢CL—

—
B
—_— g0’
12
1=
P
Imw/ ~
IR
fu ‘m - =l0'E
Iz
lfn E
{feg
j e
— [~
RS
~
I
~
= |
1~
| Le
| ©
&_.o.w
Sm et
=
b
— u,.m@.o
00'L
- EP6°0

10

1

12

13

ppm

OMe in CDCl;

Figure S40. '"H NMR spectrum of DH

ELLyL—

10666 —

LETHOL—

1SLTLE
beoaLL
mom.m:&«
01291k

09LeCLF
EEGEZL
020°9Z4 .\
vegcL
910FELY,
Lsreel’
232.\\\
szreyl,
szeert

JLEVIIEN
9518947

860991

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 O

170

80

ppm

Figure S41. 3C NMR spectrum of DH-OMe in CDCl;

S39



102~

oot
£iTe

vicT
€9L'E
SLLE
18LE

8LLM—

838179 7775 73 71 69

ppm

A

-

Feoe

oL
Krtu 3
=01
=001

=660

reN

"

ppm

Figure S42. '"H NMR spectrum of DH-Mor in DMSO-d;

6eLYl—

I8y —

LLL99—

800711
zEL 7L
8591
L0021
£0r Tz,
esreel
S05°E21
9209z}
£v9'821
PGLZEL \
Lor el
809°9€ 1
avzLvl
SovZrL
aLe°crL

BB LEL—

50 150 140 130 120 110 100

160

170

80 70 60 50 40 30 20 10

90

80

ppm

Figure S43. 3C NMR spectrum of DH-Mor in CDClj;

S40



le0e—

l6L'e—

Li8Ee—

ppm

| JMM_,JUML_

LS A A B N B B B B

83 817977 7573716967

0 25 20 15 10 05 00

3.0

5 80 75 7.0 65 60 55 50 4

8.5

9.0

1.0 05

2.0

50 45 40 35

ppm

Figure S44. "H NMR spectrum of DH-Mor-GSH in CDCl;

Legel

SrTer—

£r9'69—

189°GHE
125811
EEV0ZL
1E9CCl
B6SSEThY
9zt vzl
P8 PZLAL
LLLSTLF
BrCSZL
Lrezs
5G8'0EL
16t LEL
SoLEel
ErOGEL]
099'9E L
9EE'gEL ]
06t Trl
8LLGHL
088'9L |
625'8vL

w
ﬁ

0

20

40

50

140 130 120 110 100 90 80 70

150

160

ppm

Figure S45. 3C NMR spectrum of DH-Mor-GSH in CDCl;

S41



.

I

T T T T

6.8

86 83 80 77 74 71

ppm

Ju

'
.,

Fere

Uy

kot
¥20'9
¥Sl'l

€0
280
=50}
-£0'}
=40}

=o'
280}
2002
Ao

=101

Bl

T T T T T r T T T T T T T 1.r5 1lr0 0j5 UiO

T

T

90 85 80 75 70 65 60 55 50 45 40 35 30 25 20

ppm

-f-Gal in DMSO-d,

Figure S46. '"H NMR spectrum of DH-Mor

YoL'vl—

18€'6Y—

8¥6'09—
€.5'99

—Nw.me
YSL0L~
160vL~
9lP9L~

L2G'101L—
0Z0'90L—

LPO'ZThEA
oz.m:/
z8ELL
z6heehy
ZEOETL~
wt.wmr\\\
204521

866217

£65°GEL
zreeL”
omnSC\\
9642yt
968 GYL,
£6¥'611

881651~
B6EG'BGL

130 120 110 100

140

150

160

170

80 70 60 50 40 30 20 10
ppm

90

Figure S47. 3C NMR spectrum of DH-Mor-£-Gal in DMSO-d,

S42



ZW-LFH-0531 #35-39 RT: 0.18-0.20 AV: 5 NL: 7.03E5
T: FTMS - p ESI Full ms [100.0000-1500.0000]

100+
20
80—

817.0558

70+
60
50
40—
30
20+

819.0541

Relative Abundance

10
0 789.8570 8121150 ‘ 831.0721
— — T -

845.7495 859.9295
—— H s —t
770 780

—T T —
800 810 820 830 840 850 860 870
miz

L
790

ZW-LFH-0531#35-39 RT: 0.18-0.20 AV: 5
T: FIMS - p ESI Full ms [100.0000-1500.0000]
m/z= 815.97-820.30
m/z Intensity Relative Theo. Mass Delta Composition
(ppm)
817.0558 711327.8| 100.00 817.0562 -0.42 C39H24 ON4 FsKNa S3

Figure S48. Mass spectrum of DH
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Figure S49. Mass spectrum of DH-OMe
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Figure S50. Mass spectrum of DH-Mor
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Figure S51. Mass spectrum of DH-Mor-GSH
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