Supporting Information

Single-Carbon-Atom Transfer to *para*-Quinone Methides from TMSCF₂Br

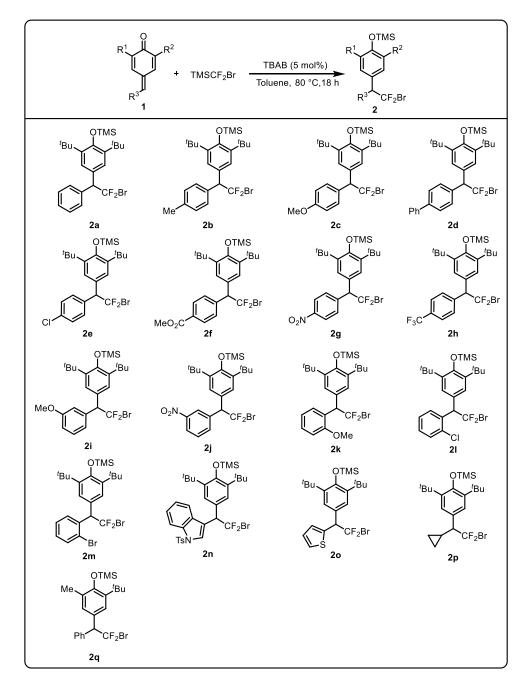
Ruikang Sun,^{‡,a} Zhang Pei,^{‡,a} Yong Yan,^a Jie Zhu,^a Qirui Chen,^a Chi Yang,^b Aijun Lin,^a Xuanyi Li,^a Shang Gao^{*,a} and Hequan Yao^{*,a}

^aState Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China ^bAnhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China

*E-mail: gaoshang1990@cpu.edu.cn; hyao@cpu.edu.cn.

Content

1.	General Information	2
2.	General Procedure for the Synthesis of <i>p</i> -QMs Derivatives	3
3.	General Procedure A for the Synthesis of Monofluoroalkenes 5	5
4.	Intermolecular S _N V Reaction with 5aa	11
5.	One-pot Reaction for the Synthesis of tetra-Substituted Alkene 6b	15
6.	Optimization of Reaction Parameters for the Synthesis of 9aa	16
7.	General Procedure B for the Synthesis of Product 9	
8.	Gram-scale Reaction for the Synthesis of 9aa	
9.	One-pot Reaction for the Synthesis of 9aa and 9ka	
10.	Transformations of the Products	
11.	Control Experiments	
12.	Calculation Studies	
13.	Crystal Structure of Product 10	40
14.	¹ H, ¹³ C and ¹⁹ F NMR Spectra of Title Compounds	41


1. General Information

Reagents and Solvents: PE refers to petroleum ether b. p. 60-90 °C, EA refers to ethyl acetate, and DCM refers to dichloromethane. All other starting materials and solvents were commercially available and were used without further purification unless otherwise stated.

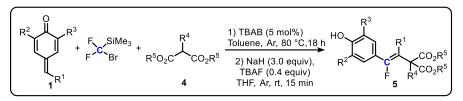
Chromatography: Flash column chromatography was carried out using commercially available 200-300 mesh under pressure unless otherwise indicated. Gradient flash chromatography was conducted eluting with PE/EA or DCM/MeOH, they were listed as volume ratios.

Data collection: ¹H, ¹³C and ¹⁹F NMR spectra were collected on BRUKER AV-300 (300 MHz) spectrometer using CDCl₃ or DMSO-*d*₆ as solvent. Chemical shifts of ¹H NMR were recorded in parts per million (ppm, δ) relative to tetramethylsilane (δ = 0.00 ppm) with the solvent resonance as an internal standard (CDCl₃: δ = 7.26 ppm, DMSO-*d*₆: δ = 2.50 ppm). Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, brs = broad singlet, m = multiplet), coupling constant (Hz), and integration. Chemical shifts of ¹³C NMR were reported in ppm with the solvent as the internal standard (CDCl₃: δ = 77.16 ppm). High Resolution Mass measurement was performed on Agilent Q-TOF 65451 mass spectrometer with electron spray ionization (ESI) as the ion source. Melting point (m. p.) was measured on a microscopic melting point apparatus. X-ray diffraction analyses were carried out on a microcrystalline powder using a Rigaku Oxford Diffraction XtaLAB Synergy-S diffractometer using Mo radiation (λ = 0.71073 Å).

2. General Procedure for the Synthesis of *p*-QMs Derivatives

The *p*-QMs Derivatives 2a - 2q were prepared according to the reported literature procedures.¹

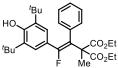
Figure S1. Synthesis of *p*-QMs Derivatives 2


To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added *p*-QMs (1.0 mmol, 1.0 equiv) and TBAB (16 mg, 0.05 mmol, 5 mol %). Then the Schlenk tube was evacuated and filled with argon for three times. After that, TMSCF₂Br (406.2 mg, 2.0 mmol, 2.0 equiv) dissolved in toluene (2.0 mL) was added

^[1] J. Zhu, M. Xu, B. Gong, A. Lin, S. Gao, Org. Lett. 2023, 25, 3271.

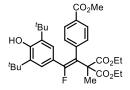
under argon atmosphere via a syringe. The reaction mixture was stirred at 80 °C in oil bath for 18 h. After completed consumption of starting material, the resulting mixture was then poured into ice water (5 mL), extracted with EA (3×5 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the crude material was purified by flash chromatography on silica gel (PE) to afford the desired product 2a - 2q.

3. General Procedure A for the Synthesis of


Monofluoroalkenes 5

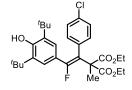
To an oven-dried 10-mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added *p*-QMs **1** (0.5 mmol, 1.0 equiv) and TBAB (8.0 mg, 0.025 mmol, 5 mol %), then the Schlenk tube was evacuated and filled with argon for three times. After that, TMSCF₂Br (203.1 mg, 1.0 mmol, 2.0 equiv) dissolved in toluene (1.0 mL) was added under argon atmosphere via a syringe. The reaction mixture was stirred at 80 °C in oil bath for 18 h to afford the toluene solution of crude intermediate.

To another oven-dried 10-mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 60% NaH (60.0 mg, 1.5 mmol, 3.0 equiv), then the Schlenk tube was evacuated and filled with argon for three times. After that, anhydrous THF (0.5 mL) and 4 (1.0 mmol, 2.0 equiv, dissolved in 0.5 mL THF) was added under argon atmosphere via a syringe. After stirred for 30 min at room temperature, the toluene solution of crude intermediate was added, and then TBAF (0.2 mmol, 0.4 equiv, 1 M solution in THF) was dropped slowly under argon atmosphere stirred for 15 min at room temperature. When the starting material was completely consumed, saturated solution of NH₄Cl (5 mL) was slowly added to quench the reaction. The reaction mixture was extracted with EA (3 × 10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford the corresponding product **5**.


diethyl (Z)-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-fluoro-1-phenylvinyl)-2-meth ylmalonate (5aa)

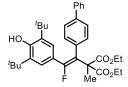
Prepared through general procedure A to give **5aa** in 187.0 mg, 75% yield, white solid, **m.p.** 120 – 122 °C, $R_f = 0.45$ (PE/EA = 10/1). ¹H NMR (**300 MHz, CDCl**₃) δ 7.32 – 7.19 (m, 5H), 6.94 (s, 2H), 5.27 (s, 1H), 4.12 (q, J = 7.2 Hz, 4H), 1.65 (s, 3H), 1.22 – 1.17 (m,

24H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 156.4 (d, ¹*J* = 252.4 Hz), 154.2, 136.6 (d, ³*J* = 8.4 Hz), 135.0, 130.8 (d, ⁴*J* = 3.1 Hz), 128.6, 127.6, 125.3 (d, ³*J* = 7.6 Hz), 123.0 (d, ²*J* = 28.2 Hz), 117.8 (d, ²*J* = 19.5 Hz), 61.6, 58.8, 34.3, 30.1, 22.0 (d, ⁴*J* = 3.1 Hz), 14.0 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 96.19 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₀H₃₉FO₅ – H]⁻ 497.2709, found 497.2701.


diethyl (Z)-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-fluoro-1-(4-(methoxycarbony l)phenyl)vinyl)-2-methylmalonate (5ba)

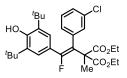
Prepared through general procedure A to give **5ba** in 167.0 mg, 60% yield, colorless oil, $R_f = 0.2$ (PE/EA = 10/1). ¹H NMR (300 MHz, **CDCl3**) δ 7.97 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.3 Hz, 2H), 6.91 (s, 2H), 5.31 (s, 1H), 4.12 (q, J = 7.2 Hz, 4H), 3.91 (s, 3H), 1.67 (s, 3H), 1.22 – 1.18 (m, 24H) ppm. ¹³C NMR (75 MHz, CDCl3) δ

170.5, 166.4, 156.5 (d, ${}^{1}J$ = 254.5 Hz), 154.1, 141.5 (d, ${}^{3}J$ = 8.5 Hz), 134.8, 130.6 (d, ${}^{4}J$ = 3.0 Hz), 129.4, 128.8, 125.0 (d, ${}^{3}J$ = 7.1 Hz), 122.2 (d, ${}^{2}J$ = 28.2 Hz), 116.7 (d, ${}^{2}J$ = 20.4 Hz), 61.4, 58.2, 51.9, 33.9, 29.6, 21.7 (d, ${}^{4}J$ = 2.6 Hz), 13.6 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 93.54 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₂H₄₁FO₇ – H]⁻ 555.2764, found 555.2768.


diethyl (Z)-2-(1-(4-chlorophenyl)-2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-fluorovin yl)-2-methylmalonate (5ca)

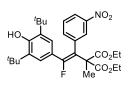
Prepared through general procedure A to give **5ca** in 177.9 mg, 67% yield, yellow solid, **m.p.** 78 – 80 °C, $R_f = 0.35$ (PE/EA = 10/1). ¹H **NMR (300 MHz, CDCl3)** δ 7.44 (d, J = 8.5 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.08 (s, 2H), 5.50 (s, 1H), 4.30 (q, J = 7.1 Hz, 4H), 1.83 (s, 3H), 1.41 (s, 18H), 1.37 (t, J = 7.1 Hz, 6H) ppm. ¹³C **NMR**

(75 MHz, CDCl₃) δ 171.0, 156.8 (d, ¹*J* = 252.4 Hz), 154.4, 135.3, 135.2, 133.7, 132.3 (d, ⁴*J* = 3.4 Hz), 128.8, 125.3 (d, ³*J* = 7.3 Hz), 122.7 (d, ²*J* = 28.0 Hz), 116.7 (d, ²*J* = 20.0 Hz), 61.7, 58.6, 34.3, 30.0, 22.0 (d, ⁴*J* = 3.3 Hz), 14.0 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 94.43 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₀H₃₈ClFO₅ – H]⁻ 531.2319, found 531.2310.


diethyl (Z)-2-(1-([1,1'-biphenyl]-4-yl)-2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-fluor ovinyl)-2-methylmalonate (5da)

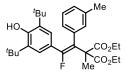
Prepared through general procedure A to give **5da** in 163.8 mg, 57% yield, white solid, **m.p.** 96 – 98 °C, $R_f = 0.4$ (PE/EA = 10/1). ¹H **NMR (300 MHz, CDCl₃)** δ 7.18 – 7.14 (m, 4H), 7.09 – 7.04 (m, 2H), 7.00 – 6.91 (m, 3H), 6.62 (s, 2H), 4.92 (s, 1H), 3.78 (q, J = 7.1 Hz, 4H), 1.35 (s, 3H), 0.90 – 0.81 (m, 24H) ppm.¹³C **NMR (75**

MHz, CDCl₃) δ 171.2, 156.4(d, ¹*J* = 251.3 Hz), 154.2, 141.0, 140.7, 135.7 (d, ³*J* = 8.4 Hz), 135.1, 131.2 (d, ⁴*J* = 2.9 Hz), 128.9, 127.4, 127.1, 125.2 (d, ³*J* = 7.8 Hz), 123.0 (d, ²*J* = 28.1 Hz), 117.4 (d, ²*J* = 19.5 Hz), 61.7, 58.8, 34.3, 30.0, 22.1 (d, ⁴*J* = 3.0 Hz), 14.0 ppm. ¹⁹F **NMR (282 MHz, CDCl₃)** δ – 96.35 ppm. **HRMS (ESI)** *m/z* Calcd for [C₃₆H₄₃FO₅ – H]⁻ 573.3022, found 573.3029.


diethyl (Z)-2-(1-(3-chlorophenyl)-2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-fluorovin yl)-2-methylmalonate (5ea)

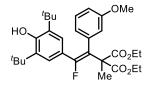
Prepared through general procedure A to give **5ea** in 207.9 mg, 78% yield, white solid, **m.p.** 101 – 103 °C, $R_f = 0.45$ (PE/EA = 10/1). ¹H NMR (300 MHz, CDCl₃) δ 7.26 – 7.21 (m, 3H), 7.14 – 7.08 (m, 1H), 6.95 (s, 2H), 5.34 (s, 1H), 4.14 (q, J = 7.1 Hz, 4H), 1.67 (s, 3H), 1.29 – 1.19 (m, 24H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ

170.9, 156.9 (d, ${}^{1}J$ = 252.4 Hz), 154.5, 138.6 (d, ${}^{3}J$ = 8.7 Hz), 135.2, 134.4, 130.9 (d, ${}^{4}J$ = 3.3 Hz), 130.0, 129.0 (d, ${}^{4}J$ = 3.1 Hz), 127.8, 125.3 (d, ${}^{3}J$ = 7.6 Hz), 122.5 (d, ${}^{2}J$ = 27.9 Hz), 116.6 (d, ${}^{2}J$ = 20.3 Hz), 61.8, 58.7, 34.3, 30.0, 22.0 (d, ${}^{4}J$ = 3.1 Hz), 14.0 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 94.52 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₀H₃₈ClFO₅ – H]⁻ 531.2319, found 531.2311.


diethyl (Z)-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-fluoro-1-(3-nitrophenyl)viny l)-2-methylmalonate (5fa)

Prepared through general procedure A to give **5fa** in 171.6 mg, 63% yield, white solid, **m.p.** 108 – 110 °C, $R_f = 0.3$ (PE/EA = 10/1). ¹H **NMR (300 MHz, CDCl₃)** δ 8.15 – 8.10 (m, 2H), 7.60 – 7.56 (m, 1H), 7.49 (t, J = 7.8 Hz, 1H), 6.89 (s, 2H), 5.36 (s, 1H), 4.15 (q, J = 7.2 Hz, 4H), 1.72 (s, 3H), 1.26 – 1.18 (s, 24H) ppm. ¹³C **NMR**

(75 MHz, CDCl₃) δ 170.7, 158.0 (d, ¹*J* = 255.3 Hz), 154.7, 148.3, 138.9 (d, ³*J* = 9.0 Hz), 137.3 (d, ⁴*J* = 3.0 Hz), 135.5, 129.5, 126.0 (d, ⁴*J* = 3.3 Hz), 125.6 (d, ³*J* = 6.6 Hz), 122.5, 122.2 (d, ²*J* = 27.8 Hz), 116.1 (d, ²*J* = 21.2 Hz), 62.0, 58.6, 34.3, 30.0, 22.2 (d, ⁴*J* = 3.6 Hz), 14.0 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 90.92 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₀H₃₈FNO₇ – H]⁻ 542.2560, found 542.2572.

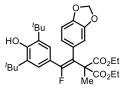

diethyl (Z)-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-fluoro-1-(m-tolyl)vinyl)-2-me thylmalonate (5ga)

Prepared through general procedure A to give **5ga** in 130.3 mg, 51% yield, yellow solid, **m.p.** 110 – 112 °C, $R_f = 0.4$ (PE/EA = 10/1). ¹H NMR (300 MHz, CDCl₃) δ 7.26 – 7.15 (m, 1H), 7.07 – 6.96 (m, 5H), 5.28 (s, 1H), 4.13 (q, J = 7.1 Hz, 4H), 2.29 (s, 3H), 1.63

(s, 3H), 1.28 – 1.18 (m, 24H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 171.3, 156.1 (d, ¹*J* = 250.4 Hz), 154.1, 138.1, 136.3 (d, ³*J* = 8.3 Hz), 134.9, 131.3 (d, ⁴*J* = 3.0 Hz), 128.6, 128.4, 127.7 (d, ⁴*J* = 3.0 Hz), 125.1 (d, ³*J* = 7.9 Hz), 123.0 (d, ²*J* = 28.3 Hz), 117.7 (d, ²*J* = 19.2 Hz), 61.6, 58.7, 34.2, 30.0, 22.0 (d, ⁴*J* = 2.8 Hz), 21.3, 14.0 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 97.08 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₁H₄₁FO₅ – H] ⁻ 511.2865, found 511.2867.

diethyl (Z)-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-fluoro-1-(3-methoxyphenyl)v inyl)-2-methylmalonate (5ha)

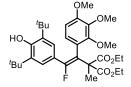
Prepared through general procedure A to give **5ha** in 148.6 mg, 56% yield, white solid, **m.p.** 88 – 90 °C, $R_f = 0.4$ (PE/EA = 10/1). ¹**H NMR (300 MHz, CDCl3)** δ 7.21 (t, J = 7.9 Hz, 1H), 6.99 (s, 2H), 6.82 – 6.74 (m, 3H), 5.30 (s, 1H), 4.15 (q, J = 7.1 Hz, 4H), 3.71 (s, 3H), 1.64 (s, 3H), 1.24 – 1.19 (m, 24H) ppm. ¹³C NMR


(75 MHz, CDCl₃) δ 171.2, 159.8, 156.3 (d, ¹*J* = 251.0 Hz), 154.2, 137.8 (d, ³*J* = 8.4 Hz), 135.0, 129.6, 125.1 (d, ³*J* = 7.5 Hz), 123.1 (d, ⁴*J* = 3.0 Hz), 123.0 (d, ²*J* = 28.1 Hz), 117.5 (d, ²*J* = 19.5 Hz), 116.3 (d, ⁴*J* = 3.1 Hz), 113.4, 61.6, 58.6, 55.3, 34.2, 30.0, 22.0 (d, ⁴*J* = 2.7 Hz), 13.9 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 96.35 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₁H₄₁FO₆ – H]⁻ 527.2814, found 527.2819.

diethyl (*E*)-2-(1-(2-chlorophenyl)-2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2fluorovinyl)-2-methylmalonate (5ia)

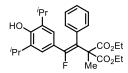
HO ^tBu t^{Bu} t^{Bu} t^{Bu} t^{Bu} t^{Cl} t^{CO}₂Et t^{CO}₂Et Prepared through general procedure A to give **5ia** in 151.9 mg, 57% yield, white solid, **m.p.** 96 – 98 °C, $R_f = 0.35$ (PE/EA = 10/1). ¹H **NMR (300 MHz, CDCl₃)** δ 7.38 – 7.35 (m, 1H), 7.28 – 7.17 (m, 3H), 6.99 (s, 2H), 5.29 (s, 1H), 4.26 (q, J = 7.0 Hz, 2H), 4.05 –

3.97 (m, 2H), 1.66 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H), 1.25 (s, 18H), 1.15 (t, J = 7.1 Hz, 3H) ppm. ¹³C **NMR (75 MHz, CDCl₃)** δ 171.2, 157.6 (d, ¹J = 255.0 Hz), 154.5, 136.1 (d, ⁴J = 2.9 Hz), 136.0 (d, ³J = 9.2 Hz), 135.2, 132.8 (d, ⁴J = 3.1 Hz), 129.7, 129.2, 127.0, 124.7 (d, ³J = 7.3 Hz), 122.9 (d, ²J = 28.3 Hz), 114.8 (d, ²J = 22.2 Hz), 61.7 (d, ⁴J = 4.5 Hz), 58.6, 34.3, 30.1, 21.5, 14.1, 13.9 ppm. ¹⁹F **NMR (282 MHz, CDCl₃)** δ – 93.06 ppm. **HRMS (ESI)** *m/z* Calcd for [C₃₀H₃₈ClFO₅ – H]⁻ 531.2319, found 531.2312.


diethyl (Z)-2-(1-(benzo[d][1,3]dioxol-5-yl)-2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-f luorovinyl)-2-methylmalonate (5ja)

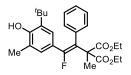
Prepared through general procedure A to give **5ja** in 188.6 mg, 69% yield, colorless oil, $R_f = 0.25$ (PE/EA = 10/1). ¹H NMR (**300 MHz**, **CDCl3**) δ 7.02 (s, 2H), 6.78 (d, J = 8.3 Hz, 1H), 6.72 – 6.70 (m, 2H), 5.93 (s, 2H), 5.34 (s, 1H), 4.18 (q, J = 7.1 Hz, 4H), 1.66 (s, 3H), 1.30 – 1.23 (m, 24H) ppm. ¹³C NMR (**75 MHz, CDCl3**) δ

171.2, 156.5 (d, ${}^{1}J$ = 251.1 Hz), 154.2, 147.7, 147.1, 135.0, 130.0 (d, ${}^{3}J$ = 8.9 Hz), 125.1 (d, ${}^{3}J$ = 7.9 Hz), 124.3 (d, ${}^{4}J$ = 3.3 Hz), 123.0 (d, ${}^{2}J$ = 28.1 Hz), 117.1 (d, ${}^{2}J$ = 20.2 Hz), 111.4 (d, ${}^{4}J$ = 3.4 Hz), 108.6, 101.0, 61.6, 58.7, 34.3, 30.1, 22.0 (d, ${}^{4}J$ = 2.9 Hz), 14.0 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 96.04 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₁H₃₉FO₇ – H]⁻ 541.2607, found 541.2615.


diethyl (Z)-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-fluoro-1-(2,3,4-trimethoxyph enyl)vinyl)-2-methylmalonate (5ka)

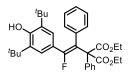
Prepared through general procedure A to give **5ka** in 209.1 mg, 71% yield, colorless oil, $R_f = 0.2$ (PE/EA = 5/1). ¹H NMR (**300 MHz**, **CDCl3**) δ 7.03 (s, 2H), 6.42 (s, 2H), 5.31 (s, 1H), 4.16 (q, *J* = 7.1 Hz, 4H), 3.82 (s, 3H), 3.74 (s, 6H), 1.67 (s, 3H), 1.27 (s, 18H), 1.22 (t, *J* = 7.2 Hz, 6H) ppm. ¹³C NMR (**75 MHz, CDCl3**) δ 171.1,

156.4 (d, ${}^{1}J = 251.7$ Hz), 154.2, 153.4, 137.5, 135.1, 132.1 (d, ${}^{3}J = 8.8$ Hz), 125.0 (d, ${}^{3}J = 7.6$ Hz), 123.0 (d, ${}^{2}J = 28.2$ Hz), 117.6 (d, ${}^{2}J = 20.0$ Hz), 107.9 (d, ${}^{4}J = 3.2$ Hz), 61.6, 60.8, 58.8, 56.2, 34.3, 30.1, 22.0 (d, ${}^{4}J = 3.0$ Hz), 14.0 ppm. ¹⁹F NMR (282 MHz, CDCl₃) $\delta - 96.50$ ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₃H₄₅FO₈ – H]⁻ 587.3026, found 587.3019.

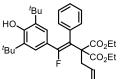

diethyl (Z)-2-(2-fluoro-2-(4-hydroxy-3,5-diisopropylphenyl)-1-phenylvinyl)-2-meth ylmalonate (5la)

Prepared through general procedure A to give **5la** in 180.0 mg, 76% yield, colorless oil, $R_f = 0.35$ (PE/EA = 10/1). ¹H NMR (300 MHz, CDCl₃) δ 7.29 – 7.19 (m, 5H), 6.78 (s, 2H), 5.08 (s, 1H), 4.12 (q, J = 7.1 Hz, 4H), 3.05 – 2.91 (m, 2H), 1.66 (s, 3H), 1.19 (t, J = 7.1

Hz, 6H), 1.00 (d, J = 6.9 Hz, 12H) ppm. ¹³C **NMR (75 MHz, CDCl₃)** δ 171.3, 156.3 (d, ¹J = 251.3 Hz), 150.4, 136.6 (d, ³J = 8.5 Hz), 132.9, 130.9 (d, ⁴J = 3.2 Hz), 128.6, 127.7, 124.1 (d, ²J = 28.7 Hz), 123.7 (d, ³J = 7.3 Hz), 117.9 (d, ²J = 19.1 Hz), 61.7, 58.8, 26.9, 22.5, 22.0 (d, ⁴J = 2.4 Hz), 14.0 ppm. ¹⁹F **NMR (282 MHz, CDCl₃)** δ – 96.24 ppm. **HRMS (ESI)** m/z Calcd for [C₂₈H₃₅FO₅ – H]⁻ 469.2396, found 469.2389.

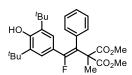

diethyl (Z)-2-(2-(3-(tert-butyl)-4-hydroxy-5-methylphenyl)-2-fluoro-1-phenylvinyl)-2-methylmalonate (5ma)

Prepared through general procedure A to give **5ma** in 182.0 mg, 80% yield, colorless oil, $R_f = 0.25$ (PE/EA = 10/1). ¹H NMR (300 MHz, CDCl₃) δ 7.30 - 7.14 (m, 5H), 6.90 (s, 1H), 6.71 (s, 1H), 5.27 (s, 1H), 4.11 (q, J = 7.1 Hz, 4H), 2.09 (s, 3H), 1.65 (s, 3H),


1.18 (t, J = 7.1 Hz, 6H), 1.10 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 171.3, 156.2 (d, ¹J = 251.2 Hz), 153.2, 136.4 (d, ³J = 8.2 Hz), 134.7, 130.7 (d, ⁴J = 3.0 Hz), 128.5, 127.8 (d, ³J = 7.3 Hz), 127.6, 126.1 (d, ³J = 7.0 Hz), 123.3 (d, ²J = 28.7 Hz), 122.6, 117.8 (d, ²J = 19.1 Hz), 61.7, 58.7, 34.4, 29.3, 21.9 (d, ⁴J = 3.0 Hz), 16.0, 13.9 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 95.38 ppm. HRMS (ESI) *m*/*z* Calcd for [C₂₇H₃₃FO₅ – H] ⁻ 455.2239, found 455.2227.

diethyl (Z)-2-(2-(3,5-*di-tert-butyl-4-hydroxyphenyl*)-2-*fluoro-1-phenylvinyl*)-2-*phen* ylmalonate (5ab)

Prepared through general procedure A to give **5ab** in 145.8 mg, 52% yield, yellow solid, **m.p.** 132 – 134 °C, $R_f = 0.4$ (PE/EA = 10/1). ¹H NMR (300 MHz, CDCl₃) δ 7.63 – 7.59 (m, 2H), 7.37 – 7.22 (m, 8H), 7.00 (s, 2H), 5.32 (s, 1H), 4.10 – 3.94 (m, 4H), 1.23 (s, 18H), 1.06 (t, J = 7.1 Hz, 6H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 169.8, 156.5 (d, ¹J = 251.2 Hz), 154.4, 137.1 (d, ³J = 7.9 Hz), 136.5, 135.1, 130.9 (d, ⁴J = 3.0 Hz), 129.3, 128.6, 127.7, 127.6, 127.4, 125.3 (d, ³J = 7.9 Hz), 122.7 (d, ²J = 27.7 Hz), 116.1 (d, ²J = 19.7 Hz), 62.0, 34.3, 30.0, 13.8 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 90.19 ppm. HRMS (ESI) m/z Calcd for [C₃₅H₄₁FO₅ – H]⁻ 559.2865, found 559.2870.

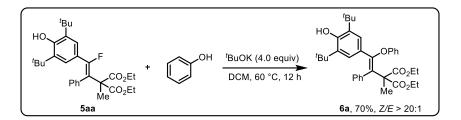

diethyl (Z)-2-allyl-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-fluoro-1-phenylvinyl) malonate (5ac)

Prepared through general procedure A to give **5ac** in 134.0 mg, 52% yield, white solid, **m.p.** 114 – 116 °C, $R_f = 0.45$ (PE/EA = 10/1). ¹H NMR (300 MHz, CDCl₃) δ 7.22 – 7.11 (m, 5H), 6.84 (s, 2H), 6.05 – 5.91 (m, 1H), 5.20 (s, 1H), 5.03 – 4.95 (m, 2H), 4.02 (q, J =7.1 Hz, 4H), 2.71 (d, J = 7.2 Hz, 2H), 1.14 – 1.07 (m, 24H) ppm.

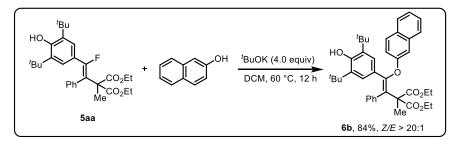
¹³C NMR (75 MHz, CDCl₃) δ 170.2, 156.5 (d, ¹*J* = 252.0 Hz), 154.2, 136.7 (d, ³*J* = 8.3 Hz), 135.0, 134.6, 130.9 (d, ⁴*J* = 2.9 Hz), 128.5, 127.5, 125.3 (d, ³*J* = 7.3 Hz), 123.0 (d, ²*J* = 28.2 Hz), 118.2, 116.4 (d, ²*J* = 19.3 Hz), 62.5, 61.4, 39.9 (d, ⁴*J* = 2.8 Hz), 34.2, 30.0, 13.9 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 94.24 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₂H₄₁FO₅ – H]⁻ 523.2865, found 523.2858.

dimethyl (Z)-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-fluoro-1-phenylvinyl)-2-me thylmalonate (5ad)

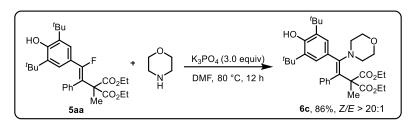
Prepared through general procedure A to give **5ad** in 164.7 mg, 70% yield, white solid, **m.p.** 140 – 142 °C, $R_f = 0.45$ (PE/EA = 10/1). ¹**H NMR (300 MHz, CDCl**₃) δ 7.26 – 7.16 (m, 3H), 7.13 – 7.10 (m, 2H), 6.88 (s, 2H), 5.22 (s, 1H), 3.58 (s, 6H), 1.54 (s, 3H),


1.13 (s, 18H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 171.7 (d, ⁴*J* = 1.0 Hz), 156.4 (d, ¹*J* = 250.3 Hz), 154.3, 136.3 (d, ³*J* = 8.4 Hz), 135.0 (d, ⁴*J* = 1.2 Hz), 130.7 (d, ⁴*J* = 3.0 Hz), 128.7, 127.8, 125.2 (d, ³*J* = 8.0 Hz), 122.7 (d, ²*J* = 28.2 Hz), 117.3 (d, ²*J* = 19.3 Hz), 58.6 (d, ³*J* = 1.1 Hz), 52.8, 34.3, 30.0, 22.1 (d, ⁴*J* = 2.6 Hz) ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 97.51 ppm. HRMS (ESI) *m*/*z* Calcd for [C₂₈H₃₅FO₅ – H]⁻ 469.2396, found 469.2388.

methyl (Z)-2-acetyl-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-fluoro-2-methyl-3-phen ylbut-3-enoate (8aa)

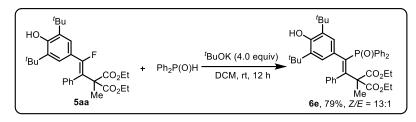

Prepared through general procedure A to give **8aa** in 110.1 mg, 47% yield, yellow solid, **m.p.** 120 – 122 °C, $R_f = 0.45$ (PE/EA = 10/1). ^{COMe} ^H NMR (300 MHz, CDCl₃) δ 7.34 – 7.26 (m, 3H), 7.18 – 7.16 (m, 2H), 6.95 (s, 2H), 5.33 (s, 1H), 4.09 – 3.98 (m, 2H), 2.48 (s,

3H), 1.48 (s, 3H), 1.23 (s, 18H), 1.14 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 205.0, 171.5, 156.4 (d, ¹J = 249.7 Hz), 154.5, 136.3 (d, ³J = 8.9 Hz), 135.2, 130.5 (d, ⁴J = 2.0 Hz), 128.9, 127.9, 125.2 (d, ³J = 7.8 Hz), 122.5 (d, ²J = 27.9 Hz), 118.1 (d, ²J = 20.0 Hz), 64.0, 61.5, 34.3, 30.1, 27.2 (d, ⁴J = 4.7 Hz), 20.9, 13.9 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ – 96.01 ppm. HRMS (ESI) *m*/*z* Calcd for [C₂₉H₃₇FO₄ + H]⁺469.2749, found 469.2760.

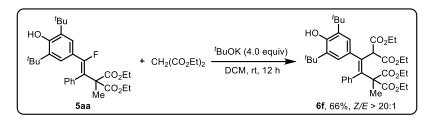

4. Intermolecular S_NV Reaction with 5aa


diethvl (Z)-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenoxy-1-phenylvinyl)-2methylmalonate (6a) To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 'BuOK (89.8 mg, 0.8 mmol, 4.0 equiv), 5aa (99.7 mg, 0.2 mmol, 1.0 equiv) and phenol (37.6 mg, 0.4 mmol, 2.0 equiv) then the Schlenk tube was evacuated and filled with argon for three times. After that, anhydrous DCM (2 mL) was added under argon atmosphere via a syringe under argon atmosphere stirred for 12 h at 60 °C. After the starting material was completely consumed, ice water (5 mL) was slowly added to quench the reaction. The reaction mixture was extracted with DCM (3×10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford the corresponding product **6a** as a white solid (80.1 mg, 70%, Z/E > 20:1). m.p. 134 – 135 °C, $R_f = 0.3$ (PE/EA = 20/1). ¹H NMR (300 MHz, **CDCl₃**) δ 7.22 – 7.08 (m, 7H), 6.86 – 6.78 (m, 5H), 5.01 (s, 1H), 4.10 – 3.90 (m, 4H), 1.61 (s, 3H), 1.13 – 1.09 (m, 24H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 171.7, 156.2, 153.0, 150.0, 138.6, 134.6, 131.2, 128.8, 128.1, 127.3, 126.8, 125.1, 125.0, 121.7, 118.2, 61.4, 59.0, 34.1, 30.2, 22.4, 14.0 ppm. **HRMS (ESI)** m/z Calcd for $[C_{36}H_{44}O_6 + H]^+$ 573.3211, found 573.3224.

diethyl (Z)-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(naphthalen-2-yloxy)-1phenylvinyl)-2-methylmalonate (6b) To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 'BuOK (89.8 mg, 0.8 mmol, 4.0 equiv), **5aa** (99.7 mg, 0.2 mmol, 1.0 equiv) and 2-hydroxynaphthalene (57.6 mg, 0.4 mmol, 2.0 equiv) then the Schlenk tube was evacuated and filled with argon for three times. After that, anhydrous DCM (2 mL) was added under argon atmosphere via a syringe under argon atmosphere stirred for 12 h at 60 °C. After the starting material was completely consumed, ice water (5 mL) was slowly added to quench the reaction. The reaction mixture was extracted with DCM (3 × 10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford the corresponding product **6b** as a white solid (104.4 mg, 84% yield, Z/E > 20:1). **m.p.** 116 – 118 °C, $R_f = 0.3$ (PE/EA = 20/1). The regioselectivity of this reaction (C1 vs OH) was determined by the proton NMR with "Heavy Water Exchange NMR Experiment". ¹H NMR (300 MHz, CDCl₃) δ 7.70 – 7.57 (m, 3H), 7.38 – 7.14 (m, 9H), 6.86 (s, 2H), 4.99 (s, 1H), 4.07 – 3.90 (m, 3H), 1.12 – 1.07 (m, 24H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 171.7, 154.0, 153.1, 150.2, 138.5, 134.6, 134.1, 131.2, 129.5, 128.85, 128.1, 127.7, 127.2, 127.0, 126.9, 126.1, 125.5, 125.1, 124.0, 119.6, 113.8, 61.5, 59.0, 34.1, 30.2, 22.5, 14.0 ppm. HRMS (ESI) *m/z* Calcd for [C₄₀H₄₆O₆ + Na]⁺ 645.3187, found 645.3204.

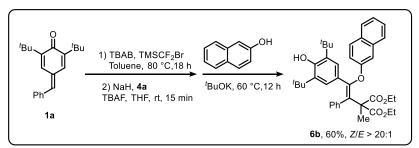


diethyl (Z)-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-morpholino-1-phenylvinyl)-2methylmalonate (6c) To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added K₃PO₄ (127.4 mg, 0.6 mmol, 3.0 equiv), 5aa (99.7 mg, 0.2 mmol, 1.0 equiv) and morpholine (34.8 mg, 0.4 mmol, 2.0 equiv) then the Schlenk tube was evacuated and filled with argon for three times. After that, anhydrous DMF (2 mL) was added under argon atmosphere via a syringe under argon atmosphere stirred for 12 h at 80 °C. After the starting material was completely consumed, ice water (5 mL) was slowly added to quench the reaction. The reaction mixture was extracted with EA (3×10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford the corresponding product 6c as yellow oil (97.6 mg, 86% yield), $R_f = 0.4$ (PE/EA = 5/1). ¹H NMR (300 MHz, CDCl₃) δ 6.99 -6.88 (m, 3H), 6.87 - 6.83 (m, 2H), 6.60 (s, 2H), 4.92 (s, 1H), 4.20 (q, J = 7.1 Hz, 4H), 3.69 (t, J = 4.6 Hz, 4H), 2.66 (t, J = 4.6 Hz, 4H), 1.49 (s, 3H), 1.29 - 1.24 (m, 24H) ppm. ¹³C NMR (75 MHz, CDCl3) δ 171.9, 152.0, 149.8, 138.8, 136.8, 134.1, 130.1, 127.3, 126.9, 125.9, 125.3, 66.5, 61.1, 58.6, 50.2, 33.9, 30.2, 23.8, 14.0 ppm. HRMS (ESI) m/z Calcd for $[C_{34}H_{47}NO_6 + H]^+$ 566.3477, found 566.3475.



diethyl (Z)-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-ethoxy-1-phenylvinyl)-2methylmalonate (6d) To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 'BuOK (89.8 mg, 0.8 mmol, 4.0 equiv), **5aa** (99.7 mg, 0.2 mmol, 1.0 equiv) and EtONa (136.1 mg, 20 wt% in EtOH, 0.4 mmol, 2.0 equiv) then the Schlenk tube was evacuated and filled with argon for three times. After that,

anhydrous DCM (2 mL) was added under argon atmosphere via a syringe under argon atmosphere stirred for 12 h at rt. After the starting material was completely consumed, ice water (5 mL) was slowly added to quench the reaction. The reaction mixture was extracted with DCM (3 × 10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford the corresponding product **6d** as colorless oil (81.9 mg, 78% yield, Z/E > 20:1), $R_f = 0.3$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.25 – 7.20 (m, 5H), 5.25 (s, 1H), 4.29 – 4.10 (m, 2H), 3.94 – 3.81 (m, 4H), 1.42 (s, 3H), 1.32 – 1.19 (m, 27H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 154.3, 149.0, 135.2, 134.9, 130.5, 128.6, 127.1, 124.7, 121.4, 121.1, 114.7, 64.1, 61.2, 59.3, 59.1, 34.3, 30.1, 17.3, 15.4, 15.3, 14.3 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₂H₄O₆ + H] ⁺ 525.3211, found 525.3217.



diethyl (Z)-2-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-((diphenylphosphoryl)oxy)-1phenylvinyl)-2-methylmalonate (6e) To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 'BuOK (89.8 mg, 0.8 mmol, 4.0 equiv), 5aa (99.7 mg, 0.2 mmol, 1.0 equiv) and diphenylphosphine oxide (80.8 mg, 0.4 mmol, 2.0 equiv) then the Schlenk tube was evacuated and filled with argon for three times. After that, anhydrous DCM (2 mL) was added under argon atmosphere via a syringe under argon atmosphere stirred for 12 h at rt. After the starting material was completely consumed, ice water (5 mL) was slowly added to quench the reaction. The reaction mixture was extracted with DCM (3×10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (DCM/MeOH) to afford the corresponding product **6e** as a white solid (107.0 mg, 79% yield, Z/E = 13:1). **m.p.** 198 -200 °C, R_f = 0.3 (DCM/MeOH = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.48 - 7.41 (m, 4H), 7.20 - 7.04 (m, 10H), 6.99 - 6.90 (m, 3H), 5.02 (s, 1H), 3.90 (dq, J = 10.7, 7.1)Hz, 2H), 3.70 (dq, J = 10.7, 7.1 Hz, 2H)., 1.29 (s, 18H), 1.20 (s, 3H), 1.14 (t, J = 7.15 Hz, 6H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 171.0 (d, J = 1.3 Hz), 153.3 (d, J = 11.1Hz), 152.8 (d, J = 2.6 Hz), 140.6 (d, J = 91.4 Hz), 136.9 (d, J = 8.1 Hz), 135.4, 134.8 (d, J = 1.9 Hz), 134.1, 133.1 (d, J = 9.1 Hz), 131.2 (d, J = 1.6 Hz), 131.0 (d, J = 8.7 Hz),130.1 (d, J = 2.8 Hz), 127.6 (d, J = 5.0 Hz), 127.4 (d, J = 12.0 Hz), 126.5, 62.4 (d, J = 12.8 Hz), 61.5, 34.2, 30.1, 24.1, 13.9 ppm. ³¹P NMR (121 MHz, CDCl₃) δ 24.84 ppm. **HRMS (ESI)** m/z Calcd for $[C_{42}H_{49}O_6P + Na]^+$ 703.3159, found 703.3167.

tetraethyl (E)-2-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-phenylpent-2-ene-1,1,4,4tetracarboxylate (6f) To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 'BuOK (89.8 mg, 0.8 mmol, 4.0 equiv), 5aa (99.7 mg, 0.2 mmol, 1.0 equiv) and dimethyl malonate (60.1 mg, 0.4 mmol, 2.0 equiv) then the Schlenk tube was evacuated and filled with argon for three times. After that, anhydrous DCM (2 mL) was added under argon atmosphere via a syringe under argon atmosphere stirred for 12 h at rt. After the starting material was completely consumed, ice water (5 mL) was slowly added to quench the reaction. The reaction mixture was extracted with DCM (3×10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford the corresponding product 6f as a white solid (84.2 mg, 66% yield, Z/E > 20:1). m.p. 163 – 165 °C, $R_f = 0.4$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.35 – 7.26 (m, 7H), 5.15 (s, 1H), 4.21 (s, 1H), 3.93 – 3.82 (m, 6H), 3.77 – 3.69 (m, 2H), 1.42 (s, 18H), 1.25 (s, 3H), 1.13 (t, J = 7.1 Hz, 6H), 1.02 (t, J = 7.1 Hz, 6H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 171.3, 168.4, 153.2, 140.8, 140.2, 135.9, 134.4, 129.6, 128.4, 127.9, 127.5, 61.3, 61.1, 60.6, 59.9, 34.4, 30.4, 30.3, 24.2, 14.0 ppm. **HRMS (ESI)** m/z Calcd for $[C_{37}H_{50}O_9 + H]^+ 639.3528$, found 639.3548.

5. One-pot Reaction for the Synthesis of tetra-Substituted Alkene 6b

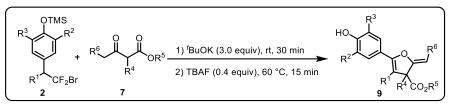
To an oven-dried 10-mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added *p*-QM **1a** (147.2 mg, 0.5 mmol, 1.0 equiv) and TBAB (8.0 mg, 0.025 mmol, 5 mol%), then the Schlenk tube was evacuated and backfilled with argon for three times. After that, TMSCF₂Br (203.1 mg, 1.0 mmol, 2.0 equiv) dissolved in toluene (1.0 mL) was added under argon atmosphere via a syringe. The reaction mixture was stirred at 80 °C (oil bath) for 18 h to afford the solution of intermediate **2a** in toluene.

To another oven-dried 10-mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added NaH (60 mg, 1.5 mmol, 3.0 equiv), then the Schlenk tube was evacuated and backfilled with argon for three times. Compound **4a** (1.0 mmol, 2.0 equiv) dissolved in 1.0 mL anhydrous THF was added under argon atmosphere via a syringe, and the reaction mixture was stirred at room temperature for 30 min. Then the solution of crude **2a** in toluene was added, followed by the dropwise addition of TBAF (0.4 mmol, 0.4 equiv, 0.3 M solution in THF) under argon atmosphere. After stirring at room temperature for 15 min, 'BuOK (224.4 mg, 2.0 mmol, 4.0 equiv) and 2-hydroxynaphthalene (144.2 mg, 1.0 mmol, 2.0 equiv) were directly added to the abovementioned solution under argon atmosphere. After stirred at 60 °C for 12 h, saturated solution of NH₄Cl (5.0 mL) was added to quench the reaction. The reaction mixture was extracted with ethyl acetate (3 × 10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford the corresponding product **6b** (186.8 mg, 60% yield, *Z/E* > 20:1).

6. Optimization of Reaction Parameters for the Synthesis of9aa

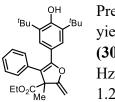
		1) Base, rt, 30 min 2) TBAF, rt, 15 min	HO ¹ Bu ¹ Bu Ph	HO HO CO ₂ Et HO 'Bu	Ph COMe Me
2a	7a		9a		8aa
Entry	Base	The equiv of base	Solvent	Yield of 9aa (%)	Yield of 8aa (%)
1	^t BuOK	3.0	DCM	51	41
2	^t BuONa	3.0	DCM	45	29
3	КОН	3.0	DCM	17	51
4	K ₂ CO ₃	3.0	DCM	n.d.	71
5	DBU	3.0	DCM	9	25
6	LDA	3.0	DCM	n.d.	n.d.
7	^t BuOK	2.0	DCM	3	60
8	^t BuOK	2.5	DCM	20	50
9	^t BuOK	3.5	DCM	49	40
10	^t BuOK	4.0	DCM	65	30
11	^t BuOK	4.0	Toluene	18	77
12	^t BuOK	4.0	DMF	8	60
13	^t BuOK	4.0	MTBE	48	46
14	^t BuOK	4.0	HMPA	4	69

Table S1. Base, Solvent Screening^{*a*, *b*}


^a ^{*t*}BuOK (0.8 mmol, 4.0 equiv) and **7a** (0.4 mmol, 2.0 equiv) in DCM were stirred at rt for 30 min. Then TBAF (1 M in THF) and **2a** (0.2 mmol, 1.0 equiv) were added under Ar. ^{*b*}The yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard.

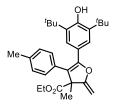
OTMS 'Bu 'Bu 'Bu + Me CF ₂ Br 2a		CCM, rt, 30 min DCM, 15 min	HO + HO + HO + BU + B	^r Bu Ph COMe F Me ^{CO} ₂ Et 8aa
Entry	Temperature	The equiv of	Yield of 9aa	Yield of 8aa
Liiu y	(°C)	TBAF	(%)	(%)
1	r.t.	1.1	65	30
2	40	1.1	60	36
3	60	1.1	79	13
4	80	1.1	78	5
5	100	1.1	76	n.d.
6	60	0.2	72	8
7	60	0.4	85	3
8	60	0.6	80	13
9	60	0.8	78	5
10	60	1.0	75	23

Table S2. Screening of temperature and the equivalent of TBAF^{*a*, *b*}


^{*a*}7a (0.4 mmol, 2.0 equiv) and ^{*t*}BuOK (0.8 mmol, 4.0 equiv) in DCM were stirred at rt for 30 min. Then TBAF (1 M in THF) and **2a** (0.2 mmol, 1.0 equiv) were added under Ar. ^{*b*}The yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as internal standard.

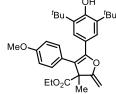
7. General Procedure B for the Synthesis of Product 9

To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 'BuOK (89.7 mg, 0.8 mmol, 4.0 equiv), then the Schlenk tube was evacuated and filled with argon for three times. After that, compound 7 (0.4 mmol, 2.0 equiv) dissolved in 1.0 mL anhydrous DCM was added under argon atmosphere via a syringe. The above-mentioned solution was stirred at room temperature for 30 min, followed by the sequential addition of TBAF (0.08 mL, 0.4 equiv, 1 M solution in THF, dissolved in 0.5 mL DCM) and 2 (0.2 mmol in 0.5 mL DCM) under argon atmosphere. After the starting material was completely consumed (typically 15 min at 60 °C), ice water (5 mL) was slowly added to quench the reaction. The reaction mixture was extracted with DCM (3 × 10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford the corresponding product **9**.


ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-2-methylene-4-phenyl-2,3-dih ydrofuran-3-carboxylate (9aa)

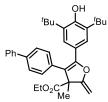
Prepared through general procedure B to give **9aa** in 70.9 mg, 79% yield, white solid, m.p. 165 – 166 °C, R_f = 0.6 (PE/EA = 20/1). ¹H NMR (**300 MHz, CDCl3**) δ 7.37 – 7.22 (m, 7H), 5.31 (s, 1H), 4.74 (d, *J* = 2.7 Hz, 1H), 4.31 (d, *J* = 2.6 Hz, 1H), 4.26 – 4.16 (m, 2H), 1.56 (s, 3H), 1.28 – 1.23 (m, 21H) ppm. ¹³C NMR (75 MHz, CDCl3) δ 172.7, 165.1,

154.6, 150.7, 135.5, 133.9, 130.4, 128.8, 127.6, 124.6, 120.7, 114.4, 83.8, 61.7, 60.0, 34.4, 30.1, 23.9, 14.2 ppm. **HRMS (ESI)** m/z Calcd for $[C_{29}H_{36}O_4 + H]^+$ 449.2686, found 449.2698.


ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-2-methylene-4-(p-tolyl)-2,3-di hydrofuran-3-carboxylate (9ab)

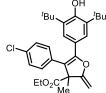
Prepared through general procedure B to give **9ab** in 62.8 mg, 68% yield, yellow solid, m.p. 130 – 131 °C, $R_f = 0.6$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl3)** δ 7.23 (s, 1H), 7.18 – 7.05 (m, 2H), 5.28 (s, 1H), 4.71 (d, J = 2.6 Hz, 1H), 4.28 (d, J = 2.6 Hz, 1H), 4.23 – 4.12 (m, 2H), 2.33 (s, 3H), 1.53 (s, 3H), 1.34 – 1.22 (m, 21H) ppm. ¹³C **NMR (75 MHz, CDCl3**) δ 172.7, 165.1, 154.5, 150.4, 137.3, 135.5,

130.7, 130.3, 129.5, 124.5, 120.8, 114.4, 83.7, 61.6, 60.0, 34.4, 30.1, 23.9, 21.3, 14.2 ppm. **HRMS (ESI)** *m*/*z* Calcd for [C₃₀H₃₈O₄ + H]⁺ 463.2843, found 463.2857.


ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-(4-methoxyphenyl)-3-methyl-2-methyl ene-2,3-dihydrofuran-3-carboxylate (9ac)

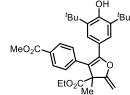
Prepared through general procedure B to give **9ac** in 66.9 mg, 70% yield, yellow solid, m.p. 146 – 147 °C, $R_f = 0.5$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.26 (s, 2H), 7.17 – 7.12 (m, 2H), 6.90 – 6.85 (m, 2H), 5.30 (s, 1H), 4.72 (d, J = 2.6 Hz, 1H), 4.28 (d, J = 2.6 Hz, 1H), 4.24 – 4.14 (m, 2H), 3.80 (s, 3H), 1.53 (s, 3H), 1.28 –

1.22 (m, 21H) ppm. ¹³C NMR (**75 MHz, CDCl**₃) δ 172.7, 165.1, 159.2, 154.5, 150.4, 135.4, 131.6, 125.9, 124.4, 120.8, 114.4, 114.0, 83.7, 61.6, 59.9, 55.5, 34.4, 30.1, 23.9, 14.2 ppm. **HRMS (ESI)** *m/z* Calcd for [C₃₀H₃₈O₅ + H]⁺ 479.2792, found 479.2807.


ethyl 4-([1,1'-biphenyl]-4-yl)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-2-met hylene-2,3-dihydrofuran-3-carboxylate (9ad)

Prepared through general procedure B to give **9ad** in 68.1 mg, 65% yield, yellow solid, m.p. 156 – 157 °C, $R_f = 0.6$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl₃)** 7.71 – 7.67 (m, 4H), 7.57 (t, J = 7.3 Hz, 2H), 7.50 – 7.36 (m, 5H), 5.44 (s, 1H), 4.88 (d, J = 2.7 Hz, 1H), 4.45 (d, J = 2.7 Hz, 1H), 4.40 – 4.27 (m, 2H), 1.72 (s, 3H), 1.40 – 1.37 (m,

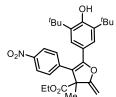
21H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 165.0, 154.6, 150.9, 141.1, 140.5, 135.5, 132.9, 130.8, 128.9, 127.6, 127.4, 127.2, 124.6, 120.6, 114.0, 84.0, 61.7, 59.9, 34.4, 30.1, 24.0, 14.2 ppm. HRMS (ESI) *m*/*z* Calcd for $[C_{35}H_{40}O_4 + H]^+$ 525.2999, found 525.3014.


ethyl 4-(4-chlorophenyl)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-2-methyle ne-2,3-dihydrofuran-3-carboxylate (9ae)

Prepared through general procedure B to give **9ae** in 64.6 mg, 67% yield, purple solid, m.p. 141 – 142 °C, $R_f = 0.6$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl**₃) δ 7.35 – 7.32 (m, 2H), 7.24 (s, 2H), 7.21 – 7.18 (m, 2H), 5.37 (s, 1H), 4.77 (d, J = 2.8 Hz, 1H), 4.35 (d, J = 2.7 Hz, 1H), 4.28 – 4.15 (m, 2H), 1.57 (s, 3H), 1.32 – 1.24 (m, 21H) ppm.

¹³C NMR (75 MHz, CDCl₃) δ 172.5, 164.7, 154.8, 151.2, 135.6, 133.5, 132.5, 131.8, 129.0, 124.6, 120.3, 113.0, 84.3, 61.8, 59.7, 34.4, 30.1, 23.9, 14.2 ppm. HRMS (ESI) *m*/*z* Calcd for [C₂₉H₃₅ClO₄ + H]⁺ 483.2297, found 483.2312.

ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-(4-(methoxycarbonyl)phenyl)-3-meth yl-2-methylene-2,3-dihydrofuran-3-carboxylate (9af)



Prepared through general procedure B to give **9af** in 57.7 mg, 57% yield, yellow solid, m.p. 135 – 136 °C, $R_f = 0.5$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.23 (s, 2H), 5.36 (s, 1H), 4.75 (d, J = 2.8 Hz, 1H), 4.34 (d, J = 2.8 Hz, 1H), 4.26 – 4.12 (m, 2H), 3.92 (s, 2H),

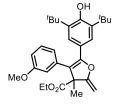
1.55 (s, 3H), 1.27 – 1.20 (m, 21H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 167.0, 164.7, 155.0, 151.9, 139.2, 135.7, 130.1, 130.0, 128.9, 124.9, 120.2, 113.4, 84.4, 61.8, 59.6, 52.3, 34.4, 30.1, 23.9, 14.2 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₁H₃₈O₆ + H]⁺

507.2741, found 507.2751.

ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-2-methylene-4-(4-nitrophenyl) -2,3-dihydrofuran-3-carboxylate (9ag)

Prepared through general procedure B to give **9ag** in 45.4 mg, 46% yield, yellow solid, m.p. 185 – 186 °C, $R_f = 0.5$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl₃)** δ 8.15 (d, J = 8.6 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 7.22 (s, 2H), 5.42 (s, 1H), 4.78 (d, J = 2.9 Hz, 1H), 4.39 (d, J = 2.9 Hz, 1H), 4.30 – 4.14 (m, 2H), 1.58 (s, 3H), 1.29 – 1.21

(m, 21H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 164.4, 155.5, 153.7, 146.6, 141.6, 136.0, 130.5, 125.2, 123.9, 119.9, 112.4, 85.1, 62.0, 59.3, 34.5, 30.1, 24.0, 14.2 ppm. HRMS (ESI) *m*/*z* Calcd for [C₂₉H₃₅NO₆ + H]⁺ 494.2537, found 494.2547.


ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-2-methylene-4-(4-(trifluorome thyl)phenyl)-2,3-dihydrofuran-3-carboxylate (9ah)

 $F_{3}C$ $F_{0}C$ $F_{0}C$ F

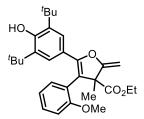
Prepared through general procedure B to give **9ah** in 64.0 mg, 62% yield, white solid, m.p. 140 – 141 °C, $R_f = 0.7$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl3)** δ 7.62 (d, J = 7.9 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.20 (s, 2H), 5.38 (s, 1H), 4.79 (d, J = 2.6 Hz, 1H), 4.38 (d, J = 2.6 Hz, 1H), 4.27 – 4.20 (m, 2H), 1.59 (s, 3H), 1.36 – 1.25

(m, 21H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 164.6, 155.0, 151.9, 130.2, 129.6 (q, ²*J* = 32.4 Hz), 125.7 (q, ³*J* = 3.8 Hz), 124.7, 124.3 (q, ¹*J* = 270.2 Hz), 120.1, 112.9, 84.6, 61.9, 59.7, 34.4, 30.1, 24.0, 14.2 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ –62.76 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₀H₃₅F₃O₄ + H] ⁺ 517.2560, found 517.2559.

ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-(3-methoxyphenyl)-3-methyl-2-methyl ene-2,3-dihydrofuran-3-carboxylate (9ai)

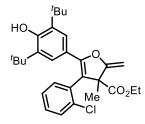
Prepared through general procedure B to give **9ai** in 66.9 mg, 70% yield, yellow solid, m.p. 150 – 151 °C, $R_f = 0.6$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl₃)** δ 7.27 (s, 2H), 7.26 – 7.22 (m, 1H), 6.85 – 6.76 (m, 3H), 5.31 (s, 1H), 4.72 (d, J = 2.6 Hz, 1H), 4.29 (d, J = 2.7 Hz, 1H), 4.25 – 4.15 (m, 2H), 3.74 (s, 3H), 1.54 (s, 3H), 1.28 – 1.23 (m, 21H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 165.0,

160.0, 154.6, 150.7, 135.5, 135.1, 129.8, 124.6, 122.8, 120.6, 115.8, 114.2, 113.3, 83.8, 61.7, 59.9, 55.3, 34.4, 30.2, 23.9, 14.2 ppm. **HRMS (ESI)** *m*/*z* Calcd for [C₃₀H₃₈O₅ + H]⁺ 479.2792, found 479.2808.


ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-2-methylene-4-(3-nitrophenyl) -2,3-dihydrofuran-3-carboxylate (9aj)

Prepared through general procedure B to give **9aj** in 52.3 mg, 53% yield, green solid, m.p. 133 – 134 °C, $R_f = 0.5$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 8.16 – 8.12 (m, 2H), 7.59 – 7.48 (m, 2H), 7.20 (s, 2H), 5.39 (s, 1H), 4.79 (d, J = 2.8 Hz, 1H), 4.39 (d, J = 2.9 Hz, 1H), 4.32 – 4.14 (m, 2H), 1.58 (s, 3H), 1.29 – 1.25 (m, 21H) ppm. ¹³C

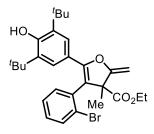
NMR (75 MHz, CDCl₃) δ 172.3, 164.3, 155.2, 152.6, 148.6, 136.7, 136.1, 135.9, 129.7, 125.2, 124.8, 122.3, 119.8, 111.7, 85.0, 62.1, 59.5, 34.4, 30.1, 24.1, 14.2 ppm. **HRMS (ESI)** *m/z* Calcd for [C₂₉H₃₅NO₆ + H]⁺ 494.2537, found 494.2548.


ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-(2-methoxyphenyl)-3-methyl-2-methyl ene-2,3-dihydrofuran-3-carboxylate (9ak)

Prepared through general procedure B to give **9ak** in 67.9 mg, 71% yield, green solid, m.p. 159 – 160 °C, $R_f = 0.5$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.27 (s, 2H), 7.26 – 7.22 (m, 1H), 6.84 – 6.76 (m, 3H), 5.31 (s, 1H), 4.75 (d, J = 2.6 Hz, 1H), 4.32 (d, J = 2.7 Hz, 1H), 4.25 – 4.15 (m, 2H), 3.74 (s, 3H), 1.54 (s, 3H), 1.28 – 1.23 (m, 21H) ppm. ¹³C NMR (75 MHz,

CDCl3) δ 172.7, 165.0, 160.0, 154.6, 150.7, 135.5, 135.1, 129.8, 124.6, 122.8, 120.6, 115.8, 114.2, 113.3, 83.8, 61.7, 59.9, 55.3, 34.4, 30.1, 23.9, 14.2 ppm. **HRMS (ESI)** *m*/*z* Calcd for [C₃₀H₃₈O₅ + H]⁺ 479.2792, found 479.2806.

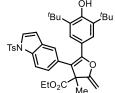
ethyl 4-(2-chlorophenyl)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-2-methyle ne-2,3-dihydrofuran-3-carboxylate (9al)



Prepared through general procedure B to give **9al** in 75.2 mg, 78% yield, yellow solid, m.p. 115 – 116 °C, $R_f = 0.4$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.35 (m, 1H), 7.20 – 7.12 (m, 5H), 5.23 (s, 1H), 4.70 (d, J = 2.6 Hz, 1H), 4.21 (d, J = 2.8 Hz, 1H), 4.18 – 4.09 (m, 2H), 1.47 (s, 3H), 1.26 – 1.13 (m, 21H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.3, 165.0, 154.8,

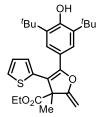
151.6, 136.3, 135.6, 132.9, 132.5, 130.2, 129.3, 127.2, 123.9, 120.6, 109.8, 84.4, 61.7, 34.4 (two overlapping carbon signals), 30.1 (two overlapping carbon signals), 14.2 ppm. **HRMS (ESI)** *m/z* Calcd for [C₂₉H₃₅ClO₄ + H]⁺ 483.2297, found 483.2312.

ethyl 4-(2-bromophenyl)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-2-methyle ne-2,3-dihydrofuran-3-carboxylate (9am)


Prepared through general procedure B to give 9am in 86.3 mg, 82% yield, yellow solid,

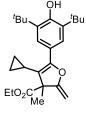
m.p. 119 – 120 °C, $R_f = 0.4$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 8.0 Hz, 1H), 7.37 – 7.18 (m, 5H), 5.35 (s, 1H), 4.79 (d, J = 2.4 Hz,1H), 4.32 – 4.26 (m, 3H), 1.60 (s, 3H), 1.35 – 1.27 (m, 21H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.5, 165.0, 154.8, 151.5, 135.5, 134.9, 133.5, 132.2, 129.5, 127.9, 127.2, 123.9, 120.6, 111.3, 84.1, 61.7, 61.4, 34.4, 30.1, 22.7, 14.2 ppm. HRMS (ESI) *m*/*z* Calcd for [C₂₉H₃₅BrO₄ + H]⁺

527.1791, found 527.1802.


ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-2-methylene-4-(1-tosyl-1H-ind ol-5-yl)-2,3-dihydrofuran-3-carboxylate (9an)

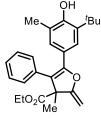
Prepared through general procedure B to give **9an** in 55.1 mg, 43% yield, white solid, m.p. 199 – 200 °C, $R_f = 0.5$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl3)** δ 8.03 (d, J = 8.3 Hz, 1H), 7.83 (d, J = 7.9 Hz, 2H), 7.52 (s, 1H), 7.33 – 7.25 (m, 3H), 7.17 – 7.07 (m, 4H), 5.27 (s, 1H), 4.82 (d, J = 2.7 Hz, 1H), 4.40 (d, J = 2.7 Hz, 1H), 4.19

-4.10 (m, 2H), 2.37 (s, 3H), 1.57 (s, 3H), 1.14 (t, *J* = 7.1 Hz, 3H), 1.03 (s, 18H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.5, 164.5, 154.7, 152.2, 145.1, 135.3, 135.1, 135.0, 130.4, 130.1, 127.1, 125.0, 124.4, 124.2, 123.3, 121.8, 120.1, 115.5, 113.6, 104.2, 84.6, 61.8, 60.1, 34.1, 29.7, 24.4, 21.7, 14.1 ppm. HRMS (ESI) *m*/*z* Calcd for [C₃₈H₄₃NO₆S + H]⁺ 642.2884, found 642.2900.


ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-2-methylene-4-(thiophen-2-yl) -2,3-dihydrofuran-3-carboxylate (9ao)

Prepared through general procedure B to give **9ao** in 55.4 mg, 61% yield, yellow solid, m.p. 135 – 136 °C, $R_f = 0.6$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl3)** δ 7.29 (s, 2H), 7.22 – 7.18 (m, 1H), 6.95 – 6.92 (m, 1H), 6.82 – 6.81 (m, 1H), 5.29 (s, 1H), 4.66 (d, J = 2.8 Hz, 1H), 4.26 (d, J = 2.9 Hz, 1H), 4.18 – 4.07 (m, 2H), 1.51 (s, 3H), 1.25 – 1.16 (m, 21H) ppm. ¹³C NMR (75 MHz, CDCl3) δ 172.4, 164.6,

155.0, 152.4, 135.6, 134.6, 128.1, 127.4, 126.5, 124.8, 120.2, 107.6, 84.5, 61.8, 59.7, 34.4, 30.2, 24.0, 14.2 ppm. **HRMS (ESI)** m/z Calcd for $[C_{27}H_{34}O_4S + H]^+$ 455.2251, found 455.2264.

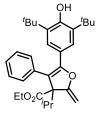

ethyl 4-cyclopropyl-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-2-methylene-2,3 -dihydrofuran-3-carboxylate (9ap)

Prepared through general procedure B to give **9ap** in 35 mg, 42% yield, white solid, m.p. 134 – 136 °C, $R_f = 0.5$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.65 (s, 2H), 5.37 (s, 1H), 4.59 (d, J = 2.6 Hz, 1H), 4.24 – 4.07 (m, 3H), 1.60 (s, 3H), 1.52 – 1.47 (m, 19H), 1.23 (t, J = 7.1 Hz, 3H), 0.85 – 0.68 (m, 2H), 0.55 – 0.47 (m, 1H), 0.41 – 0.33 (m, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 165.2, 154.3, 151.6, 135.5, 124.8,

121.4, 113.6, 83.0, 61.5, 59.3, 34.6, 30.4, 24.4, 14.1, 7.4, 6.9, 6.2 ppm. **HRMS (ESI)** m/z Calcd for $[C_{26}H_{36}O_4 + H]^+$ 413.2686, found 413.2689.

ethyl 5-(3-(tert-butyl)-4-hydroxy-5-methylphenyl)-3-methyl-2-methylene-4-phenyl-2,3-dihydrofuran-3-carboxylate (9aq)

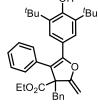
Prepared through general procedure B to give **9aq** in 51.9 mg, 64% yield, yellow solid, m.p. 81 – 82 °C, $R_f = 0.5$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl₃)** δ 7.34 – 7.18 (m, 6H), 7.07 (s, 1H), 4.92 (s, 1H), 4.71 (d, J = 2.7 Hz, 1H), 4.30 (d, J = 2.4 Hz, 1H), 4.23 – 4.16 (m, 2H), 2.16 (s, 3H), 1.54 (s, 3H), 1.24 (t, J = 7.0 Hz, 3H), 1.16 (s, 9H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 165.0, 153.4, 150.4,


135.2, 133.7, 130.3, 128.8, 127.6, 127.6, 125.2, 122.8, 121.2, 114.6, 83.9, 61.7, 59.9, 34.5, 29.5, 23.8, 16.0, 14.2 ppm. **HRMS (ESI)** m/z Calcd for $[C_{26}H_{30}O_4 + H]^+ 407.2217$, found 407.2230.

ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-ethyl-2-methylene-4-phenyl-2,3-dihyd rofuran-3-carboxylate (9ba)

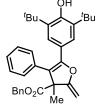
Prepared through general procedure B to give **9ba** in 65.6 mg, 71% yield, white solid, m.p. 183 – 184 °C, $R_f = 0.5$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl₃)** δ 7.34 – 7.19 (m, 7H), 5.31 (s, 1H), 4.80 (d, J = 2.6 Hz, 1H), 4.23 (d, J = 2.7 Hz, 1H), 4.23 – 4.11 (m, 2H), 1.95 (q, J = 7.4 Hz, 2H), 1.27 (s, 18H), 1.21 (t, J = 7.1 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H) ppm. ¹³C **NMR (75 MHz, CDCl₃)** δ 172.7, 162.5, 154.6,

151.8, 135.4, 133.9, 130.2, 128.8, 127.5, 124.7, 120.6, 111.5, 84.1, 65.1, 61.5, 34.4, 30.1, 27.6, 14.2, 8.5 ppm. **HRMS (ESI)** m/z Calcd for $[C_{30}H_{38}O_4 + H]^+$ 463.2843, found 463.2860.


ethyl 5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-isopropyl-2-methylene-4-phenyl-2,3-d *ihydrofuran-3-carboxylate* (9ca)

Prepared through general procedure B to give **9ca** in 42.8 mg, 45% yield, purple solid, m.p. 141 – 142 °C, $R_f = 0.7$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl₃)** δ 7.48 – 7.37 (m, 5H), 7.31 (s, 2H), 5.40 (s, 1H), 5.04 (d, J = 2.5 Hz, 1H), 4.46 (d, J = 2.5 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 2.65 – 2.56 (m, 1H), 1.38 (s, 18H), 1.27 (t, J = 7.2 Hz, 3H), 1.17 (d, J = 6.6 Hz, 3H), 1.03 (d, J = 6.8 Hz, 3H) ppm. ¹³C NMR (75

MHz, CDCl₃) δ 171.6, 161.0, 154.4, 151.3, 135.3, 134.8, 130.9, 128.7, 127.5, 124.8, 120.7, 111.8, 86.7, 69.1, 61.2, 34.3, 33.4, 30.1, 18.1, 16.9, 14.1 ppm. **HRMS (ESI)** *m/z* Calcd for [C₃₁H₄₀O₄ + H]⁺ 477.2999, found 477.3012.

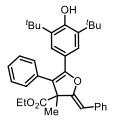

ethyl 3-benzyl-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylene-4-phenyl-2,3-dihy drofuran-3-carboxylate (9da)

Prepared through general procedure B to give **9da** in 87.0 mg, 83% yield, yellow solid, m.p. 132 – 133 °C, $R_f = 0.5$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl₃)** δ 7.39 – 7.31 (m, 3H), 7.26 – 7.20 (m, 9H), 5.41 (s, 1H), 4.92 (d, J = 2.9 Hz, 1H), 4.41 – 4.34 (m, 3H), 3.56 – 3.40 (m, 2H), 1.39 – 1.32 (m, 21H) ppm. ¹³C **NMR (75 MHz, CDCl₃)** δ 172.6, 162.2, 154.7, 152.4, 136.5, 135.5, 133.6, 130.6, 129.6, 128.5,

127.8, 127.1, 126.6, 125.1, 120.8, 112.4, 85.8, 64.5, 61.8, 41.1, 34.3, 30.2, 14.1 ppm. **HRMS (ESI)** m/z Calcd for $[C_{35}H_{40}O_4 + H]^+$ 525.2999, found 525.3011.

benzyl 5-(3,5-*di-tert-butyl-4-hydroxyphenyl*)-3-*methyl-2-methylene-4-phenyl-2,3-di hydrofuran-3-carboxylate* (9ea)

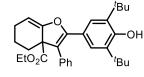
Prepared through general procedure B to give **9ea** in 71.4 mg, 70% yield, yellow solid, m.p. 177 – 178 °C, $R_f = 0.6$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl3)** δ 7.30 – 7.29 (m, 5H), 7.23 – 7.21 (m, 5H), 7.07–7.04 (m, 2H), 5.30 (s, 1H), 5.27 – 5.10 (m, 2H), 4.74 (d, J = 2.7 Hz, 1H), 4.29 (d, J = 2.7 Hz, 1H), 1.55 (s, 3H), 1.26 (s, 18H) ppm. ¹³C **NMR (75 MHz, CDCl3)** δ 172.4, 164.8, 154.6, 150.9, 135.9, 135.5,


133.6, 130.3, 128.8, 128.5, 128.3, 128.2, 127.5, 124.7, 120.6, 114.2, 84.2, 67.2, 59.9, 34.3, 30.1, 23.7 ppm. **HRMS (ESI)** m/z Calcd for $[C_{34}H_{38}O_4 + H]^+$ 511.2843, found 511.2858.

ethyl (Z)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-ethylidene-3-methyl-4-phenyl-2,3dihydrofuran-3-carboxylate (9fa)

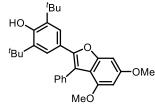
^tBu t^{Bu} Prepared through general procedure B to give **9fa** in 52.8 mg, 57% yield, yellow solid, m.p. 164 – 166 °C, $R_f = 0.5$ (PE/EA = 20/1). ¹H **NMR (300 MHz, CDCl₃)** δ 7.33 – 7.20 (m, 7H), 5.29 (s, 1H), 4.65 (q, J = 6.9 Hz, 1H), 4.26 – 4.09 (m, 2H), 1.79 (d, J = 6.9 Hz, 3H), 1.50 (s, 3H), 1.27 – 1.20 (m, 21H) ppm. ¹³C **NMR (75 MHz, CDCl₃)** δ 173.1, 157.6, 154.5, 150.4, 135.4, 134.1, 130.5, 128.7, 127.4, 124.6,

121.0, 114.2, 94.8, 61.5, 59.3, 34.3, 30.1, 23.9, 14.3, 10.6 ppm. **HRMS (ESI)** m/z Calcd for $[C_{30}H_{38}O_4 + H]^+$ 463.2843, found 463.2841.


ethyl (Z)-2-benzylidene-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-methyl-4-phenyl-2,3-dihydrofuran-3-carboxylate (9ga)

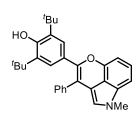
Prepared through general procedure B at room temperature to give **9ga** in 52.7 mg, 50% yield, yellow solid, m.p. 163 - 165 °C, $R_f = 0.5$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, J = 7.6 Hz, 2H), 7.38 - 7.27 (m, 9H), 7.23 - 7.17 (m, 1H), 5.59 (s, 1H), 5.34 (s, 1H), 4.26 - 4.14 (m, 2H), 1.63 (s, 3H), 1.31 - 1.21 (m, 21H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.5, 158.2, 154.6, 150.6, 135.6,

133.5, 130.5, 128.9, 128.4, 128.3, 127.8, 126.0, 124.5, 120.6, 114.3, 100.5, 61.8, 61.5, 34.4, 30.1, 23.8, 14.3 ppm. **HRMS (ESI)** m/z Calcd for $[C_{35}H_{40}O_4 + H]$ + 525.3000, found 525.2997.


ethyl 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-3-phenyl-5,6-dihydrobenzofuran-3a(4H)-carboxylate (9ha)

Prepared through general procedure B to give **9ha** in 40.1 mg, 42% yield, green solid, m.p. 165 – 167 °C, $R_f = 0.4$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.34 – 7.19 (m, 7H), 5.29 – 5.27 (m, 2H), 4.26 – 4.08 (m, 2H), 2.47 –

2.42 (m, 1H), 2.27 – 2.21 (m, 1H), 1.84 – 1.76 (m, 1H), 1.63 – 1.46 (m, 2H), 1.26 (s, 18H), 1.19 (t, *J* = 7.1 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.2, 155.1, 154.6,


152.6, 135.4, 134.3, 130.0, 128.7, 127.2, 124.9, 121.0, 113.2, 99.0, 61.2, 58.9, 34.4, 30.2, 29.2, 22.2, 18.9, 14.4 ppm. **HRMS (ESI)** m/z Calcd for $[C_{31}H_{38}O_4 + H]^+$ 475.2843, found 475.2836.

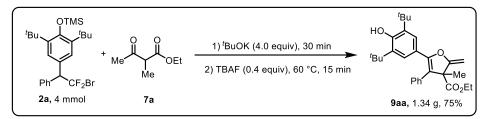
2,6-di-tert-butyl-4-(4,6-dimethoxy-3phenylbenzofuran-2-yl)phenol (9ia) Prepared through general procedure B in 25 min to give 9ia in 40.3 mg, 44% yield, yellow solid, m.p. 178 – 181 °C, $R_f = 0.7$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.44 (m, 2H), 7.41 – 7.31 (m, 5H), 6.74 (d, J = 2.0 Hz, 1H), 6.28 (d, J = 2.0

Hz, 1H), 5.23 (s, 1H), 3.87 (s, 3H), 3.65 (s, 3H), 1.30 (s, 18H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 158.8, 155.6, 154.7, 153.7, 150.0, 135.7, 134.6, 130.9, 128.1, 127.0, 123.8, 122.3, 115.4, 113.5, 94.5, 88.2, 55.9, 55.6, 34.4, 30.2 ppm. HRMS (ESI) *m/z* Calcd for [C₃₀H₃₄O₄ + H]⁺ 459.2530, found 459.2523.

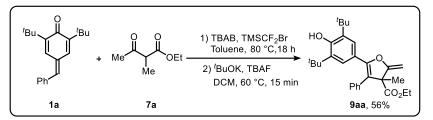
2,6-di-tert-butyl-4-(5-methyl-3-phenyl-5H-pyrano[4,3,2-cd]indol-2-yl)phenol (9ja)

Prepared through general procedure B to give **9ja** in 42.5 mg, 47% yield, yellow oil, $R_f = 0.7$ (PE/EA = 20/1). ¹H NMR (**300 MHz**, **CDCl3**) δ 7.57 – 7.43 (m, 6H), 7.38 – 7.33 (m, 1H), 7.28 – 7.15 (m, 2H), 7.07 (s, 1H), 6.83 (s, 1H), 5.23 (s, 1H), 3.83 (s, 3H), 1.35 (s, 18H) ppm. ¹³C NMR (**75 MHz, CDCl3**) δ 153.7, 149.5, 147.2, 136.2, 135.9, 134.6, 130.3, 128.9, 128.3, 127.2, 123.8, 122.8,

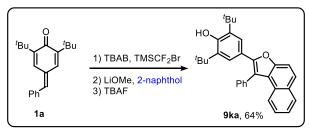
122.2, 116.7, 114.3, 113.4, 105.6, 97.2, 34.5, 33.6, 30.3 ppm. **HRMS (ESI)** *m/z* Calcd for [C₃₁H₃₃NO₂ + H]⁺ 452.2584, found 452.2583.


2,6-di-tert-butyl-4-(1-phenylnaphtho[2,1-b]furan-2-yl)phenol (9ka)

Prepared through general procedure B to give **9ka** in 60.1 mg, 67% yield, m.p. 173 – 174 °C, $R_f = 0.6$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, J = 8.1 Hz, 1H), 7.76 – 7.69 (m, 2H), 7.57 – 7.46 (m, 8H), 7.36 (t, J = 7.4 Hz, 1H), 7.26 – 7.21 (m, 1H), 5.27 (s, 1H), 1.32 (s, 18H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 153.9, 151.3, 151.0, 135.9, 135.5, 130.92, 130.87, 129.4, 128.9,

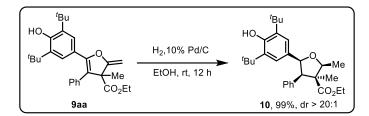

128.2, 128.0, 125.8, 125.0, 124.1, 124.0, 123.5, 123.2, 122.2, 117.5, 112.3, 34.4, 30.1 ppm. **HRMS (ESI)** *m/z* Calcd for [C₃₂H₃₂O₂ + Na] ⁺ 471.2295, found 471.2296.

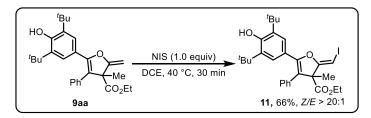
8. Gram-scale Reaction for the Synthesis of 9aa


To a 100 mL two necked bottle equipped with a Teflon coated magnetic stir bar was added 'BuOK (1.79 g, 16.0 mmol, 4.0 equiv) and **7a** (8.0 mmol, 2.0 equiv). Then the bottle was evacuated and filled with argon for three times. After that, anhydrous DCM (10 mL) was added under argon atmosphere via a syringe. The above-mentioned solution was stirred at room temperature for 30 min. Then TBAF (1.6 mL, 1.6 mmol, 1 M in THF) dissolved in 10 mL DCM, and compound **2a** (4.0 mmol in 10 mL DCM) was added in sequential under argon atmosphere. After stirring at 60 °C for 15 min, ice water (15 mL) was slowly added to quench the reaction. The reaction mixture was extracted with DCM (3×10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford the corresponding product **9aa** as a white solid (1.34 g, 75% yield).

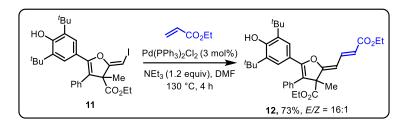
9. One-pot Reaction for the Synthesis of 9aa and 9ka

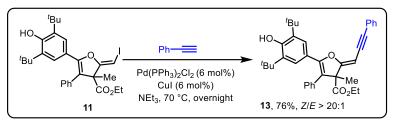
To an oven-dried 10-mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added **1a** (147.2 mg, 0.5 mmol, 1.0 equiv) and TBAB (8.0 mg, 0.025 mmol, 5 mol%), then the Schlenk tube was evacuated and backfilled with argon for three times. After that, TMSCF₂Br (203.1 mg, 1.0 mmol, 2.0 equiv) dissolved in toluene (1.0 mL) was added under argon atmosphere via a syringe. The reaction mixture was stirred at 80 °C (oil bath) for 18 h to afford the toluene solution of crude intermediate.


To another oven-dried 10-mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 'BuOK (224.4 mg, 2.0 mmol, 4.0 equiv), then the Schlenk tube was evacuated and filled with argon for three times. After that, anhydrous DCM (1.0 mL) and **7a** (1.0 mmol, 2.0 equiv, dissolved in 1.0 mL THF) was added under argon atmosphere via a syringe. After stirred at room temperature for 30 min, the toluene solution of crude intermediate was added, and then TBAF (0.5 mmol, 0.4 equiv, 1 M solution in THF) dissolved in 1.0 mL DCM was dropped slowly under argon atmosphere. The reaction mixture was stirred at 60 °C for 15 min. After the starting material was completely consumed, ice water (5 mL) was slowly added to quench the reaction. The reaction mixture was extracted with DCM (3 × 5 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford the corresponding product **9aa** as a white solid (125.6 mg, 56% yield).

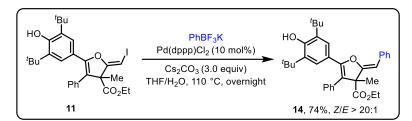

2,6-di-tert-butyl-4-(1-phenylnaphtho[2,1-b]furan-2-yl)phenol (15) To an oven-dried 10-mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added p-QM 1a (147.2 mg, 0.5 mmol, 1.0 equiv) and TBAB (8 mg, 0.025 mmol, 5 mol%), then the Schlenk tube was evacuated and filled with argon for three times. After that, TMSCF₂Br (203.1 mg, 1.0 mmol, 2.0 equiv) dissolved in toluene (1.0 mL) was added under argon atmosphere via a syringe. The reaction mixture was stirred at 80 °C in oil bath for 18 h to afford the toluene solution of crude intermediate. To another oven-dried 10-mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added LiOMe (75.8 mg, 2.0 mmol, 4.0 equiv), then the Schlenk tube was evacuated and filled with argon for three times. After that, anhydrous DCM (0.5 mL) and 2-naphthol (1.0 mmol, 2.0

equiv, dissolved in 0.5 mL DCM) was added under argon atmosphere via a syringe. After stirred for 30 min at room temperature, the toluene solution of crude intermediate was added, and then TBAF (0.2 mmol, 0.4 equiv, dissolved in 1.0 mL DCM) was dropped slowly under argon atmosphere stirred for 15 min at room temperature. When the starting material was completely consumed, saturated solution of NH₄Cl (5 mL) was slowly added to quench the reaction. The reaction mixture was extracted with DCM (3×10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford the corresponding product **9ka** as a purple solid (143.6 mg, 64% yield).

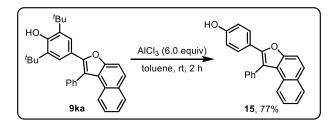

10. Transformations of the Products


ethvl (2S,3S,4R,5S)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-2,3-dimethyl-4phenyltetrahydrofuran-3-carboxylate (10) To an oven-dried 50 mL two necked bottle equipped with a Teflon coated magnetic stir bar was added 9aa (89.7 mg, 0.2 mmol, 1.0 equiv), 10% Pd/C (17.9 mg, 20% wt) and 2 mL EtOH. The bottle was evacuated and filled with H_2 for three times then stirred at room temperature under H_2 atmosphere for 12 h. After 9aa was completely consumed, the reaction mixture was filtered through a pad of celite and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/EA) to afford 10 as a white solid (89.5 mg, 99% yield). **m.p.** 106 – 107 °C, $R_f = 0.3$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 6.92 – 6.84 (m, 3H), 6.77 (s, 2H), 6.57 (d, J = 7.3 Hz, 2H), 5.25 (d, J = 8.2 Hz, 1H), 4.88 (s, 1H), 3.95 - 3.89 (m, 1H), 3.80 - 3.61 (m, 2H), 3.53 (d, J = 8.9 Hz, 1H), 1.47 (d, J = 6.5Hz, 3H), 1.32 (s, 3H), 1.20 (s, 18H), 0.90 (t, J = 6.8 Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) 8 172.2, 152.2, 136.9, 134.5, 130.9, 129.7, 127.0, 126.3, 123.7, 83.3, 81.5, 63.5, 59.8, 58.0, 34.2, 30.2, 23.4, 15.3, 14.0 ppm. **HRMS (ESI)** m/z Calcd for [C₂₉H₄₀O₄ + Na]⁺ 475.2819, found 475.2834.

ethyl (*Z*)-5-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(iodomethylene)-3-methyl-4phenyl-2,3-dihydrofuran-3-carboxylate (11) To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added NIS (45.0 mg, 0.2 mmol, 1.0 equiv) and **9aa** (89.7 mg, 0.2 mmol, 1.0 equiv). Then the Schlenk tube was evacuated and filled with argon for three times. After that, anhydrous DCE (2 mL) was added under argon atmosphere via a syringe under argon atmosphere stirred for 30 min at 40 °C. After **9aa** was completely consumed, the mixture was concentrated and the residue was purified by chromatography on silica gel (PE/EA) to afford **11** as a white solid (75.8 mg, 66% yield, Z/E > 20:1). **m.p.** 170 – 172 °C, R_f = 0.4 (PE/EA = 20/1). ¹**H NMR (300 MHz, CDCl₃)** δ 7.35 – 7.21 (m, 7H), 5.33 (s, 1H), 5.19 (s, 1H), 4.23 – 4.16 (m, 2H), 1.55 (s, 3H), 1.28 – 1.22 (m, 22H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 163.9, 154.8, 150.3, 135.6, 133.4, 130.5, 128.9, 127.9, 124.6, 120.1, 115.4, 62.0, 61.0, 44.5, 34.4, 30.1, 23.6, 14.2 ppm. HRMS (ESI) *m/z* Calcd for [C₂₉H₃₅IO₄ + H] + 575.1653, found 575.1636.

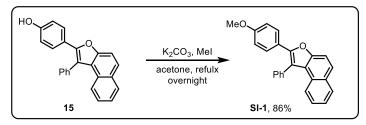


(Z)-5-(3,5-di-tert-butyl-4-hvdroxyphenyl)-2-((E)-4-ethoxy-4-oxobut-2-en-1ethvl ylidene)-3-methyl-4-phenyl-2,3-dihydrofuran-3-carboxylate (12) To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 11 (114.9 mg, 0.2 mmol, 1.0 equiv) and Pd(PPh₃)₂Cl₂ (4.2 mg, 0.006 mmol, 3 mol%). Then the Schlenk tube was evacuated and filled with argon for three times. After that, ethyl acrylate (56.1 mg, 0.56 mmol, 2.8 equiv) and NEt₃ (24.3 mg, 0.24 mmol, 1.2 equiv) in anhydrous DMF (2 ml) was added via a syringe under argon atmosphere. After stirring for 4 h at 130 °C, the reaction mixture was filtered through a pad of celite and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/EA) to afford 12 as a white solid (79.6 mg, 73% yield, E/Z = 16:1). m.p. 167 – 169 °C, $R_f = 0.2$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.86 (dd, J = 15.5, 11.3 Hz, 1H), 7.38 - 7.34 (m, 2H), 7.31 (s, 2H), 7.28 - 7.20 (m, 3H), 5.89 (d, J = 15.5Hz, 1H), 5.51 (d, J = 11.4 Hz, 1H), 5.38 (s, 1H), 4.28 – 4.18 (m, 4H), 1.59 (s, 3H), 1.35 -1.23 (m, 6H), 1.31 (s, 18H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 171.5, 167.6, 165.1, 154.9, 150.6, 138.4, 135.7, 132.9, 130.4, 129.0, 128.0, 124.5, 120.0, 117.6, 114.8, 98.8, 62.0, 61.1, 60.2, 34.4, 30.1, 23.1, 14.4, 14.2 ppm. HRMS (ESI) m/z Calcd for $[C_{34}H_{42}O_6 + H]^+$ 547.3055, found 547.3058.



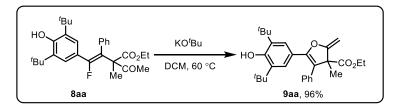
ethyl (*Z*)-5-(3,5-*di*-*tert*-*butyl*-4-*hydroxyphenyl*)-3-*methyl*-4-*phenyl*-2-(3-*phenylprop*-2-*yn*-1-*ylidene*)-2,3-*dihydrofuran*-3-*carboxylate* (13) To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added **11** (114.9 mg, 0.2 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (8.4 mg, 0.012 mmol, 6 mol%), and CuI (2.3 mg, 0.012 mmol, 6 mol%). Then the Schlenk tube was evacuated and filled with argon for three times. After that, phenylacetylene (24.5 mg, 0.24 mmol, 1.2 equiv) in anhydrous NEt₃ (2 mL) was added via a syringe under argon atmosphere. After stirring at 70 °C overnight, the reaction mixture was filtered through a pad of celite and concentrated under reduced pressure. Purification by flash chromatography on silica gel (PE/EA) to afford **13** as a white solid (83.4 mg, 76% yield, Z/E > 20:1). **m.p.** 142–144 °C, R_f = 0.3 (PE/EA = 20/1). ¹H NMR (**300 MHz, CDCl3**) δ 7.49 – 7.46 (m, 2H), 7.39 – 7.23 (m, 10H), 5.33 (s, 1H), 5.04 (s, 1H), 4.29 – 4.15 (m, 2H), 1.58 (s, 3H), 1.30 – 1.23 (m, 21H) ppm. ¹³C NMR (**75 MHz, CDCl3**) δ 171.6, 168.3, 154.8, 150.6, 135.6, 133.2, 131.3, 130.5, 129.0, 128.4, 128.0, 127.8, 124.6, 124.3, 120.2, 114.8, 94.5, 84.3, 80.8, 62.0, 61.0, 34.4, 30.1,

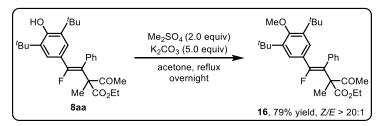
23.6, 14.3 ppm. **HRMS (ESI)** m/z Calcd for $[C_{37}H_{41}O_4 + H]^+$ 549.3000, found 549.2991.



(Z)-2-benzylidene-5-(3-(tert-butyl)-4-hydroxy-5-methylphenyl)-3-methyl-4ethvl phenyl-2,3-dihydrofuran-3-carboxylate (14) To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 11 (114.9 mg, 0.2 mmol, 1.0 equiv), Cs₂CO₃ (211.7 mg, 0.6 mmol, 3.0 equiv), PhBF₃K (44.2 mg, 0.24 mmol, 1.2 equiv), and Pd(dppp)Cl₂ (11.8 mg, 0.02 mmol, 10 mol%). Then the Schlenk tube was evacuated and filled with argon for three times. After that, THF (2.0 mL) and H₂O (0.6 mL) were added under argon atmosphere via a syringe. After stirred at 110 °C overnight, the reaction was quenched with brine and extracted with EA (3×4 mL). The combined organic phase was washed with brine, dried over MgSO₄, evaporated to give the crude products. The residue was purified by flash chromatography (PE/EA) to afford 14 as a yellow solid (77.7 mg, 74% yield, Z/E > 20:1). m.p. 163 – 165 °C, $R_f = 0.3$ (PE/EA = 20/1). ¹H NMR (300 MHz, CDCl₃) δ 7.76 – 7.73 (m, 2H), 7.38 – 7.16 (m, 10H), 5.58 (s, 1H), 5.33 (s, 1H), 4.29 - 4.11 (m, 2H), 1.62 (s, 3H), 1.30 (s, 18H), 1.23 (t, J = 7.1Hz, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 172.5, 158.3, 154.7, 150.6, 135.7, 133.5, 130.6, 128.9, 128.4, 128.3, 127.8, 126.0, 124.5, 120.6, 114.3, 100.5, 61.8, 61.5, 34.4, 30.1, 23.8, 14.3 ppm. HRMS (ESI) m/z Calcd for $[C_{35}H_{40}O_4 + H]^+ 525.3000$, found 525.2998.

4-(1-phenylnaphtho[2,1-b]furan-2-yl)phenol (15) To an oven dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added AlCl₃ (160.0 mg, 1.2 mmol, 6.0 equiv). Then the Schlenk tube was evacuated and filled with argon for three times. After that, **9ka** (89.7 mg, 0.2 mmol, 1.0 equiv) dissolved in toluene (4.0 mL) was added. The reaction was stirred for 2 h under at room temperature. After complete consumption of **9ka**, ice-water was added to quench the reaction. The reaction mixture was extracted with EA (3×10 mL). The organic layers were combined and dried over anhydrous MgSO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (PE/EA) to afford product **15** as yellow oil (51.8 mg, 77% yield), R_f = 0.3 (PE/EA = 5/1). ¹H NMR (**300** MHz, CDCl₃) δ 7.85 (d, *J* = 7.7 Hz, 1H), 7.65 (*app.* s, 2H), 7.54 – 7.48 (m, 6H), 7.41 – 7.30 (m, 3H), 7.24 – 7.19 (m, 1H),


6.65 (d, J = 8.7 Hz, 2H), 5.52 (s, 1H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 155.3, 151.2, 150.3, 134.9, 131.0, 130.8, 129.5, 129.1, 128.4, 128.2, 128.0, 126.0, 125.6, 124.3, 124.0, 123.8, 123.2, 118.1, 115.6, 112.3 ppm. HRMS (ESI) *m/z* Calcd for [C₂₄H₁₆O₂ + H]⁺ 337.1223, found 337.1225.


2-(4-methoxyphenyl)-1-phenylnaphtho[2,1-b]furan (SI-1) To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 15 (67.3 mg, 0.2 mmol, 1.0 equiv) and K₂CO₃ (138.2 mg, 1.0 mmol, 5.0 equiv). Then the Schlenk tube was evacuated and filled with argon for three times. After that, MeI (56.8 mg, 0.4 mmol, 2.0 equiv) dissolved in acetone (2 mL) was added under argon atmosphere via a syringe under argon atmosphere stirred at 70 °C overnight. When the starting material was completely consumed, water was slowly added to quench the reaction. The reaction mixture was extracted with EA (3×10 mL). The organic layers were combined and dried over anhydrous MgSO4. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford SI-1 as a white solid (60.1 mg, 86% yield). **m.p.** 110 – 111 °C, $R_f = 0.4$ (PE/EA = 5/1). ¹H **NMR (300 MHz, CDCl₃)** δ 7.88 (d, J = 8.1 Hz, 1H), 7.68 (s, 2H), 7.56 – 7.44 (m, 8H), 7.38 - 7.32 (m, 1H), 7.25 - 7.18 (m, 1H), 6.80 - 6.75 (m, 2H), 3.73 (s, 3H) ppm. ¹³C NMR (75 MHz, CDCl₃) δ 159.4, 151.2, 150.4, 135.0, 131.0, 130.9, 130.8, 129.6, 129.5, 129.5, 129.0, 128.3, 128.2, 127.8, 127.7, 125.9, 125.5, 124.3, 123.8, 123.7, 123.2, 118.1, 114.0, 112.2, 55.3 ppm. **HRMS (ESI)** m/z Calcd for $[C_{25}H_{18}O_2 + H]^+$ 351.1380, found 351.1379. Product SI-1 is a known compound. The regioselectivity in forming 9ka was unambiguously established by NMR spectral congruence with reported data.^[2]

^[2] V. K. Rao, G. M. Shelke, R. Tiwari, K. Parang and A. Kumar, Org. Lett. 2013, 15, 2190.

11. Control Experiments

To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 'BuOK (89.8 mg, 0.8 mmol, 4.0 equiv) and **8aa** (99.7 mg, 0.2 mmol, 1.0 equiv) then the Schlenk tube was evacuated and filled with argon for three times. After that, anhydrous DCM (2 mL) was added under argon atmosphere via a syringe under argon atmosphere stirred for 15 min at 60 °C. After the starting material was completely consumed, ice water (5 mL) was slowly added to quench the reaction. The reaction mixture was extracted with DCM (3×10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford the corresponding product **9aa** as a white solid (86.0 mg, 96% yield).

To an oven-dried 10 mL Schlenk tube equipped with a Teflon coated magnetic stir bar was added 8aa (93.7 mg, 0.2 mmol, 1.0 equiv) and K₂CO₃ (138.2 mg, 1.0 mmol, 5.0 equiv). Then the Schlenk tube was evacuated and filled with argon for three times. After that, Me₂SO₄ (50.5 mg, 0.4 mmol, 2.0 equiv) dissolved in acetone (2 mL) was added under argon atmosphere via a syringe under argon atmosphere stirred at 70 °C overnight. When the starting material was completely consumed, water was slowly added to quench the reaction. The reaction mixture was extracted with EA (3×10 mL). The organic layers were combined and dried over anhydrous MgSO₄. After removal of the solvent in vacuo, the residue was purified by flash chromatography on silica gel (PE/EA) to afford 16 as a white solid (76.2 mg, 79% yield, Z/E > 20:1). m.p. 131 – 133 °C, $R_f = 0.6$ (PE/EA = 10/1). ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.24 (m, 3H), 7.19 – 7.16 (m, 2H), 7.01 (s, 2H), 4.10 – 3.98 (m, 2H), 3.60 (s, 3H), 2.48 (d, J = 1.9 Hz, 3H), 1.48 (s, 3H), 1.20 (s, 19H), 1.14 (t, J = 7.1 Hz, 3H) ppm. ¹³C NMR (75 MHz, **CDCl**₃) δ 204.7 (d, ⁴J = 2.3 Hz), 171.4, 160.1, 156.1 (d, ¹J = 250.1 Hz), 143.2, 136.1 (d, ${}^{3}J = 8.6$ Hz), 130.4 (d, ${}^{4}J = 3.0$ Hz), 128.9, 128.0, 126.6 (d, ${}^{3}J = 7.5$ Hz), 125.7 (d, $^{2}J = 28.0$ Hz), 119.2 (d, $^{2}J = 19.4$ Hz), 64.2, 64.0, 61.6, 35.7, 31.8, 27.3 (d, $^{4}J = 4.6$ Hz), 20.9 (d, ${}^{4}J$ = 1.6 Hz), 13.9 ppm. ¹⁹F NMR (282 MHz, CDCl₃) δ -96.3 ppm. HRMS (ESI) m/z Calcd for $[C_{30}H_{39}FO_4 + Na]^+$ 505.2725, found 505.2727.

12. Calculation Studies

To validate bond order quantification, semi-empirical quantum mechanical (QM) calculations were performed using the PM7 Hamiltonian as implemented in MOPAC v22.1.1 (Digital Object Identifier (DOI): 10.5281/zenodo.6511958). Initial molecular geometries were defined through Cartesian coordinates, with explicit generation of Mayer bond order matrices enabled by the BONDS keyword. All geometry optimizations were conducted under gas-phase conditions to simulate isolated molecular environments.

The computational results are presented as follows.

Intermediate	I (INT-I)		
С	-0.0000038	0.01144502	0.00234211
С	2.09269800	1.21919308	-0.00000046
С	1.39504438	2.42769771	-0.00354261
С	0.00021938	2.42761922	-0.00402101
С	-0.69738200	1.21941765	-0.00068200
Н	-0.54975692	-0.94087567	0.00044960
Н	3.19237342	1.21927944	0.00482213
Ο	-0.71509425	3.66584907	-0.00766095
С	-2.23738196	1.21967394	-0.00093409
С	-2.71308564	1.94172337	1.24194665
С	-2.71281788	1.93482693	-1.24784514
С	-2.71316312	-0.21766301	0.00296366
Н	-2.33913584	1.42529621	2.15841942
Н	-2.33838435	2.99339448	1.24774255
Н	-3.82888196	1.96398262	1.27935692
Н	-2.33823551	1.41374577	-2.16142981
Н	-3.82862522	1.95635430	-1.28582080
Н	-2.33862626	2.98664312	-1.25922127
Н	-3.82899581	-0.26104966	0.00346840
Н	-2.33912787	-0.75323909	-0.90241572
Н	-2.33860715	-0.74847827	0.91093958
С	2.16554888	3.76108276	-0.00621100
С	1.78218598	4.52943596	-1.25323472
С	1.78066425	4.53545807	1.23655888
С	3.64804661	3.45364488	-0.00452897
Н	2.04483861	3.94366483	-2.16665881
Н	0.68419383	4.73133546	-1.26306274
Н	2.32145066	5.50643129	-1.29286009
Н	2.04162095	3.95394379	2.15319252
Н	2.32034527	5.51239051	1.27232182
Н	0.68275082	4.73793835	1.24390106
Н	4.24405320	4.39796238	-0.00695329

Н	3.92185032	2.86531815	0.90396380	
Н	3.92282722	2.86018141	-0.90939029	
С	1.39515962	0.01144458	0.00234166	
С	2.04664035	-1.11490464	-0.74616120	
С	2.04411989	-1.11357837	0.75493997	
Н	1.41112866	-1.84072875	-1.28314242	
F	1.26471187	-1.99969824	1.41054253	
F	3.19997999	-0.88184161	1.41280433	
С	3.36779261	-0.85214179	-1.49256083	
С	3.34534058	-0.38612883	-2.80739894	
С	4.58683438	-1.07991601	-0.85412194	
С	4.54170803	-0.14861393	-3.48379625	
Н	2.38410696	-0.20738771	-3.31071129	
С	5.78365748	-0.84143958	-1.53025310	
Н	4.60471337	-1.44703666	0.18223311	
С	5.76128801	-0.37598971	-2.84493673	
Н	4.52409000	0.21810517	-4.52037872	
Н	6.74466839	-1.02072786	-1.02647937	
Н	6.70445212	-0.18859034	-3.37843392	

Atomic orbital electron populations

A	tom	S	px	ру	pz
1	С	1.08707	0.96466	1.08074	1.00091
2	С	1.08926	1.09612	0.95474	0.98780
3	С	1.10260	1.00651	1.01235	1.00362
4	С	1.11508	0.88846	0.85767	0.67963
5	С	1.10414	1.02353	0.99565	0.99395
6	Η	0.83158			
7	Η	0.82287			
8	0	1.87871	1.72964	1.44210	1.39942
9	С	1.04659	0.90773	0.94832	0.96041
10	С	1.05918	1.15276	1.16978	1.08133
11	С	1.05962	1.16652	1.16255	1.07665
12	С	1.06070	1.16325	1.07476	1.16955
13	Η	0.85437			
14	Н	0.82835			
15	Н	0.85560			
16	Η	0.85728			
17	Η	0.85486			
18	Н	0.83095			
19	Η	0.85134			
20	Η	0.85607			
21	Η	0.85324			
22	С	1.04624	0.93256	0.92071	0.95805

23	С	1.05931	1.18351	1.14378	1.07665				
24	С	1.05913	1.19082	1.13089	1.08159				
25	С	1.06070	1.05379	1.18125	1.17265				
26	Н	0.85797							
27	Н	0.83354							
28	Н	0.85520							
29	Н	0.85400							
30	Н	0.85646							
31	Н	0.83012							
32	Н	0.85045							
33	Н	0.85225							
34	Н	0.85520							
35	С	1.04935	0.99300	0.95344	1.08859				
36	С	1.06769	1.07998	1.07754	0.99898				
37	С	1.09675	0.80899	0.90580	0.85537				
38	Н	0.80461							
39	F	1.96710	1.78153	1.65448	1.75621				
40	F	1.96685	1.47258	1.95075	1.76152				
41	С	1.05723	0.95407	1.00333	0.98701				
42	С	1.08491	1.06116	1.01514	0.99000				
43	С	1.08449	0.98300	1.03620	1.04892				
44	С	1.08358	0.98641	1.03225	1.04186				
45	Н	0.83705							
46	С	1.08364	1.05291	1.01249	0.99173				
47	Н	0.83993							
48	С	1.08420	1.04809	0.99484	1.01933				
49	Н	0.84830							
50	Н	0.84878							
51	Н	0.85065							
(Valeno	cies)	bond or	ders						
1 C	(3 968)	5 C 1 88	3 35 (C 1.025	6	H 0 953	8	0
			10 C		0 1.025	U	11 0.755	0	U
0.037		0.015		C 0.012					
			11	0.012					
2 C	(3 965)	3 C 1 88	1 35 (C 1.025	7	H 0 950	8	0
0.038	```	,	24 C		0 1.025	,	11 0.950	0	U
0.050		0.011		C 0.012					
			25	- 0.012					
3 C	(3.984)	2 C 1 88	1 22	C 0.985	4	C 0.976	8	0
0.048	`	,	5 C		- 0.202		2 0.770	0	J
0.010	50			C 0.017					
			51						

	(3.836) 1 C 0.013	8	O 1.819	3	C 0.976	5	C 0.972	2	С
5 C 0.048	(3.985) 36 C 0.019				C 0.986	4	C 0.972	8	0
6 H	(0.972)	1	C 0.953						
7 H	(0.969)	2	C 0.950						
	(2.015) 1 C 0.037	4	C 1.819	5	C 0.048	3	C 0.048	2	С
9 C 0.986	(3.984)	12	C 0.994	10	C 0.990	11	C 0.990	5	С
10 C 0.960	(3.924) 1 C 0.013	9	C 0.990	13	H 0.971	15	H 0.970	14	Н
11 C 0.961	(3.925) 1 C 0.012	9	C 0.990	16	H 0.972	17	H 0.970	18	Н
12 C 0.968	(3.930)	9	C 0.994	20	H 0.971	21	H 0.970	19	Н
13 H	(0.979)	10	C 0.971						
14 H	(0.971)	10	C 0.960						
15 H	(0.979)	10	C 0.970						
16 H	(0.980)	11	C 0.972						
17 H	(0.979)	11	C 0.970						
18 H	(0.971)	11	C 0.961						
19 H	(0.978)	12	C 0.968						
20 H	(0.979)	12	C 0.971						
21 H	(0.978)	12	C 0.970						

SI-37

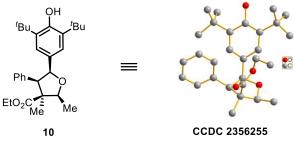
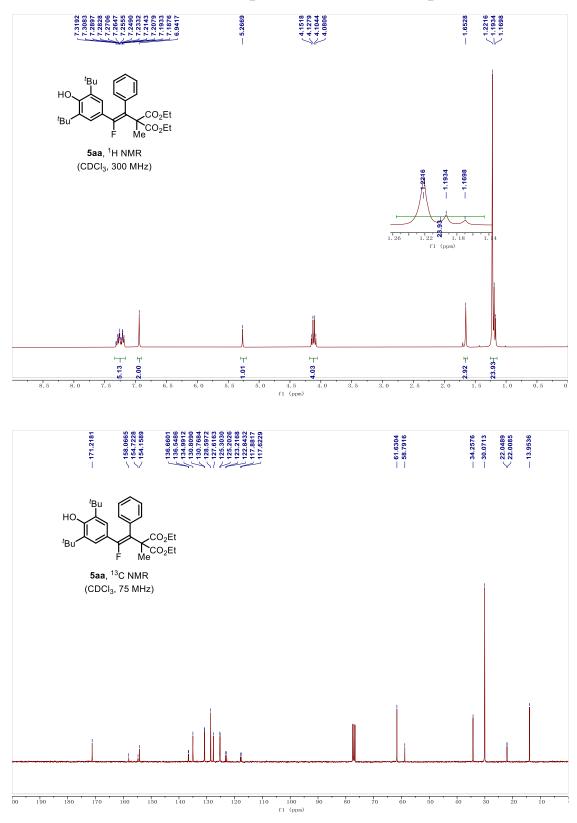
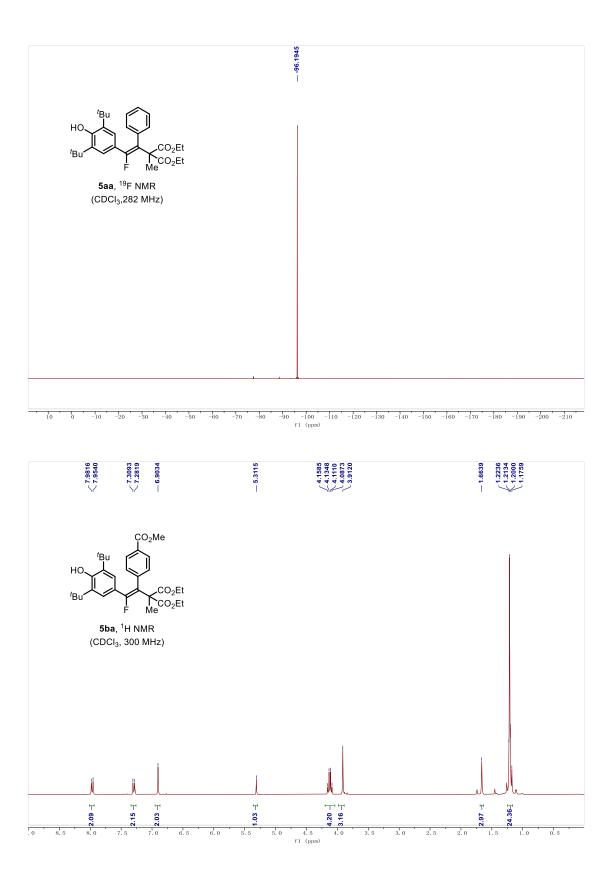
22 C 0.985	(3.983)	25	C 0.995	23	C 0.990	24	C 0.990	3	С
23 C 0.962	(3.926) 2 C 0.012	22	C 0.990	26	H 0.972	28	H 0.970	27	Н
24 C 0.961	(3.925) 2 C 0.013	22	C 0.990	29	H 0.971	30	H 0.970	31	Н
25 C 0.968	(3.929)	22	C 0.995	34	H 0.970	33	Н 0.969	32	Н
26 H	(0.980)	23	C 0.972						
27 H	(0.972)	23	C 0.962						
28 H	(0.979)	23	C 0.970						
29 H	(0.979)	24	C 0.971						
30 H	(0.979)	24	C 0.970						
31 H	(0.971)	24	C 0.961						
32 H	(0.978)	25	C 0.968						
33 H	(0.978)	25	C 0.969						
34 H	(0.979)	25	C 0.970						
	(3.977) 39 F 0.022			2	C 1.025	37	C 0.924	36	С
	(3.949) 39 F 0.022			37	C 0.973	38	H 0.940	35	С
0.915	57 1 0.022	-		19	3 C 0.0)19			
	(3.884) 3 C 0.017			40	F 0.966	39	F 0.959	35	С
38 H	(0.962)	36	C 0.940						
39 F 0.022	(1.054)	37	C 0.959	40	F 0.039	36	C 0.022	35	С

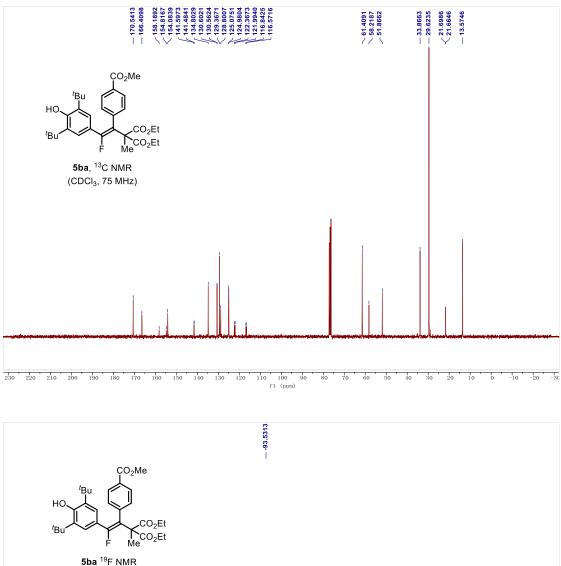
SI-38

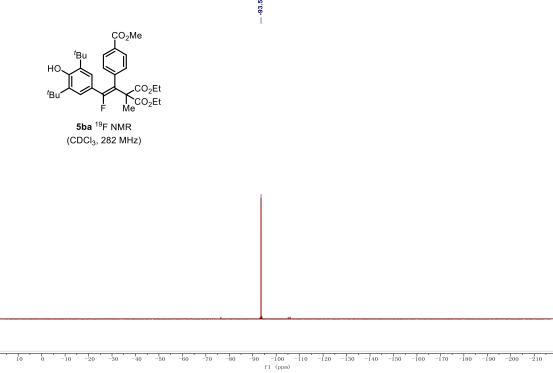
40 0.021		(1.059)	37	C 0.966	39	F 0.039	36	C 0.022	35	С
41 0.114		(3.992)	43	C 1.430	42	C 1.415	36	C 1.005	48	С
42 0.112		(3.973)	44	C 1.452	41	C 1.415	45	H 0.960	46	С
0.112 43 0.111	С	(3.974)	46	C 1.439	41	C 1.430	47	H 0.961	44	С
44 0.111		(3.976)	42	C 1.452	48	C 1.434	49	Н 0.964	43	С
45	Н	(0.973)	42	C 0.960						
46 0.112		(3.976)	48	C 1.446	43	C 1.439	50	H 0.964	42	С
47	Н	(0.974)	43	C 0.961						
48 0.114		(3.977)	46	C 1.446	44	C 1.434	51	Н 0.965	41	С
49	Н	(0.977)	44	C 0.964						
50	Н	(0.977)	46	C 0.964						
51	Н	(0.978)	48	C 0.965						

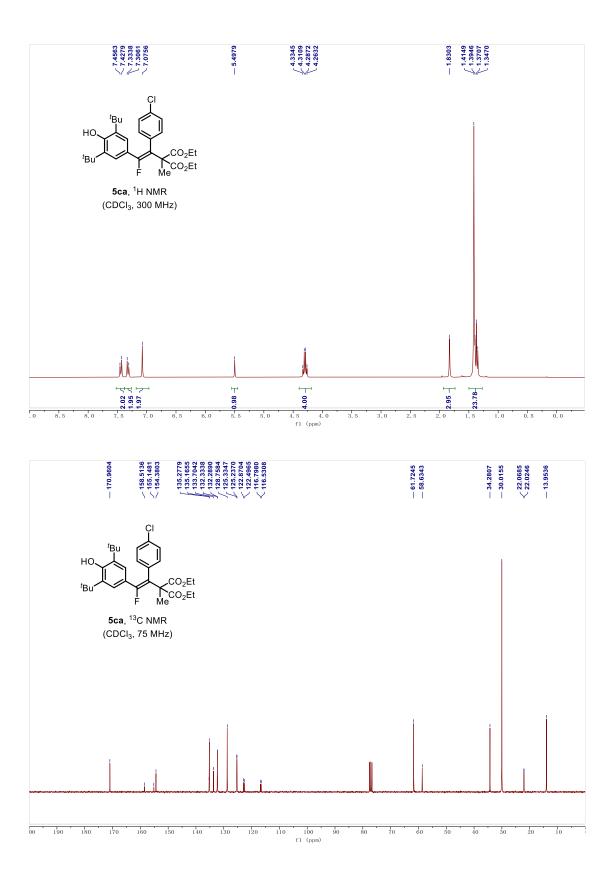
13. Crystal Structure of Product 10

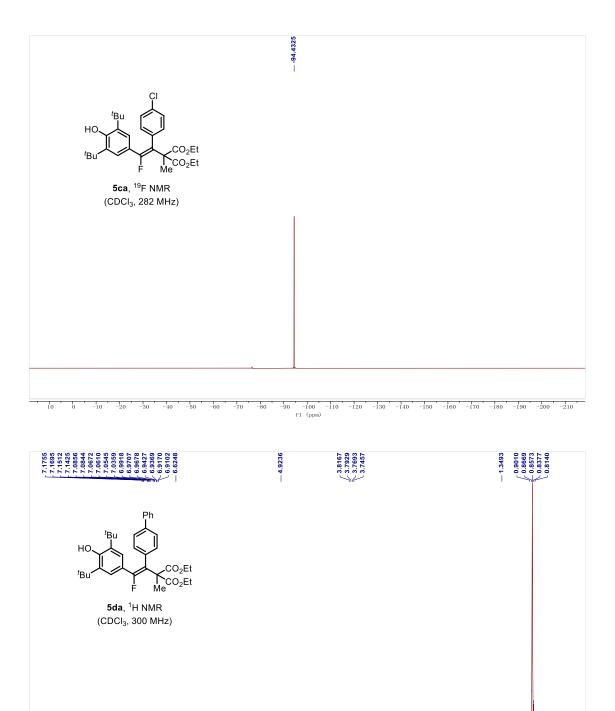
Vapor diffusion crystallization method was used for crystal growth of 10. The compound 10 was dissolved in diethyl ether to make saturated solution in small vial and placed in closed bottle with another solvent as *n*-hexane.


Figure S1. ORTEP plot of the crystal structure of compound 10 and thermal ellipsoid is set at 50% probability


CCDC number	2356255
Bond precision	C-C = 0.0050 A Wavelength = 0.71073
Cell	a=10.6394 (6) b=10.7112 (6) c=23.9695 (13)
	alpha=90.188 (2) beta=102.380 (2) gamma=104.147 (2)
Temperature	170 K
Volume	2582.7 (3)
Space group	P -1
Hall group	-P 1
Sum formula	C ₂₉ H ₄₀ O ₄
Mr	452.61
Dx, g cm-3	1.164
Z	4
Mu (mm-1)	0.076
F000	984.0
F000'	984.44
h, k, lmax	0, 0, 0
Nref	10326
Tmin, Tmax	0.524, 0.856
Tmin'	0.989
Correction method	# Reported T Limits: Tmin=0.524, Tmax=0.856
AbsCorr	MULTI-SCAN
Data completeness	0.971
Theta(max)	26.423
R(reflections)	0.0866 (6371)
wR2(reflections)	wR2 (reflections) =0.2458 (10326)
S	1.049
Npar	615
Ellipsoid contour % probability levels	50




14.¹H, ¹³C and ¹⁹F NMR Spectra of Title Compounds

4.5 f1 (ppm) **1**. 5

54.06

0.5

66.0 5.0

4.00

3.5

3.0

2.5

2.0

4.0

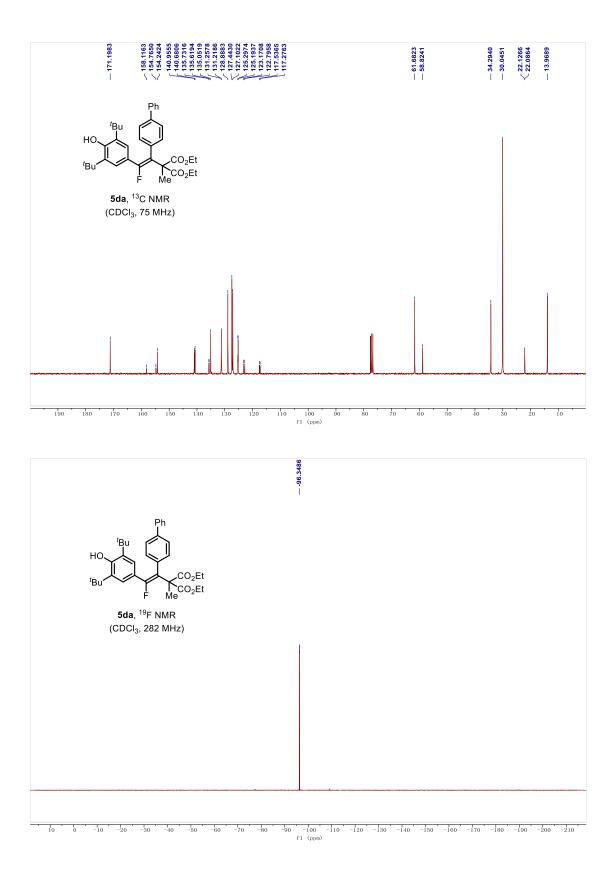
Militari

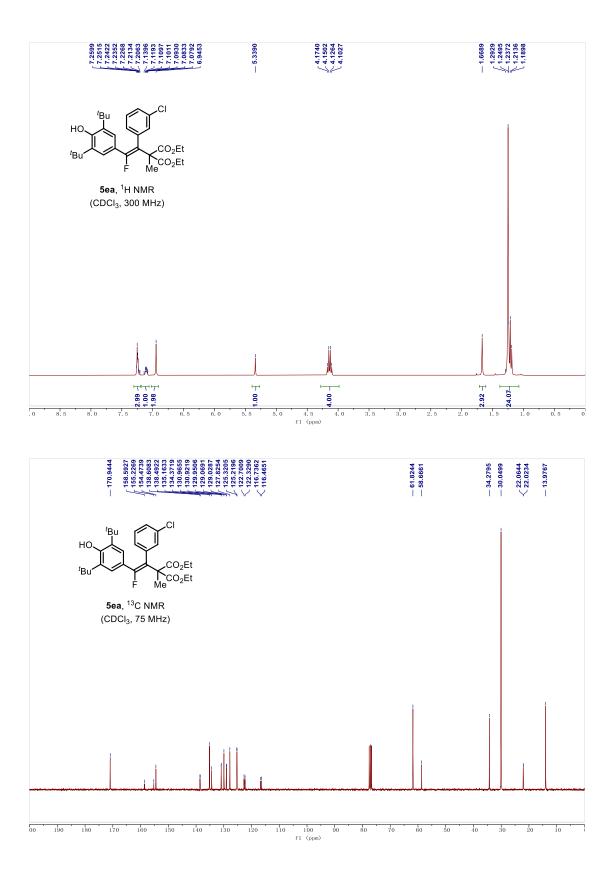
3.88 5.05 7.0

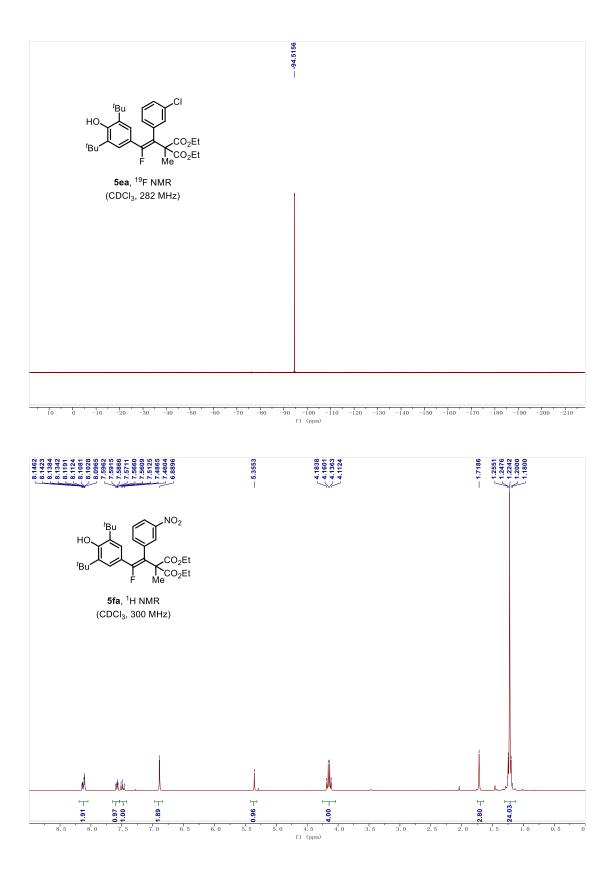
7.5

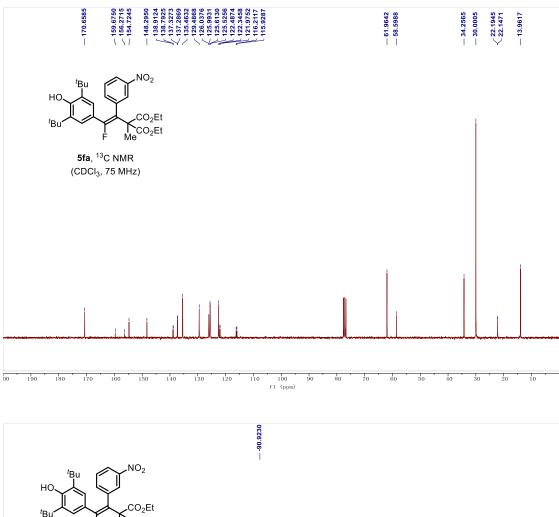
0

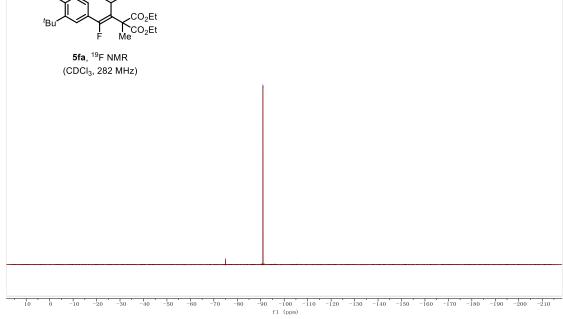
8.5

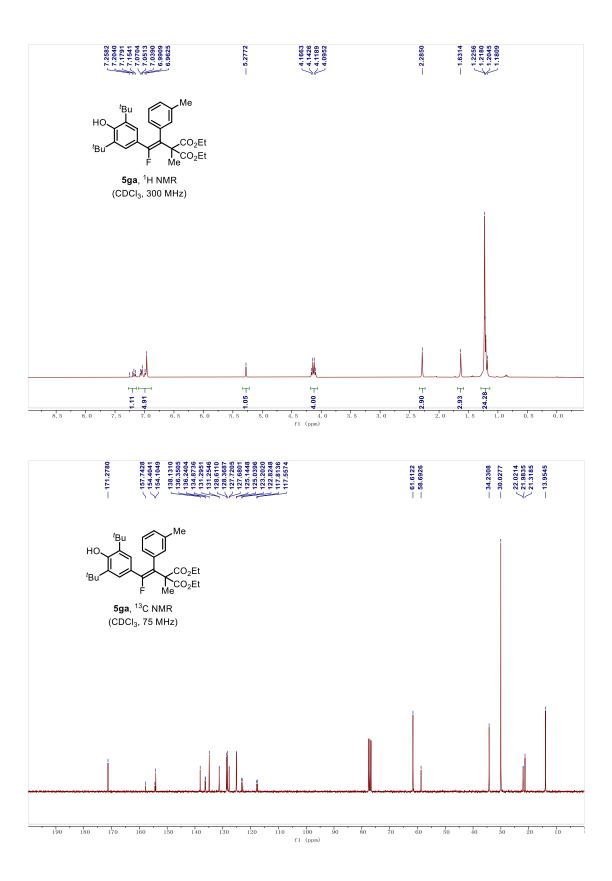

8, 0

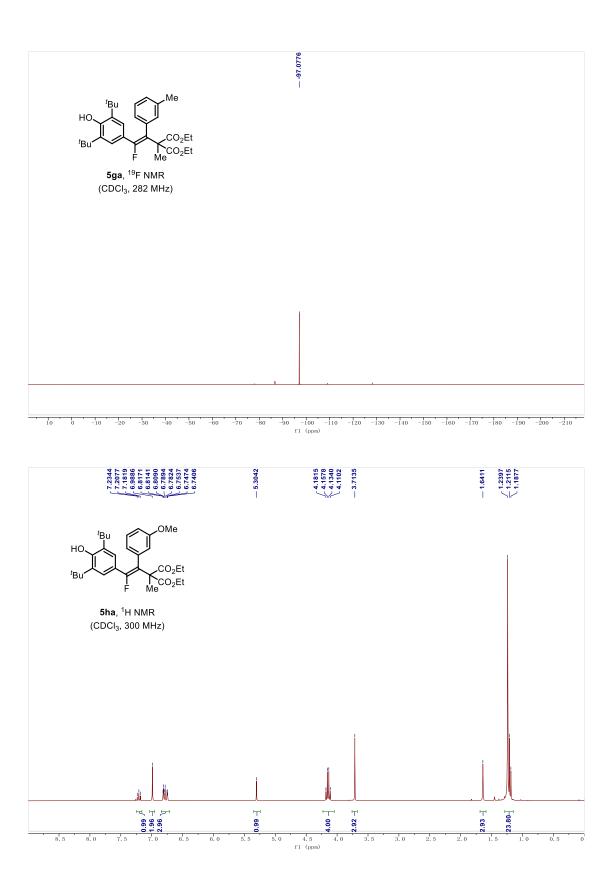

1.88 -[

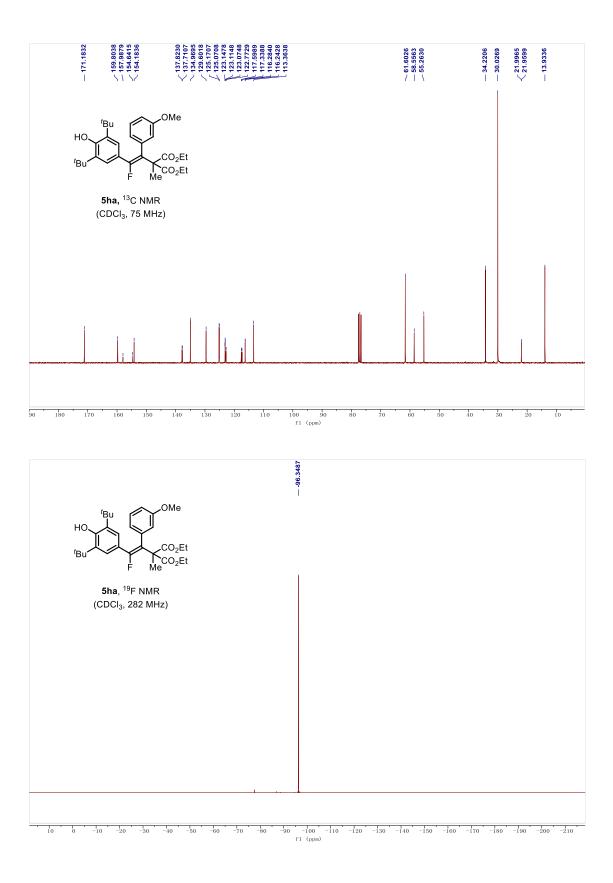

6.5

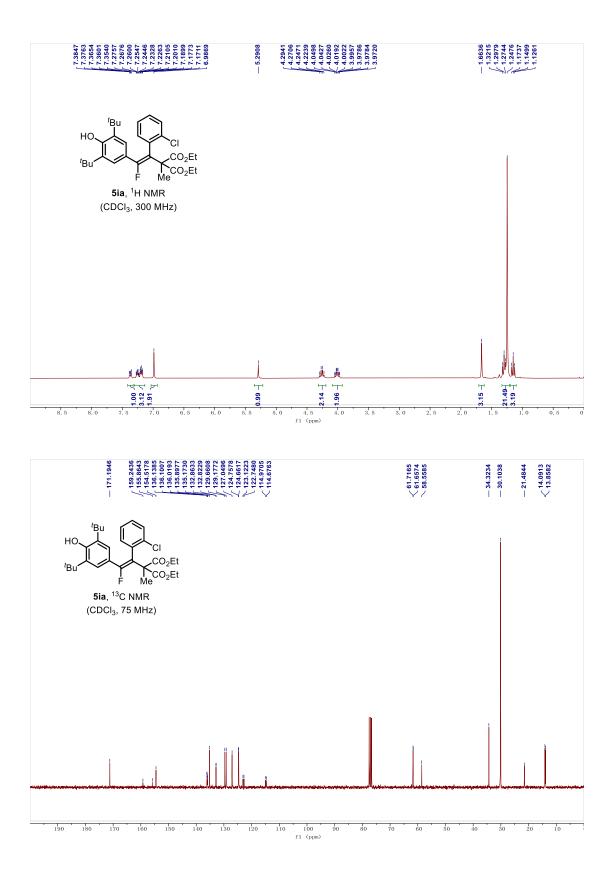

6, 0

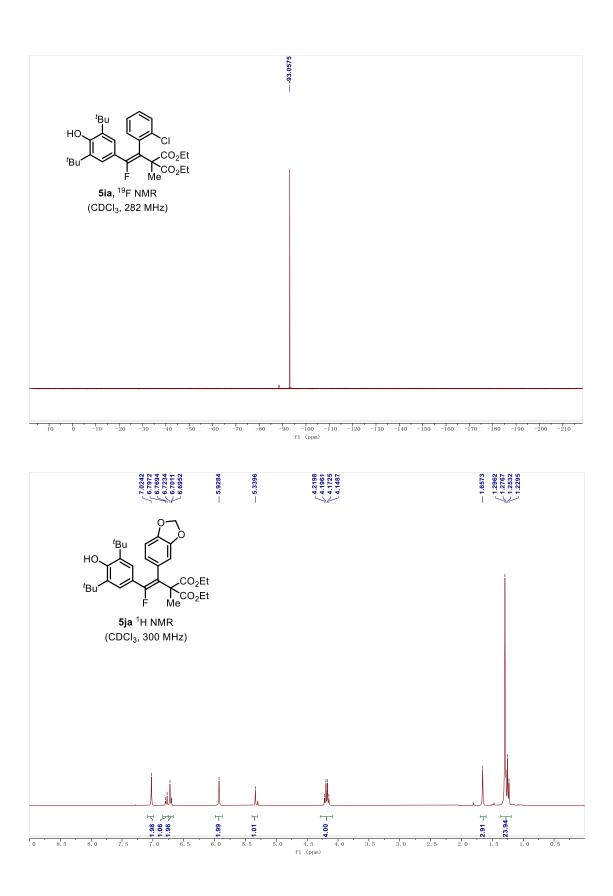

5.5

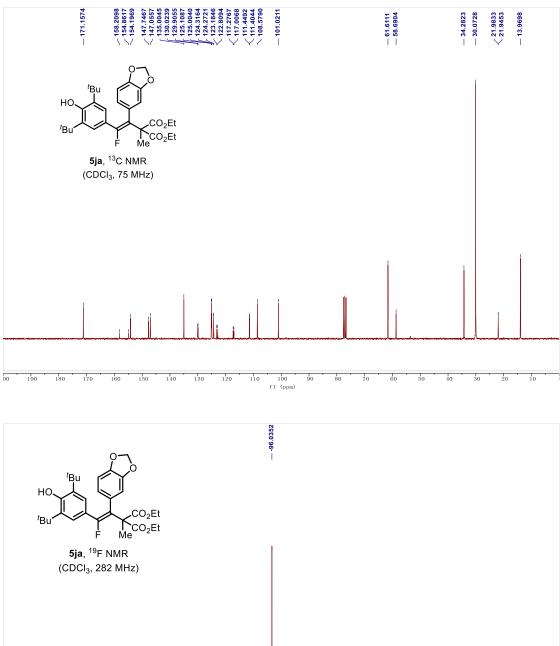


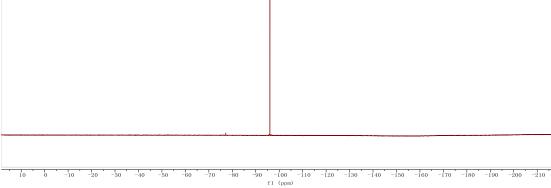


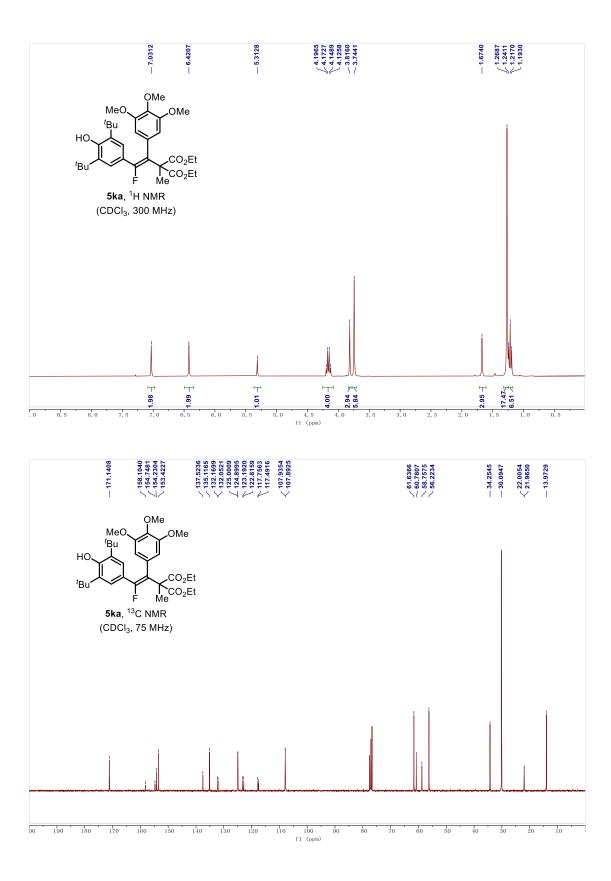


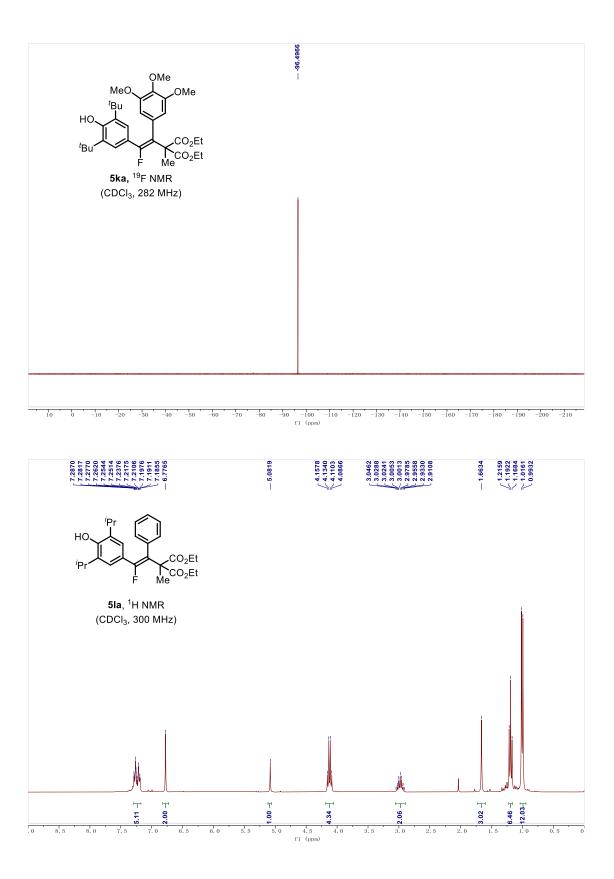


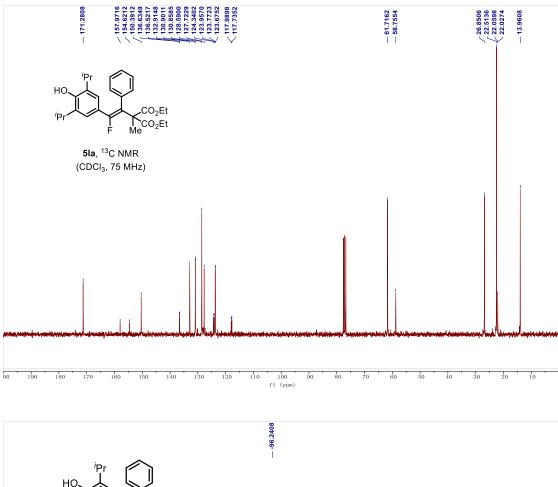


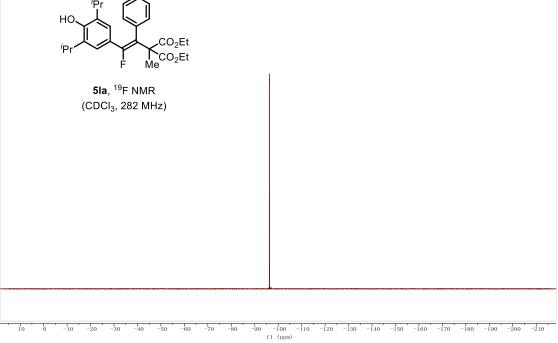


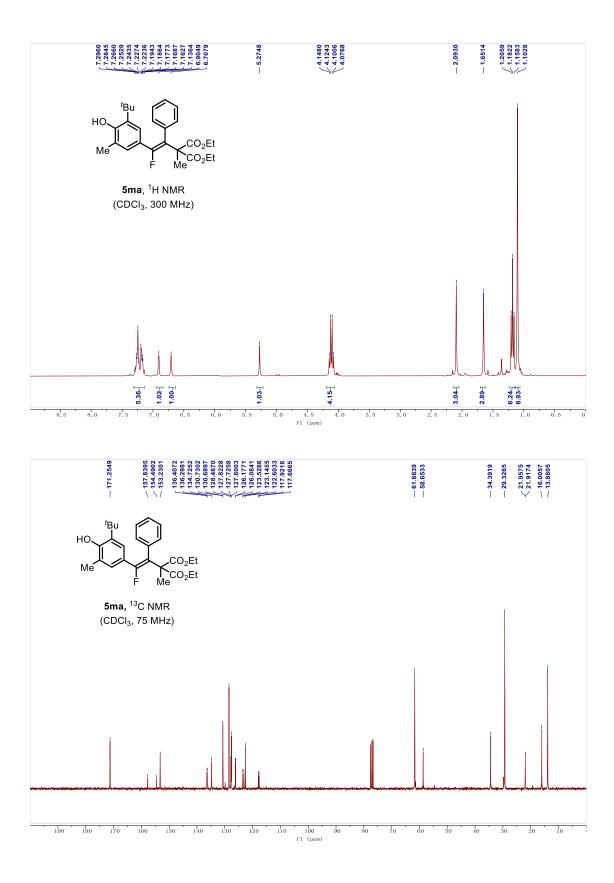


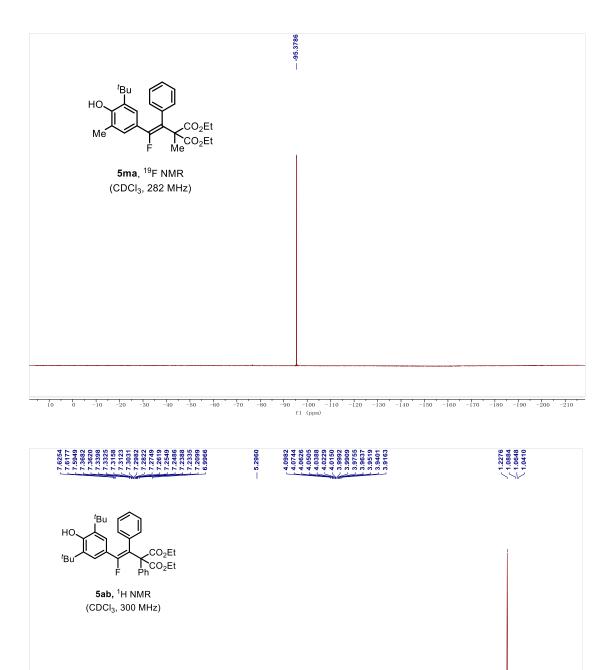












4.5 f1 (ppm) 66.6 4.0

3.0

3.5

2.5

2.0

1.00 -

5.5

5.0

18.24

1.5

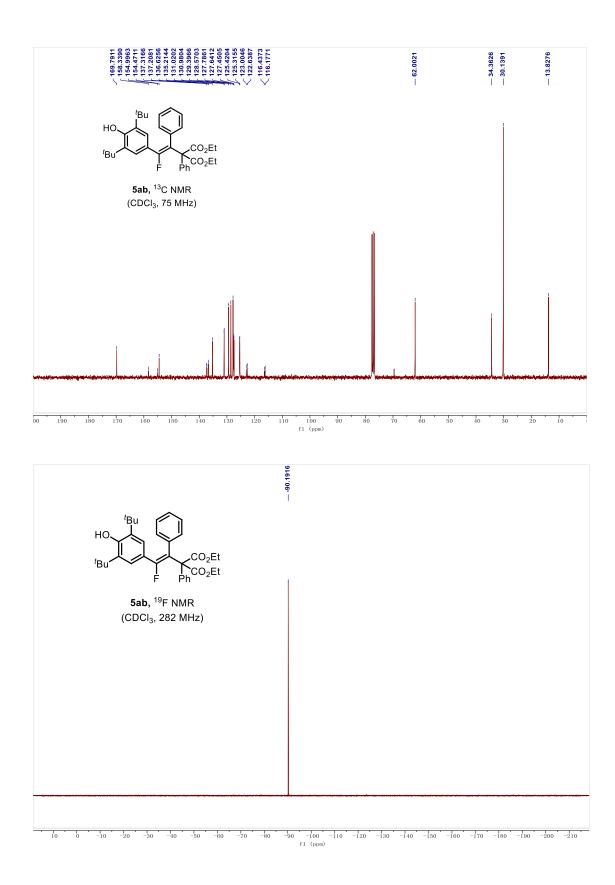
0.5 0

1

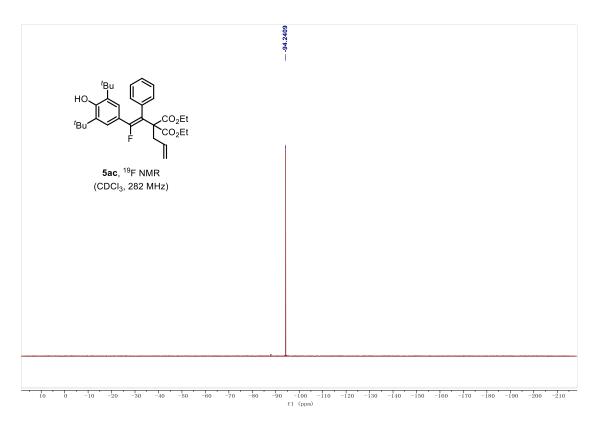
1.95 - 1.95 8.40

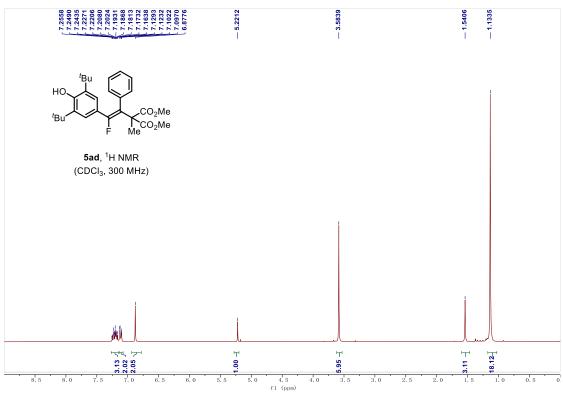
8.0

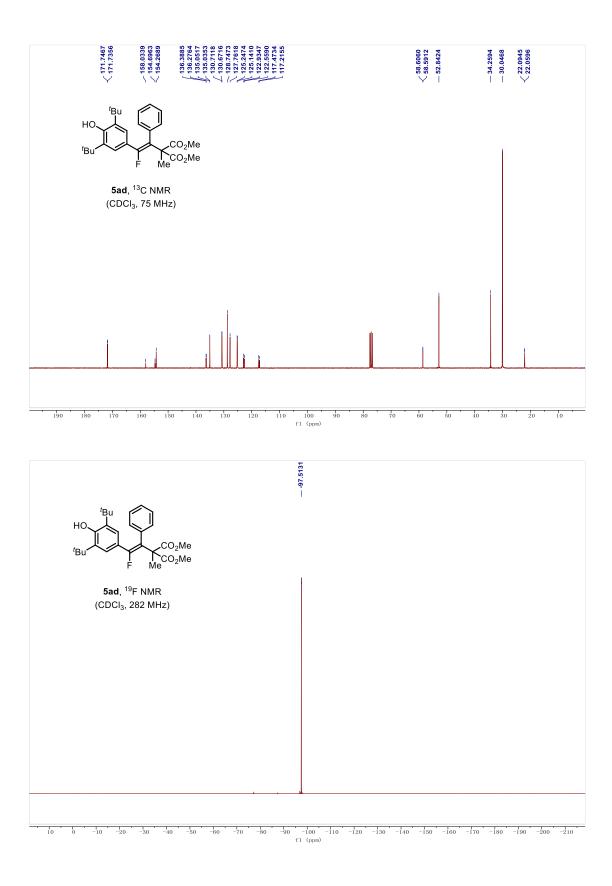
7.5


. 0


8.5


5.05


6.5


6.0

