Supporting information

Intermediate Knowledge Enhanced the Performance of Amide Coupling Yield Prediction Model

Chonghuan Zhang^{1‡}, Qianghua Lin^{1‡}, Chenxi Yang², Yaxian Kong², Zhunzhun Yu^{1*}, Kuangbiao Liao^{1*}

¹ Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, PR China

² AIChemEco Inc., Guangzhou 510005, Guangdong, PR China

Content

S 1	General Information	2
S2	High-throughput experimentation (HTE)	3
	S2.1 Conditions list for HTE	3
	S2.2 Substrates and products list	7
	S2.3 Experimental design	7
	S2.5 TOF-DESI & UPLC analysis	9
	S2.6 NMR analysis	9
	S2.7 Quantitative method	9
	S2.8 Yield distribution of HTE data and predicted results	17
S3	Machine Learning Model Details	
	S3.1 Dimensionality reduction	
	S3.2 Algorithms Used	20
	S3.3 Descriptor Sets	21
	S3.4 Procedures of training and parameters	21
	S3.5 BERT model construction	23
	S3.6 Evaluation Metrics	25
	S3.7 Molecular similarity between molecules from training and test datasets	
	S3.8 Model performance	27
	S3.9 Five-fold cross validation of model	
	S3.10 Performance of conditions encoded with one-hot	45
	S3.11 The performance toward external data set from literatures	49
	S3.12 Transfer learning among reaction conditions	80
S4	Reference	81
S5	Spectrum of crude reactions	82

S1 General Information

Reagents and solvents were obtained from Energy Chemical, Aladdin, ACMEC or Bidepharm and used as received. Reactions were monitored on NuoTai GF254 TLC plates and detection was done by irradiation with UV light (254 nm or 366 nm). Reaction plate set up and sample preparation for TOF-DESI injection plate and LC-MS injection plate were performed using EVO-200 (Tecan, Swiss) Consisting of MCA-96 lead plane, an arm air LiHa first 8-channel, a worktable standard coated FDM. MCA-96 enabled the simultaneous transfer of 96 samples under the same conditions (speed of aspiration and dispensing, height of pipetting at source and destination positions, pattern of pipetting, etc.). Although the 8-channel head treated less sample simultaneously, it provided more flexibility in terms of volumes transferred, layout of source and destination plates, pipetting height, and speed. Ultra Performance Liquid Chromatography (UPLC) was performed on a Waters UPLC system consisting of a quaternary Solvent manager, a M5KEOE column oven, a PDA e UV/Vis detector, a BEH C18 column and HPLC grade solvents (acetonitrile, methanol and i-propanol) from Fisher Scientific. Desorption Electrospray Ionization Mass (DESI) mass spectra was measured on a XS+Xevo G2-XS Tof instrument. The found masses from high resolution measurements (DESI-TOF-MS) are reported in m/z units with M as the molecular ion. ¹H NMR and ¹³C NMR spectra were measured on a Bruker AVANCE NEO 600 (600 MHz) and Bruker Avance Neo 151 MHz NMR spectrometer. Deuterated solvents were obtained from Energy Chemical and used without further purification. The chemical shifts are given in parts per million (ppm) on the delta scale (δ) relative to tetramethylsilane as external standard. The complete high-throughput experimental workflow is presented in Figure S1.

Figure S1. High-throughput experimental workflow

S2 High-throughput experimentation (HTE)

S2.1 Conditions list for HTE

We collected and prepared the conditions of acylation for high-throughput experimentation, the conditions list was illustrated as following (Table S1).

Entry	Activation	Reagents	Additives	Additive	Base	Base	Solvent
	reagents	(Equiv)		(Equiv)		(Equiv)	
1	HATU	1.50			DIPEA	3	DMF
2	TFFH	1.50			DIPEA	3	DMF
3	BTFFH	1.50			DIPEA	3	DMF
4	2,4-	1.50			DIPEA	3	DMF
	Dichloro-6-						
	Methoxy-						
	1,3,5-						
	Triazine						
5	COMU	1.50			2,6-	3	DMF
					Lutidine		
6	TBTU	1.50			DIPEA	3	DMF
7	HDMC	1.50			DIPEA	3	DMF
8	TCTU	1.50			DIPEA		DMF
9	TDBTU	1.50			DIPEA	3	DMF
10	TNTU	1.50			DIPEA	3	DMF
11	TPTU	1.50			DIPEA	3	DMF
12	TSTU	1.50			DIPEA	3	DMF
13	EDC-HCl	1.50	HOBt	1.50	DIPEA	3	DMF
14	BOP	1.50			DIPEA	3	DMF
15	PyClOP	1.50	HOBt	1.50	DIPEA	3	DMF
16	PyClOP	1.50			DIPEA	3	DMF
17	DEPC	1.50			DIPEA	3	DMF
18	FDPP	1.50			DIPEA	3	DMF
19	HATU	1.50	HOAT	3.00	DIPEA	3	DMF
	Control well	(same with	1)	1	1	1	1
20	HBTU	1.50	HOBT	1.50	DIPEA	3	DMF
21	HBTU	1.50			DIPEA	3	DMF

Table S1. Conditions list

22	HCTU	1.50			DIPEA	3	DMF
23	TOTU	1.50			DIPEA	3	DMF
24	EDC-HC1	1.50	2,4,5- Trichloroph enol	1.50	DIPEA	3	DMF
25	EDC-HCl	1.50	Pentafluoro phenol	1.50	DIPEA	3	DMF
26	EDC-HCl	1.50	N- Hydroxysuc cinimide	1.50	DIPEA	3	DMF
27	EDC-HC1	1.50	N- Hydroxypht halimide	1.50	DIPEA	3	DMF
28	DCC	1.50	2,4,5- Trichloroph enol	1.50	DIPEA	3	DMF
29	DCC	1.50	Pentafluoro phenol	1.50	DIPEA	3	DMF
30	DCC	1.50	N- Hydroxysuc cinimide	1.50	DIPEA	3	DMF
31	DCC	1.50	N- Hydroxypht halimide	1.50	DIPEA	3	DMF
32	РуАОР	1.50			DIPEA	3	DMF
33	РуАОР	1.50	HOAt	1.50	DIPEA	3	DMF
34	РуВОР	1.50			DIPEA	3	DMF
35	РуВОР	1.50	HOBt	1.50	DIPEA	3	DMF
36	PyOxim	1.50			DIPEA	3	DMF
37	PyBrOP	1.50	HOBt	1.50	DIPEA	3	DMF
38	PyBrOP	1.50			DIPEA	3	DMF
39	PyClocK	1.50			DIPEA	3	DMF
40	EEDQ	1.50			DIPEA	3	DMF
41	DEPBT	1.50			DIPEA	3	DMF
42	DPPC1	1.50			DIPEA	3	DMF
43	DMTMM	1.50			DIPEA	3	DMF
44	PyCIU	1.50			DIPEA	3	DMF

45	BOPC1	1.50			DMAP	1.5	DMF
46	EDC-HCl	1.50			NMM	3	DMF
47	TFFH	1.50			NMM	3	DMF
48	BTFFH	1.50			NMM	3	DMF
49	2,4-	1.50			NMM	3	DMF
	Dichloro-6-						
	Methoxy-						
	1,3,5-						
	Triazine						
50	EDC-HCl	1.50	2,4,5-	1.50	NMM	3	DMF
			Trichloroph				
			enol				
51	EDC-HCl	1.50	Pentafluoro	1.50	NMM	3	DMF
			phenol				
52	EDC-HCl	1.50	N-	1.50	NMM	3	DMF
			Hydroxysuc				
			cinimide				
53	EDC-HCl	1.50	N-	1.50	NMM	3	DMF
			Hydroxypht				
			halimide				
54	DCC	1.50	2,4,5-	1.50	NMM	3	DMF
			Trichloroph				
			enol				
55	DCC	1.50	Pentafluoro	1.50	NMM	3	DMF
			phenol				
56	DCC	1.50	N-	1.50	NMM	3	DMF
			Hydroxysuc				
			cinimide				
57	DCC	1.50	N-	1.50	NMM	3	DMF
			Hydroxypht				
			halimide				
58	CITU	1.50			NMM	3	DMF
59	EDC-HCl	1.50	HOBt	1.50	NMM	3	DMF
60	РуАОР	1.50			NMM	3	DMF
61	TFFH	1.50	DMAP	0.1	DIPEA	3	DMF
62	CDI	1.10			DBU	0.75	DMF
63	CDMT	1.20			NMM	3	DMF

64	CIP	1.50	HOAt	1.00	DIPEA	3	DMF
65	DIC	1.50	Oxyma-B	1.10		3	DMF
66	EDC-HCl	1.50	Pentafluoro	1.50	TEA	3	DMF
			phenol				
67	EDC-HCl	1.50	N-	1.50	TEA	3	DMF
			Hydroxysuc				
			cinimide				
68	EDC-HCl	1.50	N-	1.50	TEA	3	DMF
			Hydroxypht				
			halimide				
69	DCC	1.50	N-	1.50	TEA	3	DMF
			Hydroxysuc				
			cinimide				
70	DCC	1.50	Pentafluoro	1.50	TEA	3	DMF
			phenol				
71	IBCF	1.00			NMM	3	DMF
72	DCC	1.50	N-	1.50	TEA	3	DMF
			Hydroxypht				
			halimide				
73	EDC-HCl	1.50	HOBt	1.50	TEA	3	DMF
74	TBDTU	1.50			DIPEA	3	DMF
75	TCFH	1.50			NMI	3	DMF
76	DCC	3.00					DMF
77	DCC	1.50	Oxyma	1.50			DMF
78	DCC	1.50	HOAT	1.50			DMF
79	DCC	1.50	HOBt	1.50			DMF
80	DCC	1.50	6-Cl-HOBT	1.50			DMF
81	DCC	3.00	DMAP	0.10			DMF
82	DIC	1.50	Oxyma	1.50			DMF
83	DIC	1.50	HOAT	1.50			DMF
84	DIC	1.50	HOBt	1.50			DMF
85	DIC	1.50	6-Cl-HOBT	1.50			DMF
86	EDC-HCl	1.50					DMF
87	EDC-HCl	1.50	Oxyma	1.50			DMF
88	EDC-HCl	1.50	HOAT	1.50			DMF
89	EDC-HCl	1.50	HOBt	1.50	2,6-	3	DMF
					Lutidine		

90	EDC-HCl	1.50	6-Cl-HOBT	1.50			DMF
91	HATU	1.50					DMF
92	TPTU	1.50	HOBt	1.50	DIPEA	3	DMF
93	HBPYU	1.50					DMF
94	IIDQ	1.50			DIPEA		DMF
95	TOTU	1.50					DMF

S2.2 Substrates and products list

The list of substrates and products employed in the High-Throughput Experimentation (HTE) is presented on GitHub: https://www.github.com/aichemeco/amide_coupling/tree/main. Ultimately, more than 47,000 data points were collected via HTE. Given that these data pertain to the AIChemEco company, it is not feasible for us to incorporate all the data in the Supplementary Information (SI). Nevertheless, we have obtained authorization to disclose the data for six conditions, totaling approximately 3,000 data, on GitHub.

S2.3 Experimental design

First, test the solubility of each reagent and substrate to determine the solid/liquid packaging method. Then arrange the conditions in a 96-well reaction plate via a certain logic, and try to arrange the same reagents together to facilitate the addition of substrates, reagents and solvents. The following is an example of the arrangement of bases in a 96-well plate (Figure S2).

	Amide Coupling screening set_Base Map												
	1	2	3	4	5	6	7	8	9	10	11	12	
A	DIPEA	DIPEA	DIPEA	DIPEA	DIPEA	DIPEA	NMM	NMM	DIPEA	TEA			
В	DIPEA	DIPEA	DIPEA	DIPEA	DIPEA	DIPEA	NMM	NMM		TEA		2,6-Lutidine	
С	DIPEA	DIPEA	DIPEA	DIPEA	DIPEA	DIPEA	NMM	NMM	TEA	DIPEA			
D	DIPEA	DIPEA	DIPEA	DIPEA	DIPEA	DIPEA	NMM	NMM	TEA	NMI			
E	2,6-Lutidine	DIPEA	DIPEA	DIPEA	DIPEA	DIPEA	NMM	NMM	TEA			DIPEA	
F	DIPEA	DIPEA	DIPEA	DIPEA	DIPEA	DMAP	NMM	DIPEA	TEA				
G	DIPEA	DIPEA	DIPEA	DIPEA	DIPEA	NMM	NMM	DBU	TEA			DIPEA	
н	DIPEA	DIPEA	DIPEA	DIPEA	DIPEA	NMM	NMM	NMM	NMM				

Figure S2. Arrangement of bases in a 96-well plate

High-throughput experimental preparation

Before starting a high-throughput experiment, the following consumables were needed to be prepared in advance (taking the consumables required to start a HTE as an example, see Table S2).

Experimental consumables							
Consumables Name	Quantity						
96-well metal plate	1						
750 μL glass tube	96						
LC-MS plate	1						
96-well deep well plate	1						
96-well filter plate	1						

Fable S2.	Experimental	consumables

DESI Sample plate	1
200 μL-MCA96 tips	400
50 µL-MCA96 tips	400

High-throughput reaction setup

Stock solutions of Carboxylic acid, amine, condensation reagents, additives and base were prepared in DMF. Firstly, 25 μ L of a Carboxylic acid solution was dispense into a 96-well metal plate using EVO-200. Additionally, 25 μ L of additive solution was added to each well. Lastly, 100 μ L of condensation reagent in DMF was added to each well. The metal block was covered, tightened, and stirring at 25 °C for 0.5 h to activate carboxylic acid compounds using a Magnetic stirrer (for metal plate). After 0.5 h heating, unscrew the metal block cover, and amine in DMF were pipetted via EVO-200 into a 96-well metal plate. Then, 50 μ L of base in DMF was added to each well. Lastly, 50 μ L of DMF was added to each well, resulting in a final volume of 250 μ L in each well. The metal block was covered, tightened, and stirring at 25 °C for 2 h. using a Magnetic stirrer (for HTE plate).

Reproducibility and Error Control in HTE Data

To ensure the accuracy and reproducibility of our high-throughput experimentation (HTE) data, several quality control measures were implemented during the experimental design and execution phases.

- Control Condition Monitoring: In each 96-well HTE plate, condition C1 was designed to be identical to condition C20. These conditions should theoretically yield the same results. If the yield difference between C1 and C20 exceeded 15%, the data from the entire plate was discarded. This measure was employed to detect and eliminate potential errors arising from plate-specific variables.
- 2. Repeat Experiments: To further validate the experimental data, one HTE plate was randomly selected from each batch of 20 plates for repeat experimentation. The disparity in yield between the original and repeat experiments was required to be within 15% for at least 90% of the repeated conditions. If this criterion was not met, the entire batch was reinitialized. This procedure ensured that the data retained a high level of accuracy and consistency across different experimental runs.

These error control strategies were critical in maintaining the integrity of our dataset and ensuring that the prediction errors observed in our models could be accurately judged against the inherent experimental variability.

High-throughput reaction processing

4-Phenyltoluene (4.17 mmol) and Benzamide (4.17 mmol) were dissolved in 250 mL of acetonitrile to prepare the internal standard solution, see Table S3. After that, 150 μ L of MeCN/H₂O (1:1) mixed solvent was dispensed separately into each plate followed by 150 μ L of internal standard solution using the 96-tip head. Transfer the reaction plate to an ultrasonic cleaner and ultrasonicate for 5 minutes to ensure that the reaction solution and the internal standard solution are evenly mixed. 380 μ L and 190 μ L MeCN solvent were added to the transfer plate and filter plate respectively. 10

 μ L of solution was taken from the metal plate to the transfer plate, and then 10 μ L solution was transferred from the transfer plate to the 96-well filter plate using EVO-200. After that, the 96-well filter plates were centrifuged for 2.5 min at 3000 RPM to prepare a plate for TOF-DESI injection. 180 uL MeCN solvent was moved to another filter plate using EVO-200. Finally, 20 μ L solution from the transfer plate was taken to the 96-well filter plate using EVO-200. After that, the 96-well filter plates were centrifuged for 2.5 min at 3000 RPM to prepare another plate for LC-MS injection.

		1					
IS	CAS	M.W.	Mol	Mass	Solvent	UPLC sample	DESI sample
		(g/mol)	(mmol)	(mg) volume (c		concentration	concentration
					mL)	(µg/mL)	(µg/mL)
4-Phenyltoluene	644-	168.23	4.17	701.0	250	1.96	0.98
	08-6						
Benzanilide	93-	197.23	4.17	821.8	250	2.30	1.15
	98-1						

Table S3. Preparation of UPLC internal standard solution

S2.5 TOF-DESI & UPLC analysis

The sample was spotted onto a 384-well glass plate using an automatic spotting tool (pin-tool). After the solvent evaporated naturally, the sample was injected into the TOF-DESI for MS analysis. Then the LC-MS plate was placed into the sample organizer of Waters UPLC system for UPLC analysis.

S2.6 NMR analysis

The wells with the highest yield were selected according to the TOF-DESI analyze data, and the mixture was concentrated by centrifugation at 35°C for 2 h. 1,1,2,2-tetrachloroethane (0.5 mmol) was dissolved in 50 mL of CDCl₃ to prepare the NMR internal standard solution, see Table S4. After that, 250 μ L of internal standard solution was added to each well. After ultrasonic treatment for 5 min, the solution contained the internal standard was added to a 3 mm NMR tube using an 8-channel pipette and tested by 600M ¹H NMR.

		-					
IS	CAS	M.W.	eq.	Mol	Chemical	solvent	Solvent
					/ mg	/ mL	
1,1,2,2-	79-34-5	167.85	0.5	0.5	83.9	50	CDCl3
tetrachloroethane							

Table S4. Preparation of NMR internal standard solution

S2.7 Quantitative method

To guarantee the accuracy of our quantitative method using UPLC, we initially establish a standard curve of the standard sample. Dissolve Benzamide (0.1 mmol) and 4-Phenyltoluene (0.1 mmol) in 10 mL of acetonitrile to prepare IS1-a and IS2-a solutions respectively. Take 100 μ L of IS1-a and IS2-a solutions respectively and add them to 1900 μ L of acetonitrile to prepare IS1-b and

IS2-b internal standard solutions. Similarly, 100 µL of IS1-b and IS2-b solutions were added to 1900 µL of acetonitrile to prepare IS1 and IS2 internal standard solutions(Table S5). Next, prepare internal standard solutions with different concentration ratios for testing. Taking sample IS1-1 as an example, 100 µL IS1 and 100 µL IS2 internal standard solutions were mixed evenly to prepare the test sample IS1-1. The UV response obtained by UPLC test was 0.663(ratio of IS1 absorption area to IS2 absorption area = 79810.4/35171.38= 2.269), see Table S6. After testing the internal standard solution samples with different concentrations, the concentration ratio of IS1 and IS2 is used as the horizontal axis and the UV response is used as the vertical axis, those five points IS1-1, IS1-0 8, IS1-0 6, IS1-0 4, IS1-0 2 are plotted in the coordinate system, and the standard curve is Y=0.6468X (Figure S3). The R-Squared of the IS standard curve is 0.999(>0.99), indicating that there is a strong positive correlation between the variables. Benzamide and 4-Phenyltoluene can be used as UPLC internal standards for accurate quantification. Finally, draw the standard curve of the yield of different reactions, based on the UV Response (ratio of the UV absorption area of the product to the absorption area of the internal standard) and the NMR yield, a standard curve Y = kX(Y: NMR yield, X: UV response) is obtained, and the yield of the remaining wells were obtained by the standard curve. Randomly select 2-3 wells for NMR testing to verify the consistency between the NMR yield and the UV fitting yield.

N T =	IG				<i>a</i>		a 1			~
No.∟	IS	C	M.	M	Sam	solv	Solv	Concentr	Concentr	Concentra
		AS	W.	ol	ple	ent /	ent	ation of	ation of	tion of
					Mas	mL		IS-	IS-	IS(µg/mL
					s /			a(µg/mL)	b(µg/mL))
					mg					
IS1	BENZA	93-	197.	0.	19.7	10	MeC	1972.30	98.62	4.93
	NILIDE	98-	23	10			N			
		1								
IS2	4-	64	168.	0.	16.8	10	MeC	1682.30	84.12	4.21
	Phenyltol	4-	23	10			N			
	uene	08-								
		6								

Table S5. Preparation of UPLC internal standard solutions IS1 and IS2

Table S6. Preparation of UPLC internal standard test samples

Sample	Ratio (IS1/IS2)	IS1/µL	IS2/µL	MeOH/µL	IS1-area	IS2-area	UV response
IS1-1	1	100	100	0	359	542	0.663
IS1-0_8	0.8	80	100	20	298	582	0.512
IS1-0_6	0.6	60	100	40	225	583	0.386
IS1-0_4	0.4	40	100	60	140	598	0.235
IS1-0_2	0.2	20	100	80	74	599	0.124

Figure S3. Standard curve of IS

An example for quantitative method

Herein, we will select a reaction as following (Figure S4) to present the quantitative process.

Figure S4. A selected reaction example

 Samples injection from the plate for TOF-DESI were injected into the TOF-DESI for MS analysis, the automatic analysis program can realize the automatic analysis of the test samples. Subsequently, we could identify the success reaction quickly according the response of m/z (Figure S5).

Figure S5. An example for DESI analysis

2) The samples with non-zero DESI response values were injected into UPLC, and randomly select 3 wells with zero DESI response values to verify whether UV Response is also zero. If they are inconsistent, inject the whole plate samples into UPLC. Taking a sample in W89 as an example (Figure S6), UV Response (Figure S7) is 2.269(ratio of product UV absorption area to internal standard absorption area = 79810.4/35171.38= 2.269)

	1	2	3	4	5	6	7	8	9	10	11	12
A	W1	W9	W17	W25	W33	W41	W49	W57	W65	W73	W81	W89
В	W2	W10	W18	W26	W34	W42	W50	W58	W66	W74	W82	W90
С	W3	W11	W19	W27	W35	W43	W51	W59	W67	W75	W83	W91
D	W4	W12	W20	W28	W36	W44	W52	W60	W68	W76	W84	W92
E	W5	W13	W21	W29	W37	W45	W53	W61	W69	W77	W85	W93
F	W6	W14	W22	W30	W38	W46	W54	W62	W70	W78	W86	W94
G	W7	W15	W23	W31	W39	W47	W55	W63	W71	W79	W87	W95
H	W8	W16	W24	W32	W40	W48	W56	W64	W72	W80	W88	W96

Figure S6. Well distribution of a HTE plate

Figure S7. UPLC spectrum of W89

3) According to the UPLC analysis results, the wells with higher UV Response values were selected, centrifuged and concentrated at 35°C for 2 h, and 0.5 equiv. of NMR internal standard 1,1,2,2-tetrachloroethane was added. After ultrasonication for 5 min, the mixed solution contained the internal standard was added to a 3 mm NMR tube using an 8-channel pipette and tested by ¹H NMR (600 MHz). The characteristic peak of the internal standard 1,1,2,2-tetrachloroethane (δH = 5.96 ppm) was integrated as 1, and the yield of the product was equal to the number of integrated hydrogens / the actual number of hydrogens, the yield of PL4-W89 is 49% (Figure S8), and so on, the yields of the other wells are presented as following: PL4-W81= 42% (Figure S9), PL4-W83= 50% (Figure S10). Here, we also show the NMR spectrum of three other reactions:PL18-W83=76% (Figure S11), PL32-W10=81% (Figure S12), PL50-W64=80% (Figure S13).

Figure S9. NMR spectrum of PL4-W81

Figure S11. NMR spectrum of PL18-W83

Figure S13. NMR spectrum of PL50-W64

4) Based on the UV Response (ratio of product UV absorption area to internal standard absorption area) and NMR yield, the standard curve Y = kX (Y is NMR yield, X is UV response) is obtained. For example, With UV response as the horizontal axis and NMR yield as the vertical axis, the three points PL4-W81, PL4-W83, and PL4-W89 are plotted in the coordinate system, and the standard curve of PL4 is Y=0.2176X (Figure S14).

Figure S14. Standard curve of PL4

5) Finally, the yield values of the other wells are fitted by the standard curve, see Table S7 (W1 is a standard reaction which is performed to ensure the consistency between one plate with others, besides, W9 and eW75 are parallel reactions).

	1	2	3	4	5	6	7	8	9	10	11	12
A			0%	0%	41%	6%	3%	0%	0%	0%	42%	49%
В	0%	0%	0%	0%	46%	7%	0%	0%	67%	12%	0%	14%
С	1%	5%	16%	0%	9%	0%	0%	0%	0%	5%	50%	43%
D	0%	0%	66%	0%	11%	0%	0%	10%	0%	0%	50%	2%
E	18%	5%	21%	0%	66%	14%	0%	74%	0%	2%	8%	5%
F	15%	6%	16%	0%	0%	0%	0%	0%	0%	51%	41%	0%
G	30%	0%	29%	0%	3%	5%	0%	0%	0%	63%	15%	0%
Н	19%	6%	22%	0%	30%	0%	0%	40%	0%	11%	60%	1%

Table S7. Yield distribution

S2.8 Yield distribution of HTE data and predicted results

After HTE, we collected approximately 47,000 reaction data and statistically analyzed the yield distribution (Figure S15) :

Figure S15. Yield distribution of HTE data

Figure S16. Yield distribution of HTE under six conditions

Figure S17. Yield distribution of predicted results under six conditions

Figure S18. Comparison of yield distribution between predicted results and HTE

S3 Machine Learning Model Details

S3.1 Dimensionality reduction

Three dimensionality reduction techniques (PCA, t-SNE, UMAP) were used to reduce the 1,024 bits morgan fingerprints of the USPTO products and the virtual products into two dimensions. While PCA gives uniform visualization, as shown in Figure 2b, t-SNE and UMAP both illustrate globular structures after several parameter tunings, as shown in Figure S16 and Figure S17. The major parameters used in the t-SNE figure are perplexity of 10, numbers of iterations of 5000 and learning rate of 200. The major parameters used in the UMAP figure are numbers of neighbors of 15, minimum distance of 0.5 and metric of cosine.

Figure S19. The chemical space of USPTO amide coupling products and products from commercially available substrates reduced from t-SNE.

Figure S20. The chemical space of USPTO amide coupling products and products from commercially available substrates reduced from UMAP.

S3.2 Algorithms Used

BERT (Bidirectional Encoder Representations from Transformers): BERT is a pre-trained transformer model designed for natural language understanding. It uses bidirectional context to capture deeper language semantics. BERT is often used for tasks like text, classification, question answering, and named entity recognition.

XGBoost (Extreme Gradient Boosting): XGBoost is an optimized gradient boosting algorithm that is highly efficient and flexible. It uses gradient boosting framework for classification and regression tasks. XGBoost is widely used in structured data problems such as predictive modeling, ranking, and recommender systems.

SVM (Support Vector Machines): SVM is a supervised learning model used for classification and regression analysis. It finds the hyperplane that best separates classes in an n-dimensional space. SVM is effective in high-dimensional spaces and is popular in text classification, image classification, and bioinformatics.

Random Forest: Random Forest is an ensemble learning method that constructs multiple decision trees during training and outputs the mode of the classes or mean prediction of the

individual trees. It is used for both classification and regression tasks, known for handling large datasets with high dimensionality.

T5 (Text-To-Text Transfer Transformer): T5 is a transformer model that converts all NLP tasks into a text-to-text format. It achieves state-of-the-art results by fine-tuning on downstream tasks. T5 can be used for text summarization, translation, question answering, and more by adapting to various input-output formats.

S3.3 Descriptor Sets

No Intermediate Descriptor Set: this set focuses on representing molecules based on their initial or final forms without considering any intermediate stages. This set typically includes descriptors that characterize the structural and chemical properties of the starting materials (e.g., amines or acids) or the final products after the reaction is complete. By omitting intermediates, this descriptor set simplifies the representation of molecules, focusing solely on endpoints that are directly relevant to the application or study.

Amine & Acid & Intermediate Descriptor Set: this descriptor set is particularly useful in studies where understanding the transformation process between reactants and products is crucial. It provides a more comprehensive representation of molecules across different stages of chemical reactions, aiding in the analysis of reaction mechanisms and predicting reaction outcomes.

Amine & Intermediate Descriptor Set: this set excludes descriptors related to acids or other reactants not directly involved in the initial stage of the reaction. It provides a more targeted approach to understanding molecular transformations during chemical reactions while simplifying the representation by focusing on key stages.

S3.4 Procedures of training and parameters

When SVM and XGBoost, RF, AutoGluon are used, molecular fingerprints of the compounds are utilized as inputs to the model. These fingerprints capture the structural features of molecules in a format that is suitable for machine learning algorithms, enabling effective classification or regression tasks based on their chemical properties. On the other hand, when employing T5 and BERT models, the input to the model consists of SMILES representations of the molecules. SMILES (Simplified Molecular Input Line Entry System) is a textual representation of a molecule's structure, where atoms and bonds are encoded into a string format. T5, a text-to-text transformer model, and BERT, a bidirectional transformer model, are adept at processing natural language and textual data. By utilizing SMILES as input, these models can effectively handle tasks such as molecular property prediction, virtual screening, and chemical reaction prediction by learning from the sequential and contextual information encoded in the SMILES strings. Here are some hyperparameters that can be tuned to optimize these models (Table S8):

Table S8. Hyperparameters and Candidate Values

SVM (Support Vector Machine)	
Hyperparameters	Candidate Values
Regularization parameter (C)	[0.1, 1, 10, 100]
Kernel type	['linear', 'poly', 'rbf', 'sigmoid']
Degree of the polynomial kernel function (degree)	[2, 3, 4]
Kernel coefficient (gamma)	['scale', 'auto', 0.1, 0.01, 0.001]
Independent term in kernel function (coef0)	[0.0, 0.1, 0.5, 1.0]
Tolerance for stopping criteria (tol)	[1e-3, 1e-4, 1e-5]
Random Forest	
Hyperparameters	Candidate Values
Number of trees in the forest (n_estimators)	[100, 200, 500, 1000]
Maximum depth of the tree (max_depth)	[None, 10, 20, 30]
Minimum number of samples required to split an internal	[2, 5, 10]
node (min_samples_split)	
Minimum number of samples required to be at a leaf node	[1, 2, 4]
(min_samples_leaf)	
Number of features to consider when looking for the best	['auto', 'sqrt', 'log2', None, int]
split (max_features)	
XGBoost	
Hyperparameters	Candidate Values
Number of boosting rounds (n_estimators)	[100, 200, 500, 1000]
Step size shrinkage (learning_rate)	[0.01, 0.1, 0.2, 0.3]
Maximum depth of a tree (max_depth)	[3, 6, 9, 12]
Minimum sum of instance weight needed in a child	[1, 3, 5]
(min_child_weight)	
Minimum loss reduction required to make a further partition	[0, 1, 5]
on a leaf node (gamma)	
BERT (Bidirectional Encoder Representations from Tran	nsformers)
Hyperparameters	Candidate Values
Size of the encoder and pooler layers (hidden_size)	[768, 1024, 2048]
Number of attention heads in each attention layer	[12, 16, 24]
(num_attention_heads)	
Size of the intermediate (feed-forward) layer in the en-	[3072, 4096, 8192]
coder (intermediate_size)	
Number of hidden layers in the transformer encoder	[12, 24]
(num_hidden_layers)	
Maximum length of the input sequences	[512, 1024]

(max_position_embeddings)	
T5 (Text-To-Text Transfer Transformer)	
Hyperparameters	Candidate Values
Size of the encoder layers and the decoder layers	[512, 768, 1024]
(d_model)	
Dimensionality of the feed-forward layers (d_ff)	[2048, 3072, 4096]
Number of encoder layers (num_layers)	[6, 12, 24]
Number of decoder layers (num_decoder_layers)	[6, 12, 24]
Dropout rate for the attention and fully connected layers	[0.1, 0.2, 0.3]
(dropout_rate)	

S3.5 BERT model construction

Bidirectional Encoder Representations from Transformers (BERT) is a revolutionary model in the field of natural language processing (NLP). BERT is based on the Transformer architecture, which is known for its effectiveness in capturing dependencies in sequences, making it particularly suited for tasks involving text. One of the most promising models in this research work is the Yield-BERT model. While the hyperparameters of the model is given in Table S8, below is the step-by-step construction details of our BERT model, and the details scripts can be found in the GitHub repository.

1. SMILES Tokenization:

The input to the model is a reaction SMILES string, representing the chemical reaction. This string is tokenized into meaningful units for the model to process. This tokenization can be done using domain-specific rules to extract atomic symbols, bond types, and reaction components. For instance: **Example 1**: The SMILES string C(=O)(C)C is tokenized into ['C', '(', '=', 'O', ')', '(', 'C', ')', 'C'].

 Example
 2:
 For
 a
 complex
 reaction
 SMILES

 CC(C)[C@@H](C)CCBr.[Na]C#N>>CC([C@@H](C)CCC#N)C, the
 tokenization
 might
 yield

 ['C', 'C', '(', 'C', ')', '[C@@H]', '(', 'C', ')', 'C', 'C', 'Br', '.', '[Na]', 'C', '#', 'N', '>>', 'C', 'C', '(', '[C@@H]', '(', 'C', ')', 'C', 'C', 'Br', '.', '[Na]', 'C', '#', 'N', '>>', 'C', 'C', '(', '[C@@H]', '(', 'C', ')', 'C', 'C', 'Br', '.', '[Na]', 'C', '#', 'N', '>>', 'C', 'C', '(', '[C@@H]', '(', 'C', ')', 'C', 'C', 'Br', '.', '[Na]', 'C', '#', 'N', '>>', 'C', 'C', '(', '[C@@H]', '(', 'C', ')', 'C', 'C', 'Br', '.', '[Na]', 'C', '#', 'N', '>>', 'C', 'C', '(', '[C@@H]', '(', 'C', ')', 'C'].

Custom tokenizers like SMILES-BPE (Byte Pair Encoding) or ChemBERTa tokenizer can be used to handle complex reaction formats efficiently by breaking them into substructures and functional groups.

2. Subword Tokenization:

To capture patterns in rarely encountered or out-of-vocabulary chemical symbols and structures, we implement a subword tokenization approach. This enables the model to decompose unknown or complex tokens into smaller, known subunits (e.g., $C[C@H] \rightarrow [C], [C@@H], [=O])$). This ensures that the model can generalize across unseen reactions or novel compounds by learning meaningful chemical fragments.

3. Special Tokens:

As in traditional BERT models, Yield-BERT adds special tokens to indicate the structure of the input sequence. Specifically:

[CLS]: A special token added at the beginning of the SMILES sequence. This token aggregates the

overall representation of the sequence and is used as the input for the yield prediction.

[SEP]: This token marks the end of a reaction or is used to separate reactants from products in the SMILES sequence. For example, C1=CC=C1=CC(O)=CC=C1 becomes ['[CLS]', 'C1', '=', 'CC', '...', '[SEP]', 'O', '...', '[SEP]'].

4. Token Embeddings:

Each token from the SMILES string is converted into a fixed-dimensional vector, known as a token embedding. These embeddings are learned representations where each chemical token (e.g., atoms, bonds, or reaction fragments) is mapped to a dense vector that captures its chemical properties and context.

Pre-trained vs. Random Embeddings: Depending on the model configuration, the token embeddings can either be initialized randomly or using pre-trained embeddings from models such as **MolBERT** or **ChemBERTa**. Pre-trained embeddings offer a head start by encoding chemical knowledge learned from large datasets of molecular structures.

Embedding Size: The embedding vector's dimension (e.g., 256, 512) is a hyperparameter that can influence how much information each token can carry. Larger embeddings capture more detail about each token but increase computational cost.

Embedding Layers: Each token embedding layer is trained jointly with the rest of the model to refine the chemical understanding based on the target task, allowing the model to learn which aspects of a token (e.g., atom type, bond type, stereochemistry) are most important for yield prediction.

5. Positional Encoding:

Since the Transformer architecture does not inherently recognize the order of tokens in a sequence, **positional encoding** is crucial for SMILES strings, where the order of atoms and bonds is essential for accurately representing a molecule's structure.

Positional Encoding in Yield-BERT: A unique positional vector is added to each token embedding to provide the model with information about the relative position of tokens within the SMILES sequence. This is particularly important for preserving the sequential nature of chemical structures and reaction components, such as distinguishing between a methyl group bonded to different parts of a molecule.

Custom Positional Patterns: In the Yield-BERT model, the positional encodings could be designed to capture both local (atom-to-atom) and global (entire molecule) spatial relationships. This helps the model better understand which tokens are adjacent or distant within the chemical reaction, influencing yield predictions.

6. Segment Embeddings:

In tasks where the model needs to differentiate between multiple entities in the input (such as separating reactants from products or solvents), **segment embeddings** are used. Segment embeddings are added on top of the token and positional embeddings to inform the model which part of the input a token belongs to.

Reactant-Product Segmentation: For a reaction SMILES string that includes both reactants and products, the Yield-BERT model applies different segment IDs to tokens representing reactants and those representing products. For example, all reactants are assigned a segment embedding of 0, while all products receive a segment embedding of 1. This allows the model to distinguish between the two parts of the reaction.

Reaction Components: Segment embeddings can also be used to encode different components of

the reaction environment, such as catalysts or solvents. By adding a distinct segment embedding for these auxiliary elements, Yield-BERT can recognize their role and contribution to the overall reaction yield.

7. Transformer Layers:

The tokenized and embedded input passes through multiple layers of the Transformer architecture. Each layer consists of:

Multi-Head Self-Attention: This mechanism allows each token to attend to all other tokens in the sequence, enabling the model to capture long-range dependencies between molecular fragments, reactants, and products.

Feed-Forward Neural Networks: Following the self-attention mechanism, feed-forward layers provide additional nonlinear transformations, helping the model better learn complex chemical relationships. The number of attention heads and transformer layers can be tuned based on the task and dataset size (see Table S8).

8. Linear Prediction Layer:

After passing through the Transformer layers, the sequence representation corresponding to the [CLS] token (which encodes the overall reaction context) is fed into a fully connected linear layer. This layer is responsible for the regression task, predicting the reaction yield. The output from this linear layer is a continuous value between 0 and 100, representing the predicted yield percentage.

9. Training and Output:

The model is trained using a mean squared error (MSE) loss function to minimize the difference between predicted and actual reaction yields. The optimization is performed using AdamW or similar optimizers, with learning rate schedules (e.g., cosine decay) to improve convergence.

Data Augmentation: To increase model robustness, data augmentation techniques are applied. This includes random SMILES sampling, where the same reaction is represented by different equivalent SMILES strings during training.

10. Evaluation:

Yield-BERT is evaluated on standard regression metrics such as mean absolute error (MAE), R² score, and root mean square error (RMSE). Cross-validation is applied to ensure that the model generalizes well to unseen reaction data. Hyperparameters, including the number of Transformer layers, attention heads, batch size, and learning rate, are optimized through grid search (see Table S8).

In summary, a reaction SMILES string entering the Yield-BERT model undergoes tokenization, embedding, multi-layered self-attention, and yield regression, to predict the yield of the reaction substrates under different reaction conditions.

S3.6 Evaluation Metrics

Mean Squared Error (MSE): Mean Squared Error (MSE) is a widely used metric for regression tasks. It calculates the average squared difference between predicted values and actual values.

Mean Absolute Error (MAE): Mean Absolute Error (MAE) is another regression metric that calculates the average absolute difference between predicted values and actual values. It is less sensitive to outliers compared to MSE.

Root Mean Squared Error (RMSE): Root Mean Squared Error (RMSE) is the square root of MSE and is often used to provide an interpretable measure of the average magnitude of error.

R-squared (Coefficient of Determination): R-squared (R^2) is a statistical measure that represents the proportion of the variance in the dependent variable that is predictable from the independent variables. It is a relative measure of model fit and is often used to assess how well the model explains the variability of the data.

R-squared (Coefficient of Determination): R-squared (R^2) is a statistical measure that represents the proportion of the variance in the dependent variable that is predictable from the independent variables. It is a relative measure of model fit and is often used to assess how well the model explains the variability of the data.

S3.7 Molecular similarity between molecules from training and test datasets

The objective is to compute and compare the average molecular similarity between molecules (substrate 1 - amine, substrate 2 - acid and product) in the training dataset and those in the test dataset using the **Tanimoto coefficient**. The Tanimoto coefficient is a widely used similarity metric for comparing molecular fingerprints in cheminformatics.

The Tanimoto coefficient T(A,B) between two molecules A and B, based on their binary fingerprints, is computed as:

$$T(A,B) = \frac{|A \cap B|}{|A| + |B| - A \cap B}$$

Where:

- $|A \cap B|$ is the number of bits from morgan fingerprints set to 1 in both fingerprints
- |A| and |B| are the number of bits from morgan fingerprints set to 1 in molecules A and B, respectively.

The Tanimoto coefficient ranges from 0 (no similarity) to 1 (identical molecules). Compute the Tanimoto coefficient between each pair of molecules, where one molecule is from the substrate 1 - amine or substrate 2 - acid, or product of **training dataset** and the other is from the that of **test dataset**, and the values are averaged to calculate **average similarity** in terms of Tanimoto coefficient. The results are shown in Table S9:

Table S9. Molecular similarity between molecules (substrate 1 – amine, substrate 2 – acid and product molecules) from training and test datasets (random split, partial substrate novelty and full

	Substrate 1 - amine	Substrate 2 - acid	Product
Random split	0.17	0.25	0.20
Partial substrate novelty	0.16	0.26	0.20
Full substrate novelty	0.10	0.24	0.17

substrate nove	lty test sets))
----------------	----------------	---

The resulting average similarity scores indicate the structural distinctiveness between the training and test datasets in terms of Tanimoto coefficient.

S3.8 Model performance

The performance under 95 conditions: With HTE data set in hand, we first trained the model under 95 conditions and evaluate the performance of model. The metrics were illustrated in Table S10.

Splitting	Metrics	XGBoost	SVM	RF	AutoGluon	Yield- BERT	T5-Chem
	R ²	0.323	0.253	0.35	0.551	0.66	0.53
Random	MAE	0.18	0.186	0.173	0.152	0.15	0.22
split	RMSE	0.222	0.234	0.218	0.204	0.10	0.16
	R ²	0.258	0.228	0.255	0.663	0.68	0.58
Partial	MAE	0.038	0.162	0.143	0.134	0.14	0.20
novelty	RMSE	0.197	0.212	0.191	0.180	0.10	0.15
	R ²	0.247	0.22	0.258	0.420	0.63	0.58
Full	MAE	0.199	0.216	0.19	0.170	0.15	0.22
novelty	RMSE	0.237	0.265	0.233	0.224	0.11	0.17

Table S10. The performance of model in test set under 95 conditions

The performance under selected conditions: We selected six conditions from 95 conditions according their frequency in literature (Table S11) and extracted the corresponding data from HTE dataset. The size of training set, random split set, partial novelty set and full novelty set was illustrated in Table S12. It should be noted that random split set, partial novelty set and full novelty shared the same training set. The metrics of models under six conditions were shown in Table S13, including the models enhanced by intermediate knowledge. The results indicated the intermediate knowledge was indeed play a key role in elevating the performances of models.

Table S11. Statistics of 25 conditions

No.	Frequency	Activation reagents	Additives or catalysts	Base	Solvent
1	1430	HATU		DIPEA	DMF

2	932	EDC-HCl	HOBt	DIPEA	DCM
3	892	EDC-HCl	HOBt	TEA	DCM
4	635	EDC-HCl	HOBt	DIPEA	DMF
5	623	EDC-HCl	HOBt		DCM
6	604	EDC-HCl	HOBt		DMF
7	549	EDC-HCl	HOBt	TEA	DMF
8	523	EDC-HCl	DMAP		DCM
9	515	HBTU		DIPEA	DMF
10	514	DCC	HOBt		DMF
11	513	DCC	DMAP		DCM
12	498	HATU		DIPEA	DCM
13	464	DCC			DCM
14	340	РуВОР		DIPEA	DMF
15	320	EDC-HCl	HOBt	NMM	DMF
16	306	DCC	HOBt	TEA	DMF
17	275	DCC	HOBt		DCM

18	266	CDI			DMF
19	262	EDC-HC1			DCM
20	221	РуВОР		DIPEA	DCM
21	193	CDI			THF
22	190	DCC	HOBt		THF
23	187	IBCF		NMM	THF
24	186	DCC	HOBt	NMM	THF
25	183	TBTU		DIPEA	DMF

Table S12. The size of training set, random split set, partial novelty set and full novelty set

Data Set	TBTU	HATU	РуВОР	DCC	HBTU	EDC
Training set	477	443	502	455	430	439
Random split set	144	157	89	112	146	152
Partial novelty	60	82	31	66	71	67
Full novelty	11	11	8	6	13	13

Table S13. The performance under selected conditions

TBTU							
Splitting	Metrics	BERT	Embedded	XGBT	Embedded		
			BERT		XGBT		
	MAE	10%	7.0%1(7.0%2)	8.0%	8.0%1 (9.0%2)		
Random split	RMSE	13%	$10.0\%^{1}(10.0\%^{2})$	12%	$12\%^{1}(13\%^{2})$		
	R ²	0.71	0.831 (0.842)	0.76	$0.76^{1}(0.70^{2})$		
	MAE	12%	9.0%1 (8.0%2)	10%	$10\%^{1}(12\%^{2})$		

Partial novelty	RMSE	16%	$12\%^{1}(12\%^{2})$	13%	13%1(14%2)		
	R ²	0.57	0.761 (0.772)	0.72	0.711 (0.652)		
	MAE	11%	$11\%^{1}(7.0\%^{2})$	12%	12%1 (14%2)		
Full novelty	RMSE	13%	13%1(9.0%2)	13%	12%1 (12%2)		
	R ²	0.66	0.671 (0.852)	0.62	0.681 (0.572)		
Splitting	Metrics	SVM	Embedded	RF	Embedded		
			SVM		RF		
	MAE	17%	$17\%^{1}(17\%^{2})$	12%	$12\%^{1}(12\%^{2})$		
Random split	RMSE	21%	$21\%^{1}(21\%^{2})$	14%	$14\%^{1}(13\%^{2})$		
	R ²	0.34	0.341 (0.342)	0.73	0.76 ¹ (0.79 ²)		
	MAE	19%	19%1(19%2)	15%	$15\%^{1}(16\%^{2})$		
Partial novelty	RMSE	24%	24% ¹ (24% ²)	21%	20%1 (19%2)		
	R ²	0	0 ¹ (0.02 ²)	0.62	0.651 (0.682)		
	MAE	10%	$10\%^1(10\%^2)$	12%	12%1 (12%2)		
Full novelty	RMSE	12%	$12\%^{1}(12\%^{2})$	15%	$15\%^{1}(14\%^{2})$		
	R ²	0.82	0.801 (0.802)	0.79	0.801 (0.812)		
HATU							
				1			
Splitting	Metrics	BERT	Embedded	XGBT	Embedded		
Splitting	Metrics	BERT	Embedded BERT	XGBT	Embedded XGBT		
Splitting	Metrics MAE	BERT 10%	Embedded BERT 8.0% ¹ (6.0% ²)	XGBT 7.0%	Embedded XGBT 9.0% ¹ (7.0% ²)		
Splitting Random split	Metrics MAE RMSE	BERT 10% 14%	Embedded BERT 8.0% ¹ (6.0% ²) 11% ¹ (9.0% ²)	XGBT 7.0% 11%	Embedded XGBT 9.0% ¹ (7.0% ²) 12% ¹ (11% ²)		
Splitting Random split	Metrics MAE RMSE R ²	BERT 10% 14% 0.69	Embedded BERT 8.0% ¹ (6.0% ²) 11% ¹ (9.0% ²) 0.79 ¹ (0.86 ²)	XGBT 7.0% 11% 0.81	Embedded XGBT 9.0% ¹ (7.0% ²) 12% ¹ (11% ²) 0.74 ¹ (0.78 ²)		
Splitting Random split	Metrics MAE RMSE R ² MAE	BERT 10% 14% 0.69 13%	Embedded BERT 8.0% ¹ (6.0% ²) 11% ¹ (9.0% ²) 0.79 ¹ (0.86 ²) 10% ¹ (8.0% ²)	XGBT 7.0% 11% 0.81 10%	Embedded XGBT 9.0% ¹ (7.0% ²) 12% ¹ (11% ²) 0.74 ¹ (0.78 ²) 10% ¹ (10% ²)		
Splitting Random split Partial novelty	Metrics MAE RMSE R ² MAE RMSE	BERT 10% 14% 0.69 13% 17%	Embedded BERT 8.0% ¹ (6.0% ²) 11% ¹ (9.0% ²) 0.79 ¹ (0.86 ²) 10% ¹ (8.0% ²) 14% ¹ (12% ²)	XGBT 7.0% 11% 0.81 10% 13%	Embedded XGBT 9.0% ¹ (7.0% ²) 12% ¹ (11% ²) 0.74 ¹ (0.78 ²) 10% ¹ (10% ²) 13% ¹ (13% ²)		
Splitting Random split Partial novelty	Metrics MAE RMSE R ² MAE RMSE R ²	BERT 10% 14% 0.69 13% 17% 0.53	Embedded BERT 8.0% ¹ (6.0% ²) 11% ¹ (9.0% ²) 0.79 ¹ (0.86 ²) 10% ¹ (8.0% ²) 14% ¹ (12% ²) 0.70 ¹ (0.78 ²)	XGBT 7.0% 11% 0.81 10% 13% 0.72	Embedded XGBT $9.0\%^{1}(7.0\%^{2})$ $12\%^{1}(11\%^{2})$ $0.74^{1}(0.78^{2})$ $10\%^{1}(10\%^{2})$ $13\%^{1}(13\%^{2})$ $0.70^{1}(0.70^{2})$		
Splitting Random split Partial novelty	Metrics MAE RMSE R ² MAE RMSE R ² MAE	BERT 10% 14% 0.69 13% 17% 0.53 11%	Embedded BERT 8.0% ¹ (6.0% ²) 11% ¹ (9.0% ²) 0.79 ¹ (0.86 ²) 10% ¹ (8.0% ²) 14% ¹ (12% ²) 0.70 ¹ (0.78 ²) 9.0% ¹ (6.0% ²)	XGBT 7.0% 11% 0.81 10% 13% 0.72 8.0%	Embedded XGBT $9.0\%^{1}(7.0\%^{2})$ $12\%^{1}(11\%^{2})$ $0.74^{1}(0.78^{2})$ $10\%^{1}(10\%^{2})$ $13\%^{1}(13\%^{2})$ $0.70^{1}(0.70^{2})$ $11\%^{1}(10\%^{2})$		
Splitting Random split Partial novelty Full novelty	Metrics MAE RMSE R ² MAE RMSE RMSE	BERT 10% 14% 0.69 13% 17% 0.53 11% 14%	Embedded BERT 8.0% ¹ (6.0% ²) 11% ¹ (9.0% ²) 0.79 ¹ (0.86 ²) 10% ¹ (8.0% ²) 14% ¹ (12% ²) 0.70 ¹ (0.78 ²) 9.0% ¹ (6.0% ²) 13% ¹ (7.0% ²)	XGBT 7.0% 11% 0.81 10% 13% 0.72 8.0% 12%	Embedded XGBT 9.0% ¹ (7.0% ²) 12% ¹ (11% ²) 0.74 ¹ (0.78 ²) 10% ¹ (10% ²) 13% ¹ (13% ²) 0.70 ¹ (0.70 ²) 11% ¹ (10% ²) 15% ¹ (14% ²)		
Splitting Random split Partial novelty Full novelty	Metrics MAE RMSE R ² MAE RMSE RMSE RMSE R ²	BERT 10% 14% 0.69 13% 17% 0.53 11% 14% 0.39	Embedded BERT 8.0% ¹ (6.0% ²) 11% ¹ (9.0% ²) 0.79 ¹ (0.86 ²) 10% ¹ (8.0% ²) 14% ¹ (12% ²) 0.70 ¹ (0.78 ²) 9.0% ¹ (6.0% ²) 13% ¹ (7.0% ²) 0.51 ¹ (0.84 ²)	XGBT 7.0% 11% 0.81 10% 13% 0.72 8.0% 12% 0.58	Embedded XGBT 9.0% ¹ (7.0% ²) 12% ¹ (11% ²) 0.74 ¹ (0.78 ²) 10% ¹ (10% ²) 13% ¹ (13% ²) 0.70 ¹ (0.70 ²) 11% ¹ (10% ²) 15% ¹ (14% ²) 0.47 ¹ (0.52 ²)		
Splitting Random split Partial novelty Full novelty Splitting	Metrics MAE RMSE R ² MAE RMSE R ² MAE RMSE R ² RMSE R ² Metrics	BERT 10% 14% 0.69 13% 17% 0.53 11% 14% 0.39 SVM	Embedded BERT $8.0\%^{1}(6.0\%^{2})$ $11\%^{1}(9.0\%^{2})$ $0.79^{1}(0.86^{2})$ $10\%^{1}(8.0\%^{2})$ $14\%^{1}(12\%^{2})$ $0.70^{1}(0.78^{2})$ $9.0\%^{1}(6.0\%^{2})$ $13\%^{1}(7.0\%^{2})$ $0.51^{1}(0.84^{2})$ Embedded	XGBT 7.0% 11% 0.81 10% 13% 0.72 8.0% 12% 0.58 RF	Embedded XGBT $9.0\%^{1}(7.0\%^{2})$ $12\%^{1}(11\%^{2})$ $0.74^{1}(0.78^{2})$ $10\%^{1}(10\%^{2})$ $13\%^{1}(13\%^{2})$ $0.70^{1}(0.70^{2})$ $11\%^{1}(10\%^{2})$ $15\%^{1}(14\%^{2})$ $0.47^{1}(0.52^{2})$ Embedded		
Splitting Random split Partial novelty Full novelty Splitting	Metrics MAE RMSE R ² MAE RMSE R ² MAE RMSE R ² Metrics	BERT 10% 14% 0.69 13% 17% 0.53 11% 14% 0.39 SVM	Embedded BERT 8.0% ¹ (6.0% ²) 11% ¹ (9.0% ²) 0.79 ¹ (0.86 ²) 10% ¹ (8.0% ²) 14% ¹ (12% ²) 0.70 ¹ (0.78 ²) 9.0% ¹ (6.0% ²) 13% ¹ (7.0% ²) 0.51 ¹ (0.84 ²) Embedded SVM	XGBT 7.0% 11% 0.81 10% 13% 0.72 8.0% 12% 0.58 RF	Embedded XGBT $9.0\%^{1}(7.0\%^{2})$ $12\%^{1}(11\%^{2})$ $0.74^{1}(0.78^{2})$ $10\%^{1}(10\%^{2})$ $13\%^{1}(13\%^{2})$ $0.70^{1}(0.70^{2})$ $11\%^{1}(10\%^{2})$ $15\%^{1}(14\%^{2})$ $0.47^{1}(0.52^{2})$ Embedded RF		
Splitting Random split Partial novelty Full novelty Splitting	Metrics MAE RMSE R ² MAE RMSE R ² MAE RMSE R ² Metrics MAE	BERT 10% 14% 0.69 13% 17% 0.53 11% 14% 0.39 SVM 18%	EmbeddedBERT $8.0\%^1 (6.0\%^2)$ $11\%^1 (9.0\%^2)$ $0.79^1 (0.86^2)$ $10\%^1 (8.0\%^2)$ $14\%^1 (12\%^2)$ $0.70^1 (0.78^2)$ $9.0\%^1 (6.0\%^2)$ $13\%^1 (7.0\%^2)$ $0.51^1 (0.84^2)$ EmbeddedSVM $17\%^1 (17\%^2)$	XGBT 7.0% 11% 0.81 10% 13% 0.72 8.0% 12% 0.58 RF 14%	Embedded XGBT $9.0\%^{1}(7.0\%^{2})$ $12\%^{1}(11\%^{2})$ $0.74^{1}(0.78^{2})$ $10\%^{1}(10\%^{2})$ $13\%^{1}(13\%^{2})$ $0.70^{1}(0.70^{2})$ $11\%^{1}(10\%^{2})$ $15\%^{1}(14\%^{2})$ $0.47^{1}(0.52^{2})$ Embedded RF $14\%^{1}(14\%^{2})$		
Splitting Random split Partial novelty Full novelty Splitting Random split	Metrics MAE RMSE R ²	BERT 10% 14% 0.69 13% 17% 0.53 11% 14% 0.39 SVM 18% 21%	Embedded BERT 8.0% ¹ (6.0% ²) 11% ¹ (9.0% ²) 0.79 ¹ (0.86 ²) 10% ¹ (8.0% ²) 14% ¹ (12% ²) 0.70 ¹ (0.78 ²) 9.0% ¹ (6.0% ²) 13% ¹ (7.0% ²) 0.51 ¹ (0.84 ²) Embedded SVM 17% ¹ (17% ²) 21% ¹ (21% ²)	XGBT 7.0% 11% 0.81 10% 13% 0.72 8.0% 12% 0.58 RF 14% 16%	Embedded XGBT $9.0\%^{1}(7.0\%^{2})$ $12\%^{1}(11\%^{2})$ $0.74^{1}(0.78^{2})$ $10\%^{1}(10\%^{2})$ $13\%^{1}(13\%^{2})$ $0.70^{1}(0.70^{2})$ $11\%^{1}(10\%^{2})$ $15\%^{1}(14\%^{2})$ $0.47^{1}(0.52^{2})$ Embedded RF $14\%^{1}(14\%^{2})$ $16\%^{1}(14\%^{2})$		
Splitting Random split Partial novelty Full novelty Splitting Random split	Metrics MAE RMSE R ² MAE RMSE R ² MAE RMSE R ² Metrics MAE RMSE R ²	BERT 10% 14% 0.69 13% 17% 0.53 11% 14% 0.39 SVM 18% 21% 0.30	Embedded BERT $8.0\%^{1}(6.0\%^{2})$ $11\%^{1}(9.0\%^{2})$ $0.79^{1}(0.86^{2})$ $10\%^{1}(8.0\%^{2})$ $14\%^{1}(12\%^{2})$ $0.70^{1}(0.78^{2})$ $9.0\%^{1}(6.0\%^{2})$ $13\%^{1}(7.0\%^{2})$ $0.51^{1}(0.84^{2})$ Embedded SVM $17\%^{1}(17\%^{2})$ $21\%^{1}(21\%^{2})$ $0.32^{1}(0.32^{2})$	XGBT 7.0% 11% 0.81 10% 13% 0.72 8.0% 12% 0.58 RF 14% 16% 0.68	Embedded XGBT $9.0\%^{1}(7.0\%^{2})$ $12\%^{1}(11\%^{2})$ $0.74^{1}(0.78^{2})$ $10\%^{1}(10\%^{2})$ $13\%^{1}(13\%^{2})$ $0.70^{1}(0.70^{2})$ $11\%^{1}(10\%^{2})$ $15\%^{1}(14\%^{2})$ $0.47^{1}(0.52^{2})$ Embedded RF $14\%^{1}(14\%^{2})$ $16\%^{1}(14\%^{2})$ $0.72^{1}(0.74^{2})$		

Partial novelty	RMSE	23%	22% ¹ (23% ²)	23%	$21\%^{1}(18\%^{2})$			
	R ²	0	0.031 (0.052)	0.62	0.651 (0.682)			
	MAE	10%	$10\%^{1}(10\%^{2})$	15%	$14\%^{1}(14\%^{2})$			
Full novelty	RMSE	12%	13%1(13%2)	18%	$18\%^{1}(17\%^{2})$			
	R ²	0.78	0.76 ¹ (0.76 ²)	0.67	0.681 (0.712)			
РуВОР								
Splitting	Metrics	BERT	Embedded	XGBT	Embedded			
			BERT		XGBT			
	MAE	8.0%	$6.0\%^{1}(5.0\%^{2})$	6.0%	$6.0\%^{1}(7.0\%^{2})$			
Random split	RMSE	11%	$8.0\%^1(8.0\%^2)$	10%	$10\%^{1}(10\%^{2})$			
	R ²	0.80	0.881 (0.902)	0.88	0.881 (0.862)			
	MAE	11%	$7.0\%^1(7.0\%^2)$	8.0%	8.0% ¹ (7.0% ²)			
Partial novelty	RMSE	14%	$11\%^{1}(10\%^{2})$	10%	$10\%^{1}(11\%^{2})$			
	R ²	0.63	0.771 (0.822)	0.81	0.801 (0.782)			
	MAE	12%	6.0%1 (9.0%2)	7.0%	7.0% ¹ (9.0% ²)			
Full novelty	RMSE	18%	8.0%1(12%2)	11%	$11\%^{1}(12\%^{2})$			
	R ²	0.40	0.891 (0.742)	0.81	0.801 (0.762)			
Splitting	Metrics	SVM	Embedded	RF	Embedded			
			SVM		RF			
	MAE	17%	$17\%^{1}(17\%^{2})$	16%	$15\%^{1}(14\%^{2})$			
Random split	RMSE	21%	21% ¹ (21% ²)	16%	$16\%^{1}(14\%^{2})$			
	R ²	0.34	0.341 (0.342)	0.69	0.74 ¹ (0.76 ²)			
	MAE	19%	19% ¹ (19% ²)	18%	17% ¹ (14% ²)			
Partial novelty	RMSE	24%	24%1(241%2)	24%	23%1(14%2)			
	R ²	0	0 ¹ (0 ²)	0.54	0.741 (0.762)			
	MAE	10%	10%1(10%2)	8.0%	8.0%1(7.0%2)			
Full novelty	RMSE	12%	12%1(12%2)	10%	10%1(10%2)			
	R ²	0.82	0.80 ¹ (0.80 ²)	0.80	0.871 (0.852)			
DCC								
Splitting	Metrics	BERT	Embedded	XGBT	Embedded			
			BERT		XGBT			
	MAE	8.0%	$7.0\%^{1}(7.0\%^{2})$	7.0%	7.0% ¹ (7.0% ²)			
Random split	RMSE	11%	$10\%^{1}(9.0\%^{2})$	8.0%	8.0%1 (8.0%2)			
	R ²	0.80	0.851 (0.862)	0.84	0.841 (0.842)			

Partial novelty	MAE	9.0%	$8.0\%^{1}(8.0\%^{2})$	8.0%	$8.0\%^{1}(8.0\%^{2})$
	RMSE	13%	11%1(11%2)	12%	12%1(11%2)
	R ²	0.74	0.791 (0.812)	0.77	0.771 (0.792)
Full novelty	MAE	10%	5.0% ¹ (7.0% ²) 6.0%		7.0%1(7.0%2)
	RMSE	12%	7.0%1(10%2)	$\sqrt[6]{0}^{1}(10\%^{2})$ 10% 11%	
	R ²	0.1	0.671 (0.412)	0.61	0.561 (0.562)
Splitting	Metrics	SVM	Embedded	RF	Embedded
			SVM		RF
	MAE	19%	18% ¹ (18% ²)	16%	$15\%^{1}(14\%^{2})$
Random split	RMSE	23%	23% ¹ (22% ²)	16%	16%1(14%2)
	R ²	0.24	0.26 ¹ (0.27 ²)	0.66	0.71 ¹ (0.73 ²)
	MAE	17%	$17\%^{1}(17\%^{2})$	18%	17%1(16%2)
Partial novelty	RMSE	20%	20%1(21%2)	24%	23%1(21%2)
	R ²	0.33	0.331 (0.312)	0.49	0.521 (0.532)
Full novelty	MAE	10%	$11\%^{1}(10\%^{2})$	18%	$18\%^{1}(17\%^{2})$
	RMSE	13%	13%1(13%2)	17%	18%1(17%2)
	R ²	0.77	0.751 (0.762)	0.58	0.571 (0.592)
		HI	BTU		1
Splitting	Metrics	BERT	Embedded	XGBT	Embedded
			BERT		XGBT
	MAE	8.0%	6.0%1(6.0%2)	8.0%	8.0%1 (8.0%2)
Random split	RMSE	11%	10% ¹ (9.0% ²)	6.0%	6.0% ¹ (6.0% ²)
	R ²	0.83	0.851 (0.892)	0.85	0.841 (0.842)
	MAE	10%	8.0%1(7.0%2)	8.0%	8.0%1 (8.0%2)
Partial novelty	RMSE	13%	12%1(11%2)	12%	11%1(12%2)
	R ²	0.72	0.761 (0.812)	0.75	0.761 (0.752)
Full novelty	MAE	8.0%	9.0%1(7.0%2)	8.0%	8.0%1 (8.0%2)
	RMSE	14%	$17\%^{1}(10\%^{2})$	17%	$17\%^{1}(18\%^{2})$
	R ²	0.68	0.541 (0.832)	0.67	0.66 ¹ (0.63 ²)
Splitting	M	SVM	Embedded	RF	Embedded
	Metrics				
	Metrics		SVM		RF
	MAE	18%	SVM 17% ¹ (17% ²)	19%	RF 19% ¹ (18% ²)
Random split	Metrics MAE RMSE	18% 21%	SVM 17% ¹ (17% ²) 21% ¹ (21% ²)	19% 18%	RF 19% ¹ (18% ²) 18% ¹ (17% ²)
Random split	MAE RMSE R ²	18% 21% 0.3	SVM 17% ¹ (17% ²) 21% ¹ (21% ²) 0.32 ¹ (0.32 ²)	19% 18% 0.51	RF 19% ¹ (18% ²) 18% ¹ (17% ²) 0.53 ¹ (0.56 ²)

	MAE	19%	18% ¹ (18% ²)	19%	$18\%^{1}(18\%^{2})$			
Partial novelty	RMSE	23%	22%1(23%2)	22%	22%1(22%2)			
	R ²	0	0.031 (0.042)	0.39	0.401 (0.432)			
	MAE	10%	10%1(10%2)	14%	13%1(13%2)			
Full novelty	RMSE	12%	13%1(13%2)	16%	16%1(16%2)			
	R ²	0.78	0.76 ¹ (0.76 ²) 0.45		0.521 (0.502)			
EDC								
Splitting	Metrics	BERT	Embedded	XGBT	Embedded			
			BERT		XGBT			
	MAE	7.0%	5.9% ¹ (6.1% ²)	9.0%	9.0%1 (9.0%2)			
Random split	RMSE	11%	8.0%1(8.0%2)	10%	11%1(11%2)			
	R ²	0.82	0.891 (0.892)	0.78	0.76 ¹ (0.76 ²)			
	MAE	8.0%	6.0% ¹ (7.0% ²)	10%	10%1(10%2)			
Partial novelty	RMSE	12%	9.0%1(9.0%2) 12%		12%1(12%2)			
	R ²	0.79	0.881 (0.872)	0.66	0.651 (0.642)			
	MAE	13%	8.0%1(11%2)	12%	13%1(13%2)			
Full novelty	RMSE	18%	12%1(14%2)	15%	16%1(15%2)			
	R ²	0.46	0.75 ¹ (0.67 ²)	0.63	0.591 (0.622)			
Splitting	Metrics	SVM	Embedded	RF	Embedded			
			SVM		RF			
	MAE	19%	$19\%^{1}(19\%^{2})$	17%	$16\%^{1}(16\%^{2})$			
Random split	RMSE	22%	22% ¹ (22% ²)	18%	$17\%^{1}(17\%^{2})$			
	R ²	0.27	0.281 (0.282)	0.58	0.621 (0.652)			
	MAE	21%	20%1(20%2)	19%	19%1(17%2)			
Partial novelty	RMSE	24%	24%1(24%2)	24%	24%1(22%2)			
	R ²	0.19	0.221 (0.222)	0.33	0.371 (0.382)			
	MAE	11%	11%1(11%2)	13%	14%1(13%2)			
Full novelty	RMSE	13%	14%1(14%2)	15%	15%1(15%2)			
	R ²	0.75	0.74 ¹ (0.74 ²)	0.72	0.72 ¹ (0.73 ²)			
¹ Intermediate knowledge was embedded into the model; ² Intermediate knowledge was embedded								
into the model but the representation (SMILES or ECFP) on acid was removed.								

Performance comparison of acylation yield prediction models trained using the BERT algorithm under different scenarios (Figure S18 - Figure S23): (a) Model trained without intermediate

information, (b) Model trained with both amine, acid, and intermediate information for predicting amide formation, and (c) Model trained with amine and intermediate information only for predicting amide formation. Each scenario is evaluated under three different data splitting strategies: Random split, Partial substrate novelty, and Full substrate novelty.

For each plot, predicted yield is plotted against experimental yield, with key performance metrics (MSE, MAE, RMSE, and R^2) listed on each subplot. The red lines represent ideal predictions (diagonal line) and $\pm 10\%$ deviations. In general, the models show robust performance under Random split, while performance degrades under the more challenging Partial and Full substrate novelty scenarios. Notably, the model in amine with intermediate exhibits the best overall performance across all scenarios, particularly in Full substrate novelty, indicating the potential importance of intermediate information for accurate yield prediction.

The model performance figures using other algorithm can be found in GitHub: https://www.github.com/aichemeco/amide_coupling/tree/main.

Figure S21. Model performance of TBTU condition using the BERT algorithm, trained under three different scenarios: (a) without intermediate, (b) amine + acid + intermediate \rightarrow amide (c) amine + intermediate \rightarrow amide. Each scenario is evaluated using three data splitting strategies: Random split, Partial substrate novelty, and Full substrate novelty. The red lines indicate the ideal prediction line (center) and ±10% error margins. Performance metrics (MSE, MAE, RMSE, R²) are provided for each case.

Figure S22. Model performance of HATU condition using the BERT algorithm, trained under three different scenarios: (a) without intermediate, (b) amine + acid + intermediate \rightarrow amide (c) amine + intermediate \rightarrow amide. Each scenario is evaluated using three data splitting strategies: Random split, Partial substrate novelty, and Full substrate novelty. The red lines indicate the ideal prediction line (center) and ±10% error margins. Performance metrics (MSE, MAE, RMSE, R²) are provided for each case.

Figure S23. Model performance of PyBOP condition using the BERT algorithm, trained under three different scenarios: (a) without intermediate, (b) amine + acid + intermediate \rightarrow amide (c) amine + intermediate \rightarrow amide. Each scenario is evaluated using three data splitting strategies: Random split, Partial substrate novelty, and Full substrate novelty. The red lines indicate the ideal prediction line (center) and ±10% error margins. Performance metrics (MSE, MAE, RMSE, R²) are provided for each case.

Figure S24. Model performance of DCC condition using the BERT algorithm, trained under three different scenarios: (a) without intermediate, (b) amine + acid + intermediate \rightarrow amide (c) amine + intermediate \rightarrow amide. Each scenario is evaluated using three data splitting strategies: Random split, Partial substrate novelty, and Full substrate novelty. The red lines indicate the ideal prediction line (center) and ±10% error margins. Performance metrics (MSE, MAE, RMSE, R²) are provided for each case.

Figure S25. Model performance of HBTU condition using the BERT algorithm, trained under three different scenarios: (a) without intermediate, (b) amine + acid + intermediate \rightarrow amide (c) amine + intermediate \rightarrow amide. Each scenario is evaluated using three data splitting strategies: Random split, Partial substrate novelty, and Full substrate novelty. The red lines indicate the ideal prediction line (center) and ±10% error margins. Performance metrics (MSE, MAE, RMSE, R²) are provided for each case.

Figure S26. Model performance of EDC condition using the BERT algorithm, trained under three different scenarios: (a) without intermediate, (b) amine + acid + intermediate \rightarrow amide (c) amine + intermediate \rightarrow amide. Each scenario is evaluated using three data splitting strategies: Random split, Partial substrate novelty, and Full substrate novelty. The red lines indicate the ideal prediction line (center) and ±10% error margins. Performance metrics (MSE, MAE, RMSE, R²) are provided for each case.

S3.9 Five-fold cross validation of model

Due to the out-of-sample issue of the full novelty substrate data, we were unable to provide multiple partial and full substrate novelty test sets. Nevertheless, we conducted 5-fold cross-validation to

create five different out-of-sample randomly split test datasets under six different conditions. These results were illustrated in Figure S24 to Figure S29

Figure S27. 5-fold cross validation of DCC condition.

Figure S28. 5-fold cross validation of EDC condition.

Figure S29. 5-fold cross validation of HATU condition.

Figure S30. 5-fold cross validation of HBTU condition.

Figure S31. 5-fold cross validation of PyBOP condition.

Figure S32. 5-fold cross validation of TBTU condition

S3.10 Performance of conditions encoded with one-hot

We also evaluated the performance of BERT yield prediction model when the conditions were encoded with one-hot, which did not contain physical organic chemistry knowledge related to conditions. The performance of model toward the data set of full substrate novelty decreased dramatically (Figure S30), indicating the key role of intermediate knowledge in elevating the performance of model.

DCC

EDC

HATU

HBTU

РуВОР

Figure S33. Performance of conditions encoded with one-hot

Predict the average yield in the training set. To verify the accuracy of the model, we also attempted to predict the average yield in the training set. However, the performance metrics for these test data splits would be extremely poor. For all six conditions, the R² metrics are nearly zero. Please find the full metric results for the six conditions in Figure S31 and Table S14 below.

Metrics \Conditions	DCC	EDC	HATU	HBTU	РуВОР	TBTU
R ²	0.00	0.00	0.00	0.00	0.00	0.00
MSE	0.08	0.08	0.08	0.09	0.08	0.08
RMSE	0.28	0.28	0.28	0.30	0.29	0.28
MAE	0.25	0.25	0.23	0.26	0.24	0.24

Table S14. Metric results of predicting the average yield in the training set

Figure S34. Model performance by predicting the average yield in the training set

Besides, we also studied the effect of activation function. Thus, for BERT model, we changed the activation function of output layer into Sigmoid. However, similar or lower performance was obtained in the most cases (Table S15).

Conditions	TBTU			HATU	
Splitting	Metrics	BERT	Embedded	BERT	Embedded
			BERT		BERT
	MAE	10%	7.0%1 (8.0%2)	10%	9.0%1(6.0%2)
Random split	RMSE	13%	$10\%^{1}(11\%^{2})$	13%	$11\%^{1}(9.0\%^{2})$
	R ²	0.70	0.831 (0.812)	0.71	$0.77^{1}(0.87^{2})$
	MAE	12%	$11\%^{1}(9.0\%^{2})$	13%	$11\%^{1}(8.0\%^{2})$
Partial novelty	RMSE	16%	$14\%^{1}(12\%^{2})$	16%	$14\%^{1}(11\%^{2})$
	R ²	0.59	$0.64^{1}(0.73^{2})$	0.54	0.65 ¹ (0.81 ²)

Table S15. The effect of Sigmoid activation function

	MAE	11%	$11\%^{1}(7.0\%^{2})$	12%	$10\%^{1}(6.0\%^{2})$
Full novelty	RMSE	13%	13%1(9.0%2)	14%	13% ¹ (7.0% ²)
	R ²	0.62	0.621 (0.822)	0.34	0.491 (0.842)
Conditions	РуВОР	1		DCC	
Splitting	Metrics	BERT	Embedded	BERT	Embedded
			BERT		BERT
	MAE	9.0%	$6.0\%^1(7.0\%^2)$	8%	6.0%1 (8.0%2)
Random split	RMSE	11%	8.0% ¹ (9.0% ²)	11%	11%1(10%2)
	R ²	0.76	0.881 (0.842)	0.81	0.881 (0.842)
	MAE	12%	8.0%1(7.0%2)	9%	8.0%1(8.0%2)
Partial novelty	RMSE	15%	11% ¹ (9.0% ²)	13%	13%1(12%2)
	R ²	0.58	0.741 (0.802)	0.73	0.74 ¹ (0.79 ²)
	MAE	12%	6.0%1(9.0%2)	10%	7.0%1(7.0%2)
Full novelty	RMSE	18%	8.0%1(12%2)	12%	7.0%1(11%2)
	R ²	0.42	0.901 (0.732)	0.11	0.631 (0.392)
Conditions	HBTU	1	EDC		
	3.6.1	BERT	Embedded	BERT	Embedded
Splitting	Metrics	DEIG			
Splitting	Metrics		BERT		BERT
Splitting	Metrics	8.0%	BERT 6.0% ¹ (6.0% ²)	8.0%	BERT 6.0% ¹ (6.0% ²)
Splitting Random split	Metrics MAE RMSE	8.0% 11%	BERT 6.0% ¹ (6.0% ²) 8.0% ¹ (10% ²)	8.0% 11%	BERT 6.0% ¹ (6.0% ²) 9.0% ¹ (8.0% ²)
Splitting Random split	Metrics MAE RMSE R ²	8.0% 11% 0.83	BERT 6.0% ¹ (6.0% ²) 8.0% ¹ (10% ²) 0.82 ¹ (0.87 ²)	8.0% 11% 0.83	BERT $6.0\%^1(6.0\%^2)$ $9.0\%^1(8.0\%^2)$ $0.84^1(0.89^2)$
Splitting Random split	Metrics MAE RMSE R ² MAE	8.0% 11% 0.83 12%	BERT 6.0% ¹ (6.0% ²) 8.0% ¹ (10% ²) 0.82 ¹ (0.87 ²) 9.0% ¹ (7.0% ²)	8.0% 11% 0.83 8.0%	BERT $6.0\%^1(6.0\%^2)$ $9.0\%^1(8.0\%^2)$ $0.84^1(0.89^2)$ $6.0\%^1(8.0\%^2)$
Splitting Random split Partial novelty	Metrics MAE RMSE R ² MAE RMSE	8.0% 11% 0.83 12%	BERT 6.0% ¹ (6.0% ²) 8.0% ¹ (10% ²) 0.82 ¹ (0.87 ²) 9.0% ¹ (7.0% ²) 12% ¹ (11% ²)	8.0% 11% 0.83 8.0% 10%	BERT $6.0\%^1(6.0\%^2)$ $9.0\%^1(8.0\%^2)$ $0.84^1(0.89^2)$ $6.0\%^1(8.0\%^2)$ $9.0\%^1(9.0\%^2)$
Splitting Random split Partial novelty	Metrics MAE RMSE R ² MAE RMSE R ²	8.0% 11% 0.83 12% 0.70	BERT 6.0% ¹ (6.0% ²) 8.0% ¹ (10% ²) 0.82 ¹ (0.87 ²) 9.0% ¹ (7.0% ²) 12% ¹ (11% ²) 0.74 ¹ (0.81 ²)	8.0% 11% 0.83 8.0% 10% 0.82	BERT $6.0\%^1(6.0\%^2)$ $9.0\%^1(8.0\%^2)$ $0.84^1(0.89^2)$ $6.0\%^1(8.0\%^2)$ $9.0\%^1(9.0\%^2)$ $0.88^1(0.83^2)$
Splitting Random split Partial novelty	Metrics MAE RMSE R ² MAE RMSE R ² MAE	8.0% 11% 0.83 12% 0.70 9.0%	BERT 6.0% ¹ (6.0% ²) 8.0% ¹ (10% ²) 0.82 ¹ (0.87 ²) 9.0% ¹ (7.0% ²) 12% ¹ (11% ²) 0.74 ¹ (0.81 ²) 10% ¹ (8.0% ²)	8.0% 11% 0.83 8.0% 10% 0.82 12%	BERT $6.0\%^1(6.0\%^2)$ $9.0\%^1(8.0\%^2)$ $0.84^1(0.89^2)$ $6.0\%^1(8.0\%^2)$ $9.0\%^1(9.0\%^2)$ $0.88^1(0.83^2)$ $8.0\%^1(12\%^2)$
Splitting Random split Partial novelty Full novelty	Metrics MAE RMSE R ² MAE RMSE RAE RMSE	8.0% 11% 0.83 12% 0.70 9.0% 14%	BERT 6.0% ¹ (6.0% ²) 8.0% ¹ (10% ²) 0.82 ¹ (0.87 ²) 9.0% ¹ (7.0% ²) 12% ¹ (11% ²) 0.74 ¹ (0.81 ²) 10% ¹ (8.0% ²) 18% ¹ (10% ²)	8.0% 11% 0.83 8.0% 10% 0.82 12% 17%	BERT $6.0\%^1(6.0\%^2)$ $9.0\%^1(8.0\%^2)$ $0.84^1(0.89^2)$ $6.0\%^1(8.0\%^2)$ $9.0\%^1(9.0\%^2)$ $0.88^1(0.83^2)$ $8.0\%^1(12\%^2)$ $11\%^1(15\%^2)$
Splitting Random split Partial novelty Full novelty	Metrics MAE RMSE R ² MAE RMSE R ² MAE RMSE R ² RMSE R ²	8.0% 11% 0.83 12% 0.70 9.0% 14% 0.66	BERT 6.0% ¹ (6.0% ²) 8.0% ¹ (10% ²) 0.82 ¹ (0.87 ²) 9.0% ¹ (7.0% ²) 12% ¹ (11% ²) 0.74 ¹ (0.81 ²) 10% ¹ (8.0% ²) 18% ¹ (10% ²) 0.48 ¹ (0.81 ²)	8.0% 11% 0.83 8.0% 10% 0.82 12% 17% 0.54	BERT $6.0\%^1(6.0\%^2)$ $9.0\%^1(8.0\%^2)$ $0.84^1(0.89^2)$ $6.0\%^1(8.0\%^2)$ $9.0\%^1(9.0\%^2)$ $0.88^1(0.83^2)$ $8.0\%^1(12\%^2)$ $11\%^1(15\%^2)$ $0.76^1(0.60^2)$
Splitting Random split Partial novelty Full novelty ¹ Intermediate knowledge	Metrics MAE RMSE R ² MAE RMSE R ² MAE RMSE R ² RMSE R ² edge was em	8.0% 11% 0.83 12% 0.70 9.0% 14% 0.66 bedded into the second sec	BERT $6.0\%^1 (6.0\%^2)$ $8.0\%^1 (10\%^2)$ $0.82^1 (0.87^2)$ $9.0\%^1 (7.0\%^2)$ $12\%^1 (11\%^2)$ $0.74^1 (0.81^2)$ $10\%^1 (8.0\%^2)$ $18\%^1 (10\%^2)$ $0.48^1 (0.81^2)$ ne model; ² Intermed	8.0% 11% 0.83 8.0% 10% 0.82 12% 17% 0.54 liate knowle	BERT $6.0\%^1(6.0\%^2)$ $9.0\%^1(8.0\%^2)$ $0.84^1(0.89^2)$ $6.0\%^1(8.0\%^2)$ $9.0\%^1(9.0\%^2)$ $0.88^1(0.83^2)$ $8.0\%^1(12\%^2)$ $11\%^1(15\%^2)$ $0.76^1(0.60^2)$ dge was embedded

The performance under six conditions: After realizing the high performance of model enhanced by intermediate knowledge in the selected conditions, we also intend to know whether the performance of an embedded model could also be elevated when the data from six conditions were combined. With this notion in mind, we subsequently examined the performance of the embedded BERT model under six conditions, and the results are illustrated in Table S16.

Splitting	R ²	RMSE	MAE
Random split	0.77 ^a	12% ^a	9.0% ^a
Partial novelty	0.71^{a}	14% ^a	10% ^a
Full novelty	0.62 ^{<i>a</i>}	10% ^a	8.0% ^a
Random split	0.85^{b}	10% ^b	7.0% ^b
Partial novelty	0.80^{b}	11% ^b	$8.0\%^b$
Full novelty	0.65^{b}	9.0% ^b	8.0% ^b

Table S16. The performance under six conditions

S3.11 The performance toward external data set from literatures

To rigorously evaluate the performance of our prediction model, we conducted tests on reactions sourced from the medicinal chemistry literature. The selection process was as follows:

Literature Search: We initiated our search by drawing the general formula for amide coupling reactions using SciFinder (Figure S32). We then applied the "Structure Match" filter to select reactions based on substructure similarity.

Focus on Medicinal Chemistry: To ensure relevance to medicinal chemistry, we screened literature from drug- and biologically-related journals, including but not limited to Journal of Medicinal Chemistry, European Journal of Medicinal Chemistry, Bioorganic & Medicinal Chemistry, Organic & Biomolecular Chemistry, and ACS Medicinal Chemistry Letters.

Randomized Selection: Given the extensive amount of reported data (over 19,000 reactions), we randomly selected five reactions from each identified literature source for every reaction condition tested.

Diversity and Independence from Training Data: Importantly, all selected substrate combinations were distinct from those in our HTE dataset, ensuring that the test reactions were entirely independent of the training data. To further ensure robustness, we expanded our test set by selecting an additional ten reactions per condition for external validation.

This strategy allowed us to assess the model's generalizability and performance on a diverse set of reactions representative of medicinal chemistry applications. HATU condition results in Scifinder in shown in Figure S33. As a result, the BERT model performed quite well, achieving a MAE of 10% and the prediction results of 163 reactions were less than or equal to 5%. The prediction results are illustrated in Figure S34 and Table S17.

Figure S35. Search formula for Amide Coupling

Reactions search fe	or <mark>drawn st</mark> r	ucture					
References -				a	▶ ₩	Sa	ive •
Structure Match	Filtering:	Reagent: 2 Selected - ×	Solvent: Dimethylformamide \times		c	Clear All	l Filters
As Drawn (7)		 Diisopropylethylamine O-(7-Azabenzotriazol-1-yl) 	ed - ×				
Substructure (6.7M)	196,723	-N,N,N,N-tetrameth yluronium hexafluoro phosphate	Group: By Do	cument 🕶 Sort: Relevance	 View: 		nded 👻
Similarity (1.8M)	1						
Filter Behavior	Structure	e-Based Development on n, Dual-Action Inhibitor	of (1-(3'-Mercaptopropanamid s of Metallo- and Serine-β-lac	o)methyl)boronic Acid tamases	Derived	d Broa	ad-
Filter by Exclude	By: Wang, Y Journal of M	ao-Ling: Liu, Sha; Yu, Zhu-Jun; ledicinal Chemistry (2019), 62(.ei, Yuan; Huang, Meng-Yi; et al 15), 7160-7184 Language: English, Dat	tabase: CAplus and MEDLINE			
✓ Search Within Results	Full Text	 View 66 Related Reaction 	5				
∽ Yield							
 Number of Steps 		~ .		1.1			
Non-Participating Functional Groups		then +		→ Ž	L		
				~			

Figure S36. HATU results in Scifinder

Figure S37. Performance in reactions related to medicinal chemistry

Table S17. The performance toward reactions related to medicine chemistry

Condit ion	Subtrate1	Substrate2	Product	Yield	Ref.	Prediction	Error
HATU	C(OC(N[C@@H](CCCCNC (OCC1C= 2C(C=3C) 1=CC=CC 3)=CC=C C2)=O(C(O)=O)=O) C4C=5C(C=6C4=C C=CC6)= CC=CC5	C#CCN	C(OC(N[C@@H](CCCCNC (OCC1C= 2C(C=3C) 1=CC=CC 3)=CC=C C2)=O(C(NCC#C)= O)=O)C4 C=5C(C= 6C4=CC= CC6)=CC =CC5	0.86	Bioorgani c & Medicinal Chemistry (2022), 57, 116646	0.645	0.215
HATU	O=C(O)C NC	NC1=CC= CC(=C1C)C	O=C(NC1 =CC=CC(=C1C)C) CNC	0.85	Internatio nal Journal of Molecular Sciences (2022), 23(20), 12675	0.8518	0.001 8
HATU	COc1ccc(C)c2c(=O) cc(C(=O) O)[nH]c1 2	Nc1ccc(- c2ccc(Cl)c c2)cc1	COc1ccc(C)c2c(=O) cc(C(=O) Nc3ccc(- c4ccc(Cl)c c4)cc3)[n H]c12	0.4	Medicinal Chemistry Research (2022), 31(3), 485-496	0.4495	0.049 5
HATU	COc1ccc(C)c2c(=O) cc(C(=O)	Nc1cccc(Cl)c1Cl	COc1ccc(C)c2c(=O) cc(C(=O)	0.43	Medicinal Chemistry Research	0.4963	0.066

	O)[nH]c1		Nc3cccc((2022),		
	2		Cl)c3Cl)[n		31(3),		
			H]c12		485-496		
HATU	COc1ccc2	C1CNC1	COc1ccc2	0.73	Journal of	0.7754	0.045
	oc(-		oc(-		Medicinal		4
	c3ccc(OC		c3ccc(OC		Chemistry		
	c4ccccc4)		c4ccccc4)		(2022),		
	cn3)c(C(=		cn3)c(C(=		65(1),		
	O)O)c2c1		O)N3CCC		409-423		
			3)c2c1				
HATI	[3H]C/[3	O = C(O)C	[3H]C/[3	0.32	Journal of	0 3235	0.003
	[J1]C([J	CCCCN1	[J1]C([J	0.52	Medicinal	0.5255	5
	П)([3П]) N[С@Н](C(-0)C-	N(C(-O)C)		Chemistry		5
	$\Gamma(=0)$ N[C	$C(-0)C^{-1}$	$\Gamma(C(-0)C)$		(2022)		
			C(-0)C-		(2022),		
	(W) = (C)		$C(-0)C^{-1}$		0955-0908		
			N(C)[C@				
	=0)N1CC						
	H(C)C(=						
	$\frac{\Pi_{0}(C)C(-)}{\Omega}$						
	\widehat{M}						
			C(=0)N				
	C)C(C)C)						
	C(C)C						
	0(0)0						
HATU	[N-	FC1=CC=	[N-	0.65	Russian	0.6119	0.038

]=[N+]=N	C(C=C1)]=[N+]=N		Journal of		1
	C1=CC=C	CN	C1=CC=C		General		
	(C=C1)C((C=C1)C(Chemistry		
	=O)O		=O)NCC2		(2022),		
			=CC=C(F)		92(10),		
			C=C2		2119-2131		
HATU	O=C(O)C(OC1=CC=	O=C(NCC	0.48	European	0.6986	0.218
	F)(C)C	CC(=C1)	C=1C=CC		Journal of		6
		CCN	=C(O)C1)		Medicinal		
			C(F)(C)C		Chemistry		
					(2021).		
					226.		
					113870		
LIATIT	O = C(O)C	CC(C)(C)	CC(C)(C)	0.59	Iournal - C	0 6269	0.046
HAIU		CC(C)(C)	CC(C)(C)	0.38	Journal of	0.0208	0.040
		0C(-0)N	0C(-0)N		Chamistra		0
					(2022)		
	JOCciece	$c_2 c c c s_2) c$	$c_2 c c c s_2) c$		(2022),		
	cci	cINC(=0)	cINC(=0)		5(12,5(5))		
		clccc(N)c			3042-3039		
		CI					
			0(=0)00				
			ccl				
HATU	O=C(O)C	CC(C)(C)	CC(C)(C)	0.58	Journal of	0.663	0.083
	OCCOCC	OC(=O)N	OC(=O)N		Medicinal		
	OCC(=O)	clccc(-	clccc(-		Chemistry		
	OCc1cccc	c2cccs2)c	c2cccs2)c		(2022),		
	c 1	c1NC(=O)	c1NC(=O)		65(7),		
		c1ccc(N)c	clccc(NC(5642-5659		
		c1	=O)COCC				
			occocc				
			(=O)OCc2				
			ccccc2)cc				
			1				

HATU	O=C(O)c1 ccc(CN2C C/C(=C\c 3ccccn3)C 2=O)cc1	Nc1ccc(F) cc1N	Nc1cc(F)c cc1NC(= O)c1ccc(C N2CC/C(=C\c3cccc n3)C2=O) cc1	0.63	European Journal of Medicinal Chemistry (2022), 229, 114049	0.6381	0.008
HATU	O=C(O)c1 ccc(CN2C CC/C(=C\ c3ccccc3) C2=O)cc1	Nc1ccc(F) cc1N	Nc1cc(F)c cc1NC(= O)c1ccc(C N2CCC/C (=C\c3ccc cc3)C2=O)cc1	0.63	European Journal of Medicinal Chemistry (2022), 229, 114049	0.6892	0.059
HATU	O=C(O)c1 ccc(CN2C CC/C(=C\ c3ccccc3C 1)C2=O)cc 1	Nc1ccc(F) cc1N	Nc1cc(F)c cc1NC(= O)c1ccc(C N2CCC/C (=C\c3ccc cc3Cl)C2 =O)cc1	0.63	European Journal of Medicinal Chemistry (2022), 229, 114049	0.7105	0.080
HATU	O=C(O)c1 ccc(CN2C CC/C(=C\ c3ccccn3) C2=O)cc1	Nc1ccc(F) cc1N	Nc1cc(F)c cc1NC(= O)c1ccc(C N2CCC/C (=C\c3ccc cn3)C2=O)cc1	0.63	European Journal of Medicinal Chemistry (2022), 229, 114049	0.6981	0.068
HATU	O=C(O)c1 ccc(CN2C CC/C(=C\ c3cccnc3) C2=O)cc1	Nc1ccc(F) cc1N	Nc1cc(F)c cc1NC(= O)c1ccc(C N2CCC/C (=C\c3ccc nc3)C2=O	0.63	European Journal of Medicinal Chemistry (2022), 229,	0.6998	0.069 8

)cc1		114049		
HATU	O=C(O)c1 ccc(CN2C CC/C(=C\ c3ccco3)C 2=O)cc1	Nc1ccc(F) cc1N	Nc1cc(F)c cc1NC(= O)c1ccc(C N2CCC/C (=C\c3ccc o3)C2=O) cc1	0.63	European Journal of Medicinal Chemistry (2022), 229, 114049	0.6488	0.018
HATU	O=CC1=C C=C(C=C 1)C(=O)O	O(C1=CC =C(C=C1) CN)C	O=CC1=C C=C(C=C 1)C(=O)N CC2=CC= C(OC)C= C2	0.6	Journal of Medicinal Chemistry (2021), 64(12), 8423-8436	0.709	0.109
HATU	O=C(O)C COCCOC CNC(=O) CCC(=O) N1C=2C= CC=CC2 C#CC=3C =CC=CC3 C1	C(CNC(O CC1=CC= C(NC([C @@H](N C([C@H](C(C)C)N) =O)CCCN C(N)=O)= O)C=C1)= O)C=C1)= O)(=O)[C @]23[C@]4(C)[C@ []2(OC(CC C)O3)[H]) ([C@]5([C@](F)([C@@H](O)C4)[C @]6(C)C([C@@H](C(CNC(O CC1=CC= C(NC([C @@H](N C([C@@ H](NC(C COCCOC COCCOC COCCOC COCCOC COCCOC COCCOC	0.23	Journal of Medicinal Chemistry (2021), 64(16), 11958- 11971	0.3468	0.116 8

		F)C5)=CC]7(C)[C@				
		(=O)C=C6	@](C[C@				
)[H])[H]]5(OC(CC				
			C)O6)[H])				
			([C@]8([
			C@](F)([
			C@@H](
			O)C7)[C				
			@]9(C)C(
			[C@@H](
			F)C8)=CC				
			(=O)C=C9				
)[H])[H]				
		NUCCCI	NUCCCI	0.45	T 1 C	0.4002	0.040
HAIU	0=C(0)C	N # CCCI =	N#CCCI=	0.45	Journal of	0.4003	0.049
		C = C(N)	CU=U(U=		Chamiatary		/
	=0)00	C=C1	CI)NC(=		(2021)		
			O(CCC)		(2021),		
			CCC(-0)		16572		
			UC		16507		
					10577		
HATU	O=C(O)c1	Nc1ccc(F)	Nc1cc(F)c	0.63	European	0.7043	0.074
	ccc(CN2C	cc1N	cc1NC(=		Journal of		3
	CC/C(=C\		O)c1ccc(C		Medicinal		
	c3ccncc3)		N2CCC/C		Chemistry		
	C2=O)cc1		(=C\c3ccn		(2022),		
			cc3)C2=O		229,		
)cc1		114049		
HATU	O=C(Cclc	Celeccel	Celeccel	0.55	European	0.6251	0.075
	cccc1)Nc1	CNICCC(CNICCC(Journal of		1
	nnc(N2CC	CN)CCI	CNC(=0)		Medicinal		
					Chemistry		
	$3 \csc(U) =$				(2022),		
	O(O)cc3)		N(c4nnc(243,		
	CC2)s1		NC(=0)C		114686		
			000000000000000000000000000000000000000				

			s4)CC3)cc 2)CC1				
HATU	O=C(Cc1c cccc1)Nc1 nnc(N2CC C(CCOCc 3cccc(C(= O)O)c3)C C2)s1	Cc1ccccc1 CN1CCC(CN)CC1	Cc1cccc1 CN1CCC(CNC(=O) c2cccc(C OCCC3C CN(c4nnc (NC(=O)C c5cccc5) s4)CC3)c2)CC1	0.55	European Journal of Medicinal Chemistry (2022), 243, 114686	0.6331	0.083
HATU	O=C(Cc1c cccc1)Nc1 nnc(N2CC C(OCc3cc c(C(=O)O)cc3)CC2) s1	CCN1CC C(N)CC1	CCN1CC C(NC(=O) c2ccc(CO C3CCN(c 4nnc(NC(=O)Cc5cc ccc5)s4)C C3)cc2)C C1	0.56	European Journal of Medicinal Chemistry (2022), 243, 114686	0.5658	0.005 8
HATU	O=C(O)C 1=NC=C(Br)C=C1 OC	Cl.FC(F)(F)CN	O=C(NCC (F)(F)F)C 1=NC=C(Br)C=C1 OC	0.83	Journal of Medicinal Chemistry (2024), 67(7), 5233-5258	0.7832	0.046 8
HATU	O=C(O)C N(C(=O)C N(C(=O) OCC1C=2 C=CC=C C2C=3C= CC=CC31	NCCCCC CCCCCC C	O=C(OCC 1C=2C=C C=CC2C= 3C=CC=C C31)N(C C#C)CC(=O)N(CC	0.5	Journal of Medicinal Chemistry (2024), 67(7), 5945-5956	0.4599	0.040 1

)CC#C)C		#C)CC(=				
	C#C		O)NCCC				
			CCCCCC				
			CCCCCC				
			CCC				
HATU	c1cnc2[n	COclcc(C	COclcc(C	0.49	European	0.4948	0.004
	H]ccc2c1	(=O)O)cc((=O)n2ccc		Journal of		8
		OC)c1OC	3cccnc32)		Medicinal		
		clccccl	cc(OC)c1		Chemistry		
			OCcleece		(2022),		
			c1		242,		
					114682		
HATU	Cc1ccc(N	Cc1cc(Cl)	Cc1cc(Cl)	0.53	European	0.5976	0.067
	2CCN(C(ccc1-	ccc1-		Journal of		6
	=O)OC(C)	clccc(C(=	clccc(C(=		Medicinal		
	(C)C)CC2	O)O)ncl	O)N[C@		Chemistry		
)c2c1CC[H]2CCc3c		(2022),		
	C@H](N)		(C)ccc(N4		229,		
	C2		CCN(C(=		114059		
			O)OC(C)(
			C)C)CC4)				
			c3C2)nc1				
HATU	Cc1ccc(N	Cc1cc(Cl)	Cc1cc(Cl)	0.55	European	0.5717	0.021
	2CCN(C)	ccc1-	ccc1-		Journal of		7
	CC2)c2c1	c1ccc(C(=	clccc(C(=		Medicinal		
	CC[C@H]	O)O)nc1	O)N[C@		Chemistry		
	(N)C2		H]2CCc3c		(2022),		
			(C)ccc(N4		229,		
			CCN(C)C		114059		
			C4)c3C2)				
			nc1				
UATI	CalaacOI	$Calac(C^{\dagger})$	Calco(Cl)	0.56	Europasz	0.6111	0.051
				0.50	Lournal of	0.0111	1
	2 CCN(C)				Journal of		1
	CC2)c2c1	$c_{1ncc}(C) =$	cincc(C(=		Medicinal		

HINNC2JUNC2 <th< th=""><th></th><th>CC[C@@</th><th>O)O)cn1</th><th>O)N[C@</th><th></th><th>Chemistry</th><th></th><th></th></th<>		CC[C@@	O)O)cn1	O)N[C@		Chemistry		
Image: series of the series		H](N)C2		@H]2CCc		(2022),		
Image: series of the series				3c(C)ccc(229,		
Image: series of the series				N4CCN(C		114059		
Image: constraint of the section of)CC4)c3C				
HATU C1SCCN C1=OO=C(O)C C(SICCN C1=OOC1=CC- C(N)C=C 1O=C(NC1 =CC=C(O) 10.57 =CC=C(O) C2SCCN C2=OACS Medicinal Chemistry Letters (2021), 12(2), 302-3080.145 8HATU C2CN(C) C2C)C2211 C2CC1(C) C2C)C2212 CC(C2)2211 CCC(C2)2212 CCC(C2)2212 CCC(C2)2212 CCC(C2)2211 CCC(C2)2212 CCC(C2)2212 CCC(C2)2212 CCC(C2)2212 CCC(C2)2212 CCC(C2)2212 CCC(C2)2212 CCC(C2)2212 (D)O111Celce(C1) CC1CC(C2) CC1C2 CCC(C2)2212 CCC(C2)2212 (D)O1211O.54 CElce(C1) CC1C2 CCC(C2)2213 CCCEuropean Medicinal Chemistry (2022), 229, 1140590.6151 0.6151 0.6151 0.6151 0.6151 0.6151 0.6151 0.015 0.015 0.015HATU LATUO=C(O)21 CCCNelcecce Nelcecce CCCNelcecce CCC/C(=C) CCC/C(=C) CCC/C(=C)0.63 Curveanal Curveanal Curveanal Chemistry (2022), 229, 1140490.6453 0.6453 0.6151 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.016HATU LATU C=C(O)22 CCCNelcecce Nelcecce Nelcecce CCC0.63 Nelcecal Nelcecal Nelcicnal CHemistry Normal of Nelcecal CCC/C(=C) CCC/C(=C)0.63 Nelcecal Nelcecal Nelcicnal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal CCC/C(=C) CCC/C(=C) CCC/C(=C) CCC/C(=C)0.63 Nelcecal Nelcecal Nelcicnal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal Nelcecal <br< th=""><th></th><th></th><th></th><th>2)cn1</th><th></th><th></th><th></th><th></th></br<>				2)cn1				
HATU C1SCCN C1=OO=C(NOC C1SCCN C1=OOC1=CC= C(N)C=C C1=OOC1=CC C(N)C=C C1=OOC1=CC C(N)C=C C1=OOC1=CC C(N)C=C C2=OMedicinal C1=C1C C2SCCN C2=OMedicinal C1=C1C C2D(1)OC1C(C) C2D(1) C2D(1) C2D(1) C2D(1) C2D(1) C2D(1) C2D(1) C2D(1) C2D(1) C2D(1)OC1C(1) C2D(1								
C1SCCN C1=OC(N)C=C=CC=C(O) NC=C1)CMedicinal Chemistry Letters (2021), 12(2), 302-308Medicinal Chemistry Letters (2021), 12(2), 302-3088HATU C1CCNC(C) C2C2)2c1 CC2(2)2c1Medicinal Chemistry CC2(2)2c1 CC2(2)2c1 CC2(2)2c1 CC2(2)2c1 CC2(2)2c1Medicinal Chemistry CO2(2)2c1 CC2(2)2c1 CC2(2)2c1Medicinal Chemistry CO2(2)2c1 CC2(2)2c1 CC2(2)2c1Medicinal Chemistry CO2(2)2c1 CC2(2)2c2Medicinal CHATUMedici	HATU	O=C(O)C	OC1=CC=	O=C(NC1	0.57	ACS	0.7158	0.145
C1=01)C=C1)CC2SCCNC2e0ChemistryCettersLATUCclcc(N)Cclcc(C)Cclcc(C)0.54European0.61510.075C2C0(C)Cclcc(C)Cclcc(C)cclcc(C)O/N(C@NedicinalChemistry0.61510.075MATUCC(C)(C)Cclcc(C)O/N(C@NeloccceNeloccceNedicinalChemistry0.61510.075HATUO=C(O)c1NeloccceNeloccceNeloccce0.63European0.64530.015HATUO=C(O)c1NeloccceNeloccceNeloccceNeloccceNeloccceNeloccceNeloccceNeloccceHATUO=C(O)c1NeloccceNeloccceNeloccceNeloccceNeloccceNeloccceNeloccceNeloccceNeloccceHATUO=C(O)c1NeloccceNeloccceNeloccceNeloccceNeloccceNeloccceNeloccceNeloccceHATUO=C(O)c1NeloccceNeloccceNeloccceNeloccceNeloccceNeloccceNelocceHATUO=C(O)c1NeloccceNeloccceNeloccceNeloccceNeloccceNelocceNelocceNAO=C(O)c1NeloccceNeloccceNelocceNelocceNelocceNelocceNelocceNelocceNelocceNelocceNelocceNelocceNelocceNelocinalSumal ofNelocinalNelocceNelocceNelocceNelocceNelocceNelocinalNelocinalSumal ofNelocinal </th <th></th> <th>C1SCCN</th> <th>C(N)C=C</th> <th>=CC=C(O</th> <th></th> <th>Medicinal</th> <th></th> <th>8</th>		C1SCCN	C(N)C=C	=CC=C(O		Medicinal		8
Letters (22-0)Letters (221), 12(2), 302-308Letters (2021), 12(2), 302-308Letters (2021), 12(2), 302-308Letters (2021), 12(2), 302-308Letters (2021), 12(2), 302-308Letters (2021), 12(2), 302-308Letters (2021), 12(2), 302-308Letters (2021), 12(2), 302-308Letters (2021), 12(2), 302-308Letters (2021), 12(2), 229, 114059Descendence (2022), 229, 114059Descendence (2022), 229, 114059Descendence (2022), 229, 114059Descendence (2022), 229, 114059Descendence (2022), 229, 114059Descendence (2022), (2022), 229, (2022), 229, 114049Descendence (2022), (2022), (2022), (2022), (2022),Descendence (2022), (2022), (2022),Descendence (2022), (2022),Descendence (2022), (2022),Descendence (2022		C1=O	1)C=C1)C		Chemistry		
Image: Antiperiod of the sector of the sec				C2SCCN		Letters		
Image: Antiperiod of the sector of the sec				С2=О		(2021),		
Image: Antice of the section of the						12(2),		
HATUCc1ccc(N) 2CCN(C)Cc1cc(C) ccc1- clncc(C=Cc1cc(C) cc1- cc1- cc1ncc(C=0.54European Journal of Medicinal (Chemistry (2022),0.6151 (0.6843) (0.054) (0.6843) (0.054) (2022), (2022), (2022), (2022), (2022), (2022), (2022),HATUO=C(O)c1 (C)CNc1ccccc (Nc1cccc (Nc1cccc) (Nc1cccc) (Nc1cccc) (Nc1cccc) (Nc1ccc) (Nc1cccc)0.633 (Nc1ccc) (N						302-308		
HATUCc1cc(N)Cc1cc(CI)Cc1cc(CI)0.54European0.61510.0752CCN(C)ccc1-ccc1-ccc1-Journal ofJournal of11CC2)c2c1c1ncc(C(=c1ncc(C(=Inc(C(=Keinistry)C(202),11CC[C@H]O)O)cn1O)N[C@H]2CCc3cCCN(C)C229,140591(N)C2Nc1cccccCCN(C)CCCN(C)C1140590.64530.015HATUO=C(O)c1Nc1cccccNc1ccccc0.63European0.64530.0152ccnCN2C1N1NC(=O)cMedicinalJournal ofNc1cccc1CC/C(=C\c2=O)cc1Nc1cccccCC/C(=C\cC2022),229,1HATUO=C(O)c1Nc1cccccNc1cccccCC/C(=C\cC2022),229,1HATUO=C(O)c1Nc1cccccNc1ccccc0.63European0.68430.054HATUO=C(O)c1Nc1cccccNc1ccccc0.63European0.68430.054HATUO=C(O)c1Nc1cccccNc1ccccc0.63European0.68430.054CC/C(=C\c1N1NC(=O)cNc1cccCMedicinalJournal of3HATUO=C(O)c1Nc1cccccNc1cccccNc1ccccActionalJournal ofCC/C(=C\cNc1cccccNc1cccccNc1ccccMedicinalJournal ofCC/C(=C\cNc1cccccNc1ccccCC/C(=MedicinalJournal ofCC/C(=C\cNc1ccccc <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HATU	Cc1ccc(N	Cc1cc(Cl)	Cclcc(Cl)	0.54	European	0.6151	0.075
$ \begin{array}{c cccc} C2)c2c1 & clncc(C(= & clncc(C(= & clncc(C(= & Medicinal \\ CC[@H] \\ (N)C2 & Pice $		2CCN(C)	ccc1-	ccc1-		Journal of		1
$ \begin{array}{cccc} CC[C@H] & O)O)cn1 & O)N[C@ \\ (N)C2 & H]2CCc3c \\ (C)ccc(N4 \\ CCN(C)C \\ C4)c3C2 \\ cn1 & & & & & & & & & & & & & & & & & & &$		CC2)c2c1	clncc(C(=	clncc(C(=		Medicinal		
$\left(\begin{array}{cccc} (N)C2 & H]2CCc3c & (2022), \\ (C)ccc(N4 & 229, \\ 114059 & Hatting (C)ccc(N4 & CCN(C)C & 229, \\ 114059 & Hatting (C)ccc(C)C & CA, (C)CC & 110 & Carbon (C)CC(C)C & Carbon (C)CC & Carbon (C)CC & Carbon (C)CC & Carbon (C)CC(C)C & Car$		CC[C@H]	O)O)cn1	O)N[C@		Chemistry		
$ HATU = \begin{pmatrix} 0=C(O)c1 \\ CC(C)C \\ CC(C)C \\ C4)c3C2 \\ cnl \\ \end{pmatrix} $ $ \begin{pmatrix} 0-C(O)c1 \\ CC(O)C \\ C4)c3C2 \\ cnl \\ \end{pmatrix} $ $ \begin{pmatrix} 0-C(O)c1 \\ CC(O)C \\ CC(C)C \\ $		(N)C2		H]2CCc3c		(2022),		
$ HATU = \begin{pmatrix} 0=C(0)c1 \\ c2(C)C \\ c1 \end{pmatrix} \\ \begin{array}{c} Nc1ccccc \\ Nc1ccccc \\ cc(CN2C \\ C/C(=C)c \\ 3ccccn3)C \\ 2=0)cc1 \end{array} \\ \begin{array}{c} Nc1ccccc \\ 1N \\ ccc(CN2 \\ 2=0)cc1 \end{array} \\ \begin{array}{c} Nc1ccccc \\ 1NC(=O)c \\ 1ccc(CN2 \\ CC/C(=C)c \\ 2=0)cc1 \end{array} \\ \begin{array}{c} Nc1ccccc \\ CC/C(=C)c \\ c2(C)C(=C)c \\ c2(C)C(=C)c \\ 1Ccccccc3)C \\ 2=0)cc1 \end{array} \\ \begin{array}{c} Nc1ccccc \\ CC/C(=C)c \\ c2(C)C(=C)c \\ c2(C)C(=C)c \\ 1Dccccccc \\ 1N \\ 1Cccccccc \\ 1Dcccccccccc \\ 1N \\ 1NC(=O)c \\ 1Cccccccc \\ 1N \\ 1NC(=O)c \\ 1Ccccccc \\ 1NC(=C)c \\ 1Dcccccc \\ 1NC(=C)c \\ 1Dcccccc \\ 1NC(=C)c \\ 1Cccccccc \\ 1NC(=C)c \\ 1Ccccccc \\ 1NC(=C)c \\ 1Ccccccc \\ 1NC(=C)c \\ 1Ccccccc \\ 1NC(=C)c \\ 1Ccccccc \\ 1NC(=C)c \\ 1Ccc(CN2 \\ 1Cccccc \\ 1Ccccccc \\ 1Cccccc \\ 1Ccccccc \\ 1Cccccc \\ 1Ccccccc \\ 1Cccccc \\ 1Ccccccc \\ 1Ccccccc \\ 1Cccccccc \\ 1Ccccccc \\ 1Cccccccc \\ 1Ccccccc \\ 1Ccccccc \\ 1Ccc$				(C)ccc(N4		229,		
$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				CCN(C)C		114059		
Image: Antipartial and antipartial antipartity antipartity				C4)c3C2)				
HATU $O=C(O)c1$ Nc1cccccNc1ccccc0.63European0.64530.015 $ccc(CN2C$ 1N $1NC(=O)c$ $Journal of$ Journal ofMedicinal3 $C/C(=C\backslashc)$ $1ccc(CN2$ $CC/C(=C\backslash)$ $Ccecca3)$ Chemistry $(2022),$ 14049 $2=O)cc1$ $1nC(=O)c$ $CC/C(=C\backslash)$ $229,$ 114049 114049 0.054 HATU $O=C(O)c1$ Nc1cccccNc1ccccc 0.63 European 0.6843 0.054 HATU $O=C(O)c1$ Nc1ccccc $1NC(=O)c$ $10cc(CN2)$ $10urnal of$ $10cca3$ 3 HATU $O=C(O)c1$ Nc1ccccc $Nc1ccccc$ 0.63 European 0.6843 0.054 $CC/C(=C\backslash)$ $1NC(=O)c$ $1ccc(CN2)$ $10urnal of$ $10urnal of$ $10urnal of$ 3 $CC/C(=C\backslash)$ $CCC/C(=)$ $CCC/C(=)$ $Chemistry$ $10urnal of$ $10urnal $				cn1				
HATU $O-C(O)CINeTececeNetecece0.033European0.04330.04330.013ccc(CN2C)1N1NC(=O)cJournal ofJournal of3C/C(=C\setminusc)1ccc(CN2)MedicinalChemistry33ccccn3)CCC/C(=C\setminusc)Chemistry(2022),1140492=O)cc1C2=O)cc1C2=O)cc1229,114049HATUO=C(O)c1Nc1cccccNc1ccccc0.63European0.68430.054HATUO=C(O)c1Nc1cccccNc1ccccc0.63European0.68430.054CC/C(=C\setminusc)1N1NC(=O)cJournal of33CC/C(=C\setminusc)1ccc(CN2)Medicinal33CC/C(=C\setminusc)CCC/C(=c(C))1ccc(CN2)Medicinal3CC(C)cCCC/C(=c(C))CCC/C($	UATI	O = C(O) = 1	Nalaaaaa	Nalaaaa	0.62	Europeen	0.6453	0.015
$CC(C) = C \setminus c$ $I \setminus C (-O)c$ $I \setminus C (-O)c$ $I \cap C (-O)c$ $I $	IATU	$0 - C(0) c_1$		1NC(-0)	0.03	Louropean	0.0433	0.015
$C/C(-C/C)$ Interce(C/N2Interce(C/N2Interce(C/N2 $3ccccn3)C$ $CC/C(=C\setminus$ Chemistry $2=0)cc1$ $c3ccccn3)$ $(2022),$ $C2=0)cc1$ $229,$ 114049 114049 HATU $O=C(O)c1$ Nc1cccccNc1ccccc $ccc(CN2C)$ $1N$ $1NC(=O)c$ 1063 $CC/C(=C\setminus$ $1000000000000000000000000000000000000$		C/C(-C)	111	1000(CN)		Madiainal		5
HATUO=C(O)c1Nc1cccccNc1ccccc0.63European0.68430.054CC/C(=C\1N1NC(=O)cJournal of3CC/C(=C\1ccc(CN21ccc(CN2Medicinal3CC/C(=C\CCC/C(=CCC/C(=Chemistry(C(F)(F)F)C\c3ccc(C)C\c3ccc(C)(2022),		C/C(-C)C		CC/C(-C)		Chamistry		
HATUO=C(O)c1Nc1cccccNc1ccccc0.63European0.68430.054CC/C(=C)1N1NC(=O)cJournal of33CC/C(=C)1ccc(CN21ccc(CN2Medicinal4c3ccc(Cl)cCCC/C(=CCC/C(=Chemistry4(C(F)(F)F)CC3ccc(CCC3ccc(C)(2022),4		2 = 0		cc/c(-c)		(2022)		
HATU $O=C(O)c1$ Nc1cccccNc1ccccc0.63European0.68430.054CC(C)2C1N1NC(=O)cJournal of33CC/C(=C\1N1ccc(CN2Medicinal-4c3ccc(Cl)cCCC/C(=CCC/C(=Chemistry(C(F)(F)F)C\c3ccc(C(2022),		2-0)001		$C^2 = O^2 = O^2$		(2022),		
HATUO=C(O)c1Nc1cccccNc1ccccc0.63European0.68430.054 $ccc(CN2C)$ 1N1NC(=O)cJournal ofJournal of3 $CC/C(=C\setminus$ 1ccc(CN2MedicinalCCC/C(=Chemistry $c3ccc(Cl)c$ CCC/C(=CCC/C(=Chemistry1 $(C(F)(F)F)$ CCc3ccc(C(2022),1						229,		
HATU $O=C(O)c1$ Nc1cccccNc1ccccc0.63European0.68430.054 $ccc(CN2C)$ 1N1NC(=O)cJournal ofJournal of3 $CC/C(=C\setminus$ 1ccc(CN2IccMedicinalIcc $c3ccc(Cl)c$ CCC/C(=ChemistryIcc $(C(F)(F)F)$ C <c3ccc(c< td="">(2022),Icc</c3ccc(c<>						114049		
ccc(CN2C1N1NC(=O)cJournal of3CC/C(=C\1ccc(CN2Medicinal 3 c3ccc(Cl)cCCC/C(=Chemistry(C(F)(F)F)C\c3ccc(C(2022),	HATU	O=C(O)c1	Nc1ccccc	Nc1ccccc	0.63	European	0.6843	0.054
$CC/C(=C)$ $1ccc(CN2)$ Medicinal $c3ccc(Cl)c$ $CCC/C(=)$ Chemistry $(C(F)(F)F)$ $C \land c3ccc(C)$ $(2022),$		ccc(CN2C	1N	1NC(=O)c		Journal of		3
$c3ccc(Cl)c$ $CCC/C(=$ Chemistry $(C(F)(F)F)$ $C \land c3ccc(C)$ $(2022),$		CC/C(=C\		1ccc(CN2		Medicinal		
(C(F)(F)F) $C < 3 ccc(C)$ (2022),		c3ccc(Cl)c		CCC/C(=		Chemistry		
		(C(F)(F)F)		C\c3ccc(C		(2022),		

	c3)C2=O)		l)c(C(F)(F))		229,		
	cc1)F)c3)C2=		114049		
			O)cc1				
HATU	O=C(O)c1	Nc1ccccc	Nc1ccccc	0.63	European	0.6542	0.024
	ccc(CN2C	1N	1NC(=O)c		Journal of		2
	CC/C(=C\		1ccc(CN2		Medicinal		
	c3cccc3)		CCC/C(=		Chemistry		
	C2=O)cc1		C\c3ccccc		(2022),		
			3)C2=O)c		229,		
			c1		114049		
HATU	O=C(O)C	FCI=CC=	O=C(NCI	0.86	ACS	0.6412	0.218
	1(C2=NC	C(N)C=C	=CC=C(F)		Medicinal		8
	=C(Br)C=	1	C=C1)C2(Chemistry		
	C2)COC1		C3=NC=C		Letters		
			(Br)C=C3		(2020),		
)COC2		11(4),		
					550-557		
HATU	O=C(O)C	FC1=CC=	O=C(NC1	0.84	Journal of	0.6201	0.219
	1(C2=CC	C(N)C=C	=CC=C(F)		Medicinal		9
	=C(Br)C=	1	C=C1)C2(Chemistry		
	C2)COC1		C3=CC=C		(2022).		
	,		(Br)C=C3		65(8).		
)COC2		6001-6016		
			,				
HATU	O=C(O)C	O=CC1=C	O=CC1=C	0.44	Journal of	0.4471	0.007
	=1C=CC=	C=C(N)C	C=C(C=C		Medicinal		1
	C(Br)C1C	=C1	1)NC(=O)		Chemistry		
			C=2C=CC		(2023),		
			=C(Br)C2		66(24),		
			С		16807-		
					16827		
TT A TOTA				0.27	T 1 2	0.0014	0.140
HATU	$\bigcup = C(\bigcup)C$			0.37	Journal of	0.2214	0.148
					Medicinal		6
		CCCN	CCCNC(=		Chemistry		
	CC		O)CCCC		(2020),		

			CCCCCC		63(19),		
			CCCCC		10782-		
					10795		
HATU	O=C(O)c1	Nc1ccccc	Nc1ccccc	0.63	European	0.635	0.005
	ccc(CN2C	1N	1NC(=O)c		Journal of		
	CC/C(=C\		lccc(CN2		Medicinal		
	c3ccccn3)		CCC/C(=		Chemistry		
	C2=O)cc1		C\c3ccccn		(2022),		
			3)C2=O)c		229,		
			c1		114049		
HATU	O=C(O)c1	Nc1ccccc	Nc1ccccc	0.63	European	0.652	0.022
	ccc(CN2C	1N	1NC(=O)c		Journal of		
	CC/C(=C\		lccc(CN2		Medicinal		
	c3cccnc3)		CCC/C(=		Chemistry		
	C2=O)cc1		C\c3cccnc		(2022),		
			3)C2=O)c		229,		
			c1		114049		
ΗΔΤΙΙ	O=C(O)c1	Nelcece	Ncleece	0.63	Furopean	0.6739	0.043
	ccc(CN2C)	1N	1NC(=0)c	0.05	Journal of	0.0757	9
	CC/C(=C)		$1 \operatorname{ccc}(\mathrm{CN2})$		Medicinal		
	c3ccco3)C		CCC/C(=		Chemistry		
	2=0 cc1				(2022)		
	2 0,001		C(2) = O(2)		(2022),		
			1		114049		
			1		114049		
HATU	O=C(O)c1	Nc1ccccc	Nc1ccccc	0.63	European	0.6554	0.025
	ccc(CN2C	1N	1NC(=O)c		Journal of		4
	CC/C(=C\		lccc(CN2		Medicinal		
	c3ccncc3)		CCC/C(=		Chemistry		
	C2=O)cc1		C\c3ccncc		(2022),		
			3)C2=O)c		229,		
			c1		114049		
HATU	O=C(O)C	S(C[C@	C(N[C@	0.58	Journal of	0.4083	0.171
	1=CN(N=	@H](C(O	@H](CSC		Agricultur		7
	C1C(F)F)	C)=O)N)C	1=C(Cl)C		al and		

	С	1=C(Cl)C	=C(C(F)(F))		Food		
		=C(C(F)(F)))F)C=N1)		Chemistry		
)F)C=N1	C(OC)=O)		(2021),		
			(=O)C=2C		69(38),		
			(C(F)F)=		11470-		
			NN(C)C2		11484		
HATU	C(C(O)=O	FC=1C=C	N(C(C(C(0.36	Journal of	0.2195	0.140
)(C([2H])((F)C(N)=	[2H])([2H		Labelled		5
	[2H])[2H]	CC1C1])[2H])(C(Compoun		
)(C([2H])([2H])([2H		ds and		
	[2H])[2H]])[2H])O)		Radiophar		
)0		=O)C1=C(maceutical		
			F)C=C(F)		s (2020),		
			C(Cl)=C1		63(10),		
					434-441		
НАТИ	O=C(O)c1	Nc1ccccc	Nc1ccccc	0.59	European	0.6692	0.079
	ccc(CN2C	1N	1NC(=O)c		Journal of		2
	CC3=C(C		1ccc(CN2		Medicinal		
	2)C(=O)N		CCC3=C(Chemistry		
	(Cc2cccc(C2)C(=O)		(2022),		
	F)c2)C2=		N(Cc2ccc		238,		
	NCCN23)		c(F)c2)C2		114049		
	ccl		=NCCN23				
)cc1				
НАТІІ	COclecc(/	CN	CNC(=0)	0.61	Furopean	0.675	0.065
	C=C/C(=			0.01	Journal of	0.075	0.005
	O)Nc2ccc		NC(=0)/C		Medicinal		
	cc2C(=O)		=C/c1ccc(Chemistry		
	O)cc1OC		OC)c(OC)		(2022).		
	,		c1		242.		
					114685		
HATI	Cclccc(/C	Ncleec(F)	Cclccc(/C	0.63	Furopean	0 6429	0.012
11110	$=C2\CCC$	cc1N	$=C2\CCC$		Journal of		9
	N(Cc3ccc(N(Cc3ccc(Medicinal		
					mountai		

	C(=O)O)c		C(=O)Nc4		Chemistry		
	c3)C2=O)		ccc(F)cc4		(2022),		
	cc1		N)cc3)C2		229,		
			=O)cc1		114049		
HATU	COclccc(/	NC1CC1	COclccc(/	0.66	European	0.726	0.066
	C=C/C(=		C=C/C(=		Journal of		
	O)Nc2ccc		O)Nc2ccc		Medicinal		
	(C(=O)O)		(C(=O)NC		Chemistry		
	cc2)cc1O		3CC3)cc2		(2022),		
	C)cc1OC		242,		
					114685		
TIATU		Netecc		0.72	F	0.7(22	0.042
HAIU				0.72	European	0.7632	0.043
	C=C/C(=	1	C=C/C(=		Journal of		2
	O)Nc2ccc		O)Nc2ccc		Medicinal		
	(C(=O)O)		(C(=O)NC		Chemistry		
	cc2)cc1O		3CCC3)cc		(2022),		
	C		2)cc1OC		242,		
					114685		
HATU	COcleee(/	NC1CCC	COc1ccc(/	0.77	European	0.7968	0.026
	C=C/C(=	1	C=C/C(=		Journal of		8
	O)Nc2ccc	-	O)Nc2ccc		Medicinal		
	c(C(=0))		c(C(=O)N)		Chemistry		
	$c^{(0)}(c^{(0)})$		C3CCC3)		(2022)		
			c2)cc10C		(2022),		
					114685		
					111005		
HATU	COclccc(/	Nc1ccc(F)	COclccc(/	0.63	European	0.6407	0.010
	C=C2\CC	cc1N	C=C2\CC		Journal of		7
	CN(Cc3cc		CN(Cc3cc		Medicinal		
	c(C(=O)O		c(C(=O)N		Chemistry		
)cc3)C2=		c4ccc(F)c		(2022),		
	O)cc1		c4N)cc3)		229,		
			C2=O)cc1		114049		
TIATT	0-00(-0	Nececc	0-00(-0	0.(5	E	0.7446	0.004
HAIU				0.05	European	0.7440	0.094
)Ncleece(CNCleece)Ncleece(Journal of		6

	Nc2nc(Nc	2c1C(=O)	Nc2nc(Nc		Medicinal		
	3ccc(N4C	N(C1CCC	3ccc(N4C		Chemistry		
	CN(CC(=	(=O)NC1	CN(CC(=		(2022),		
	O)O)CC4)	=O)C2=O	O)NCCC		238,		
	cc3OC)nc		CCCNc5c		114455		
	c2C(F)(F)		ccc6c5C(=				
	F)c1		O)N(C5C				
			CC(=O)N				
			C5=O)C6				
			=O)CC4)c				
			c3OC)ncc				
			2C(F)(F)F				
)c1				
HATU	C(N[C@H	NC1CC1	[C@H](C	0.83	Journal of	0.5643	0.265
](CC1=C		C1=CC=C		Medicinal		7
	C=C(Cl)C		(Cl)C=C1		Chemistry		
	=C1)C(O)		(NC(=O)C		(2024),		
	=O)(=O)C		2=CC(NC		67(2),		
	2=CC(NC		C3=C(C)		1079-1092		
	C3=C(C)		N=CN3)=				
	N=CN3)=		CC(Br)=C				
	CC(Br)=C		2)C(NC4				
	2		CC4)=O				
НАТИ	O = C(O)C	FC(F)(F)C	O = C(NC1)	0.64	Bioorgani	0 5836	0.056
	N1CCN(C	1 = CC = C(0.01	c &	0.5050	4
	$C_{1}S_{(=0)}$	OCC(N) =	=C10C)C		Medicinal		
	=0)N2CC		(F)(F)F)C		Chemistry		
	C(C)CC2		$N_{2}CCN(C)$		Letters		
			$C_{2}S_{(=0)}$		(2022), 76.		
			=0)N3CC		129013		
			C(C)CC3		129010		
HATU	O=C(O)C	O=C(O)C(C(N[C@	0.22	Bioorgani	0.2647	0.044
	1=CC(Cl)	N)CCC(C	@H](CCC		c &		7
	=CN1)(C)C	(C)(C)C)C		Medicinal		
			(O)=O)(=		Chemistry		

			O)C1=CC		Letters		
			(Cl)=CN1		(2020),		
					30(17),		
					127403		
HATU	O=C(Cc1c	CCCCN	CCCCNC	0.46	European	0.4635	0.003
	cccc1)Nc1		(=O)c1ccc		Journal of		5
	nnc(N2CC		(COCC2C		Medicinal		
	C(COCc3		CN(c3nnc		Chemistry		
	ccc(C(=O)		(NC(=O)C		(2022),		
	O)cc3)CC		c4cccc4)		243,		
	2)s1		s3)CC2)cc		114686		
			1				
TT 4				0.51		0.6120	0.055
HATU	O=C(Cclc	NCCNIC	O=C(Cclc	0.56	European	0.6128	0.052
	ccccl)Ncl	CCC1	cccc1)Nc1		Journal of		8
	nnc(N2CC		nnc(N2CC		Medicinal		
	C(CCOCc		C(CCOCc		Chemistry		
	$3 \operatorname{cccc}(\mathrm{C}(=$		$3 \operatorname{cccc}(\mathrm{C}(=$		(2022),		
	O)O)c3)C		O)NCCN4		243,		
	C2)s1		CCCC4)c		114686		
			3)CC2)s1				
HATU	O=C(Cc1c	NCCN1C	O=C(Cc1c	0.56	European	0.5968	0.036
	cccc1)Nc1	CCCC1	cccc1)Nc1		Journal of		8
	nnc(N2CC		nnc(N2CC		Medicinal		
	N(Cc3ccc(N(Cc3ccc(Chemistry		
	C(=O)O)c		C(=O)NC		(2022),		
	c3)CC2)s1		CN4CCC		243,		
			CC4)cc3)		114686		
			CC2)s1				
HATU	O=C(Cc1c	CCCCN1	CCCCN1	0.63	European	0.6529	0.022
	cccc1)Nc1	CCC(CN)	CCC(CN		Journal of		9
	nnc(N2CC	CC1	C(=O)c2c		Medicinal		
	C(CCOCc		ccc(COC		Chemistry		
	3cccc(C(=		CC3CCN((2022),		
	O)O)c3)C		c4nnc(NC		243,		

HATU	C2)s1 COc1ccc(C)c2c(=O) cc(C(=O) O)[nH]c1 2	COc1ccc(C)cc1N	(=O)Cc5c cccc5)s4) CC3)c2)C C1 COc1ccc(C)cc1NC(=O)c1cc(= O)c2c(C)c cc(OC)c2[nH]1	0.51	114686 Medicinal Chemistry Research (2022), 31(3), 485-496	0.3449	0.165
HATU	COc1ccc(C)c2c(=O) cc(C(=O) O)[nH]c1 2	Nc1ccccc 1C(F)(F)F	COc1ccc(C)c2c(=O) cc(C(=O) Nc3ccccc 3C(F)(F)F)[nH]c12	0.6	Medicinal Chemistry Research (2022), 31(3), 485-496	0.5484	0.051 6
HATU	COc1ccc(C)c2c(=O) cc(C(=O) O)[nH]c1 2	Nc1ccc(- c2cc(F)c(F)c(F)c2)c c1	COc1ccc(C)c2c(=O) cc(C(=O) Nc3ccc(- c4cc(F)c(F)c(F)c4)c c3)[nH]c1 2	0.39	Medicinal Chemistry Research (2022), 31(3), 485-496	0.3493	0.040 7
HATU	O=C(O)c1 cn2cc(- c3ccc(- n4cccn4)n c3)ccc2n1	Nc1ccc(Cl)cc1	O=C(Nc1 ccc(Cl)cc1)c1cn2cc(- c3ccc(- n4cccn4)n c3)ccc2n1	0.71	Medicinal Chemistry Research (2021), 30(1), 74- 83	0.5416	0.168 4
HATU	O=C(O)c1 cn2cc(- c3ccc(- n4cccn4)n	N#Cc1ccc (N)cc1	N#Cc1ccc (NC(=O)c 2cn3cc(- c4ccc(-	0.83	Medicinal Chemistry Research (2021),	0.7042	0.125 8

	c3)ccc2n1		n5cccn5)n		30(1), 74-		
			c4)ccc3n2		83		
)cc1				
HATU	O=C(O)c1	COclcc(N	COclcc(N	0.62	Medicinal	0.5383	0.081
	cn2cc(-)cc(OC)c1	C(=O)c2c		Chemistry		7
	c3ccc(-		n3cc(-		Research		
	n4cccn4)n		c4ccc(-		(2021),		
	c3)ccc2n1		n5cccn5)n		30(1), 74-		
			c4)ccc3n2		83		
)cc(OC)c1				
TIATT	0-0(0)0			0.(5	Less 1 C	0.5092	0.1.41
HAIU		CC(C)(C)	CC(C)(C)	0.65	Journal of	0.5085	0.141
		UC(=0)N	0C(=0)N		Chamistar		/
	0(0=0)				Chemistry		
	Celeccel	NC(=0)cI	NC(=0)c1		(2022),		
		ccc(N)cc1	ccc(NC) =		65(7),		
					5642-5659		
			0)00c2cc				
HATU	CC(C)[C	CC(C)(C)	CC(C)[C	0.68	Journal of	0.5409	0.139
	@@H]1C	OC(=O)N	@@H]1C		Medicinal		1
	CIC@@H	1CCNCC	CIC@@H		Chemistry		
](C)C[C@	1](C)C[C@		(2022),		
	H]10CC(H]1OCC(65(16),		
	=O)O		=O)N1CC		11034-		
			N(C(=O))		11057		
			OC(C)(C)				
			C)CC1				
HATU	O=C(O)C	CC(C)(C)	CC(C)(C)	0.61	Journal of	0.4822	0.127
	CCCCCC	OC(=O)N	OC(=O)N		Medicinal		8
	CCCCCC(clccccc1	clccccc1		Chemistry		
	=O)OCc1	NC(=O)c1	NC(=O)c1		(2022),		
	ccccc1	ccc(N)cc1	ccc(NC(=		65(7),		
			O)CCCC		5642-5659		

HATU	O=C(O)c1 ccc2cc1O CCOCCN c1ccn3ncc -2c3n1	NCc1cccc c1	CCCCCC CCC(=O) OCc2cccc c2)cc1 O=C(NCc 1ccccc1)c 1ccc2cc1 OCCOCC Nc1ccn3n cc-2c3n1	0.75	Journal of Medicinal Chemistry (2022), 65(11), 7799-7817	0.6514	0.098
HATU	O=C(O)C OCCOCC OCC(=O) OCc1cccc c1	CC(C)(C) OC(=O)N c1ccccc1 NC(=O)c1 ccc(N)cc1	CC(C)(C) OC(=O)N c1ccccc1 NC(=O)c1 ccc(NC(= O)COCC OCCOCC (=O)OCc2 ccccc2)cc 1	0.63	Journal of Medicinal Chemistry (2022), 65(7), 5642-5659	0.5333	0.096 7
HATU	O=C(O)C OCCOCC OCCOCC (=O)OCc1 ccccc1	CC(C)(C) OC(=O)N c1ccccc1 NC(=O)c1 ccc(N)cc1	CC(C)(C) OC(=O)N c1ccccc1 NC(=O)c1 ccc(NC(= O)COCC OCCOCC OCCOCC OCC(=O) OCc2cccc c2)cc1	0.65	Journal of Medicinal Chemistry (2022), 65(7), 5642-5659	0.5659	0.084
HATU	Cnlc(=O) [nH]c(Cl) c(N)c1=O	Cc1ccc(C CC(=O)O) cc1	Cc1ccc(C CC(=O)N c2c(Cl)[n H]c(=O)n(0.71	Journal of Medicinal Chemistry (2022),	0.6452	0.064 8

			C)c2=O)c		65(19),		
			c1		12747-		
					12780		
HATU	O=C(O)c1 cccc(Br)c 1	CC1CCN CC1	CC1CCN(C(=O)c2c ccc(Br)c2) CC1	0.82	Journal of Medicinal Chemistry (2022), 65(4), 3266-3305	0.7561	0.063 9
HATU	CC(C)CC(NC(=O)O C(C)(C)C) C(=O)O	C=Cc1cc(- c2cnco2)c (OC)cc1N	C=Cc1cc(- c2cnco2)c (OC)cc1N C(=O)C(C C(C)C)N C(=O)OC(C)(C)C	0.34	Journal of Medicinal Chemistry (2022), 65(5), 4121-4155	0.2872	0.052 8
HATU	O=C(O)C 1CN(C2= CC=C(I)C =C2)C1	Cl.O1CC C(N)CC1	O=C(NC1 CCOCC1) C2CN(C3 =CC=C(I) C=C3)C2	0.61	Bioorgani c & Medicinal Chemistry (2022), 64, 116763	0.6378	0.027 8
HATU	C(O)(=O)[C@@H]1 [C@H](C C(CCC=C (C)C)=CC 1)C2=CC =CC=C2	O(C1=CC =C(N)C= C1)C	C(NC1=C C=C(OC) C=C1)(=O)[C@@H] 2[C@H](CC(CCC= C(C)C)=C C2)C3=C C=CC=C3	0.61	Bioorgani c & Medicinal Chemistry Letters (2020), 30(7), 127003	0.6684	0.058
HATU	Cc1cc(NS (=O)(=O)c	CC1CCN CC1	Cc1cc(NS (=O)(=O)c	0.62	Journal of Medicinal	0.5753	0.044 7

	2cc(-		2cc(-		Chemistry		
	c3nc(C)c(c3nc(C)c((2022),		
	C(=O)O)s		C(=O)N4		65(4),		
	3)n(C)c2C		CCC(C)C		3266-3305		
)no1		C4)s3)n(C				
)c2C)no1				
HATU	O=C(O)c1 cc2cccc2 [nH]1	NCCO	O=C(NCC O)c1cc2cc ccc2[nH]1	0.7	Journal of Medicinal Chemistry (2022), 65(13),	0.6565	0.043 5
					9376-9395		
HATU	O=C(O)C OCCOCC (=O)OCc1 ccccc1	CC(C)(C) OC(=O)N c1ccccc1 NC(=O)c1 ccc(N)cc1	CC(C)(C) OC(=O)N c1ccccc1 NC(=O)c1 ccc(NC(= O)COCC OCC(=O) OCc2cccc c2)cc1	0.58	Journal of Medicinal Chemistry (2022), 65(7), 5642-5659	0.5438	0.036 2
HATU	O=C(O)c1 ccnnc1	Cc1cncc(C2=CC[C @H]3[C @@H]4C C=C5C[C @@H](N) CC[C@]5 (C)[C@H] 4CC[C@] 23C)c1	Cc1cncc(C2=CC[C @H]3[C @@H]4C C=C5C[C @@H](N C(=O)c6c cnnc6)CC [C@]5(C) [C@H]4C C[C@]23 C)c1	0.71	Journal of Medicinal Chemistry (2022), 65(18), 12460- 12481	0.6853	0.024 7
HATU	O=C(O)C	CC(C)(C)	CC(C)(C)	0.55	Journal of	0.534	0.016

	OCCCCC	OC(=O)N	OC(=O)N		Medicinal		
	COCC(=O	c1ccccc1	c1ccccc1		Chemistry		
)OCc1ccc	NC(=O)c1	NC(=O)c1		(2022),		
	cc1	ccc(N)cc1	ccc(NC(=		65(7),		
			O)COCC		5642-5659		
			CCCCOC				
			C(=O)OC				
			c2cccc2)				
			cc1				
HATU	O=C(O)C	Nc1ccccc	O=C(Nc1	0.7	Journal of	0.6925	0.007
	1CCN(c2c	1	ccccc1)C1		Medicinal		5
	ncnc2-		CCN(c2cn		Chemistry		-
	c2cccc2)		cnc2-		(2022),		
	CC1		c2cccc2)		65(4),		
			CC1		3343-3358		
HATU	O=C(O)c1	COC(=O)	COC(=O)	0.17	Journal of	0.1659	0.004
	cnn2cccnc	clcc(N)cc	clcc(NC(Medicinal		1
	12	(C(=O)OC	=O)c2cnn		Chemistry		
)c1	3cccnc23)		(2022),		
			cc(C(=O)		65(4),		
			OC)c1		3518-3538		
HATU	COclecc(-	C1CNC1	COcleec(-	0.72	Journal of	0 7165	0.003
	c2oc3ccc(c2oc3ccc(Medicinal		5
	O)cc3c2C		O)cc3c2C		Chemistry		-
	(=0)00000000000000000000000000000000000		(=0)N2C		(2022).		
	1		(C2)cc1		65(1).		
	-				409-423		
HATU	N[C@H]1	CNC(=O)	CNC(=O)	0.75	Journal of	0.5752	0.174
	CC[C@H]	clcc(C(=	clcc(C(=		Medicinal		8
	(O)CC1	O)O)c(C(O)N[C@		Chemistry		
		C)c2cccc(H]2CC[C		(2021),		
		Cl)c2)o1	@H](O)C		64(15),		
			C2)c(C(C))		10772-		
			c2cccc(Cl)		10805		

			c2)o1				
HATU	CCCn1nc c2c(C(=O) O)cc(C3C C3)nc21	CN(C)CC N	CCCn1nc c2c(C(=O) NCCN(C) C)cc(C3C C3)nc21	0.83	Journal of Medicinal Chemistry (2021), 64(12), 8755-8774	0.6717	0.158
HATU	O=C(O)c1 cccc([N+] (=O)[O-])c1	COclecc(N)cn1	COc1ccc(NC(=O)c2 cccc([N+] (=O)[O-])c2)cn1	0.93	Journal of Medicinal Chemistry (2021), 64(16), 12003- 12021	0.7749	0.155
HATU	CNC(=O) c1cc(C(= O)O)c(C(C)c2ccccc 2)o1	NCICC1	CNC(=O) c1cc(C(= O)NC2CC 2)c(C(C)c 2cccc2)o 1	0.69	Journal of Medicinal Chemistry (2021), 64(15), 10772- 10805	0.535	0.155
HATU	CNC(=O) c1cc(C(= O)O)c([C @@H](C) c2cccc2) o1	N[C@H]1 CC[C@H] (O)CC1	CNC(=O) c1cc(C(= O)N[C@ H]2CC[C @H](O)C C2)c([C@ @H](C)c2 ccccc2)o1	0.75	Journal of Medicinal Chemistry (2021), 64(15), 10772- 10805	0.5959	0.154
HATU	COCOc1c cc(C(=O) O)cc1-	CCN	CCNC(=O)c1ccc(OC OC)c(-	0.66	Journal of Medicinal Chemistry	0.5148	0.145 2
	clcn(C)nn		c2cn(C)nn		(2021),		
------	-----------------	----------------	--------------------	------	----------------------	--------	------------
	1		2)c1		64(6),		
					3249-3281		
HATU	С[С@@Н	C1CN(C2	С[С@@Н	0.65	Journal of	0.5088	0.141
	l(Nc1nc2c	CC2)CCN	1(Nc1nc2c		Medicinal		2
	(cnn2C2C	1	(cnn2C2C		Chemistry		
	CCC2)c(=		CCC2)c(=		(2021).		
	O)[nH]1)		O)[nH]1)		64(13).		
	C(=O)O		C(=O)N1		9537-9549		
			CCN(C2C				
			C2)CC1				
HATU	O=C(O)C =CCC	NCC1CC CCC1	O=C(C=C CC)NCC1	0.89	World Intellectua	0.7583	0.131 7
			CCCCC1		1 Property		
					Organizati		
					on,		
					WO20180		
					50631 A1		
					2018-03-		
					22		
HATU	O=C(O)C	NCC=1C=	O=C(C=C	0.62	Proceedin	0.8017	0.181
	=CC=CC	CC=CC1	C=CCCC		gs of the		7
	CCCCCC		CCCC)N		National		
			CC=1C=C		Academy		
			C=CC1		of		
					Sciences		
					of the		
					United		
					States of		
					America		
					(2017),		
					114(25),		
					E5006-		
					E5015		

HATU	C[C@H]1 C[C@@H]1N	CNC(=O) c1cc(C(= O)O)cc2c 1OC[C@ @]2(C)c1 ccccc1	CNC(=O) c1cc(C(= O)N[C@ H]2C[C@ @H]2C)cc 2c1OC[C @@]2(C) c1ccccc1	0.6	Journal of Medicinal Chemistry (2021), 64(15), 10711- 10741	0.4669	0.133
HATU	O=C(O)c1 ccc2c(c1) nc(Nc1ccc c(Cl)c1)c1 ccncc12	NCCN1C CCCC1	O=C(NCC N1CCCC C1)c1ccc2 c(c1)nc(N c1cccc(Cl) c1)c1ccnc c12	0.771	Journal of Medicinal Chemistry (2021), 64(8), 5082-5098	0.6388	0.132
HATU	CNC(=O) c1cc(C(= O)O)c([C @@H](C) c2cccc2) o1	NCCO	CNC(=O) c1cc(C(= O)NCCO) c([C@@H](C)c2ccc cc2)o1	0.64	Journal of Medicinal Chemistry (2021), 64(15), 10772- 10805	0.5105	0.129 5
HATU	Cc1ccc(C(=O)O)cc1 C#Cc1cc(- c2cnn(C)c 2)cnc1N	COc1ccc(N)cc1OC	COc1ccc(NC(=O)c2 ccc(C)c(C #Cc3cc(- c4cnn(C)c 4)cnc3N)c 2)cc1OC	0.89	Journal of Medicinal Chemistry (2021), 64(18), 13588- 13603	0.766	0.124
HATU	O=C(O)c1 ccc2c(c1) nc(Nc1ccc c(C1)c1)c1 ccncc12	NCCN1C COCC1	O=C(NCC N1CCOC C1)c1ccc2 c(c1)nc(N c1cccc(Cl)	0.687	Journal of Medicinal Chemistry (2021), 64(8),	0.5736	0.113

			c1)c1ccnc		5082-5098		
			c12				
HATU	CNC(=O) c1cc(C(= O)O)cc(C c2ccc3c2 CCN3C(= O)OC(C)(C)C)n1	NC1CC1	CNC(=O) c1cc(C(= O)NC2CC 2)cc(Cc2c ccc3c2CC N3C(=O) OC(C)(C)	0.74	Journal of Medicinal Chemistry (2021), 64(15), 10742- 10771	0.6274	0.112 6
HATU	Cn1ncc2c(C(=O)O)c c(C3CC3) nc21	CN(C)CC N	CN(C)CC NC(=O)c1 cc(C2CC2)nc2c1cnn 2C	0.76	Journal of Medicinal Chemistry (2021), 64(12), 8755-8774	0.6477	0.112
HATU	O=C1Cc2 cc(C(=O) O)ccc2N1	Cc1ccc([C @@H](C) N)cc1	Cc1ccc([C @@H](C) NC(=O)c2 ccc3c(c2) CC(=O)N 3)cc1	0.69	Journal of Medicinal Chemistry (2021), 64(1), 566-585	0.5854	0.104 6
HATU	CCOc1ccc (C(=O)O) nc1	Nc1ccccc 1	CCOc1ccc (C(=O)Nc 2cccc2)n c1	0.77	Journal of Medicinal Chemistry (2021), 64(24), 17936- 17949	0.6882	0.081 8
HATU	O=C(O)c1 ccc2c(c1) nc(Nc1ccc c(C1)c1)c1 ccncc12	NCCN1C CCC1	O=C(NCC N1CCCC 1)c1ccc2c (c1)nc(Nc 1cccc(Cl)c	0.728	Journal of Medicinal Chemistry (2021), 64(8),	0.649	0.079

			1)c1ccncc		5082-5098		
			12				
HATU	Cc1cc(C(=O)O)c2c nn(C(C)C) c2n1	CN(C)CC N	Cc1cc(C(=O)NCC N(C)C)c2 cnn(C(C) C)c2n1	0.77	Journal of Medicinal Chemistry (2021), 64(12), 8755-8774	0.6913	0.078 7
HATU	CNC(=O) c1cc(C(= O)O)c(C(C)c2cccc(F)c2)o1	N[C@H]1 CC[C@H] (O)CC1	CNC(=O) c1cc(C(= O)N[C@ H]2CC[C @H](O)C C2)c(C(C) c2cccc(F) c2)o1	0.65	Journal of Medicinal Chemistry (2021), 64(15), 10772- 10805	0.5759	0.074
HATU	CCN(c1cc c(CC(=O) O)cc1)S(= O)(=O)c1 cc(C1)ccc1 C1	CN1CCN CC1	CCN(c1cc c(CC(=O) N2CCN(C))CC2)cc1) S(=O)(=O))c1cc(Cl)c cc1Cl	0.57	Journal of Medicinal Chemistry (2021), 64(15), 10951- 10966	0.5036	0.066
HATU	C=CCCC(=O)O	C=CCCO c1cccc(C C(=O)Nc2 nnc(CCC Cc3nnc(N)s3)s2)c1	C=CCCO c1cccc(C C(=O)Nc2 nnc(CCC Cc3nnc(N C(=O)CC C=C)s3)s2)c1	0.552	Journal of Medicinal Chemistry (2021), 64(8), 4588-4611	0.4868	0.065 2
HATU	C=CCCO c1cccc(C C(=O)O)c	CCOC(=O)CCCCc1 nnc(N)s1	C=CCCO c1cccc(C C(=O)Nc2	0.652	Journal of Medicinal Chemistry	0.5907	0.061 3

	1		nnc(CCC		(2021),		
			CC(=O)O		64(8),		
			CC)s2)c1		4588-4611		
HATU	O=C(O)C	NCC=1C=	O=C(NCC	0.83	RSC	0.7326	0.097
	1C2CCC#	CC=CC1	=1C=CC=		Advances		4
	CCCC12		CC1)C2C		(2021),		
			3CCC#CC		11(58),		
			CC23		36777-		
					36780		
HATU	O=C(O)C(OCCN	O=C(C=C	0.45	Bioorgani	0.5824	0.132
	=O)C=CC		C=1C=CC		c &		4
	=1C=CC=		=CC1)C(=		Medicinal		
	CC1		O)NCCO		Chemistry		
					(2011),		
					19(13),		
					4067-4074		
HATU	O=C(O)C(NC(C)(C)	O=C(C=C	0.39	Bioorgani	0.4921	0.102
	=O)C=CC	C	C=1C=CN		c &		1
	=1C=CN=		=CC1)C(=		Medicinal		
	CC1		O)NC(C)(Chemistry		
			C)C		(2011),		
			,		19(13),		
					4067-4074		
HATU	NC	O=C(O)C	O=C(NC)	0.7	European	0.65	0.05
		1=CN(C=	C1=CN(C		Journal of		
		2SC(Br)=	=2SC(Br)		Medicinal		
		CC2)C=3	=CC2)C=		Chemistry		
		C=CC(O)	3C=CC(O		(2025),		
		=CC13)=CC13		283,		
			,		117148		
HATU	NC1=CC=	O=C(O)C	O=C(NC1	0.65	European	0.6	0.05
	C(C=C1)	=1C=CC=	=CC=C(C		Journal of		
	CN2CCC	C(C#CC2	=C1)CN2		Medicinal		
	CC2	=CN=C(N	CCCCC2)		Chemistry		

		=C2)NC=	C=3C=CC		(2025),		
		3C(=CC=	=C(C#CC		284,		
		CC3C)N(4=CN=C(117206		
		=O)=O)C	N=C4)NC				
		1	=5C(=CC				
			=CC5C)N				
			(=O)=O)C				
			3				
HATU	N=1C=CC	O=C(O)C	O=C(NC=	0.51	European	0.43	0.08
	=C(N)C1	1=CNC=2	1C=NC=C		Journal of		
		N=CC(Br)	C1)C2=C		Medicinal		
		=CC21	NC=3N=		Chemistry		
			CC(Br)=C		(2025),		
			C32		285,		
					117236		
			ClC=1N=				
HATU	ClC=1N=	[C@H](C(C2C(=CS	0.64	European	0.52	0.12
	CC=2SC=	O)=O)(C)	C2=CN1)		Journal of		
	C(C2N1)	N1CCN(C	C3=CC(N		Medicinal		
	C=3C=CC	(OC(C)(C	C([C@@		Chemistry		
	=C(N)C3)C)=O)CC	$H_{\rm I}(C)N4$		(2025),		
		1	C(C)(C)C		286,		
)=0)CC4)		117308		
			=O)=CC=				
			C3				
			O=C(NC				
HATU	OC1=CC=	O=C(O)C	C=1C=C	0.81	Bioorgani	0.83	0.02
	C(N)C=C	N1CCN(C	C=CC1)C		c &		
	1	=2N=C3C	$-CC^{2}-C$		Medicinal		
		(OCC(=O)	C=C(N=		Chemistry		
		NCC=4C=	C23)N4C		Letters		
		CC=CC4)	CN(CC(=		(2025),		
		=CC=CC3	O)NC5=		118,		
		=CC2)CC	CC=C(O)		130081		
		1	C=C5)CC				
			4				
EDC	O=C(O)C	Cl.NC	O=C(NC)	0.39	Journal of	0.3703	0.019

	1=NC=CC		C1=NC=C		Medicinal		7
	(Cl)=C1		C(Cl)=C1		Chemistry		
					(2021),		
					64(21),		
					15651-		
					15670		
EDC	0=C(0C(C([C@H](C([C@@	0.63	Bioorgani	0 4503	0 1 7 9
	C)(C)C)N	C(N)=O	HI(NC(C		c &		7
	CC(=0)0	N)C1=CC	NC(OC(C		Medicinal		
	(-)-	=CC=C1.)(C)C)=O)		Chemistry		
		Cl	=0)C(N)=		Letters		
			O)C1=CC		(2020).		
			=CC=C1		30(14)		
					127117		
					12,11,		
EDC	COclcc(C	CCN(CC)	CCN(CC)	0.379	Bioorgani	0.4285	0.049
	=C(C(=O)	c1ccc2cc(c1ccc2cc(c		5
	O)c2ccc(C(=O)NC	C(=O)NC		Chemistry		
	OC)c(OC)	CN)c(=O)	CNC(=O)		(2022),		
	c2)ccc1O	oc2c1	C(=Cc3cc		127,		
			c(O)c(OC)		106037		
			c3)c3ccc(
			OC)c(OC)				
			c3)c(=O)o				
			c2c1				
FDC	COclear	CCN(CC)	CCN(CC)	0 3/3	Bioorgani	0.4203	0.077
	$C = C c^2 c c$			0.545	Dioorgani	0.4205	3
	c(O)c(OC)	C(=0)NC	C(=0)NC		Chemistry		
	$c^{2}C(=0)$	C(0)	CNC(=0)		(2022)		
	O)cc1		$C(=Cc^3cc$		(2022),		
					106037		
					10003/		
			OC) = O(C) = O				
			$= 0) \cos^2 c^1$				
EDC	Cc1ccc(C	CCN(CC)	CCN(CC)	0.396	Bioorgani	0.4643	0.068

	=C(C#N)	clccc2cc(clccc2cc(c		3
	C(=O)O)s	C(=O)NC	C(=O)NC		Chemistry		
	1	CN)c(=O)	CNC(=O)		(2022),		
		oc2c1	C(C#N)=		127,		
			Cc3ccc(C)		106037		
			s3)c(=O)o				
			c2c1				
EDC	COc1cc2c	CNOC	COc1cc2c	0.51	European	0.5197	0.009
	c(C(=O)C		c(C(=O)C		Journal of		7
	CC(=O)O)		CC(=O)N(Medicinal		
	sc2cc1OC		C)OC)sc2		Chemistry		
			cc1OC		(2022),		
					241,		
					114627		
EDC	NS(=O)(=	CC1CCN	CC1CCN(0.32	Journal of	0.3884	0.068
	O)clccc(-	CC1	C(=O)c2c		Medicinal		4
	c2cccc(C(ccc(-		Chemistry		
	=O)O)c2)		c3ccc(S(N		(2022),		
	cc1)(=O)=O)c		65(4),		
			c3)c2)CC		3266-3305		
			1				
EDC	Cclccc(C	Cc1ccc2o	Cclccc(C	0.54	European	0.5634	0.023
	C(=O)O)c	c(-	C(=O)Nc2		Journal of		4
	c1	c3cccc(N)	cccc(-		Medicinal		
		c3)nc2c1	c3nc4cc(C		Chemistry		
)ccc4o3)c		(2022),		
			2)cc1		227,		
					113933		
EDC		MCOUL	NICIOCO	0.79	I 1 0	0.6705	0.100
EDC				0.78	Journal of	0.0705	0.109
					Medicinal		5
		(0)001			Chemistry		
)=O)[C@		(2020),		
			@H]2CC[63(13),		
			C@@H](7033-7051		

			O)CC2				
EDC	C(=C/C(O)=O)\C1= CC=C(O) C=C1	N=1C(N) =CC=CC1 CN	C(NC(/C= C/C1=CC =C(O)C= C1)=O)C= 2N=C(N) C=CC2	0.9	Drug Developm ent Research (2020), 81(2), 206-214	0.7651	0.134 9
EDC	Cc1ccc(C C(=O)O)c c1	Nc1ccc(- c2cc3cccc c3o2)cc1	Cc1ccc(C C(=O)Nc2 ccc(- c3cc4cccc c4o3)cc2) cc1	0.55	European Journal of Medicinal Chemistry (2022), 227, 113933	0.5589	0.008 9
EDC	O=C(CCC C[C@@H]1SC[C@ @H]2NC(=O)N[C@ @H]21)N CCCC[C @H](NC(=O)OCC1 c2cccc2- c2cccc21)C(=O)O	COclccc(CC(CCN) c2cc(OC)c (OC)c(OC)c2)cc1O	COc1ccc(CC(CCN C(=O)[C @H](CCC CNC(=O) CCCC[C @@H]2S C[C@@H]3NC(=O) N[C@@H]32)NC(= O)OCC2c 3ccccc3- c3cccc3- c3cccc32)c2cc(OC) c(OC)c(O C)c2)cc1 O	0.55	Journal of Medicinal Chemistry (2022), 65(1), 460-484	0.5623	0.012 3
EDC	O=C(CCC	COclecc(COclecc(0.55	Journal of	0.5593	0.009

	C[C@@H	CCc2cc(O	CCc2cc(O		Medicinal		3
]1SC[C@	C)c(OC)c(C)c(OC)c(Chemistry		
	@H]2NC(OC)c2OC	OC)c2OC		(2022),		
	=O)N[C@	CN)cc1O	CNC(=O)[65(1),		
	@H]21)N		C@H](CC		460-484		
	CCCC[C		CCNC(=O				
	@H](NC()CCCC[C				
	=O)OCC1		@@H]2S				
	c2cccc2-		C[C@@H				
	c2cccc21]3NC(=O)				
)C(=O)O		N[C@@H				
]32)NC(=				
			O)OCC2c				
			3cccc3-				
			c3cccc32				
)cc1O				
EDC	O=C(O)C	Cc1ccccc1	Cc1ccccc1	0.27	ACS	0.3449	0.074
	C(CC(=O)	CN	CNC(=O)		Medicinal		9
	NOC1CC		CC(CC(=		Chemistry		
	CCO1)c1c		O)NOC1C		Letters		
	cc(Cl)cc1		CCCO1)c		(2021),		
	Cl		lccc(Cl)cc		12(8),		
			1Cl		1318-1324		
ED C					5		
EDC	0=C(0)C	[C@@H](C(N[C@H	0.74	European	0.4967	0.243
	1=CC=C(C(OC)=O)](C(OC)=		Journal of		3
	Br)C=C1	(CO)N.CI	O)CO)(=		Medicinal		
			O)Cl=CC		Chemistry		
			=C(Br)C=		(2022),		
			C1.Cl		233,		
					114195		
EDC	O = C(O)C	[C@@H](C(N[C@H	0.55	ACS	0 4481	0 101
	1=CC=C(C(0C)=0)	$\frac{C(1)(C(0C))}{C(0C)} = \frac{C(1)(C(0C))}{C(0C)}$		Infectious		9
	C = C		0)[C@@		Diseases		
	1	(C)O)NC1	H(C)O)(=		(2021)		
	Ĩ		$\begin{array}{c} 11(0)0(-2)\\ 0)C1=CC \end{array}$		7(9)		
					1(2),		

			=C(C#C)		2755-2763		
			C=C1				
EDC	CC(C)(C)	COc1cc(N	COc1cc(N	0.48	Bioorgani	0.5302	0.050
	OC(=O)N	(C)CCN((C)CCN(c and		2
	1CCC[C	C)C)ccc1	C)C)ccc1		Medicinal		
	@@H](N	N	NC(=O)c1		Chemistry		
	c2ccn3ncc		cnn2ccc(N		(2021), 48,		
	(C(=O)O)		[C@@H]		116422		
	c3n2)C1		3CCCN(C				
			(=O)OC(C				
)(C)C)C3)				
			nc12				
EDC		Calar-(C	Calar (C	0.49		0.5455	0.065
EDC	C(CC(-0))	N) as 1		0.48	ACS	0.3433	0.005
	C(CC(-0))	N)CC1	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$		Chamistry		3
	CCO1)ala		V(CC(-0))		Lattors		
					(2021)		
			cc(Cl)cc2		(2021), 12(8)		
	CI		Cl)cc1		12(0), 1318-1324		
					1510-1524		
EDC	O=C(O)C	Cn1cccc(Cn1cccc(0.55	Organic	0.581	0.031
	c1ccc2ccc	N)c1=O	NC(=O)C		and		
	cc2c1		c2ccc3ccc		Biomolec		
			cc3c2)c1=		ular		
			0		Chemistry		
					(2021),		
					19(28),		
					6244-6249		
EDC			0.0(00	0.11		0.1552	0.045
EDC	O=C(O)C	Nelec(Cl)	O=C(COc	0.11	European	0.1553	0.045
	Uclccc(C($\operatorname{cc}(\mathrm{C}(=\mathrm{O}))$	$1 \operatorname{ccc}(C) =$		Journal of		5
	=0)c2cc(NCC2CC	U)c2cc(Cl		Medicinal		
	CI)ccc2Br	2)c1	JCCC2Br)C		Chemistry		
)001		CI)NCICC((2021),		
			CI)cc(C(=		212,		
			O)NCC2C		113033		

			C2)c1				
EDC	O=C(O)C C(CC(=O) NOC1CC CCO1)c1c cc(Cl)cc1 C1	Cc1cccc(CN)c1	Cc1cccc(CNC(=O) CC(CC(= O)NOC2C CCCO2)c 2ccc(C1)cc 2Cl)c1	0.51	ACS Medicinal Chemistry Letters (2021), 12(8), 1318-1324	0.561	0.051
EDC	CCn1c(= O)c(C(=O)O)c(O)c2 ccccc21	CCCCc1n nc(N)s1	CCCCc1n nc(NC(=O))c2c(O)c3 ccccc3n(C C)c2=O)s 1	0.185	European Journal of Medicinal Chemistry (2020), 188, 112022	0.2197	0.034 7
EDC	O=C(O)C CCCCc1c cccc1	N[C@H]1 CC[C@@ H](O)CC1	O=C(CCC CCc1cccc c1)N[C@ H]1CC[C @@H](O) CC1	0.674	Journal of Medicinal Chemistry (2020), 63(13), 7033-7051	0.6899	0.015 9
EDC	CCn1c(= O)c(C(=O)O)c(O)c2 ccccc21	CCCc1nn c(N)s1	CCCc1nn c(NC(=O) c2c(O)c3c cccc3n(C C)c2=O)s 1	0.209	European Journal of Medicinal Chemistry (2020), 188, 112022	0.2528	0.043 8
EDC	CCCn1c(= O)c(C(=O)O)c(O)c2 ccccc21	Nc1nncs1	CCCn1c(= O)c(C(=O)Nc2nncs2)c(O)c2cc ccc21	0.171	European Journal of Medicinal Chemistry (2020), 188,	0.257	0.086

					112022		
EDC	O=C(O)C 1(C(=O)N c2cccc(Br)c2)CC1	Nc1ccc(N)cc1	Nc1ccc(N C(=O)C2(C(=O)Nc3 cccc(Br)c 3)CC2)cc 1	0.58	European Journal of Medicinal Chemistry (2019), 181, 111541	0.5819	0.001 9
EDC	COc1ccc(/ C=C/C(= O)O)cc1	CCN(CC) c1ccc2cc(C(=O)N3 CCNCC3) c(=O)oc2c 1	CCN(CC) c1ccc2cc(C(=O)N3 CCN(C(= O)/C=C/c 4ccc(OC)c c4)CC3)c(=O)oc2c1	0.28	European Journal of Medicinal Chemistry (2019), 170, 45-54	0.3554	0.075
EDC	COc1cc(/ C=C/C(= O)O)cc(O C)c1OC	CCN(CC) c1ccc2cc(C(=O)NC CN)c(=O) oc2c1	CCN(CC) c1ccc2cc(C(=O)NC CNC(=O)/ C=C/c3cc(OC)c(OC) c(OC)c3)c (=O)oc2c1	0.432	European Journal of Medicinal Chemistry (2019), 170, 45-54	0.436	0.004
EDC	O=C(O)C CSSC(C)(C)C	OCC(N)C (O)C	O=C(NC(CO)C(O) C)CCSSC (C)(C)C	0.8	Molecules (2012), 17, 10026- 10045	0.6062	0.193 8
EDC	O=C(O)C 1=CC=C(SSC2=CC =C(C=C2) C(=O)O)C =C1	OCCN	O=C(NCC O)C1=CC =C(SSC2 =CC=C(C =C2)C(=O)NCCO)C	0.65	ChemBio Chem (2020), 21(5), 656-662	0.4768	0.173 2

			=C1				
EDC	CCCCCn1 c(C(=O)O)cc2ccenc 21	NC12CC3 CC(CC(C 3)C1)C2	CCCCCn1 c(C(=O)N C23CC4C C(CC(C4) C2)C3)cc 2cccnc21	0.59	European Journal of Medicinal Chemistry (2019), 180, 291- 309	0.5973	0.007
EDC	CCCCCn1 nc(C(=O) O)c2ccenc 21	NC12CC3 CC(CC(C 3)C1)C2	CCCCCn1 nc(C(=O) NC23CC4 CC(CC(C 4)C2)C3)c 2ccenc21	0.52	European Journal of Medicinal Chemistry (2019), 180, 291- 309	0.5993	0.079
EDC	O=C(O)c1 ccc(OC2C CCCO2)c c1	Clc1cccc(CNCCc2c c(OC3CC CCO3)cc(OC3CCC CO3)c2)c 1	O=C(c1cc c(OC2CC CCO2)cc1)N(CCc1c c(OC2CC CCO2)cc(OC2CCC CO2)c1)C c1cccc(Cl) c1	0.6	ACS Medicinal Chemistry Letters (2019), 10(4), 615-620	0.6372	0.037
EDC	C=Cc1c(O C)cc(/C= C/c2ccc(C (=O)O)cc 2)cc1OC	NCCc1ccc (O)cc1	C=Cc1c(O C)cc(/C= C/c2ccc(C (=O)NCC c3ccc(O)c c3)cc2)cc 1OC	0.72	European Journal of Medicinal Chemistry (2019), 184, 111733	0.755	0.035
EDC	CC(=O)N	Nc1nc2c(s	CC(=O)N	0.26	European	0.3573	0.097

	1CCCC1c	1)CCC2	1CCCC1c		Journal of		3
	1cc(C(=O)		1cc(C(=O)		Medicinal		
	O)c(C)s1		Nc2nc3c(s		Chemistry		
			2)CCC3)c		(2018),		
			(C)s1		156, 269-		
					294		
EDC	Calaaa(C(NC1-NC2	Calaaa(C(0.22	European	0.4004	0.070
EDC				0.55		0.4094	0.079
	=0)0)cc1		=0)N2CC		Journal of		4
)N(c2cccc	C3(CC2)		Medicinal		
		(CI)c2)C(N=C(N)N		Chemistry		
		N)=NI	=C(N)N3c		(2018),		
			2cccc(CI)c		155, 229-		
			2)cc1		243		
EDC	CCCCCC	Nc1ccc(N	CCCCCC	0.6	Journal of	0.6011	0.001
	=0)0		=0)Nc1cc	0.0	Medicinal	0.0011	1
	0,0)	c(N)cc1		Chemistry		1
					(2018)		
					(2010), 61(7)		
					3166-3192		
					5100-5172		
EDC	Cclccc(-	COC(=O)	COC(=O)	0.41	European	0.5013	0.091
	c2cc(-	C[C@H](C[C@H](Journal of		3
	c3cccc3)	NC(=O)[C	NC(=O)[C		Medicinal		
	nc(SCC(=	@@H](N)	@@H](N		Chemistry		
	0)0)c2C#	C(C)C)C(C(=O)CSc		(2018),		
	N)cc1	=O)N[C@	1nc(-		157, 743-		
	, , , , , , , , , , , , , , , , , , ,	@H](CCS	c2cccc2)		758		
		C)C(=O)O	cc(-				
		С	c2ccc(C)c				
			c2)c1C#N				
)C(C)C)C(
			=O)N[C@				
			@H](CCS				
			C)C(=O)O				
			C				
	1	1	1	1	1	1	1

EDC	O=C(O)C 1=CC=C(C=C1)C	NC	O=C(NC) C1=CC=C (C=C1)C	0.41	European Journal of Medicinal Chemistry (2018), 143, 390- 401	0.3789	0.031
EDC	O=C(OC(C)(C)C)N C(C(=0)O)CSC(C=1 C=CC=C C1)(C=2C =CC=CC2)C=3C=C C=CC3	NC	O=C(NC) C(N)CS	0.74	Journal of the American Chemical Society (2013), 135(15), 5839-5847	0.5019	0.238
EDC	O=C(O)C CC=C	C=CCN	O=C(NCC =C)CCC= C	0.78	Chemistry Letters (2020), 49(1), 71- 74	0.5933	0.186 7
EDC	O=C(O)C =1C=CN= C(N)C1	Cl.NC	O=C(NC) C=1C=CN =C(N)C1	0.64	Journal of Medicinal Chemistry (2022), 65(21), 14366- 14390	0.44	0.2
EDC	O=C(O)C 1(C(=O)N c2ccc(Cl)c (C(F)(F)F) c2)CC1	Nc1ccc(N)cc1	Nc1ccc(N C(=O)C2(C(=O)Nc3 ccc(Cl)c(C(F)(F)F) c3)CC2)cc	0.29	Bioorgani c and Medicinal Chemistry Letters (2017),	0.374	0.084

			1		27(15),		
					3231-3237		
EDC	O=C(O)C	Nc1ccc(N	Nc1ccc(N	0.39	Bioorgani	0.4651	0.075
	1(C(=O)N)cc1	C(=O)C2(c and		1
	c2cccc(F)		C(=O)Nc3		Medicinal		
	c2)CC1		cccc(F)c3)		Chemistry		
			CC2)cc1		Letters		
					(2017),		
					27(15),		
					3231-3237		
FDC	O = C(O)C	Nclccc(N	Nclccc(N	0.51	Bioorgani	0.5235	0.013
LDC	1(C(=0)N)		$C(=0)C^{2}($	0.01	c and	0.5255	5
	$r^{2}cccc(0)$		C(=0)Nc3		Medicinal		5
	$c^{2})CC1$		cccc(0)c3		Chemistry		
	02)001		CC2)cc1		Letters		
)002)001		(2017)		
					(2017), 27(15)		
					3731-3737		
					5251 5257		
EDC	O=C(O)C	Nc1ccc(N	Nc1ccc(N	0.54	Bioorgani	0.5498	0.009
	1(C(=O)N)cc1	C(=O)C2(c and		8
	c2cccc2F		C(=O)Nc3		Medicinal		
)CC1		cccc3F)C		Chemistry		
			C2)cc1		Letters		
					(2017),		
					27(15),		
					3231-3237		
EDC	COclcc(C	Nc1ccc(F)	COclcc(C	0.377	European	0.4601	0.083
	(=O)O)ccc	cc1	(=O)Nc2c		Journal of		1
	1-		cc(F)cc2)c		Medicinal		
	c1c[nH]c2		cc1-		Chemistry		
	ccccc12		c1c[nH]c2		(2017),		
			ccccc12		139, 644-		
					656		
EDC	COc1cc(C	CN1CCC	COc1cc(C	0.596	European	0.5971	0.001

	(=O)O)ccc	NCC1	(=O)N2C		Journal of		1
	1-		CCN(C)C		Medicinal		
	c1c[nH]c2		C2)ccc1-		Chemistry		
	ccccc12		c1c[nH]c2		(2017),		
			ccccc12		139, 644-		
					656		
EDC	O=C(O)c1	Ncleece	O=C(Nc1	0.37	European	0.3872	0.017
	cc(Cl)c(O)	1	ccccc1)c1		Journal of		2
	cc10		cc(Cl)c(O)		Medicinal		
			cc10		Chemistry		
					(2016),		
					124, 1069-		
					1080		
EDC	Cclccc(-	NCCN1C	Cclccc(-	0.22	Journal of	0.2848	0.064
	$c^{2}cc(C(=$	COCC1	$c^{2}cc(C(=$	0.22	Medicinal	0.2010	8
	O)O)c3cc(O)NCCN3		Chemistry		
	Cl)ccc3n2		CCOCC3)		(2016).		
)cc1		c3cc(Cl)cc		59(21).		
	,		c3n2)cc1		9672-9685		
EDC	COc1cc(O	C1CCC(N	COc1cc(O	0.44	European	0.4841	0.044
	C)c(C=C2)	2CCNCC	C)c(C=C2)		Journal of		1
	SC(=O)N(2)CC1	SC(=O)N(Medicinal		
	CC(=O)O)	,	CC(=O)N		Chemistry		
	C2=O)c(O		3CCN(C4		(2015), 90,		
	C)c1		CCCCC4)		507-518		
			CC3)C2=				
			O)c(OC)c				
			1				
EDC	Celne(-	Celnee(C	Celnee(C	0.68	Bioorgani	0.7196	0.039
	n2cnn(Cc	N)s1	$NC(=0)c^2$		c and		6
	3ccc(F)cc		sc(-		Medicinal		
	3)c2=O)sc		n3cnn(Cc		Chemistry		
	1C(=O)O		4ccc(F)cc		(2015).		
			4)c3=O)nc		23(3),		
			l í	1			

			2C)s1		455-465		
EDC	Cc1nc(- n2cnn(Cc 3ccc(F)cc 3)c2=O)sc 1C(=O)O	Cn1cnc(C N)c1	Cc1nc(- n2cnn(Cc 3ccc(F)cc 3)c2=O)sc 1C(=O)N Cc1cn(C)c n1	0.57	Bioorgani c and Medicinal Chemistry (2015), 23(3), 455-465	0.5857	0.015 7
EDC	Cc1nc(- n2cnn(Cc 3ccc(F)cc 3)c2=O)sc 1C(=O)O	NCc1cccc n1	Cc1nc(- n2cnn(Cc 3ccc(F)cc 3)c2=O)sc 1C(=O)N Cc1ccccn 1	0.46	Bioorgani c and Medicinal Chemistry (2015), 23(3), 455-465	0.501	0.041
EDC	Cc1nc(- n2cnn(Cc 3ccc(F)cc 3)c2=O)sc 1C(=O)O	NCc1nccs 1	Cc1nc(- n2cnn(Cc 3ccc(F)cc 3)c2=O)sc 1C(=O)N Cc1nccs1	0.66	Bioorgani c and Medicinal Chemistry (2015), 23(3), 455-465	0.6694	0.009
EDC	COc1cc(O C)c(C=C2 SC(=O)N(CC(=O)O) C2=O)c(O C)c1	C1CNCC N1	COc1cc(O C)c(C=C2 SC(=O)N(CC(=O)N 3CCNCC 3)C2=O)c (OC)c1	0.42	European Journal of Medicinal Chemistry (2015), 90, 507-518	0.444	0.024
EDC	O=C(O)c1 ccc2[nH]c cc2c1	c1ccc2c(c 1)- c1ccccc1C 2N1CCN	O=C(c1cc c2[nH]ccc 2c1)N1CC N(C2c3cc	0.49	European Journal of Medicinal Chemistry	0.5195	0.029 5

		CC1	ccc3-		(2015),		
			c3cccc32		101, 218-		
)CC1		235		
EDC	O=C(O)C	COc1cc2c	COc1cc2c	0.39	Organic	0.4199	0.029
	1=CNC2C	(cc1OC)C	(cc1OC)C		and		9
	=CC=CC1	N(CC1CC	N(CC1CC		Biomolec		
	2	NCC1)CC	N(C(=O)C		ular		
		2	3=CNC4C		Chemistry		
			=CC=CC3		(2014),		
			4)CC1)CC		12(5),		
			2		783-794		
EDC	O=C(O)c1	COc1cc2c	COc1cc2c	0.42	Organic	0.49	0.07
	cc2cc(I)cc	(cc1OC)C	(cc1OC)C		and		
	c2o1	N(CC1CC	N(CC1CC		Biomolec		
		NCC1)CC	N(C(=O)c		ular		
		2	3cc4cc(I)c		Chemistry		
			cc4o3)CC		(2014),		
			1)CC2		12(5),		
					783-794		
EDC	O=C(O)c1	COc1cc2c	COc1cc2c	0.51	Organic	0.5339	0.023
	cc2cc(Br)	(cc1OC)C	(cc1OC)C		and		9
	ccc201	N(CCC1C	N(CCC1C		Biomolec		
		CNCC1)C	CN(C(=O)		ular		
		C2	c3cc4cc(B		Chemistry		
			r)ccc4o3)		(2014),		
			CC1)CC2		12(5),		
					783-794		
EDC	O=C(O)c1	COc1cc2c	COc1cc2c	0.5	Organic	0.535	0.035
	cc2cc(I)cc	(cc1OC)C	(cc1OC)C		and		
	c2o1	N(CCC1C	N(CCC1C		Biomolec		
		CNCC1)C	CN(C(=O))		ular		
		C2	c3cc4cc(I)		Chemistry		
			ccc4o3)C		(2014),		
			C1)CC2		12(5),		

					783-794		
EDC	C[C@H](c1cccc2cc ccc12)N1 CCC(C(= O)O)CC1	CC(=O)N c1ccc(CN) cc1	CC(=O)N c1ccc(CN C(=O)C2 CCN([C@ H](C)c3cc cc4ccccc3 4)CC2)cc 1	0.23	Journal of Medicinal Chemistry (2014), 57(6), 2393-2412	0.2823	0.052
EDC	O=C(O)/C =C/c1cnc2 c(c1)CCC (=O)N2	c1ccc(C2 CNC2)cc1	O=C1CCc 2cc(/C=C/ C(=O)N3 CC(c4ccc cc4)C3)cn c2N1	0.5	European Journal of Medicinal Chemistry (2014), 84, 382-394	0.5948	0.094 8
EDC	O=C(O)C CC(F)(F)F	c1csc(- c2noc([C @@H]3C CNC3)n2) n1	O=C(CCC (F)(F)F)N 1CC[C@ @H](c2nc (- c3nccs3)n o2)C1	0.33	Journal of Medicinal Chemistry (2012), 55(1), 68- 83	0.3694	0.039 4
EDC	O=C(O)C CC(F)(F)F	clcsc(Cc2 noc(C3CC NCC3)n2) cl	O=C(CCC (F)(F)F)N 1CCC(c2n c(Cc3cccs 3)no2)CC 1	0.46	Journal of Medicinal Chemistry (2012), 55(1), 68- 83	0.4838	0.023 8
EDC	Nc1cc(C(=O)O)cc(C(F)(F)F) c1	Nc1cccc(- c2nnn[nH] 2)c1	Nc1cc(C(=O)Nc2cc cc(- c3nnn[nH] 3)c2)cc(C(0.52	Journal of Medicinal Chemistry (2012), 55(5),	0.5284	0.008 4

			F)(F)F)c1		2163-2172		
EDC	N#Cc1ccc (CC(=O)O)cc1	NC(=O)c1 ccsc1N	N#Cc1ccc (CC(=O)N c2sccc2C(N)=O)cc1	0.15	Bioorgani c and Medicinal Chemistry (2011), 19(8), 2582-2588	0.2276	0.077
EDC	COc1cc([C@@H]2 c3cc4c(cc 3[C@H](OC(=O)C CC(=O)O) [C@H]3C OC(=O)[C @H]23)O CO4)cc(O C)c1OC	COc1ccc2 c(c1)c(CC N)c(C)n2 Cc1ccc(Br)cc1	COc1ccc2 c(c1)c(CC NC(=O)C CC(=O)O[C@H]1c3 cc4c(cc3[C@@H](c 3cc(OC)c(OC)c(OC) c3)[C@H] 3C(=O)O C[C@@H]31)OCO4)c(C)n2Cc 1ccc(Br)c c1	0.65	Bioorgani c and Medicinal Chemistry Letters (2010), 20(5), 1787-1791	0.7044	0.054
EDC	COc1cc([C@@H]2 c3cc4c(cc 3[C@H](OC(=O)C CC(=O)C CC(=O)O [C@H]3C OC(=O)[C @H]23)O CO4)cc(O C)c1OC	C[C@@H](CN)c1cc ccc1	COc1cc([C@@H]2 c3cc4c(cc 3[C@H](OC(=O)C CC(=O)N C[C@H](C)c3ccccc 3)[C@H]3 COC(=O)[C@H]23)	0.66	Bioorgani c and Medicinal Chemistry Letters (2010), 20(5), 1787-1791	0.7354	0.075

			OCO4)cc(
			OC)c1OC				
EDC	Cc1ccc(C(=O)NC2C C2)cc1Nc 1ncnn2cc(C(=O)O)c (C)c12	N[C@@H](CO)c1cc ccc1	Cc1ccc(C(=O)NC2C C2)cc1Nc 1ncnn2cc(C(=O)N[C @@H](C O)c3ccccc 3)c(C)c12	0.59	Journal of Medicinal Chemistry (2010), 53(18), 6629-6639	0.5921	0.002
EDC	C=C(C)[C @@H]1C C[C@]2(C(=O)O)C C[C@]3(C)[C@H](CC[C@@ H]4[C@ @]5(C)C C[C@H](O)C(C)(C)[C@@H] 5CC[C@] 43C)[C@ @H]12	NC(CO)C O	C=C(C)[C @@H]1C C[C@]2(C(=O)NC(CO)CO)C C[C@]3(C)[C@H](CC[C@A H]4[C@ @]5(C)C C[C@H](O)C(C)(C)[C@@H] 5CC[C@] 43C)[C@ @H]12	0.48	Journal of Medicinal Chemistry (2010), 53(1), 178-190	0.5707	0.090
EDC	C=C(C)[C @@H]1C C[C@]2(C(=O)O)C C[C@]3(C)[C@H](CC[C@@ H]4[C@ @]5(C)C	NCCOCC O	C=C(C)[C @@H]1C C[C@]2(C(=O)NC COCCO) CC[C@]3 (C)[C@H] (CC[C@ @H]4[C	0.48	Journal of Medicinal Chemistry (2010), 53(1), 178-190	0.5641	0.084

	C[C@H](@@]5(C)				
	0)C(C)(C		CC[C@H]				
)[C@@H]		(O)C(C)(
	5CC[C@]		C)[C@@				
	43C)[C@		H]5CC[C				
	@H]12		@]43C)[C				
			@@H]12				
EDC	CC=C(NC	NCCc1ccc	CC=C(NC	0.49	Journal of	0.5578	0.067
	(=O)c1ccc	(O)cc1	(=O)c1ccc		Organic		8
	cc1)C(=O)		cc1)C(=O)		Chemistry		
	0		NCCclccc		(2003),		
			(O)cc1		68(26),		
					10098-		
					10102		
EDC	O=C(O)C	FC(F)(F)C	O=C(NCC	0.4	Journal of	0.6022	0.202
	=1C=CC=	Ν	(F)(F)F)C		Medicinal		2
	CC1N		=1C=CC=		Chemistry		
			CC1N		(2023),		
					66(5),		
					3540-3565		
EDC	CHCCNI		0.00100	0.20	I 1 C	0.40(0	0.046
EDC	C#CCN	O=C(O)C	0=C(NCC	0.38	Journal of	0.4269	0.046
		CNC(=0)	#C)CCNC		the		9
		C(O)C(C)	(=O)C(O)		American		
		(C)CO	C(C)(C)C		Chemical		
			0		Society		
					(2006),		
					128(37),		
					12174-		
					12184		
EDC	O=C(O)C	NCCCCC	O=C(NCC	0.29	ChemMed	0.3898	0.099
	P(=O)(OC	CCCCCC	CCCCCC		Chem		8
	C)OCC	CCC	CCCCCC)		(2008).		
			CP(=O)(O		3(12),		
)0		1936-1945		
			'				

EDC	NC=1C= CC=CC1 N	O=C(O)C 1=CC=C(C=C1)CN C(=O)C2 =CN=C(N2)C=3C =CC=CC 3	O=C(NC =1C=CC =CC1N)C 2=CC=C(C=C2)CN C(=O)C3 =CN=C(N3)C=4C =CC=CC 4	0.69	Journal of Medicinal Chemistry (2025), 68(3), 3048-3064	0.6	0.09
HBTU	O=C(O)C =1C=CC(=CC1)C= 2C=CC=C C2	NCC1=C C=C(C=C 1)C	O=C(NCC 1=CC=C(C=C1)C) C=2C=CC (=CC2)C= 3C=CC=C C3	0.97	Journal of Medicinal Chemistry (2021), 64(9), 5447-5469	0.8209	0.149
HBTU	C#CCN	O=C(O)C 1=CC=C(C=C1)S(= O)(=O)N	O=C(NCC #C)C1=C C=C(C=C 1)S(=O)(= O)N	0.44	Bioconjug ate Chemistry (2008), 19(8), 1614-1624	0.3989	0.041
HBTU	O=C(O)C CCCCCS C	O=C(O)C(N)C(OP(= O)(O)O)C	O=C(O)C(NC(=O)C CCCCCS C)C(OP(= O)(O)O)C	0.38	JBIC, Journal of Biological Inorganic Chemistry (2002), 7(4-5), 500-513	0.4901	0.110
HBTU	CCOc1ccc 2c(c1)CC(C(=O)O)C O2	CNCc1cc(C(=O)OC) c(C)o1	CCOc1ccc 2c(c1)CC(C(=O)N(C)Cc1cc(C(=O)OC)c(0.72	ACS Medicinal Chemistry Letters (2022),	0.7222	0.002

			C)o1)CO2		13(8),		
					1286-1294		
HBTU	O=C(O)C	NCc1ccc(Nc1nc(Nc	0.528	European	0.6155	0.087
	CCCCCC	Nc2nc(N)	2ccc(CNC		Journal of		5
	Nc1cccc2	n(-c3ccc(-	(=O)CCC		Medicinal		
	c1CN(C1	c4cccc4)	CCCCNc3		Chemistry		
	CCC(=O)	nn3)n2)cc	cccc4c3C		(2022),		
	NC1=O)C	1	N(C3CCC		234,		
	2=О		(=O)NC3		114253		
			=O)C4=O				
)cc2)nn1-				
			clccc(-				
			c2cccc2)				
			nn1				
HBTU	CCOC(=O	Nc1ccccc	CCOC(=O	0.6	Journal of	0.6687	0.068
)CCCCCC	1N)CCCCCC		Medicinal		7
	COclccc(-		COclccc(-		Chemistry		
	c2nc3ccc(c2nc3ccc((2022),		
	C(=O)O)c		C(=O)Nc4		65(4),		
	c3[nH]2)c		ccccc4N)c		3667-3683		
	c1		c3[nH]2)c				
			c1				
HBLO	CCOC(=O	Nelecce	CCOC(=O	0.59	Journal of	0.657	0.067
		IN			Medicinal		
	Oclecce(-		Oclecce(-		Chemistry		
	c2nc3ccc(c2nc3ccc((2022),		
	C(=O)O)c		C(=O)Nc4		65(4),		
	c3[nH]2)c		ccccc4N)c		3667-3683		
	1		c3[nH]2)c				
			1				
HBTI	CC(=O)N		C#CCIC	0.55	ACS	0.6071	0.057
	clnc(-			5.00	Medicinal	0.0071	1
	c2cccc(N	=0)N[C@			Chemistry		, 1
	C(=0)CC	(OH)(Color)	=0)Nc1cc		Letters		
					Letters		

	C(=O)O)c	n(C(c2ccc	cc(-		(2021),		
	2)cs1	cc2)(c2ccc	c2csc(NC(12(6),		
		cc2)c2ccc	C)=O)n2)		899-906		
		cc2)cn1)C	c1)C(=O)				
		(N)=O	N[C@@H				
](Cclcn(C				
			(c2cccc2)				
			(c2cccc2)				
			c2cccc2)				
			cn1)C(N)				
			=О				
HBTU	CS(=0)(=	CN(C)C1	CN(C)C1	0.39	European	0.4825	0.092
	O)N1CCN	CCNCC1	CCN(C(=		Journal of		5
	(Cc2cc3c(O)c2ccc(Medicinal		
	N4CCOC		NC(=O)N		Chemistry		
	C4)nc(-		c3ccc(-		(2021),		
	c4ccc(NC(c4nc(N5C		209,		
	=O)Nc5cc		COCC5)c		112913		
	c(C(=O)O		5cc(CN6C				
)cc5)cc4)n		CN(S(C)(
	n3c2)CC1		=O)=O)C				
			C6)cn5n4)				
			cc3)cc2)C				
			C1				
HBTU	Cclcc(C(CCCCNc1	CCCCNc1	0.19	European	0.2572	0.067
	=O)O)cc(ncc2c(C3	ncc2c(C3		Journal of		2
	C)n1	CCNCC3)	CCN(C(=		Medicinal		
		cn([C@H]	O)c4cc(C)		Chemistry		
		3CC[C@	nc(C)c4)C		(2021),		
		H](O)CC3	C3)cn([C		220,		
)c2n1	@H]3CC[113534		
			C@H](O)				
			CC3)c2n1				
HBTU	CC(C)(C)	C1CCNC	CC(C)(C)	0.79	European	0.849	0.059
	OC(=0)N	Cl	OC(=0)N	5.72	Journal of		
	(-)- (

	[C@@H]([C@@H](Organic		
	Cclccccl		Cc1ccccc1		Chemistry		
)C(=O)O)C(=O)N1		(2021), 25		
			CCCCC1				
HBTU	COcleece	NCCc1ccc	COcleece	0.65	Bioorgani	0.6581	0.008
	2c1C(=O)	c(N)c1	2c1C(=O)		c and		1
	c1c(O)c3c		c1c(O)c3c		Medicinal		
	(c(O)c1C2		(c(O)c1C2		Chemistry		
	=O)C[C@		=O)C[C@		Letters		
	@](O)(C(@](O)(C((2020),		
	=O)O)C[C		=O)NCCc		30(24),		
	@@H]3O		lcccc(N)c		127640		
	[C@H]1C		1)C[C@@				
	[C@H]2[H]3O[C@				
	C@H](O[H]1C[C@				
	C@@H]3		H]2[C@H				
	[C@@H](](O[C@@				
	OC)OCC		H]3[C@				
	N32)[C@		@H](OC)				
	H](C)O1		OCCN32)				
			[C@H](C)				
			01				
HBTU	O=C(O)c1	Nc1ccccc	Nc1ccccc	0.6	European	0.6145	0.014
	ccc(CCc2	1N	1NC(=O)c		Journal of		5
	cccc2NS(lccc(CCc		Medicinal		
	=O)(=O)c		2ccccc2N		Chemistry		
	2cccc2)c		S(=O)(=O		(2020),		
	c1)c2cccc2)		192,		
			cc1		112158		
IIDTI				0.500		0.6776	0.00-
HBLO	CcInc(C(NCI2CC3	CcInc(C(0.582	European	0.6776	0.095
					Journal of		6
	1C(=O)O	(3)C1)C2	1C(=O)N		Medicinal		
			C12CC3C		Chemistry		
			C(CC(C3)		(2019),		
			C1)C2		180, 154-		

					170		
HBTU	Cclnc(C)c (C(=O)O) s1	NC1CCCc 2ccccc21	Cc1nc(C)c (C(=O)NC 2CCCc3cc ccc32)s1	0.714	European Journal of Medicinal Chemistry (2019), 180, 154- 170	0.7252	0.011 2
HBTU	O=C(O)c1 c[nH]nc1 C1CCCC C1	CCN(CC) clccc(N)c cl	CCN(CC) c1ccc(NC(=O)c2c[n H]nc2C2C CCCC2)c c1	0.58	Journal of Medicinal Chemistry (2019), 62(17), 8284-8310	0.6766	0.096 6
HBTU	Cc1ccccc1 OCC(=O) O	Cn1ccc(N)n1	Cc1ccccc1 OCC(=O) Nc1ccn(C)n1	0.59	MedChem Comm (2019), 10(8), 1361-1369	0.6674	0.077 4
HBTU	Cc1ccccc1 OCC(=O) O	Nc1ccc2c c[nH]c2c1	Cc1ccccc1 OCC(=O) Nc1ccc2c c[nH]c2c1	0.65	MedChem Comm (2019), 10(8), 1361-1369	0.7389	0.088 9
HBTU	Cc1ccccc1 OCC(=O) O	Nc1ccccc 1	Cc1ccccc1 OCC(=O) Nc1ccccc 1	0.83	MedChem Comm (2019), 10(8), 1361-1369	0.8403	0.010
HBTU	[N-]=[N+]=N C(C)(C)C	[N-]=[N+]=N CCCN	[N-]=[N+]=N CCCNC(=	0.66	Chemistry - A European	0.4119	0.248 1

	C(=O)O		O)CC(N=[Journal		
			N+]=[N-		(2019),		
])(C)C		25(3),		
					754-758		
HBTU	[N-	C#CCN	[N-	0.68	Angewand	0.461	0.219
]=[N+]=N]=[N+]=N		te Chemie,		
	C(C(=O)O		C(C(=O)N		Internatio		
)CC(C)C		CC#C)CC		nal Edition		
			(C)C		(2009),		
					48(26),		
					4725-		
					4729,		
					S4725/1-		
					S4725/28		
HBTU	O=C(O)C(Cl.O=C(O	O=C(NCC	0.27	Proteins:	0.2662	0.003
	=O)CC(C)	C)CCCN	CC(=O)O		Structure,		8
	C		C)C(=O)C		Function,		
			C(C)C		and		
					Bioinform		
					atics		
					(2014).		
					82(9)		
					2067-2077		
					2007 2077		
HBTU	O=C(O)c1	Nc1ccccc	O=C(Nc1	0.59	Bioorgani	0.64	0.05
	ccc(-	1F	ccccc1F)c		c		
	n2cccc2)c		1ccc(-		Chemistry		
	cl		n2cccc2)c		(2018), 81.		
			cl		440-453		
HBTU	O=C(O)c1	COcleece	COc1cccc	0.69	Bioorgani	0.7741	0.084
	ccc(-	(N)c1	(NC(=O)c		c		1
	n2cccc2)c		2ccc(-		Chemistry		
	cl		n3cccc3)c		(2018) 81		
			c2)c1		440-453		
HBTU	O=C(O)C	Cclsc(N)n	Cc1sc(NC	0.21	European	0.2175	0.007

	1(c2ccc3c	c1-	(=O)C2(c		Journal of		5
	(c2)OC(F)	c1ccc(Br)	3ccc4c(c3		Medicinal		
	(F)O3)CC	cc1)OC(F)(F)		Chemistry		
	1		O4)CC2)n		(2018),		
			c1-		144, 179-		
			c1ccc(Br)		200		
			cc1				
HBTU	O=C(O)C	Cc1sc(N)n	Cc1sc(NC	0.51	European	0.5476	0.037
	1(c2ccc3c	c1-	(=O)C2(c		Journal of		6
	(c2)OCO3	c1ccccc1	3ccc4c(c3		Medicinal		
)CC1)OCO4)C		Chemistry		
			C2)nc1-		(2018),		
			c1ccccc1		144, 179-		
					200		
				0.5-			
HBTU	C[C@H](CNC(=O)[CNC(=O)[0.65	Bioorgani	0.7041	0.054
	NC(=O)O	C@@H]1	C@@H]1		c and		1
	CC1c2ccc	CCCN1	CCCN1C(Medicinal		
	cc2-		=O)[C@H		Chemistry		
	c2cccc21](C)NC(=		(2017),		
)C(=O)O		O)OCC1c		25(3),		
			2ccccc2-		897-911		
			c2ccccc21				
		NT 1		0.7(22	Г	0.0000	0.046
HBIU				0.7633	European	0.8096	0.046
	ccc(CNC2	1			Journal of		3
	=C(CI)C(ccc(CNC2		Medicinal		
	=O)c3cccc		=C(CI)C(Chemistry		
	c3C2=O)c		=O)c3cccc		(2017),		
	cl		c3C2=O)c		140, 84-91		
			cl				
HBTU	Q=C(0)C	0=[N+1(f	O=C(COc	0.12	Bioorgani	0.1482	0.028
	Ocleee(Cl	0-	1ccc(Cl)cc		c and		2
		Delece(N	1)N1CCN		Medicinal		-
	,	2CCNCC	(c2ccc(IN		Chemistry		
		2)cc1	+](=0)[0-		(2016)		
		2,001	'J(-0)[0-		(2010),		

])cc2)CC1		24(19),		
					4660-4674		
HBTU	O=C(O)C	O=[N+]([O=C(COc	0.36	Bioorgani	0.4302	0.070
	Oc1ccc(Cl	O-	lccc(Cl)cc		c and		2
)cc1])c1ccccc1	1)N1CCN		Medicinal		
		NICCNC	(c2cccc2[Chemistry		
		C1	N+](=O)[(2016),		
			O-])CC1		24(19),		
					4660-4674		
HBTU	O=C(O)C	O=[N+]([O=C(COc	0.35	Bioorgani	0.4484	0.098
	Oc1ccc(Cl	0-	lccc(Cl)cc		c and		4
)cc1Cl])c1cccc(1CI)N1CC		Medicinal		
		N2CCNC	N(c2cccc(Chemistry		
		C2)c1	[N+](=O)[(2016),		
			0-		24(19),		
])c2)CC1		4660-4674		
HBTU	O=C(O)C	O=[N+]([O=C(COc	0.12	Bioorgani	0.189	0.069
	Oclccc(F)	0-	lccc(F)cc		c and		
	ccl])c1ccc(N	1)N1CCN		Medicinal		
		2CCNCC	(c2ccc([N		Chemistry		
		2)cc1	+](=O)[O-		(2016),		
])cc2)CC1		24(19),		
					4660-4674		
				0.44	D	0.4042	0.044
HBIU	0 = C(0)C	0=[N+]([0.44	Bioorgani	0.4843	0.044
		0-			c and		3
					Medicinal		
		NICCNC			Chemistry		
			N+J(=0)[(2010),		
					24(19),		
					4000-46/4		
HBTU	O=C(O)C	O=[N+]([O=C(COc	0.39	Bioorgani	0.4832	0.093
	Ocleecee	O-	lccccc1C(c and		2
	1C(F)(F)F])c1cccc(F)(F)F)N1		Medicinal		
		N2CCNC	CCN(c2cc		Chemistry		

Image: Here is a standard standa			C2)c1	cc([N+](=		(2016),		
$ \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $				O)[O-		24(19),		
HBTU $O=C(OC()$ NCCCCC $O=C(NCC)$ ACS Nano 0.4401 0.200 $C(C)CON$ $CCCCCC$ $CCCCCC$ $CCCCCC$ $(2019),$ 1 $C(C)COC$ $CCCCCC$ $CCCCCC$ $CCCCCC$ $13(8),$ $9292-9297$ $DCC(C)C$ C C $CCCCCC$ $CCCCCC$ C $DCC(C)$ C C C C C $DCC(C)$ C C </td <td></td> <td></td> <td></td> <td>])c2)CC1</td> <td></td> <td>4660-4674</td> <td></td> <td></td>])c2)CC1		4660-4674		
HBTU O=C(OC(NCCCCC O=C(NCC 0.24 ACS Nano 0.4401 0.200 C)(C)C)N CCCCCC CCCCCC (2019), 1 1 C(C(=O)O CCCCCC CCCCCC 13(8), 9292-9297 1 JCC(C)C C CCCCCC N)CC(C) 1 1 1 HBTU O=C(OC(NCCN(C) C 1 1 1 HBTU O=C(OC(NCCN(C) O=C(OC(0.22 Journal of 0.393 0.173 HBTU O=C(OC() NCCN(C) C(C(=O)N) C(C(=O)N) Chemistry 0.173 JC I CCN(C)C CCN(C)C I I I I								
$\begin{array}{cccccccc} C(C)C(C)C(C)C(C)C(C)C(C)C(C)C(C)C(C)C(C$	HBTU	O=C(OC(NCCCCC	O=C(NCC	0.24	ACS Nano	0.4401	0.200
$\begin{array}{ccccccccc} CCCCCCCCCCCCCCCCCCCCCCCCCCCC$		C)(C)C)N	CCCCCC	CCCCCC		(2019),		1
JCC(C)CCCCCCC)C(N)CC(C) C9292-9297Image: Comparison of the		C(C(=O)O	CCCCCC	CCCCCC		13(8),		
N)CC(C) CN)CC(C) CImage: Constraint of constraints of)CC(C)C	С	CCCC)C(9292-9297		
HBTUO=C(OC(C)(C)C)NNCCN(C C)(C)C)NO=C(OC(C)(C)C)NJournal of C)(C)C)N0.3930.173HBTUO=C(OC(C)(C)C)NO=C(OC(C)(C)C)N0.22Journal of Organic0.3930.173OrganicC)(C)C)NC)(C(=O)NC(C(=O)NChemistry (2003),0.173				N)CC(C)				
HBTU O=C(OC(NCCN(C O=C(OC(0.22 Journal of 0.393 0.173 C)(C)C)N C)CC C)(C)C)N C)(C)C)N Organic Organic 0				С				
HBTU $O=C(OC($ NCCN(C $O=C(OC($ 0.22 Journal of 0.393 0.173 $C)(C)C)N$ $C)CC$ $C)(C)C)N$ $Organic$ $Organic$ $Organic$ $Organic$ $C(C(=O)O)$ $C(C(=O)N)$ $C(C(=O)N)$ $Chemistry$ $(2003),$ $Organic$								
C)(C)C)NC)CCC)(C)C)NOrganicC(C(=O)OC(C(=O)NChemistry)CCCN(C)C(2003),	HBTU	O=C(OC(NCCN(C	O=C(OC(0.22	Journal of	0.393	0.173
C(C(=O)O C(C(=O)N Chemistry)C CCN(C)C (2003),		C)(C)C)N	C)CC	C)(C)C)N		Organic		
)C CCN(C)C (2003),		C(C(=O)O		C(C(=O)N		Chemistry		
)C		CCN(C)C		(2003),		
)C 68(20),)C		68(20),		
7788-7794						7788-7794		
HPTU $O = C(O)C$ NCC = 1C = $O = C(N)CC$ 0.65 Archion 0.5765 0.072		O = C(O)C	NCC-1C-		0.65	Arabian	0 5765	0.073
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IIBTO				0.05	Journal of	0.5705	5
				-10-00-2		Chamistry		5
C = C = C = C = C = C = C = C = C = C =		C = CC = C		C=CC=C((2010)		
$C^{2}C^{-2}C^{-1}$ $C^{-2}C^{-1}$ $C^{2}C^{-2}C^{-1}$ $C^{2}C^{-1}$ C		$C^{2}C^{-2$				(2019), 12(7)		
$C_{2}C_{-5}C_{-}$ $C_{-5}C_{-}$ $I_{2}(7),$ $I_{2}(7$		$C_2C_3C_2$				12(7),		
		COC4-C		C = 4C = CC		10/0-1085		
		C = CC(-C)						
(-5)		4)C(-0)0		C = C = C				
				-0NCC-				
				0)02				
HBTU O=C(O)C O=[N+]([O=C(COc 0.49 Bioorgani 0.5878 0.097	HBTU	O=C(O)C	O=[N+]([O=C(COc	0.49	Bioorgani	0.5878	0.097
Oclecccc O- leccclCl c and 8		Oc1ccccc	O-	1ccccc1Cl		c and		8
1Cl])c1ccccc1)N1CCN(Medicinal		1C1])c1ccccc1)N1CCN(Medicinal		
N1CCNC c2cccc2[Chemistry			NICCNC	c2cccc2[Chemistry		
C1 N+](=O)[(2016),			C1	N+](=O)[(2016),		
O-])CC1 24(19),				0-1)CC1		24(19).		

					4660-4674		
HBTU	CCc1c(C(=O)O)cc(C)n1- c1ccccc1	Nc1ccc2c cccc2c1	CCc1c(C(=O)Nc2cc c3cccc3c 2)cc(C)n1 -c1ccccc1	0.35	European Journal of Medicinal Chemistry (2016), 122, 619-	0.3973	0.047
HBTU	CCCCCn1 cc(C(=O) O)c(=O)n 2nc(- c3ccc(C)c c3)nc12	NC12CC3 CC(CC(C 3)C1)C2	CCCCCn1 cc(C(=O) NC23CC4 CC(CC(C 4)C2)C3)c (=O)n2nc(- c3ccc(C)c	0.44	634 European Journal of Medicinal Chemistry (2016), 113, 11-27	0.5061	0.066
HBTU	CCCCCn1 cc(C(=O) O)c(=O)n 2nc(C)nc1 2	NC12CC3 CC(CC(C 3)C1)C2	c3)nc12 CCCCCn1 cc(C(=O) NC23CC4 CC(CC(C 4)C2)C3)c (=O)n2nc(C)nc12	0.56	European Journal of Medicinal Chemistry (2016), 113, 11-27	0.6104	0.050
HBTU	CCCCCn1 cc(C(=O) O)c(=O)n 2nc(N3CC OCC3)nc1 2	NC12CC3 CC(CC(C 3)C1)C2	CCCCCn1 cc(C(=O) NC23CC4 CC(CC(C 4)C2)C3)c (=O)n2nc(N3CCOC C3)nc12	0.4	European Journal of Medicinal Chemistry (2016), 113, 11-27	0.4036	0.003
HBTU	CCCCCn1	NC12CC3	CCCCCn1	0.55	European	0.5939	0.043

	cc(C(=O)	CC(CC(C	cc(C(=O)		Journal of		9
	O)c(=O)n	3)C1)C2	NC23CC4		Medicinal		
	2nc(SC)nc		CC(CC(C		Chemistry		
	12		4)C2)C3)c		(2016),		
			(=O)n2nc(113, 11-27		
			SC)nc12				
HBTU	O=C(O)N	COC(=O)	COC(=O)	0.33	Journal of	0.3594	0.029
	clcccc(Cl)	clcccc(-	clcccc(-		Medicinal		4
	c1Cl	c2ccc(CN)	c2ccc(CN		Chemistry		
		c3cnccc23	C(=O)Nc3		(2015),		
)c1	cccc(Cl)c3		58(23),		
			Cl)c3cncc		9345-9353		
			c23)c1				
HBTU	Celeccel	Nclcccc(Celeccel	0.61	Journal of	0.693	0.083
	C(=O)O	O)n1	C(=O)Nc1		Medicinal		
			cccc(O)n1		Chemistry		
					(2014),		
					57(15),		
					6393-6402		
HRTI	Calconec	Neleccen	Calconec	0.55	Journal of	0.5715	0.021
	1C(=0)0	1	1C(=0)Nc	0.55	Medicinal	0.5715	5
	10(-0)0	1			Chamistry		5
					(2014)		
					(2014),		
					57(15),		
					6393-6402		
HBTU	CCc1cccc	Nc1ccccn	CCc1cccc	0.56	Journal of	0.5949	0.034
	c1C(=O)O	1	c1C(=O)N		Medicinal		9
			c1ccccn1		Chemistry		
					(2014).		
					57(15)		
					6393-6402		
HBTU	COc1cccc	Nc1ccccn	COc1cccc	0.65	Journal of	0.6816	0.031
	(C(=O)O)	1	(C(=O)Nc		Medicinal		6
	c1C		2ccccn2)c		Chemistry		

			1C		(2014),		
					57(15),		
					6393-6402		
	$O = C(O) \circ 1$	CNC1CC(CN(C(-0))	0.69	Journal of	0.7160	0.026
пыто			CN(C(-0))	0.08	Journal of	0.7109	0.030
	cc(Cc2n[n		clcc(Cc2n		Medicinal		9
	H c = O c	c21	[nH]c(=O)		Chemistry		
	3ccccc23)		c3ccccc23		(2013),		
	ccc1F)ccc1F)C1		56(7),		
			CC(=O)c2		2885-2903		
			ccccc21				
HBTU	Cc1csc2[n H]cc(C(= O)O)c(=O	NC12CC3 CC(CC(C 3)C1)C2	Cc1csc2[n H]cc(C(= O)NC34C	0.57	Journal of Medicinal Chemistry	0.5908	0.020 8
)c12		C5CC(CC		(2013),		
			(C5)C3)C		56(3),		
			4)c(=O)c1		1098-1112		
			2				
HBTU	Cc1sc2[n H]cc(C(= O)O)c(=O)c2c1C	NC12CC3 CC(CC(C 3)C1)C2	Cc1sc2[n H]cc(C(= O)NC34C C5CC(CC (C5)C3)C 4)c(=O)c2 c1C	0.55	Journal of Medicinal Chemistry (2013), 56(3), 1098-1112	0.6003	0.050
HBTU	CCCCCn1 cc(C(=O) O)c(=O)c 2c(C)noc2 1	NC12CC3 CC(CC(C 3)C1)C2	CCCCCn1 cc(C(=O) NC23CC4 CC(CC(C 4)C2)C3)c (=O)c2c(C)noc21	0.59	Journal of Medicinal Chemistry (2013), 56(3), 1098-1112	0.6182	0.028 2
HBTU	CC1COc2 cccc3c(=O)c(C(=O)	NC12CC3 CC(CC(C 3)C1)C2	CC1COc2 cccc3c(=O)c(C(=O)	0.55	Journal of Medicinal Chemistry	0.6021	0.052 1
	O)cn1c23		NC45CC6		(2012),		
------	-----------	----------	------------	------	------------	--------	-------
			CC(CC(C		55(14),		
			6)C4)C5)c		6608-6623		
			n1c23				
HBTU	Cclccc(C	NC12CC3	Cclccc(C	0.59	Journal of	0.6112	0.021
	2COc3ccc	CC(CC(C	2COc3ccc		Medicinal		2
	c4c(=O)c(3)C1)C2	c4c(=O)c(Chemistry		
	C(=O)O)c		C(=O)NC		(2012),		
	n2c34)cc1		56CC7CC		55(14),		
			(CC(C7)C		6608-6623		
			5)C6)cn2c				
			34)cc1				
				0.74	D	0.7496	0.000
HBIU	O=C(O)c1	NCcIcccc	U=C(NCc	0.74	Bioorgani	0./486	0.008
		cl			c and		6
	N+](=O)[Icc(Br)cc(Medicinal		
	O-J)cl		[N+](=O)[Chemistry		
			O-J)cl		(2011),		
					19(5),		
					1823-1838		
HBTU	O=C(O)C	C1CCNC	O=C(Cc1c	0.8	Journal of	0.8146	0.014
	c1ccc(Br)	1	cc(Br)cc1		Medicinal		6
	cc1F	-	F)N1CCC		Chemistry		
			C1		(2011).		
					54(1), 78-		
					94		
HBTU	O=C(O)C	NCCNC(=	O=C(CCC	0.5	Bioorgani	0.5721	0.072
	CCCCN1	O)CCCC[CCN1C[C		c and		1
	C[C@H](C@@H]1	@H](O)[C		Medicinal		
	O)[C@@	SC[C@@	@@H](O)		Chemistry		
	H](O)[C@	H]2NC(=	[C@@H](Letters		
	@H](O)[C	O)N[C@	O)[C@H]		(2010),		
	@H]1CO	@H]21	1CO)NCC		20(14),		
			NC(=O)C		4077-4079		
			CCC[C@				

			@H]1SC[
			C@@H]2				
			NC(=O)N				
			[C@@H]				
			21				
HBTU	O=C(O)C	CNC(=O)[CNC(=O)[0.7	Journal of	0.7182	0.018
	C(c1ccccc	C@@H]1	C@@H]1		Medicinal		2
	1)c1ccccc	CCCN1	CCCN1C(Chemistry		
	1		=O)CC(c1		(2009),		
			ccccc1)c1		52(9),		
			ccccc1		2708-2715		
				0.000		0.7047	0.075
HBTU	O=C(O)C	CNCc1c2	CN(Cc1c2	0.629	Journal of	0.7047	0.075
					Medicinal		
	N(C2CCC	ccccc12			Chemistry		
					(2006),		
			C(=0)N(C)		49(21),		
					6308-6323		
			(2)(1				
HBTU	CN(CC(=	CNCCN(CN(CCN(0.55	Journal of	0.6376	0.087
	O)O)C(=	C)Cc1ccc	C)C(=O)C		Medicinal		6
	O)CN(C)	cc1	N(C)C(=O		Chemistry		
	C(=O)CC)CN(C)C((2000),		
	NICCCC		=O)CCN1		43(25),		
	C1		CCCCC1)		4822-4833		
			Cc1ccccc1				
HBTU	CN(CC(=	CNCCN(CN(CCN(0.71	Journal of	0.7511	0.041
	O)O)C(=	C)Cc1ccc	C)C(=O)C		Medicinal		1
	O)CN(C)	cc1	N(C)C(=O		Chemistry		
	C(=O)CN)CN(C)C((2000),		
	1CCCCC1		=O)CN1C		43(25),		
			CCCC1)C		4822-4833		
			c1ccccc1				
				0.65	Lanuar 1 C	0.6(28	0.012
пвіо	CN(UU)=		$\bigcup_{i=1}^{n} \bigcup_{i=1}^{n} \bigcup_{i$	0.05	Journal of	0.0028	0.012
1	0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	ZUUNCU	U)N(C)C		Medicinal		8

C(=0)CN ICCCCCILessCCN(Ce2 ccce2)C C1)C(=0) CNICCC C1)C(=0) CNICCC2000), 43(25), 4822-4833LessLessHBTU[N-]=[N+]=N C1C(0C2 OC(0C11)(C)C)CCC C0(0C21)(C)C)CCC C0(0C21)(C)C)CCC =0)00NCC=1C= [N- C1C(0C2 OC(0C21)(C)C)CCC (C)C)CCC C0(0C21)(C)C)CCC (C)C)CCC (C)COCC =0)00NCC=1C= D=C(C)C COCCC2 CCCCC CCCCC CCCCC CCCCC2 CCCC2 C		O)CN(C)	2)cc1	C(=O)N1		Chemistry		
ICCCCC1ICCCCC1ICCCCCCCA3(25), 4822-4833ICCICCCCCCCCHBTUN- I=[N+]=N C1C(CC2 OC(OC1)NCC=1C= I=[N+]=N C1C(CC2 OC(OC1)NCC=1C= I=[N+]=N C1C(CC2 OC(OC1)NCC=1C= ICCCC2 ICCCCC2 ICCCC2 ICCCC2 ICCCC		C(=O)CN		CCN(Cc2		(2000),		
Image: series of the series		1CCCCC1		ccccc2)C		43(25),		
Image: series of the series				C1)C(=O)		4822-4833		
Image: Normal stateImage: Normal stateImage: Normal stateNCC=1CCNormal stateNormal state <th></th> <th></th> <th></th> <th>CN1CCC</th> <th></th> <th></th> <th></th> <th></th>				CN1CCC				
HBTUN.N. P[N-]N] CIC(OC2 OC(OC11 VCC(C)2) OC(OC21 OC(OC21 VCC)CC2 OC(OC21 OC(OC21 VCC)CC2 OC(OC21 OC(OC1 O				CC1				
$ \begin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	HBTU	[N-	NCC=1C=	[N-	0.62	RSC	0.6581	0.038
$\begin{array}{cccccccccccccccccccccccccccccccccccc$]=[N+]=N	CC=CC1]=[N+]=N		Advances		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C1C(OC2		C1C(OC2		(2015),		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		OC(OC21		OC(OC21		5(25),		
$ \begin{array}{ c c c c c c } \hline P(X) & V(X) & V$)(C)C)CC()(C)C)CC(19455-		
$ \begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$		=0)0		=O)NCC=		19464		
$ \begin{array}{c c c c c c } \hline \begin{tabular}{ c c c c } \hline & $C3$ & $C3$ & $C3$ & $C3$ & $C3$ & $C1$ & $C2$ & $C1$ & $C2$ & $C1$ & $C2$ & $C1$ & $C2$ &$,		3C=CC=C				
$ \begin{array}{c c c c c c } HBTU & O=C(OC(\\ C(C)C)N & CC=CC1 \\ C(C)C(C)N & CC=CC1 \\ C(C)C(C)N \\ CC=CC1 \\ C(C)C(C)N \\ CC(C=O)N \\ C(C=O)N \\ C(C=O)N \\ C(C=O)N \\ C(C=O)N \\ C(C=O)N \\ C(C=O)N \\ C(C)C=C \\ C(C)C \\ C(C)C) \\ C(C)C)C \\ C(C)C \\ C(C)C)C \\ C(C)C \\$				C3				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HBTU	O=C(OC(NCC=1C=	O=C(OC(0.82	Bioconjug	0.5845	0.235
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C)(C)C)N	CC=CC1	C)(C)C)N		ate		5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C(C(=O)O		C(C(=O)N		Chemistry		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)CSC(C=1		CC=1C=C		(2014),		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C=CC=C		C=CC1)C		25(2),		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C1)(C=2C		SC(C=2C		202-206		
$ \begin{array}{ccccccc} & & & & & & & & & & $		=CC=CC2		=CC=CC2				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $)C=3C=C)(C=3C=C				
$ \begin{array}{ c c c c c c } & =& 4C=C= \\ CC4 & & & & & & &$		C=CC3		C=CC3)C				
$\begin{array}{ c c c c c c c } \hline CC4 & & & & & & & & & & & & & & & & & &$				=4C=CC=				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				CC4				
$\begin{array}{c cccccc} N1[C@@ & C(OC)C= & N1[C@@ \\ H](C(O)= & C(/C=C\setminus C & H](C(NC2 & 25(3), 660 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & $	DCC	C(OC(=O)	O(C)C1=	C(OC(=O)	0.73	Molecules	0.6498	0.080
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		N1[C@@	C(OC)C=	N1[C@@		(2020).		2
$\begin{array}{c cccc} O)CCC1) & 2=CC(N)= & =C(OC)C \\ C2C=3C(& C(OC)C= & =CC(/C= \\ C=4C2=C & C2)C=C1 & C\backslashC3=CC(\\ C=CC4)= & OC & OC)=C(O \\ CC=CC3 & & C)C(OC)= \end{array}$		H](C(O)=	C(/C=C\C	H](C(NC2		25(3), 660		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		O)CCC1)	2 = CC(N) =	=C(OC)C		- (-))		
$\begin{array}{c ccccc} C=4C2=C & C2)C=C1 & C\setminusC3=CC(\\ C=CC4)= & OC & OC)=C(O\\ CC=CC3 & & C)C(OC)= \end{array}$		C2C=3C(C(OC)C=	=CC(/C=				
$\begin{vmatrix} C = CC4 \end{pmatrix} = \begin{vmatrix} OC & OC \end{pmatrix} = C(O \\ CC = CC3 & C)C(OC) = \end{vmatrix}$		C=4C2=C	C2)C=C1	C\C3=CC(
CC=CC3 $C)C(OC)=$		C=CC4)=	OC	OC)=C(O				
		CC=CC3		C)C(OC)=				
C3)=C2)=		_		C3)=C2)=				
O)CCC1)				O)CCC1)				

			C4C=5C(
			C=6C4=C				
			C=CC6)=				
			CC=CC5				
DCC	O=C(O)C	NC=1C=C	O=C(NC=	0.55	Bioorgani	0.5258	0.024
	=1N=NN(C=CC1	1C=CC=C		c &		2
	C1)C2=C		C1)C=2N		Medicinal		
	C=C(C=C		=NN(C2)		Chemistry		
	2)C(O)(C(C3=CC=C		Letters		
	F)(F)F)C((C=C3)C((2021), 42,		
	F)(F)F		O)(C(F)(F		127999		
)F)C(F)(F)				
			F				
		EC1-CC-		0.85	Chinasa	0.6029	0.246
Dee	O = C(OC)	FCI-CC-	CI.0-C(N)	0.85	Chamical	0.0038	0.240
		C(C-CI)	C(E)C-C1		Lattors		2
					(2010)		
	-0)0		N		(2010),		
			IN		21(3),		
					237-200		
DCC	O=C(OC(OCCN	O=C(OC(0.35	Biopolym	0.4435	0.093
	C)(C)C)N		C)(C)C)N		ers (2006),		5
	CC(=O)O		CC(=O)N		84(6),		
			ССО		605-614		
DCC	Cclcc(C)c	Nc1ccc(C(Cclcc(C)c	0.28	Bioorgani	0.3261	0.046
	(-	O)(C(F)(F	(-		c and		1
	n2cc(C(=)F)C(F)(F)	n2cc(C(=		Medicinal		
	O)O)nn2)	F)cc1	O)Nc3ccc		Chemistry		
	c(C)c1		(C(O)(C(F		Letters		
)(F)F)C(F)		(2021), 42,		
			(F)F)cc3)n		127999		
			n2)c(C)c1				
DCC	COalass	Nolooc(C(COalass	0.47	Diogrami	0 4902	0.010
				0.4/	Dioorgani	0.4003	2
	$n_2 cc(U(=$	$\bigcup_{i \in \mathcal{I}} (C(F)(F))$	$n_2 cc(U) = 0$		c and		5
	(U)U)nn2))F)C(F)(F)	U)NC3CCC		Medicinal		

	cc1OC	F)cc1	(C(O)(C(F		Chemistry		
)(F)F)C(F)		Letters		
			(F)F)cc3)n		(2021), 42,		
			n2)cc1OC		127999		
DCC	COc1ccc2	NCC1CC	COc1ccc2	0.77	Journal of	0.8345	0.064
	[nH]nc(C(N(Cc2ccc([nH]nc(C(Medicinal		5
	=O)O)c2c	OCc3cccc	=O)NCC3		Chemistry		
	1	c3)cc2)CC	CCN(Cc4		(2015),		
		1	ccc(OCc5		58(22),		
			ccccc5)cc		8920-8937		
			4)CC3)c2				
			c1				
DCC	C[C@]12	NCCO	C[C@]12	0.44	Medicinal	0.508	0.068
		Neco		0.77	Chemistry	0.508	0.000
					(2015)		
					(2013),		
					521 520		
			-0NCC		551-559		
	-0,0,0,00		-0)NCC $-C$				
			C(=0)CC[
	0						
DCC	O=C(O)c1	CCN(CC)	CCN(CC)	0.31	European	0.3857	0.075
	cnc(F)c(I)	CCN	CCNC(=O		Journal of		7
	c 1)c1cnc(F)c		Medicinal		
			(I)c1		Chemistry		
					(2015), 92,		
					818-838		
DCC	0-0(0)0			0.54	East	0.5945	0.044
	$\bigcup = C(\bigcup)C$			0.54	European	0.5845	0.044
	NC(=0)0	C@H]2[C			Journal of		5
	CC1c2ccc	@H](c3cc	@H](c3cc		Medicinal		
	cc2-	c(N)cc3)C	c(NC(=O)		Chemistry		

	c2cccc21	(=O)N2c2	CNC(=O)		(2013), 62,		
		cc(OC)c(OCC4c5c		705-721		
		OC)c(OC)	cccc5-				
		c2)cc1	c5cccc54				
)cc3)C(=O				
)N2c2cc(
			OC)c(OC)				
			c(OC)c2)c				
			c1				
DCC	O=C(N[C	COclccc([COclccc([0.54	European	0.5723	0.032
	@@H](Cc	C@H]2[C	C@H]2[C		Journal of		3
	lcccccl)C	@H](c3cc	@H](c3cc		Medicinal		
	(=O)O)O	ccc3)C(=	ccc3)C(=		Chemistry		
	CC1c2ccc	O)N2c2cc	O)N2c2cc		(2013), 62,		
	cc2-	(OC)c(OC	(OC)c(OC		705-721		
	c2cccc21)c(OC)c2))c(OC)c2)				
		cc1N	cc1NC(=				
			O)[C@H](
			Cc1ccccc1				
)NC(=O)				
			OCC1c2c				
			cccc2-				
			c2cccc21				
DCC	O=C(O)c1	Cclcsc(-	Cclcsc(-	0.39	Bioorgani	0.4651	0.075
	cccccl	c2nc(CN)	c2nc(CNC		c and		1
		nH]c2-	(=O)c3ccc		Medicinal		
		c2ccc3c(c	cc3)[nH]c		Chemistry		
		2)OCO3)n	2-		Letters		
		1	c2ccc3c(c		(2012),		
			2)OCO3)n		22(5),		
			1		2024-2029		
	O = C(O)C(OC1=CC=		0.62	Organic &	0 5987	0.021
		$C(C=C^{1})$		0.02	Biomolec		3
	CCCC)P(CCN	(0)C=C1		ular		
	=0)(0C)				Chemistry		
					Chemistry		

	OC		CCCCC)P		(2009),		
			(=O)(OC)		7(17),		
			OC		3491-3498		
DCC	O=C(O)C	NCCCN(O=C(NCC	0.69	Nature	0.5805	0.109
	CCN(CP(CCCN)C	CN(CCC		Communi		5
	=O)(OC)	CCCN(C	NC(=O)C		cations		
	OC)CP(=	CCN)CC	CCN(CP((2015), 6,		
	O)(OC)O	CN	=O)(OC)		7722		
	С		OC)CP(=				
			O)(OC)O				
			C)CCCC				
			N(CCCN				
			C(=O)CC				
			CN(CP(=				
			O)(OC)O				
			C)CP(=O)				
			(OC)OC)				
			CCCNC(=				
			O)CCCN(
			CP(=O)(O				
			C)OC)CP(
			=O)(OC)				
			OC)CCC				
			N(CP(=O)				
			(OC)OC)				
			CP(=O)(O				
			C)OC				
DCC	Cl.O=C(O	O=C(O)C	O=C(OC)	0.44	Tetrahedr	0.1903	0.249
	C)C(N)CS	1CC1C	C(NC(=O)		on Letters		7
	SCC(N)C(C1CC1C)		(1995),		
	=O)OC		CSSCC(N		36(8),		
			C(=O)C2		1189-92		
			CC2C)C(
			=O)OC				
DCC	Cclcsc(-	CCCN	CCCNC(=	0.31	Bioorgani	0.35	0.04

	c2nc(C(= O)O)[nH] c2- c2ccc3c(c 2)OCO3)n 1		O)c1nc(- c2nc(C)cs 2)c(- c2ccc3c(c 2)OCO3)[nH]1		c and Medicinal Chemistry Letters (2012), 22(5), 2024-2029		
DCC	CC(C)Cc1 ccc([C@ @H](C)C(=O)O)cc1	NCCCCC O	CC(C)Cc1 ccc([C@ @H](C)C(=O)NCCC CCO)cc1	0.55	Journal of Medicinal Chemistry (2005), 48(13), 4312-4331	0.5752	0.025
DCC	N#Cc1c(C (=O)O)cn 2ccccc12	N#CN=C(NCCCN) NCCCOc 1cccc(CN 2CCCCC2)c1	N#CN=C(NCCCNC (=O)c1cn2 cccc2c1C #N)NCCC Oc1cccc(CN2CCC CC2)c1	0.35	Bioorgani c and Medicinal Chemistry (2004), 12(24), 6495-6503	0.3939	0.043 9
DCC	C[C@H](NC(=O)[C @H](Cc1c cccc1)NC(=O)OCc1 ccccc1)C(=O)O	COc1nsc(N)n1	COc1nsc(NC(=O)[C @H](C)N C(=O)[C @H](Cc2c cccc2)NC(=O)OCc2 cccc2)n1	0.67	Bioorgani c and Medicinal Chemistry (2003), 11(24), 5529-5537	0.676	0.006
DCC	Nc1ccc(C(=O)O)cc1	CNCC(=O)N1CCC(Cn2c(C)n c3cnccc32)CC1	Cc1nc2cn ccc2n1CC 1CCN(C(=O)CN(C) C(=O)c2c	0.32	Journal of Medicinal Chemistry (2001), 44(18),	0.3276	0.007

			cc(N)cc2)		3001-3013		
			CC1				
DCC	O=C(O)C CCC(C1C C1)C1CC 1	O=C([C@ @H]1C[C @@H]2C CCC[C@ @H]2N1) N1CCCC 1	O=C([C@ @H]1C[C @@H]2C CCC[C@ @H]2N1C (=O)CCC C(C1CC1) C1CC1)N 1CCCC1	0.39	Journal of Medicinal Chemistry (1996), 39(12), 2379-2391	0.481	0.091
DCC	O=C(O)C(C1=CC=C (C=C1)C C(C)C)C	O=C(O)C CN	O=C(O)C CNC(=O) C(C1=CC =C(C=C1) CC(C)C)C	0.3	Journal of Medicinal Chemistry (2005), 48(13), 4312-4331	0.3612	0.061
DCC	O=C(O)C N(CC(=O) O)CC=1C =CC=CC1	NC(C)(C) C	O=C(NC(C)(C)C)C N(CC=1C =CC=CC1)CC(=O)N C(C)(C)C	0.49	Mendelee v Communi cations (2023), 33(2), 157-159	0.2889	0.201
DCC	O=C(O)C 1=CC=CN =C1N	NNC	O=C(C1= CC=CN= C1N)N(N) C	0.22	Chemical & Pharmace utical Bulletin (1987), 35(1), 80- 9	0.3013	0.081
DCC	O=C(O)C NC(=O)C(NC=1C=C C=CC1C	O=C(NC= 1C=CC=C	0.4	Chemical Communi	0.3791	0.020 9

	F)(F)F		C1C)CNC (=O)C(F)(F)F		cations (Cambridg e, United Kingdom)		
					(2022),		
					58(69),		
					9638-9641		
DCC	O=C(O)C CS	OCC(O)C N	O=C(NCC (O)CO)C CS	0.6	Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) (2009), 50(1), No pp. given	0.6918	0.091 8
DCC	O=C(O)C CCc1cccc c1	O=C([C@ H]1NC2C CC1CC2) N1CCCC 1	O=C([C@ @H]1C2C CC(CC2) N1C(=O) CCCc1ccc cc1)N1CC CC1	0.35	Journal of Medicinal Chemistry (1996), 39(12), 2379-2391	0.4391	0.089
DCC	CC(C)C[C @H](N[C @H](CCN 1C(=O)c2 cc3cccc3 cc2C1=O) C(=O)OC(C)(C)C)C(=O)O	NCc1cccc c1	CC(C)C[C @H](N[C @H](CCN 1C(=O)c2 cc3cccc3 cc2C1=O) C(=O)OC(C)(C)C)C(=O)NCc1	0.5	Journal of Medicinal Chemistry (1994), 37(5), 674-688	0.5718	0.071 8

			ccccc1				
DCC	CC(C)C[C @H](N[C @H](CCO [Si](C)(C) C(C)(C)C) C(=O)OC(C)(C)C)C(=O)O	CNC(=O)[C@@H](N)Cc1ccc cc1	CNC(=O)[C@H](Cc 1cccc1)N C(=O)[C @H](CC(C)C)N[C @H](CCO [Si](C)(C) C(C)(C)C) C(=O)OC(C)(C)C	0.43	Journal of Medicinal Chemistry (1994), 37(5), 674-688	0.4884	0.058
DCC	O=C(O)c1 ccccc1	CC1(C)C(=O)c2ccc(C#N)cc2[C@H](N)[C@H]1O	CC1(C)C(=O)c2ccc(C#N)cc2[C@H](NC (=O)c2ccc cc2)[C@H]1O	0.55	Journal of Medicinal Chemistry (1993), 36(15), 2121-2133	0.5818	0.031 8
DCC	O=C(O)c1 ccoc1	CC1(C)C(=O)c2ccc(C#N)cc2[C@H](N)[C@H]1O	CC1(C)C(=O)c2ccc(C#N)cc2[C@H](NC (=O)c2cco c2)[C@H] 10	0.67	Journal of Medicinal Chemistry (1993), 36(15), 2121-2133	0.701	0.031
DCC	O=C(O)[C @H](Cc1c cccc1)NS(=O)(=O)N 1CCOCC 1	N[C@@H](Cc1csc(NC(=O)O Cc2cccc2)n1)C(=O) N[C@@H](CC1CC CCC1)[C	O=C(C[C @H](O)[C @H](CC1 CCCCC1) NC(=O)[C @H](Cc1c sc(NC(=O)OCc2ccc	0.42	Journal of Medicinal Chemistry (1992), 35(14), 2562-2572	0.4378	0.017 8

		@@H](O) CC(=O)N CCN1CC OCC1	cc2)n1)N C(=O)[C @H](Cc1c cccc1)NS(
			=O)(=O)N				
			1CCOCC				
			1)NCCN1				
			CCOCC1				
DCC	COclecc(CC(C)C[C	COclccc(0.44	Journal of	0.4863	0.046
	C[C@H](@H](O)[C	C[C@H](Medicinal		3
	NS(=O)(=	@H](O)[C	NS(=O)(=		Chemistry		
	O)N2CCO	@H](CC1	O)N2CCO		(1992),		
	CC2)C(=	CCCCC1)	CC2)C(=		35(14),		
	O)O)cc1	NC(=O)[C	O)N[C@		2562-2572		
		@@H](N)	@H](Cc2c				
		Cclcsc(N	sc(NC(=O				
		C(=O)OC)OCc3ccc				
			cc3)n2)C(
		nı	=0)N[Ca]				
			O[C@@]				
			C)C)cc1				
DCC	O=C(O)C	OCC(N)C	O=C(C=C	0.7	Chemistry	0.5594	0.140
	=CC=CC	(O)C	C=CC)NC		- A		6
			(CO)C(O)		European		
			C		Journal		
					(2004),		
					10(1),		
					173-181		
DCC	O=C(O)C	C#CCN	O=C(NCC	0.73	Biomateri	0.4959	0.234
	CCCCSS		#C)CCCC		als		1
	CCCCCC(CSSCCC		Science		

NCC#C 8(11), 3186-3192 0 DCC O=C(O)C NC=1C=C O=C(NC= 0.31 ACS 0.58 0.27 1=CC=CN C=CC1N 1C=CC=C Chemical Biology C 0.58 0.27 1 C=CC1N CC=CN2 C 0.31 ACS 0.58 0.27 1 C=CC1N C=CC=CN2 C1N)C2= Biology 0.2017), 12(6), 12(6), 1644-1655 DCC DCC DCC=CN2 DCC DCC DCC DCC DCC DCC DCC DCC
Image: Marking Constraints Image: Marking Constrates Image: Marking Constraints <thi< th=""></thi<>
DCC O=C(O)C NC=1C=C O=C(NC= 0.31 ACS 0.58 0.27 1=CC=CN C=CC1N 1C=CC=C Chemical Biology C 1 <
DCC O=C(O)C NC=1C=C O=C(NC= 0.31 ACS 0.58 0.27 1=CC=CN C=CC1N 1C=CC=C Chemical I </th
1=CC=CN C=CC1N 1C=CC=C Chemical 1 C1N)C2= Biology CC=CN2 (2017), 12(6), 1644-1655
1 C1N)C2= Biology CC=CN2 (2017), 12(6), 1644-1655
CC=CN2 (2017), 12(6), 1644-1655
12(6), 1644-1655
1644-1655
DCC O=C(OC) NCCCCC O=C(OC) 0.7 European 0.5075 0.192
CCN(CC CCCCC CCN(CC Journal of 5
C(=O)OC) C $C(=O)OC)$ Medicinal
CCCCC(C CCCCC(C Chemistry
(=O)O)N((=O)NCC (2015),
CCC(=O) CCCCCC 105, 106-
OC)CCC(CCCC)N(119
=O)OC CCC(=O)
OC)CCC(
PyBO [N- O1C=CC= [N- 0.81 European 0.6451 0.164
P]= $[N+]=N$ C1CN]= $[N+]=N$ Journal of9
CCCCCC CCCC Medicinal
CC(=O)O CC(=O)N Chemistry
CC=10C= (2023),
CC1 250,
115170
PyBO FC1=CC= O=C(O)C O=C(NCC 0.59 Journal of 0.3494 0.240
P C(C=C1) 1=CC=C(1=CC=C(Medicinal 6
CN C=C1)CN F)C=C1)C Chemistry
C(=O)OC(2=CC=C((2022),
C)(C)C C=C2)CN 65(10),
7246-7261
PyBO ClC1=CC O=C(O)C O=C(NCC 0.67 Journal of 0.7368 0.066
P $=C(C=C1)$ $=1C=CC=$ $C(C=1C=$ Medicinal8

	C(C=2C=	C(I)C1	CC=CC1)		Chemistry		
	CC=CC2)		C2=CC=C		(2020),		
	CCN		(Cl)C=C2)		63(20),		
			C=3C=CC		11498-		
			=C(I)C3		11521		
РуВО	CN(CCc1	NCCO	CN(CCc1	0.59	Journal of	0.6009	0.010
P	ccccc1)c1		ccccc1)c1		Medicinal		9
	nc(C(=O)		nc(C(=O)		Chemistry		
	O)cc(N2C		NCCO)cc((2021),		
	COCC2)n		N2CCOC		64(1),		
	1		C2)n1		481-515		
D _V RO	$\Omega = C(\Omega) a^{1}$	COalaaaa	COalaaaa	0.61	Journal of	0.6305	0.020
D D		(OCCN2C	(OCCN2C	0.01	Medicinal	0.0395	5
	[nH]1	(OCCN2C)	CN(C(-0))		Chemistry		5
	[1111]1	1	cn(c(-0))		(2020)		
		1	c4[nH]3)C		(2020), 63(10)		
			C^{2}		5526 5567		
					5520-5507		
D DO	O = C(O)/C	Calae(NC	Calae(NC	0.57	Bioorgani	0.5717	0.001
PyBO				0.01	Dioorgani	0.5717	0.001
РуВО Р	=C/c1cccc	CN)c2ccc	CCICC(INC CNC(=O)/		c	0.3717	7
РуВО Р	=C/c1cccc	CN)c2ccc cc2n1	CNC(=O)/ C=C/c2cc		c Chemistry	0.3717	7
Р	=C/c1cccc c1	CN)c2ccc cc2n1	CNC(=O)/ C=C/c2cc ccc2)c2cc		c Chemistry (2019), 93,	0.5717	7
Р	=C/c1cccc c1	CN)c2ccc cc2n1	CNC(=O)/ C=C/c2cc ccc2)c2cc ccc2n1		c Chemistry (2019), 93, 103310	0.5717	7
Р	=C/c1cccc c1	CN)c2ccc cc2n1	CNC(=O)/ C=C/c2cc ccc2)c2cc ccc2n1		c Chemistry (2019), 93, 103310	0.5717	7
РуВО Р РуВО	=C/c1cccc c1 O=C(O)c1	CN)c2ccc cc2n1 CN1CCC	CNC(=O)/ C=C/c2cc ccc2)c2cc ccc2n1 CN1CCC	0.4	c Chemistry (2019), 93, 103310 Journal of	0.4025	0.002
РуВО Р РуВО Р	C/c1cccc c1 O=C(O)c1 cnn2cccnc	CN)c2ccc cc2n1 CN1CCC 2(CC1)Cc	CNC(=O)/ C=C/c2cc ccc2)c2cc ccc2n1 CN1CCC 2(CC1)Cc	0.4	c Chemistry (2019), 93, 103310 Journal of Medicinal	0.4025	0.002 5
РуВО Р РуВО Р	C/c1cccc c1 O=C(O)c1 cnn2cccnc 12	CN)c2ccc cc2n1 CN1CCC 2(CC1)Cc 1cc(N)c(N	CNC(=O)/ C=C/c2cc ccc2)c2cc ccc2n1 CN1CCC 2(CC1)Cc 1cc(NC(=	0.4	c Chemistry (2019), 93, 103310 Journal of Medicinal Chemistry	0.4025	0.002
РуВО Р РуВО Р	C/c1cccc c1 O=C(O)c1 cnn2cccnc 12	CN)c2ccc cc2n1 CN1CCC 2(CC1)Cc 1cc(N)c(N 3CCOCC	CNC(=O)/ C=C/c2cc ccc2)c2cc ccc2n1 CN1CCC 2(CC1)Cc 1cc(NC(= O)c3cnn4	0.4	c Chemistry (2019), 93, 103310 Journal of Medicinal Chemistry (2019),	0.4025	0.002 5
РуВО Р РуВО Р	C/c1cccc c1 O=C(O)c1 cnn2cccnc 12	CN)c2ccc cc2n1 CN1CCC 2(CC1)Cc 1cc(N)c(N 3CCOCC 3)cc1O2	CNC(=O)/ C=C/c2cc ccc2)c2cc ccc2n1 CN1CCC 2(CC1)Cc 1cc(NC(= O)c3cnn4 cccnc34)c	0.4	c Chemistry (2019), 93, 103310 Journal of Medicinal Chemistry (2019), 62(13),	0.4025	0.002
РуВО Р РуВО Р	C/c1cccc c1 O=C(O)c1 cnn2cccnc 12	CN)c2ccc cc2n1 CN1CCC 2(CC1)Cc 1cc(N)c(N 3CCOCC 3)cc1O2	CNC(=O)/ C=C/c2cc ccc2)c2cc ccc2n1 CN1CCC 2(CC1)Cc 1cc(NC(= O)c3cnn4 cccnc34)c (N3CCOC	0.4	c Chemistry (2019), 93, 103310 Journal of Medicinal Chemistry (2019), 62(13), 6223-6240	0.4025	0.002 5
РуВО Р РуВО Р	<pre>C/clcccc cl O=C(O)cl cnn2cccnc l2</pre>	CN)c2ccc cc2n1 CN1CCC 2(CC1)Cc 1cc(N)c(N 3CCOCC 3)cc1O2	CNC(=0)/ $C=C/c2cc$ $ccc2)c2cc$ $ccc2n1$ $CN1CCC$ $2(CC1)Cc$ $1cc(NC(=$ $0)c3cnn4$ $cccnc34)c$ $(N3CCOC$ $C3)cc1O2$	0.4	c Chemistry (2019), 93, 103310 Journal of Medicinal Chemistry (2019), 62(13), 6223-6240	0.4025	0.002 5
PyBO P PyBO P	<pre>C/c1cccc c1 O=C(O)c1 cnn2cccnc 12</pre>	CN)c2ccc cc2n1 CN1CCC 2(CC1)Cc 1cc(N)c(N 3CCOCC 3)cc1O2	CNC(=O)/ $C=C/c2cc$ $ccc2)c2cc$ $ccc2n1$ $CN1CCC$ $2(CC1)Cc$ $1cc(NC(=$ $O)c3cnn4$ $cccnc34)c$ $(N3CCOC$ $C3)cc1O2$	0.4	c Chemistry (2019), 93, 103310 Journal of Medicinal Chemistry (2019), 62(13), 6223-6240	0.4025	0.002
РуВО Р РуВО Р РуВО	COC(=O)	CN)c2ccc cc2n1 CN1CCC 2(CC1)Cc 1cc(N)c(N 3CCOCC 3)cc1O2	CNC(=O)/ $C=C/c2cc$ $ccc2)c2cc$ $ccc2n1$ $CN1CCC$ $2(CC1)Cc$ $1cc(NC(=$ $O)c3cnn4$ $ccenc34)c$ $(N3CCOC$ $C3)cc1O2$ $COC(=O)$	0.4	c Chemistry (2019), 93, 103310 Journal of Medicinal Chemistry (2019), 62(13), 6223-6240 Journal of	0.4025	0.002 5 0.019
РуВО Р РуВО Р РуВО Р	COC(=O) COC(=O) COC(=C) COC(=C) COC(=C) COC(=C)	CN)c2ccc cc2n1 CN1CCC 2(CC1)Cc 1cc(N)c(N 3CCOCC 3)cc1O2 C1CCNC 1	CNC(=O)/ $C=C/c2cc$ $ccc2)c2cc$ $ccc2n1$ $CN1CCC$ $2(CC1)Cc$ $1cc(NC(=$ $O)c3cnn4$ $cccnc34)c$ $(N3CCOC$ $C3)cc1O2$ $COC(=O)$ $c1ccc(C(=$ $O)V1CCCC$	0.4	c Chemistry (2019), 93, 103310 Journal of Medicinal Chemistry (2019), 62(13), 6223-6240 Journal of the	0.4025	0.001 7 0.002 5 0.019 8
РуВО Р РуВО Р РуВО Р	COC(=O) c1 COC(=O) c1ccc(C(= O)O)cc1	CN)c2ccc cc2n1 CN1CCC 2(CC1)Cc 1cc(N)c(N 3CCOCC 3)cc1O2 C1CCNC 1	CNC(=0)/ $C=C/c2cc$ $ccc2)c2cc$ $ccc2n1$ $CN1CCC$ $2(CC1)Cc$ $1cc(NC(=$ $O)c3cnn4$ $cccnc34)c$ $(N3CCOC$ $C3)cc1O2$ $COC(=0)$ $c1ccc(C(=$ $O)N2CCC$	0.4	c Chemistry (2019), 93, 103310 Journal of Medicinal Chemistry (2019), 62(13), 6223-6240 Journal of the American	0.4025	0.002 5 0.019 8
РуВО Р РуВО Р РуВО Р	COC(=O) c1 COC(=O) c1ccc(C(= O)O)cc1	CN)c2ccc cc2n1 CN1CCC 2(CC1)Cc 1cc(N)c(N 3CCOCC 3)cc1O2 C1CCNC 1	CNC(=O)/ $C=C/c2cc$ $ccc2)c2cc$ $ccc2n1$ $CN1CCC$ $2(CC1)Cc$ $1cc(NC(=$ $O)c3cnn4$ $cccnc34)c$ $(N3CCOC$ $C3)cc1O2$ $COC(=O)$ $c1ccc(C(=$ $O)N2CCC$ $C2)cc1$	0.4	c Chemistry (2019), 93, 103310 Journal of Medicinal Chemistry (2019), 62(13), 6223-6240 Journal of the American Chemical	0.4025	0.002 5 0.019 8

					(2018),		
					140(43),		
					14440-		
					14454		
РуВО	CC1(C)O[NCCclccc	CC1(C)O[0.65	European	0.6606	0.010
Р	C@@H]2	cc1	C@@H]2		Journal of		6
	[C@H](O		[C@H](O		Medicinal		
	1)[C@@		1)[C@@		Chemistry		
	H](CO[Si]		H](CO[Si]		(2016),		
	(C)(C)C(C		(C)(C)C(C		124, 1041-		
)(C)C)O[)(C)C)O[1056		
	C@H]2n1		C@H]2n1				
	c(SCC(=O		c(SCC(=O				
)O)nc2c(N)NCCc2cc				
)ncnc21		ccc2)nc2c				
			(N)ncnc21				
РуВО	COclccc(CC(C)(C)	COcleec(0.66	ChemMed	0.7213	0.061
Р	Cl)cc1C(=	OC(=O)N	Cl)cc1C(=		Chem		3
	O)O	1CCN(Cc	O)Nc1ccc		(2016),		
		2cccc(N)c	c(CN2CC		11(3),		
		2)CC1	N(C(=O)		283-288		
			OC(C)(C)				
			C)CC2)c1				
РуВО	NC=1C=C	O=C(O)C	O=C(NC=	0.6	Molecules	0.4068	0.193
Р	C=CC1	1=CC=2C	1C=CC=C		(2022),		2
		=CC=CC2	C1)C2=C		27(13),		
		OS1(=O)=	C=3C=CC		4076		
		0	=CC3OS2				
			(=O)=O				
	NCCCON	C(C1-CC	C(C1-CC	0.75	Europer	0.52	0.22
гурО	neccen			0.75	Lournal of	0.52	0.25
1		$\begin{bmatrix} -C(t) - C(t) \\ C(t) - C(t) \end{bmatrix}$	$\begin{bmatrix} -C_{1}, C_{-}, C_{1} \\ C_{1}, C_{-}, C_{1} \\ C_{1}, C_$		Medicinal		
		=C1)(C2-			Chemister		
		-C1)(C2-			(2020)		
		CC=C(O)	C/C2=CC		(2020),		

		C=C2)=C	=C(C(C3=		192,		
		3CCCCC3	CC=C(O)		112191		
			C=C3)=C				
			4CCCCC4				
)C=C2)=O				
)=O)C=C1				
)(C5=CC=				
			C(O)C=C				
			5)=C6CC				
			CCC6				
PvBO	C1 01B(0	O=C(O)C	O=C(NCB	0.42	Journal of	0 5758	0.155
P	C(C)(C)C		10C(C)(C	0.12	Medicinal	0.0700	8
-	1(C)C)CN		C(01)(C)		Chemistry		
					(2019)		
					(2017), 62(15).		
					7160-7184		
РуВО	O=C(O)C	NCC=1C=	O=C(OC(0.8	Bioorgani	0.6909	0.109
Р	1=C(SC2=	CC=CC1	C)(C)C)N		c &		1
	C1CCN(C		C=1SC2=		Medicinal		
)C2)NC(=		C(C1C(=		Chemistry		
	O)OC(C)(O)NNC=3		(2009),		
	C)C		C=CC=C		17(20),		
	·		C3)CCN(7353-7361		
			C)C2				
D-DC	COC(-C)	NCL(CO)	COC(-C)	0.50	100	0.6227	0.042
РубО				0.39	ACS Madiainal	0.0337	0.045
P					Chamistra		
	c(C(=0))		c(C(=0))		Letters		
			$C_{2}(C_{0})C_{1}$		(2012)		
	jc2cccnc2				(2012),		
	n1-				3(9), /64-		
	1 1						
	clccccl		nc2n1-		/68		
	clccccl		nc2n1- c1ccccc1		/68		
РуВО	c1ccccc1 CN(CCC	NCCCCO	nc2n1- c1ccccc1 CN(CCC	0.6	Bioorgani	0.6127	0.012
PyBO P	c1ccccc1 CN(CCC C(=O)O)C	NCCCCO	nc2n1- c1ccccc1 CN(CCC C(=O)NC	0.6	Bioorgani c and	0.6127	0.012 7

	[C@H]1O		CCCO)C[Medicinal		
	[C@@H](C@H]1O[Chemistry		
	n2cnc3c(C@@H](Letters		
	N)ncnc32)		n2cnc3c((2012),		
	[C@@H]		N)ncnc32)		22(1),		
	20C(C)(C		[C@@H]		278-284		
)O[C@@		20C(C)(C				
	H]21)O[C@@				
			H]21				
РуВО	O=C(O)c1	N[C@@H	O=C(N[C	0.52	European	0.5668	0.046
Р	nc2cc(Cl)](Cclcccc	@@H](Cc		Journal of		8
	ccc2[nH]1	c1)C(=O)	lcccccl)C		Medicinal		
		Nc1nccs1	(=O)Nc1n		Chemistry		
			ccs1)c1nc		(2012), 58,		
			2cc(Cl)ccc		624-639		
			2[nH]1				
PvBO	O=C(O)/C	Clc1ccc(C	O=C(/C=	0.62	Bioorgani	0.646	0.026
P	=C(C(=0))	$(c^2 c c c c^2)$	C(=0)N	0.02	c and	0.010	0.020
1		N2CCCN			Medicinal		
		CC2)cc1	$(c)ccccc^2)$		Chemistry		
			(0200002)		(2010)		
			$c^{2}CC^{1}N$		(2010), 18(6)		
					10(0),		
			C1		2327-2350		
РуВО	O=C(O)C	NCCCCC	O=C(C=C	0.39	RSC	0.4493	0.059
Р	=CC=1C=	C	C=1C=C(Advances		3
	C(OC)C(OC)C(O)=		(2015),		
	O)=C(C1)		C(C1)C=2		5(21),		
	C=2C=CC		C=CC=C		15800-		
	=CC2		C2)NCCC		15811		
			CCC				
			0.0/0//0	0.01	D	0.0071	0.105
РуВО	O=C(OC(O=C(O)C	$\bigcup = C(C \# C)$	0.21	Bioconjug	0.3971	0.187
Р	C)(C)C)N	#C)NC(C(=O		ate		1
	CCCCC()NC(C(=O		Chemistry		

	N)C(=O))NC(C(=O		(2009),		
	NC(C(=O))NC(C(=O		20(11),		
	NC(C(=O))NC(C(=O		2123-2132		
	NC(C(=O))NC(C(=O				
	NC(C(=O))O)C)CC=				
	NC(C(=O)		1C=CC=C				
	O)C)CC=		C1)CC=2				
	1C=CC=C		C=CC=C				
	C1)CC=2		C2)C(C)C				
	C=CC=C)CC(C)C)				
	C2)C(C)C		CCCCN				
)CC(C)C						
PyRO	O = C(O)C			0.52	Bioorgani	0 5768	0.056
D D	CC(=0)N		(=0)N1C	0.52	Dioorgani	0.5700	8
1		N2CCNC	$CN(C(c^2c))$		Medicinal		0
		$C^{2})cc1$			Chemistry		
			cc(C1)cc2		(2010)		
			CC1)NC1		(2010), 18(6)		
					2327-2336		
					2327-2330		
РуВО	O=C(O)/C	Fc1ccc(C(O=C(/C=	0.54	Bioorgani	0.6145	0.074
Р	=C\C(=O)	c2ccc(F)c	C\C(=O)N		c and		5
	NC1CCC	c2)N2CC	1CCN(C(c		Medicinal		
	CC1	NCC2)cc1	2ccc(F)cc		Chemistry		
			2)c2ccc(F)		(2010),		
			cc2)CC1)		18(6),		
			NC1CCC		2327-2336		
			CC1				
D DO				0.74	I 1 C	0.7/07	0.000
Руво	COclecc2	NcIccc(O	COclecc2	0.74	Journal of	0.7627	0.022
P	cc(C(=O)))ccl	cc(C(=O))		Medicinal		1
	O)c(=O)o		Nc3ccc(O		Chemistry		
	c2c1)cc3)c(=O		(2007),		
)oc2c1		50(24),		
					6189-6200		
РуВО	ClC1=CC	O=C(O)C	O=C(NC1	0.29	European	0.3698	0.079

Р	=CC(=C1)	1=NC=C	=NC=C(C		Journal of		8
	C2=CN=C	N1	=2C=CC=		Medicinal		
	(N)N2C		C(Cl)C2)		Chemistry		
			N1C)C3=		(2022),		
			NC=CN3		240,		
					114577		
PyBO	O=C(O)C(O=C(OC(O=C(OC(0.8	Organic	0.5688	0.231
P	F)(F)F.[Se	C)(C)C)N	C)(C)C)N		Letters		2
]1[Se]CC	C(C(=O)O	C(C(=O)N)		(2015),		
	NCC1)C	1CC[Se][17(14),		
		,	Se]CC1)C		3636-3639		
РуВО	Cl.O=S(=	O=C(O)C	O=C(NCC	0.47	Analytical	0.4057	0.064
Р	O)(N)C1=	=1C=CC=	1=CC=C(Chemistry		3
	CC=C(C=	C(C1)B(O	C=C1)S(=		(Washingt		
	C1)CN)O	O)(=O)N)		on, DC,		
			C=2C=CC		United		
			=C(C2)B(States)		
			O)O		(2015),		
					87(8),		
					4231-4236		
TBTU	O=C(O)C	O(C1=CC	O=C(NC1	0.36	Bioorgani	0.4382	0.078
	1=CC=C2	=C(C=C1	=CC=C(C		c &		2
	C=C(OC)	OC)C=2C	=C1)C2=		Medicinal		
	C=CC2=C	=CC(N)=	CC=C(OC		Chemistry		
	1	CC2)C)C(OC)=C		(2012),		
			2)C3=CC		20(4),		
			=C4C=C(1557-1568		
			OC)C=CC				
			4=C3				
TBTU	O=C(O)C	C=1C=CC	O = C(N)C	0.25	Bioorgani	0 3947	0 144
IDIC	=CC(=0)	(=CC1)C2	=1C=CC=	0.23	c &	0.3917	7
	NC1=CC=	CNCCC2	C(C1)NC(Medicinal		,
	CC(=C1)	51.0002	=0)C=CC		Chemistry		
	C(=O)N		(=0)N2C		Letters		
					Letters		

			CCC(C=3		(2017),		
			C=CC=C		27(13),		
			C3)C2		2907-2911		
TBTU	O=C(O)C =CC1=CC =C2OCO C2=C1	BrC1=CC =C(N)C= C1	O=C(C=C C1=CC=C 2OCOC2= C1)NC3= CC=C(Br) C=C3	0.45	Pharmace utical Chemistry Journal (2018), 51(11), 995-1004	0.6017	0.151 7
TBTU	O=C1C=C (C(=O)NC C2=CC=C (C=C2)C(=O)O)C= 3C=CC=C C3N1	N=1C=CC (N)=CC1	O=C1C=C (C(=O)NC C2=CC=C (C=C2)C(=O)NC=3 C=CN=C C3)C=4C =CC=CC4 N1	0.17	Frontiers in Chemistry (Lausanne , Switzerlan d) (2021), 9, 666122	0.3027	0.132
TBTU	O=C(O)c1 ccc(Cl)cn 1	COC(=O) clccc(Br) cc1N	COC(=O) c1ccc(Br) cc1NC(= O)c1ccc(C l)cn1	0.15	European Journal of Medicinal Chemistry (2021), 210, 112958	0.2099	0.059 9
TBTU	O=C(O)c1 ccco1	COC(=O) c1ccc(Br) cc1N	COC(=O) c1ccc(Br) cc1NC(= O)c1ccco1	0.03	European Journal of Medicinal Chemistry (2021), 210, 112958	0.1212	0.091 2
TBTU	O=C(O)c1	Cc1cc(F)c	Cc1cc(F)c	0.273	Bioorgani	0.3632	0.090

	nc(N2CC	cc1N	cc1NC(=		c		2
	OCC2)c2c		O)c1nc(N		Chemistry		
	cccc2n1		2CCOCC		(2020),		
			2)c2ccccc		105,		
			2n1		104394		
		CO 1	CO 1	0.402	D' '	0.5(2)	0.070
IBIO				0.493	Bioorgani	0.3636	0.070
	2nc(C(=0))	(CN)cl	(CNC(=0))		C		6
)O)nc3ccc		c2nc(N3C		Chemistry		
					(2020),		
	001				105,		
			ccc3n2)c1		104394		
TBTU	CC1CN(c	Cc1cc(F)c	Cc1cc(F)c	0.301	Bioorgani	0.3018	0.000
	2nc(C(=O)	cc1N	cc1NC(=		c		8
)O)nc3ccc		O)c1nc(N		Chemistry		
	cc23)CC(2CC(C)O		(2020).		
	C)O1		C(C)C2)c		105.		
			$2 \operatorname{cccc} 2 \operatorname{n1}$		104394		
TBTU	CC1CN(c	NCc1ccc(CC1CN(c	0.558	Bioorgani	0.5599	0.001
	2nc(C(=O	N)cc1	2nc(C(=O		с		9
)O)nc3ccc)NCc3ccc(Chemistry		
	cc23)CC(N)cc3)nc3		(2020),		
	C)O1		ccccc23)C		105,		
			C(C)O1		104394		
IBIO				0.42	T 1 C	0.5100	0.000
		0=C(0)C	O=C(NCB	0.42	Journal of	0.5126	0.092
	C(C)(C)C	O=C(O)C CC	O=C(NCB 1OC(C)(C	0.42	Journal of Medicinal	0.5126	0.092 6
	C(C)(C)C 1(C)C)CN	O=C(O)C CC	O=C(NCB 1OC(C)(C)C(O1)(C)	0.42	Journal of Medicinal Chemistry	0.5126	0.092 6
	C(C)(C)C 1(C)C)CN	O=C(O)C CC	O=C(NCB 1OC(C)(C)C(O1)(C) C)CCC	0.42	Journal of Medicinal Chemistry (2019),	0.5126	0.092 6
	C(C)(C)C 1(C)C)CN	O=C(O)C CC	O=C(NCB 1OC(C)(C)C(O1)(C) C)CCC	0.42	Journal of Medicinal Chemistry (2019), 62(15),	0.5126	0.092 6
	C(C)(C)C 1(C)C)CN	O=C(O)C CC	O=C(NCB 1OC(C)(C)C(O1)(C) C)CCC	0.42	Journal of Medicinal Chemistry (2019), 62(15), 7160-7184	0.5126	0.092
TBTU	C(C)(C)C 1(C)C)CN CC1CN(c	O=C(O)C CC NCe1cccc	O=C(NCB 1OC(C)(C)C(O1)(C) C)CCC	0.42	Journal of Medicinal Chemistry (2019), 62(15), 7160-7184 Bioorgani	0.5126	0.092 6 0.076
TBTU	C(C)(C)C 1(C)C)CN CC1CN(c 2nc(C(=O	O=C(O)C CC NCc1cccc (N)c1	O=C(NCB 1OC(C)(C))C(O1)(C) C)CCC CC1CN(c 2nc(C(=O	0.42	Journal of Medicinal Chemistry (2019), 62(15), 7160-7184 Bioorgani c	0.5126	0.092 6 0.076 5
TBTU	C(C)(C)C 1(C)C)CN CC1CN(c 2nc(C(=O)O)nc3ccc	O=C(O)C CC NCc1cccc (N)c1	O=C(NCB 1OC(C)(C))C(O1)(C) C)CCC CC1CN(c 2nc(C(=O))NCc3ccc	0.42	Journal of Medicinal Chemistry (2019), 62(15), 7160-7184 Bioorgani c Chemistry	0.5126	0.092 6 0.076 5
TBTU	C(C)(C)C 1(C)C)CN CC1CN(c 2nc(C(=O)O)nc3ccc cc23)CC(O=C(O)C CC NCc1cccc (N)c1	O=C(NCB 1OC(C)(C))C(O1)(C) C)CCC CC1CN(c 2nc(C(=O))NCc3ccc c(N)c3)nc	0.42	Journal of Medicinal Chemistry (2019), 62(15), 7160-7184 Bioorgani c Chemistry (2020),	0.5126	0.092 6 0.076 5
TBTU	C(C)(C)C 1(C)C)CN CC1CN(c 2nc(C(=O)O)nc3ccc cc23)CC(C)O1	O=C(O)C CC NCc1cccc (N)c1	O=C(NCB 1OC(C)(C))C(O1)(C) C)CCC CC1CN(c 2nc(C(=O))NCc3ccc c(N)c3)nc 3ccccc23)	0.42	Journal of Medicinal Chemistry (2019), 62(15), 7160-7184 Bioorgani c Chemistry (2020), 105.	0.5126	0.092 6 0.076 5

			CC(C)O1		104394		
TBTU	O=C(O)c1 nc(N2CC OCC2)c2c cccc2n1	CCCCc1c cc(N)cc1	CCCCc1c cc(NC(=O))c2nc(N3 CCOCC3) c3ccccc3n 2)cc1	0.323	Bioorgani c Chemistry (2020), 105, 104394	0.3715	0.048
TBTU	O=C(O)c1 cccnc1O	CCN(C)C (=O)Nc1c ccc(N)c1	CCN(C)C (=O)Nc1c ccc(NC(= O)c2ccenc 2O)c1	0.09	European Journal of Medicinal Chemistry (2019), 174, 216- 225	0.1687	0.078 7
TBTU	O=C(O)c1 cccnc1O	CCN(C)C (=O)Oc1c ccc(CN)c1	CCN(C)C (=O)Oc1c ccc(CNC(=O)c2ccc nc2O)c1	0.38	European Journal of Medicinal Chemistry (2019), 174, 216- 225	0.4088	0.028
TBTU	O=C(O)C 1CCCC1	Cn1cc(C2 CCNCC2) c2cc(NC(=O)c3cc(C#N)ccn3)ccc21	Cn1cc(C2 CCN(C(= O)C3CCC C3)CC2)c 2cc(NC(= O)c3cc(C #N)ccn3)c cc21	0.04	Journal of Medicinal Chemistry (2018), 61(23), 10415- 10439	0.1013	0.061
TBTU	O=C(O)c1 cccc(- c2cnc(- c3c[nH]c4 ccccc34)[Nc1ccccc 1	O=C(Nc1 cccc1)c1 cccc(- c2cnc(- c3c[nH]c4	0.55	European Journal of Medicinal Chemistry (2017),	0.5628	0.012

	nH]2)c1		ccccc34)[125, 1213-		
			nH]2)c1		1224		
TBTU	CC(C)CC(=0)0	COc1ccc2 nc3cc(Cl) ccc3c(NC CCCN)c2 c1	COc1ccc2 nc3cc(Cl) ccc3c(NC CCCNC(= O)CC(C) C)c2c1	0.325	ChemMed Chem (2015), 10(8), 1344-1349	0.3276	0.002
TBTU	NS(=O)(= O)c1cccc(- c2n[nH]c3 ccc(C(=O) O)cc23)c1	CNCc1ccc cc1	CN(Cc1cc ccc1)C(= O)c1ccc2[nH]nc(- c3cccc(S(N)(=O)=O)c3)c2c1	0.54	Bioorgani c and Medicinal Chemistry (2014), 22(17), 4968-4997	0.6061	0.066
TBTU	CC(C)c1c cc(C=CC(=O)O)cc1	NCCCCN c1c2ccccc 2nc2ccccc 12	CC(C)c1c cc(C=CC(=O)NCCC CNc2c3cc ccc3nc3cc ccc23)cc1	0.22	Bioorgani c and Medicinal Chemistry Letters (2013), 23(3), 610-613	0.3072	0.087 2
TBTU	N#Cc1ccc 2cc(C(=O) O)ccc2c1	COc1cccc (- c2ccc(N)c c2)c1	COc1cccc (- c2ccc(NC(=O)c3ccc 4cc(C#N) ccc4c3)cc 2)c1	0.41	Bioorgani c and Medicinal Chemistry (2012), 20(4), 1557-1568	0.4647	0.054 7
TBTU	N#Cc1ccc 2cc(C(=O) O)ccc2c1	COc1cc(N)cc(OC)c1	COc1cc(N C(=O)c2c cc3cc(C# N)ccc3c2)	0.6	Bioorgani c and Medicinal Chemistry	0.6477	0.047 7

			cc(OC)c1		(2012),		
					20(4),		
					1557-1568		
TBTU	CC(C)c1c	NCCCCN	CC(C)c1c	0.28	ChemMed	0.3641	0.084
	cc(C=CC(c1ccnc2cc	cc(C=CC(Chem		1
	=O)O)cc1	(Cl)ccc12	=O)NCCC		(2012),		
			CNc2ccnc		7(9),		
			3cc(Cl)ccc		1537-1540		
			23)cc1				
TBTU	Cclccc(C	NCCCCN	Cc1ccc(C	0.32	ChemMed	0.3622	0.042
	=CC(=O)	c1ccnc2cc	=CC(=O)		Chem		2
	O)cc1	(Cl)ccc12	NCCCCN		(2012),		
			c2ccnc3cc		7(9),		
			(Cl)ccc23)		1537-1540		
			cc1				
				0.22	D	0.0000	0.002
IBIU	U=U(U)c1			0.22	Bioorgani	0.2233	0.003
					C and Madiainal		5
		c2000(IN)0			Chemistry		
					(2012)		
			4c3)cc2)c		(2012), 20(4)		
			1		1557-1568		
TBTU	COcleee(NCCCCN	COclece(0.3	ChemMed	0.3725	0.072
	C=CC(=O	c1ccnc2cc	C=CC(=O		Chem		5
)O)cc1	(Cl)ccc12)NCCCC		(2012),		
			Nc2ccnc3		7(9),		
			cc(Cl)ccc2		1537-1540		
			3)cc1				
TBTU	Cc1nc2c3	C1CNC1	Cc1nc2c3	0.48	Bioorgani	0.4935	0.013
	c(c(C(=O))		c(c(C(=O)		c and		5
	O)cn2c1C		N4CCC4)		Medicinal		
)CCC1(C		cn2c1C)C		Chemistry		
	Cc2cccc2		CC1(CCc		(2009),		
	1)O3		2cccc21)		17(1),		

			03		368-384		
TBTU	O=C(O)C =CC=1C= CC=CC1	NC=1C=C C=CC1	O=C(C=C C=1C=CC =CC1)NC =2C=CC= CC2	0.52	Pharmace uticals (2020), 13(7), 141	0.7686	0.248 6
TBTU	O=C(O)C 1=CC=CN C1=O	O=C(OC1 =CC=CC(N)=C1)N(C)CC	O=C(OC1 =CC=CC(=C1)NC(= O)C2=CC =CNC2= O)N(C)C C	0.35	European Journal of Medicinal Chemistry (2019), 174, 216- 225	0.1141	0.235 9
TBTU	O=C(O)C 1=NC(Cl) =CC=C1	O=C(OC) C1=CC=C (Br)C=C1 N	O=C(OC) C1=CC=C (Br)C=C1 NC(=O)C 2=NC(C1) =CC=C2	0.23	European Journal of Medicinal Chemistry (2021), 210, 112958	0.214	0.016

Reaction conditions recommendation for low yield reactions. Our research shown that our BERT yield prediction model embedded with intermediate knowledge had quite good generalization ability on the literature data set, which was involved 94 reactions. However, there are some low yield reactions among them. As a result, we intended to recommend a condition to elevate the yield with the assistance our prediction model. We selected five reactions from above 94 reactions, whose yields were less than 40% and the starting materials are commercially available. Subsequently, we predicted the yield of these reaction under six different conditions with BERT model embedded with intermediate intermediate knowledge and prediction yields were shown in Table S18. Subsequently, we performed the reactions according the conditions with the highest prediction yield. To our pleasure, the yield of four reactions was increased dramatically under recommended conditions (Figure S33), indicating our model had ability to recommend suitable conditions for some low yield reactions. The yield of these reactions was determined by ¹H NMR, whose data was consistent with previous work.¹ Besides, all these reaction were detected by UPLC-MS and corresponding signal of mass spectrometry could be found.

Table S18. The prediction yield under six different conditions

Ent	sub1	sub2	product	yield	Prediti	Pred	Pred	Pred	Predi	Pred
ry					on_HA	ition	ition	ition	tion_	ictio
					TU	_TB	_HB	_ED	РуВ	n_D
						TU	TU	С	OP	CC
1	O=C(O)	Cl.NC	O=C(NC)	0.39	0.443	0.36	0.24	0.37	0.38	0.18
	C1=NC=		C1=NC=C			09	35	03	37	72
	CC(Cl)=		C(Cl)=C1							
	C1									
2	O=C(O)	Cl.O=	O=C(NCC	0.27	0.3035	0.24	0.26	0.39	0.29	0.19
	C(=O)C	C(OC)	CC(=O)O			7	62	51	56	03
	C(C)C	CCCN	C)C(=O)C							
			C(C)C							
3	O=C(OC	OCCN	O=C(OC(0.35	0.3428	0.56	0.55	0.56	0.45	0.45
	(C)(C)C)		C)(C)C)N			66	7	16	85	85
	NCC(=O		CC(=O)N							
)0		ССО							
4	O=C(O)	NC=1	O=C(NC=	0.31	0.4356	0.31	0.70	0.54	0.72	0.57
	C1=CC=	C=CC	1C=CC=C			61	78	15	6	72
	CN1	=CC1	C1N)C2=							
		N	CC=CN2							
5	O=C(O)	O=C(O=C(OC)	0.23	0.32	0.21	0.22	0.15	0.32	0.30
	C1=NC(OC)C	C1=CC=C			4	93	7	16	23
	Cl)=CC	1=CC	(Br)C=C1							
	=C1	=C(Br	NC(=O)C2							
)C=C1	=NC(Cl)=							
		N	CC=C2							

Figure S38. The yields of reactions under recommended conditions

The performance toward reactions with reactivity cliff. We also evaluated the performance of a model toward the reaction with reactivity cliff, which were presented in Isayev's work ². We used the data set from Isayev's work to train an embedded BERT model enhanced by intermediate knowledge. The prediction was illustrated in Table S19, the result indicated that the performance of the model in regression was not so good. To our excitement, the model has the ability to identify which reaction could obtain the desired product in a higher yield, achieving an accuracy of 0.73. Besides, the successful prediction examples on binary classification were highlighted in color.

En try	Substrate_1	Substrate_2	Product	Yield	Predi ction yield
1	CCCCCCCC/C= C\CCCCCCCCC CCC(O)=O	C#CCN	CCCCCCCC/C=C\CCCCC CCCCCCC(NCC#C)=O	0.61	0.63
2	OC(CCCCCCC CCCCCCCCCC CC)=O	C#CCN	CCCCCCCCCCCCCCCC CCCCC(NCC#C)=O	0.13	0.57
3	O=C(O)C1=NN C2=C1C=CC=C 2	C1C=C(C=CC=1)N	O=C(C1=NNC2=C1C=CC= C2)NC3=CC=CC=C3	0.81	0.65
4	O=C(O)C1=CN C2=CC=CC=C2 1	C1C=C(C=CC=1)N	O=C(NC1=CC=CC=C1)C2 =CNC3=CC=CC=C32	0.13	0.52
5	C1=C(C=CC(C2 =C(C(=0)OC)C =C(C=C2)C(N(C C(C)C))=O)C1C (=O)O)CC1=CC =CC=C1	NC1C=CC(=CC =1)C(N)=N	O=C(OC)C(C=C(C(NCC(C) C)=O)C=C1)=C1C2C=CC(CC3=CC=CC=C3)=CC2C(NC4=CC=C(C(N)=N)C=C4)=O	0.2	0.59

Table S19. The performance toward reactions with reactivity cliff

6	C1(=C(C2=C(C(=O)OCC3C=CC =CC=3)C=C(C= C2)C(NCC(C)C) =O)C=CC(CC= C)=C1)C(O)=O	C1=CC(=CC=C1 C(=N)N)N	O=C(OCC1=CC=CC=C1)C(C=C(C(NCC(C)C)=O)C=C2)=C2C3=C(C(NC4=CC=C(C(N)=N)C=C4)=O)C=C(CC =C)C=C3	0.96	0.62
7	N12C(C3C(N=C C1CC1C=CC=C C2=1)=CC(=C(C =3)OC)OCCCC(O)=O)=O	NC1=CN(C)C(C (NC2=CN(C(C(NCC(C)(SSC)C) =O)=C2)C)=O)= C1	COC1=C(OCCCC(NC2=CN (C)C(C(NC3=CN(C)C(C(N CC(C)(C)SSC)=O)=C3)=O) =C2)=O)C=C4C(C(N5C(CC 6=C5C=CC=C6)C=N4)=O) =C1	0.02	0.63
8	N12C(C3C(N=C C1CC1C=CC=C C2=1)=CC(=C(C =3)OC)OCCCC(O)=O)=O	NC1=CN(C)C(C (NC2=CC=C(SC (C(NCC(C)(SSC)C)=O)=C3)C3= C2)=O)=C1	COC1=C(OCCCC(NC2=CN (C)C(C(NC3=CC=C(SC(C(NCC(C)(C)SSC)=O)=C4)C4 =C3)=O)=C2)=O)C=C5C(C (N6C(CC7=C6C=CC=C7)C =N5)=O)=C1	0.83	0.51
9	O=[N+]([O-])C1=CC=C(C(O))=O)C=C1C#CC 2=CC=C(O)C=C 2	CC(C)OC([C@ @H](N)CCC1= CC=CC=C1)=O	O=[N+](C1=CC=C(C=C1C #CC2=CC=C(C=C2)O)C(N[C@H](C(OC(C)C)=O)CCC 3=CC=CC=C3)=O)[O-]	0.97	0.5
10	O=[N+]([O-])C1=CC=C(C(O))=O)C=C1C#CC 2=CC=C(O)C=C 2	COC([C@@H](N)CCC1=CC=C C=C1)=O	O=[N+](C1=CC=C(C=C1C #CC2=CC=C(C=C2)O)C(N[C@H](C(OC)=O)CCC3=CC =CC=C3)=O)[O-]	0.17	0.34
11	OC(C1=CC=CO 1)=O	FC1=CC=C(N)C =C1C2=NC3=N C=CC=C3O2	O=C(C1=CC=CO1)NC2=C C(C3=NC(N=CC=C4)=C4O 3)=C(F)C=C2	0.04	0.4

12	C1=NC=C(C(O) =O)O1	FC1=CC=C(N)C =C1C2=NC3=N C=CC=C3O2	O=C(C1=CN=CO1)NC2=C C(C3=NC(N=CC=C4)=C4O 3)=C(F)C=C2	0.93	0.54
13	O=C(O)[C@H](CC1=CC=CC=C 1)NC(OCC2=CC =CC=C2)=O	COC(C[C@H](N)CCC1=CC=C C=C1)=O	O=C([C@@H](NC(OCC1= CC=CC=C1)=O)CC2=CC= CC=C2)N[C@@H](C(OC)= O)CCC3=CC=CC=C3	0.23	0.42
14	O=C([C@H](CC 1=CC=CC=C1) NC(OCC2=CC= CC=C2)=O)O	N[C@H](C(OC) =O)CC1=CC=C C=C1	O=C([C@@H](NC(OCC1= CC=CC=C1)=O)CC2=CC= CC=C2)N[C@@H](C(OC)= O)CC3=CC=CC=C3	0.93	0.56
15	COc1cc(C(N2[C @@H](CC3=C2 C=CC=C3)C=N 4)=O)c4cc1OCC CC(O)=O	NC1=CN(C)C(C (NC2=CC=C(C3 =CC(C(NCC(C)(C)SSC)=O)N(C) C3)C=C2)=O)= N1	COC1=C(OCCCC(NC2=CN (C)C(C(NC3=CC=C(C4=C N(C)C(C(NCC(C)(C)SSC)= 0)=C4)C=C3)=O)=N2)=O) C=C5C(C(N6C(CC7=C6C= CC=C7)C=N5)=O)=C1	0.29	0.41
16	COc1cc(C(N2[C @@H](CC3=C2 C=CC=C3)C=N 4)=O)c4cc1OCC CC(O)=O	NC1=CN(C(C(N C2=CC=C(C=C2)C3=CN(C)C(C(NCC(C)(SSC)C) =O)=C3)=O)=C1)C	COC1=C(OCCCC(NC2=CN (C)C(C(NC3=CC=C(C4=C N(C)C(C(NCC(C)(C)SSC)= O)=C4)C=C3)=O)=C2)=O) C=C5C(C(N6C(CC7=C6C= CC=C7)C=N5)=O)=C1	1	0.59
17	O=C(O)C1=NN C2=CC=CC=C1 2	C1C=C(C(=CC= 1)C(OC)=O)N	O=C(C1=NNC2=CC=CC=C 12)NC3=C(C(OC)=O)C=CC =C3	0.06	0.62
18	O=C(O)C1=NN C2=CC=CC=C1 2	C1C=C(OC)C(= CC=1)N	O=C(C1=NNC2=CC=CC=C 12)NC3=C(OC)C=CC=C3	0.82	0.42

19	C1(C=CC(/C=C/ C(O)=O)=CC=1) O	ClC1=CC=C(CC CCN)C=C1	O=C(NCCCCC1=CC=C(Cl) C=C1)/C=C/C2=CC=C(O)C =C2	0.09	0.63
20	OC1=CC=C(/C= C/C(O)=O)C=C1	C1(C=CC(CCN) =CC=1)Cl	OC1=CC=C(C=C1)/C=C/C(NCCC2=CC=C(Cl)C=C2)= O	0.96	0.58
21	CC(C)(C)C1=C C=C(C(O)=O)C =C1	NC1=CC=C(C= CN2CC3=CC=C (C(OC)=O)C=C 3)C2=C1	CC(C)(C)C1=CC=C(C(NC2 =CC(N(CC3=CC=C(C(OC) =O)C=C3OC)C=C4)=C4C= C2)=O)C=C1	0.42	0.45
22	CC(C)(C)C1=C C=C(C(O)=O)C =C1	NC1=CC=C(C= CN2CC3=CC=C (C(OC)=O)C=C 3OC)C2=C1	CC(C)(C)C1=CC=C(C(NC2 =CC(N(CC3=CC=C(C(OC) =O)C=C3)C=C4)=C4C=C2) =O)C=C1	0.97	0.58

S3.12 Transfer learning among reaction conditions

We acknowledge the potential use of transfer learning to reduce the amount of data required for generalization to new reaction conditions. Transfer learning can be a powerful approach for leveraging knowledge from reactions with similar intermediates. We explored transfer learning using pretrained models across reaction conditions, as shown throughout the manuscript and the SI. The results in Table S demonstrate the outcomes of transfer learning in three scenarios:

1. Pretrained EDC transferred to DCC:

The model pretrained on EDC conditions was fine-tuned for DCC reactions, yielding a Mean Absolute Error (MAE) of 0.1535, Root Mean Squared Error (RMSE) of 0.1987, and R^2 of 0.5253.

2. Pretrained HATU transferred to DCC:

When the model was pretrained on HATU conditions and then fine-tuned on DCC, the performance improved slightly compared to EDC-to-DCC transfer, achieving an MAE of 0.145, RMSE of 0.2039, and R² of 0.5002.

3. Pretrained HATU transferred to EDC:

Transferring the pretrained HATU model to EDC conditions resulted in an MAE of 0.1776, RMSE of 0.2217, and R² of 0.3053.

For comparison, we also included results for models trained directly on DCC and EDC conditions without any transfer learning:

- DCC itself no transfer: MAE of 0.07, RMSE of 0.05, and R² of 0.67.
- EDC itself no transfer: MAE of 0.14, RMSE of 0.11, and R² of 0.75.

These results indicate that while transfer learning improves generalization to new conditions compared to training from scratch on smaller datasets, the performance is still not as strong as models trained directly on large datasets for the specific reaction conditions. However, transfer learning remains a promising approach when data availability is limited, particularly for reactions with shared intermediate structures.

	MAE	RMSE	R2
Pretrained EDC - transferred to DCC	0.15	0.19	0.52
Pretrained HATU - transferred to DCC	0.15	0.20	0.50
Pretrained HATU- transferred to EDC	0.18	0.22	0.31
DCC itself – no transferred knowledge	0.07	0.05	0.67
EDC itself – no transferred knowledge	0.14	0.11	0.75

Table S20. The comparison of BERT model performance before and after reaction conditions

S4 Reference

- a) Zengin K. B.; Ozturk C. D.; Cakmak, E. B.; Kolcuoglu, Y.; Senol, H.; Saglk O. B. N.; Dag, A.; Benkli, K. Journal of Medicinal Chemistry 2024, 67, 4463-4482; b) McClure, J. J.; Inks, E. S.; Zhang, C.; Peterson, Y. K.; Li, J.; Chundru, K.; Lee, B.; Buchanan, A.; Miao, S.; Chou, C. J. ACS Chemical Biology 2017, 12, 1644-1655; c) Antoni, F.; Wifling, D.; Bernhardt, G. European Journal of Medicinal Chemistry 2021, 210, 112958; d) Piasecki, S. K.; Zheng, J.; Axelrod, A. J.; Detelich, M. E.; Keatinge-Clay, A. T. Proteins: Structure, Function, and Bioinformatics 2014, 82, 2067-2077; e) Kuo, C.-H.; Hsieh, W.-T.; Yang, Y.-H.; Hwang, T.-L.; Cheng, Y.-S.; Lin, Y. A Journal of Organic Chemistry 2024, 89, 4958-4970.
- 2) Liu, Z.; Moroz, Y. S.; Isayev, O. Chemical. Science. 2023, 14, 10835-10846.

S5 Spectrum of crude reactions

