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A. Materials and Methods
Materials

All materials were purchased from Fisher Scientific, Sigma Aldrich, or Ambeed unless otherwise noted.
Deuterated solvents were purchased from Cambridge Isotope Laboratories. All chemicals were used as
purchased unless otherwise noted. Reactions were performed under inert reaction atmosphere and in flame-
dried round-bottom flasks unless otherwise specified.

Methods and Instrumentation

Nuclear Magnetic Resonance Spectroscopy. All 'H and '*C NMR spectra were collected on a Bruker 400
MHz spectrometer at 298 K. Chemical shifts were calibrated using residual NMR solvent as an internal
reference (CDCI3 7.26 ppm for 1H NMR, 77.00 ppm for *C NMR spectra).

Fourier-Transform Infrared (FTIR) Spectroscopy. Fourier-transform infrared (FTIR) spectroscopy was
performed using a Cary 630 FTIR spectrometer with a diamond attenuated total reflection (ATR)
attachment with 1 cm™ resolution in ambient atmosphere on neat samples. All spectra are shown with
atmospheric background correction applied

UV-Visible (UV-Vis) Spectroscopy. UV-Vis spectroscopy, except for heated UV-Vis experiments, was
performed using a Cary 5500 instrument from 300-800 nm with a resolution of 0.1 nm. All spectra are
baseline corrected and have solvent background subtracted.

Heated UV-Visible Spectroscopy (Heated UV-Vis). Heated UV-Vis spectroscopy was performed using
a Cary 100 Bio instrument and was heated with a Cary dual cell Peltier accessory from 25° to 60°C in 2°
increments while being stirred. Samples were measured from 300-800 nm with a resolution of 0.1 nm. All
spectra are baseline corrected and have solvent background subtracted.

Cyclic Voltammetry (CV). Cyclic voltammetry was carried out on a Bio-Logic SP-50e/150e potentiostat
with a three-electrode setup, using a 2 mm Pt disk as a working electrode, an Ag wire as a reference
electrode, and a Pt wire as a counter electrode. Samples (0.5 mM) were dissolved in CH>Cl, with 0.1 M
nBuyNPFs as supporting electrolyte, and ferrocene as an internal reference after initial measurements. CVs
were then referenced to the ferrocene/ferrocenium redox couple. Measurements were carried out at a scan
rate of 200 mV/s with an initial reductive sweep under N» at room temperature.

Steady-state Photoluminescence (PL) Spectroscopy. Steady-state PL spectroscopy for the 0.01 mM
PDAC chloroform solutions was collected using a 405 nm continuous wave laser (LDH-D-C-405,
PicoQuant) at a power density of 30 mW c¢m™ where a 425 nm long-pass filter (Chroma Tech) was used to
isolate sample emission and remove excess laser scatter.

Mass Spectrometry (MS). All mass spectrometry measurements were acquired with a Bruker autoflex
maX MALDI Time-Of-Flight (TOF) spectrometer. Samples were solubilized in CHCl; and mixed (1:1 vol)
with a matrix of 2,5-dihydroxybenzoic acid (DHB) in MeCN:H,O (7:3 vol) with TFA (0.1% vol).
Spectrometry was performed by the University of Florida Mass Spectrometry Research and Education
Center. Funding from NIH S10 OD021758-01A1 and S10 OD030250-01A1

Time-resolved Photoluminescence (PL) Spectroscopy. Time-resolved photoluminescence (PL)
dynamics for the 0.01 mM PDAC derivative chloroform solutions were collected via time-correlated single
photon counting (TCSPC) where a 405 nm picosecond pulsed laser (LDH-D-C-405, PicoQuant) ata 1 MHz
repetition frequency and power density of 4.93 mW cm™ was used. A 425 nm long-pass (Chroma Tech)
was used to remove laser scatter and isolate sample emission. Photon arrival times were determined using
a single-photon avalanche photodiode (Micro Photon Devices) coupled to a MultiHarp 150 event timer
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(PicoQuant). A silicon power meter (ThorLabs PM100-D) was used to measure incident laser powers, and
all laser spot sizes were measured using the razor blade method (90:10).

Quantum Yields. Quantum yield measurements were performed using a Hamamatsu C11347 Quantaurus-
QY spectrometer equipped with a 150 W Xenon arc lamp source. All samples were measured at 3 mM in
chloroform. Samples measured were excited under a 350 nm light using a CCD detector.

Abbreviations and symbols: Permanent ground state dipole (ug), highest occupied molecular orbital
(HOMO), lowest unoccupied molecular orbital (LUMO), permanently dipolar diazacoronenes (PDACs),
perylene diimide (PDI), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), lowest energy absorption
maxima (Amax, absorption), largest emission maxima (Amax, emission)s photoluminescence quantum yield (®pr),
monomeric lifetimes (tm), assembly lifetimes (ta)

B. Synthetic Methods

05 0.,.0
0500 BuOOC COOBu BuOOC COOBu @g
.) fuming HNO;
DBU, BuBr, BuOH CHZCIZ 25 °C, 4h 0, NNO HSO3CI O,N ‘O NO,
o ) regioisomer .
MeCN, 82 °C, 8 h separatlon OO 25°C,0.5h
1) O 0O 97% BuOOC COOBu 51% BuOOC COOBu 99% o]
Goujon and coworkers
- 2023
R = NMez, ) CN Chem. Eur. J.
C20"'41 Con41 o CZOH41
1. TFA CH,Cly, W
2 DDQ white ||ght THF PhMe
O Oe O R CH,Cl,, 25°C,3h OO 60 °C,6h Oe 90 °C,18h
51-97% 98% O”°N™0 83%
C20H41 C20H41 CaoHa1
PDAC-R 6 5

Compound 2: Procedure adapted from literature.! To a flask, perylenetetracaboxylic dianhydride

(Compound 1) (4 g, 1 equiv), potassium iodide (846 mg, 0.5 equiv) and dried acetonitrile (400 mL) were
added. The mixture was placed under nitrogen, heated to 70 °C and stirred for 30 minutes. To the mixture,
1-bromobutane (6.55 mL, 6 equiv), 1-butanol (5.6 mL, 6 equiv) and 1,8-Diazabicyclo[5.4.0]Jundec-7-ene
(12.17 mL, 8 equiv) were added. The mixture was heated at 82 °C for 18 hours. The solution was allowed
to cool to 23 °C and the solvent was removed under reduced pressure. The resulting residue was extracted
with ethyl acetate (200 mL). The solution was washed with water (100 mL, 2X) and brine (100 mL, 1x).
The resulting organic layers were combined and dried. The crude product was purified by filtering through
a silica plug (SiO», 150 mL) with CH»Cl, (300 mL) to yield Compound 2 as a bright orange solid (6.5 g,
97% yield). '"H NMR was consistent with previous report.

'"H NMR (400 MHz, CDCls) 6 8.15 (d, J = 8.0 Hz, 4H), 7.96 (d, J = 7.9 Hz, 4H), 4.34 (t, J = 6.8 Hz, 8H),
1.79 (t, J = 1.6 Hz, 8H), 1.55 — 1.40 (m, 8H), 1.00 (¢, J = 7.4 Hz, 12H) ppm.

Compound 3: Procedure adapted from literature with some modifications.? Compound 2 (6.5 g, 1 equiv)
was added to a 250 mL round-bottom flask with dichloromethane (CH>Cl,) (70 mL). Fuming nitric acid (4
mL) was added to the solution via a Pasteur pipette. The flask was sealed and stirred at 23 °C for 4 hours.
The solution was quenched with triethylamine (3 mL) dropwise. The resulting solution was filtered through
a silica plug (SiO2, 150 mL). The silica plug was thoroughly washed with CH>Cl, (200 mL). The resulting
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solution was dried under vacuum. The product was recrystallized twice in acetonitrile to produce
Compound 3 as a red solid (4.4 g, 51% yield). "H NMR was consistent with previous report.

'H NMR (400 MHz, CDCls) 6 8.39 (s, 2H), 8.05 (d, J = 2.0 Hz, 4H), 4.36 (q, J = 6.7 Hz, 8H), 1.85 — 1.73
(m, 8H), 1.56 — 1.42 (m, 8H), 1.00 (td, J = 7.4, 1.1 Hz, 12H) ppm.

Compound 4: Procedure adapted from literature with some modifications.? To a flask, Compound 3 (3.3
g, 1 equiv.) was added with a Teflon-coated stir bar. Chlorosulfonic acid (25 mL) was added to the flask,
and the solution was left to stir at 23 °C for 30 minutes. The reaction was quenched by pouring the solution
into an ice bath (1000 mL) and allowing the resulting solution to stir for 30 minutes. The solution was
filtered and washed with water and hexanes to yield Compound 4 as a highly insoluble dark red solid. (2.13
g, 99% yield). 'H NMR was consistent with previous report.

'H NMR (400 MHz, CDCls) 6 8.94 (s, 2H), 8.78 (d, J = 8.0 Hz, 2H), 8.43 (d, J = 8.1 Hz, 2H) ppm.

2-(2-octyldodecyl) isoindoline-1,3-dione: Procedure was modified from literature.®* Potassium
phthalimide (5.64 g, 1.1 equiv) was added to the solution of 2-octyl dodecyl bromide (10 g, 1 equiv) in
anhydrous DMF. The reaction mixture was sparged with N, and then stirred at 90 °C for 18 hours. The
reaction mixture was removed from heat, poured into water (150 mL), and extracted with CH>Cl, (50 mL,
3x). The combined organic layer was washed with 0.2 N KOH (100 mL, 1x), water (100 mL, 1x), saturated
NH4C1 (100 mL, 1x), and dried over Na;SOa. The solution was concentrated under reduced pressure after
filtration. The crude mixture was purified by filtering through a silica plug (SiO,, 150 mL) with CH,Cl,.
The solvent was evaporated under reduced pressure to yield 2-(2-octyldodecyl) isoindoline-1,3-dione (10
g, 85%) as a pale-yellow oil. The product was used in the next reaction without further purification or
characterization.

2-Octyldodecylamine: 2-(2-Octyldodecyl) isoindoline-1,3-dione (10 g, 1 equiv) and hydrazine hydrate (5
mL, 5 equiv) were placed in a flask with methanol (50 mL). The solution was sparged with N, then stirred
at 70 °C for 5 hours. The mixture was allowed to cool to 23 °C. If any methanol remained, it was removed
under reduced pressure. The residue was diluted with a 10% KOH solution (100 mL) and CH,Cl, (100 mL)
and extracted. The aqueous layer was washed with CH,Cl, (50 mL, 3%). The combined organic layers were
washed with brine (100 mL) and dried over Na,SO, . The solvent was removed under reduced pressure to
yield 2-octyldodecylamine as a yellow oil (6.60g, 95% yield). '"H NMR was consistent with previous
reports.’

'"H NMR (400 MHz, CDCl3) 6 2.57 (d, J = 4.8 Hz, 2H), 1.26 — 1.22 (m, 35H), 0.92 — 0.80 (m, 6H).

Compound 5: Procedure adapted from literature with some modifications.? Compound 4 (1.7 g, 1 equiv)
was added to a flask. Toluene (45 mL) was added to the vial and sparged under N». 2-Octyldodecylamine
(2.1 g, 2.1 equiv) was added via needle. The mixture was stirred and heated at 100 °C for 18 hours. The
solution was allowed to cool to 23 °C and then the solvent was removed under reduced pressure. The crude
material was purified via flash column chromatography (SiO», 1:1 vol CH>Cl>:Hexanes) to yield Compound
5(1.9 g, 83% yield). 'H NMR was consistent with previous report.

'H NMR (400 MHz, CDCL3) 6 8.85 (d, J = 1.2 Hz, 2H), 8.67 (dd, J = 8.1, 1.2 Hz, 2H), 8.33 (dd, J = 8.1,
1.2 Hz, 2H), 4.14 (t, J = 6.5 Hz, 4H), 1.98 (s, 2H), 1.24 (d, J = 7.7 Hz, 68H), 0.94 — 0.70 (m, 12H) ppm.

Compound 6: Procedure adapted from literature with some modifications.? Pd/C (100 mg) and N>H4-H,O
(5 mL) were added to a solution of Compound 5 (0.7 g) in THF (100 mL) under N». The resulting mixture
was stirred for 18 hours at 60 °C. The solution was allowed to cool to 23 °C and then filtered through a pad
of Celite® (250 mL). The Celite® was washed with CH,Cl,/MeOH (1:1 vol, 150 mL). The solvent was
evaporated under reduced pressure, and the crude material was purified by column chromatography (SiO,
CH,Cl,) to afford Compound 6 (0.65 g, 98%) as a blue solid. '"H NMR was consistent with previous report.
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'"H NMR (400 MHz, CDCl3) 6 8.69 (d, J = 8.2 Hz, 2H), 8.59 (d, J = 8.1 Hz, 2H), 7.88 (s, 2H), 5.06 (s, 4H),
4.10 (dd, J = 18.2, 7.3 Hz, 4H), 1.9 (s, 2H), 1.39 — 1.18 (m, 68H), 0.88 — 0.80 (m, 12H) ppm.
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PDAC Syntheses

o 3
0 2 equiv. N= C‘Q_/
o]
TFA (cat.), CH;Cly, 42°C, 1.5h
o

Scheme S1. Synthetic Scheme for PDAC-CN

PDAC-CN. Compound 6 (116 mg, 1 equiv) was placed in a vial with 4-formylnitrile (31 mg, 2 equiv),
CH:Cl, (3.48 mL), and TFA (0.6 mL). The solution was mixed and then distributed into NMR tubes. The
tubes were placed into a water bath (42 °C) for 2 hours. The tubes were then irradiated with white LED
light (500 W) for 2 hours. DDQ was added to each tube and inverted to mix and irradiated for an additional
hour. The mixtures in each of these NMR tubes were combined into a vial, and the solvent was removed
under reduced pressure. The crude solid was washed with acetone (100 mL) over a vacuum filter under the
solution was clear. The filter cake was dissolved in CH,Cl, (50 mL) and washed with a K»COs solution (2
M, 50 mL, 1x), water (50 mL, 1x), and brine (50 mL, 1%) in a separatory funnel. The organic layer was
dried with Na,SO4 the solvent was evaporated under reduced pressure. The crude was purified by column
chromatography without pressure (SiO,, 99:1 vol CH,Cl,:MeOH) to yield PDAC-CN as a green solid (73
mg, 51%).

TH-NMR (400 MHz, CDCL;) J 10.09 (s, 2H), 9.80 (s, 2H), 8.38 (d, J = 8.4 Hz, 4H), 8.15 (d, J = 8.4 Hz,
4H), 4.39 (d,J = 7.3 Hz, 2H), 4.27 (d, J = 7.4 Hz, 2H), 1.28 — 1.04 (m, 68H), 0.86 — 0.51 (m, 12H) ppm.

BC-NMR (101 MHz, CDCl;s) § 163.5, 162.8, 160.7, 142.5, 142.2, 133.0, 132.0, 131.4, 131.0, 130.9, 126.7,
126.4,124.2,123.1,121.4,121.2,118.4,118.3,118.1,116.0, 114.4, 32.0, 31.8, 30.3, 30.2, 29.8, 29.8, 29.7,
29.5,26.8,26.8,26.6,22.8, 14.2 ppm.

FT-IR (Diamond-ATR, neat, cm™): 2953, 2920, 2851, 1707, 1662,1449, 1377, 1257, 1080, 1017, 801

White Light (500 W)
DDQ (5 equiv.)

CHyClp, 23°C, 2 h

MS (MALDI-TOF): calc [M+H]": 1203.73 found [M+H]": 1203.691
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HAG L2 White Light (500 W)
2 equiv. "3 - DDQ (5 equiv.)

Lo

TFA (cat.), CH,Cly, 42°C, 1.5 h

CHyC,23°C, 2h

Scheme S2. Synthetic Scheme for PDAC-Me

PDAC-Me. Compound 6 (96.5 mg, 1 equiv) was placed in a vial with tolualdehyde (23.63 mg, 2 equiv)
with CH2Cl, (5 mL) and TFA (0.6 mL). The solution was mixed and then distributed into NMR tubes. The
tubes were placed into a water bath (42 °C) for 2 hours. The tubes were then irradiated with white LED
light (500 W) for 2 hours. DDQ was added to each tube and inverted to mix and were irradiated for an
additional hour. The mixtures in each of these NMR tubes were combined into a vial and the solvent was
removed under reduced pressure. The crude solid was washed with acetone over a vacuum filter under the
solution was clear. The filter cake was dissolved in CH>Cl, (50 mL) and washed with a K»COs solution (2
M, 50 mL, 1x), water (50 mL, 1x), and brine (50 mL, 1X) in a separatory funnel. The organic layer was
dried with Na,SO4 the solvent was evaporated under reduced pressure. The crude was purified by column
chromatography without pressure (SiO2, 99:1 vol CH>Cl,:MeOH) to yield PDAC-Me as a green solid (60
mg, 51.64%)

"H-NMR (400 MHz, CDCls) 6 9.79 (s, 2H), 9.56 (s, 2H), 8.08 (d, /= 8.0 Hz, 4H), 7.62 (d, J= 7.6 Hz, 4H),
4.35(d,J=17.3 Hz, 2H), 4.24 (d, J= 7.4 Hz, 2H), 2.68 (s, 6H), 1.60 (s, 4H), 1.43 — 1.09 (m, 68H), 0.79 (q,
J=6.8 Hz, 12H) ppm.

13C-NMR (101 MHz, CDCls) 6 163.7, 163.6, 162.6, 142.9, 140.4, 135.3, 132.0, 131.3, 131.0, 130.1, 126.4,
126.0, 124.5, 121.8, 121.3, 115.9, 77.4, 37.1, 36.9, 32.0, 31.9, 30.3, 29.9, 29.8, 29.5, 29.5, 26.8, 26.7, 22.8,
22.8,21.8, 14.2 ppm.

FT-IR (Diamond-ATR, neat, cm™): 2953, 2920, 2853, 1785, 1701, 1664, 1610, 1449, 1304, 1224, 1149,
810

MS (MALDI-TOF): calc: [M+H]" 1181.77 found: [M+H]" 1181.772

A note on the use of NMR tubes in the synthesis of PDACs: Photocyclizations require great optical
penetration in order for efficient reactions to occur. There is a direct tradeoff between the width of a reaction
vessel and the efficiency of a photochemical reaction. This problem compounds when working with colored
solutions. Typically, photoreactors are used to perform photocyclizations on aromatic molecules that suffer
from this issue, as the thin tubes allow for optimal light perforation. However, we found similar results
doing the reaction in NMR tubes as the thin borosilicate glass tubes have a small diameter that is able to
facilitate the Mallory photocyclizations of PDACs.
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White Light (500 W)
DDQ (5 equiv.)

CH,Cl, 23°C, 3h

o
(o]
/
e} 2 equiv. /O_Q_/
o) 3
TFA (cat.), CH,Cly, 42 °C, 1.5 h
o

Scheme S3. Synthetic Scheme for PDAC-OMe

PDAC-OMe Compound 6 (100 mg, 1 equiv) was placed in a vial with anisaldehyde (27.74 mg, 2 equiv)
with TFA (0.5 mL) and CH,Cl,. The solution was mixed and heated in the vial at 45 °C for 2 hours. The
solvent was removed under reduced pressure. DDQ (100 mg, 5 equiv) was added to the vial with the dried
crude solid with CH>Cl,. The mixture was then distributed into NMR tubes. The tubes were then irradiated
with white LED light (500 W) for 2 hours. DDQ was added to each tube and inverted to mix and irradiated
for an additional hour. The mixtures in each of these NMR tubes were combined into a vial, and the solvent
was removed under reduced pressure. The crude solid was washed with acetone over a vacuum filter under
the solution was clear. The filter cake was dissolved in CH»Cl» (50 mL) and washed with a K,COs solution
(2 M, 50 mL, 1x), water (50 mL, 1x), and brine (50 mL, 1x) in a separatory funnel. The organic layer was
dried with Na,SO4 the solvent was evaporated under reduced pressure to yield PDAC-OMe as an orange
solid (127 mg, 97% yield).

"H-NMR (400 MHz, CDCl3) 6 9.66 (s, 2H), 9.47 (s, 2H), 8.14 (d, J= 8.6 Hz, 4H), 7.32 (d, J= 8.7 Hz, 4H),
434 (d, J=7.3 Hz, 2H), 4.24 (d, J= 7.3 Hz, 4H), 4.11 (s, 6H), 2.09 (s, 2H), 1.49 — 1.06 (m, 68H), 0.83 —
0.74 (m, 12H) ppm.

BC-NMR (101 MHz, CDCl3) § 163.3, 161.5, 142.5, 133.0, 131.4, 130.3, 125.7, 121.2, 120.7, 117.8, 114.9,
55.7,45.6,45.2,37.1, 37.0, 32.0, 32.0, 32.0, 31.9, 30.4, 29.9, 29.8, 29.5, 29.5, 26.8, 26.7, 22.8, 22.8, 14.2

FT-IR (Diamond-ATR, neat, cm™): 2939, 2916, 2849, 1735, 1701, 1667, 1604, 1448, 1254, 1092, 1015,
795

MS (MALDI-TOF): calc: [M+H]" 1213.76 found: [M+H]" 1213.416
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White Light (500 W)
DDQ (5 equiv.)

CH,Clp, 23°C, 3 h

o
HoN \ o
N—@—’/
o) 2equiv. ,
o} L
TFA (cat.), CH,Cly, 42°C, 1.5 h
o}

Scheme S4. Synthetic Scheme for PDAC-NMe;

PDAC-NMe;. Compound 6 (200 mg, 1 equiv) was placed in a vial with para-dimethylaminobenzaldehyde
(62 mg, 2 equiv) with CH,Cl, (15 mL) and TFA (0.75 mL). The solution was mixed and heated in the vial
at 42 °C for 1.5 hours. The mixture was then distributed into NMR tubes. The tubes were then irradiated
with white LED light (500 W) for 2 hours. DDQ was added to each tube and inverted to mix and irradiated
for an additional hour. The mixtures in each of these NMR tubes were combined into a vial, and the solvent
was removed under reduced pressure. The crude solid was washed with acetone over a vacuum filter under
the solution was clear. The filter cake was dissolved in CH>Cl» (50 mL) and washed with a K,COs solution
(2 M, 50 mL, 1x), water (50 mL, 1x), and brine (50 mL, 1x) in a separatory funnel. The organic layer was
dried with Na,SO4 the solvent was evaporated under reduced pressure. The crude was purified by column
chromatography without pressure (SiO, 99:1 vol CH,Cl,:MeOH to 95:5 vol CH,Cl,:MeOH) to yield
PDAC-NMe: as a red solid (124 mg, 62%).

IH-NMR (400 MHz, CDCls) 6 9.87 (s, 2H), 9.56 (s, 2H), 8.13 (d, J= 8.4 Hz, 4H), 7.09 (d, J = 8.6 Hz, 4H),
433 (dd, J = 25.0, 7.3 Hz, 4H), 3.24 (s, 12H), 2.13 (s, 2H), 1.51 — 0.96 (m, 68H), 0.81 — 0.74 (m, 12H)

BC NMR (101 MHz, CDCl5) 6 163.9, 162.4, 151.8, 143.5, 132.9, 132.3, 130.6, 127.0, 126.0, 124.5,
121.2,115.6,112.8,77.5,77.4,77.2, 76.8, 40.6, 37.0, 32.0, 30.3, 29.9, 29.8, 29.5, 26.8, 22.8, 14.2 ppm.

FT-IR (Diamond-ATR, neat, cm™): 2957, 2922, 2851, 1701, 1662, 1602, 1451, 1361, 1092, 1017, 792
MS (MALDI-TOF): calc: [M+H]" 1239.38 found: [M+H]" 1239.836
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C. Spectroscopic and Electrochemical Characterization of PDACs

Table S1. Spectroscopic and electrochemical data of PDACs

PDAC-CN PDAC-Me PDAC-OMe PDAC-NMe;
Dipole Moment (Debye)* 1.0185 4.0268 4.8293 5.9898
Amasx, absorption ()" 477 484 498 456, 557"
Amax, emission (M) 483 498 533 505, 723%
Opp ** 20% 10% 20% 1%
Tm (n8)° 9.5 59 3.6 1.8%
Ta (ns)® 7.8" 6.6" 5.0 5.17
Einl (V) -0.96 -1.21 -1.52 -1.27
Ein 2 (V) -1.17 -1.34 -1.68 -1.53
Ein 3 (V)" -1.43 -1.53 -1.84 n/a
*Calculated Value

" measured in chloroform at 0.01 mM

¥ measured in chloroform at 0.01 mM, excited at 405 nm

$ measured in 95:5 hexanes:chloroform at 0.01 mM, excited at 405 nm
* average weighted lifetime based on a biexponential fit

”% charge-transfer state

** measured in chloroform at 0.03 mM, excited at 350 nm

" measured in dichloromethane at 0.5 mM with 0.1 M nBusNPFg electrolyte (vs. Fc/Fc*)
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Figure S1. Absorption/emission spectra of PDAC-CN in the monomer state (0.1 mM, CHCIs, Aexc = 405
nm)
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Figure S2. Absorption/emission spectra of PDAC-Me in the monomer state (0.1 mM, CHCls, Aexe = 405
nm)
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Figure S3. Absorption/emission spectra of PDAC-OMe in the monomer state (0.1 mM, CHCl3, Acxc = 405
nm)
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Figure S4. Absorption/emission spectra of PDAC-NMe; in the monomer state (0.1 mM, CHCls, Aexc = 405
nm)
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Figure S5. Molar absorptivity profile of PDAC molecules (10 puM, CHCI;).
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(0.5 mM)
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Figure S12. Solvent-dependent assembly of PDACs.
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Figure S13. Concentration-dependent assembly for PDACs in 95:5 vol hexanes:chloroform mix



D. PDAC Assembly Studies

The mechanism of supramolecular polymerization was studied via variable-temperature UV-Vis
spectroscopy. The following equations were utilized to characterize the mechanism of assembly and fit
using Origin 8.5 software.

e(T) — €agg
n=1—-——————
aagg( ) €mon — €aygg

Equation S1. Degree of aggregation from temperature-dependent UV-Vis spectroscopy.
Where enon is the molar absorptivity at 334K and €., is the molar absorptivity at 298 K

Aggg(T) = -
99 1 —0.908AHTRT7;’"
+ e m

Equation S2. Isodesmic assembly prediction model
Where T = 0age(T) = 0.5, R is the ideal gas constant, and AH is the enthalpy release

Equation S3. Equilibration constant for isodesmic assembly
Where Cris the concentration of the sample

—AH,

aagg(T) = agar(1 —exp —2(T - Te) )
RT;
Equation S4. Prediction model for the elongation regime of cooperative assembly.
Where AH.is the enthalpy of elongation, R is the ideal gas constant, T is the elongation temperature, and

Osat 1S @ mathematical parameter to ensure olagg/0sa does not exceed unity.

(T - Te)

K, = exp [4H, RTZ
e

]

Equation S5. Equilibration constant for elongation process of cooperative assembly
R is the ideal gas constant; T. is the elongation temperature.
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Figure S14. Left. Temperature-dependent UV-Vis experiments of PDAC-NMe, (92:8 wvol
hexanes:chloroform, 0.5 mM) between 298 K and 335 K. Right. Plot of a.g, at 400 nm against temperature
(K) (red circles) with data fit obtained from nucleation-elongation model (black line).

Table S2. Thermodynamic parameters obtained from temperature-dependent UV-Vis experiments based
on the cooperative model for PDAC-NMe»

Olsat T. (K) AH:. (kJ mol ™) AS (J mol' K1 Ko (M 1)**
1.14 £ 0.002 333.97+0.17 -63.27 £2.76 -20.31 1.00 x 10!
** Measured at 300 K

Due the limited solvents the molecules were soluble in, we were not able to take measurements past 335K.
As calculated, the nucleation regime of the material was beyond the boiling point of the solvents measured
in and was not able to be calculated. As such we were only able to model the elongation regime of PDAC-
NMe..
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Figure S15. Left. Temperature-dependent UV-Vis experiments of PDAC-OMe (95:5 vol
hexanes:chloroform, 0.5 mM) between 298 K and 335 K. Right. Plot of 0, at 430 nm against temperature
(K).

The plotted degree of aggregation of PDAC-OMe could not be fit to any standard supramolecular assembly
profiles. We hypothesize that this observation may be due to there being multiple types of stacking motifs
emerging as they undergo assembly. These competitive interactions could be attributed to the apparent two-
stage assembly motif observed.

S-24



= 800} PDAC-Me 1.0¢ .

g 700 3 - sl ]

@ 600 - 1 s

2 500+ ] 0.6 J

> g |

E 400 . am 04+ |

S 300[ i I ]

n ]

<200l & I ] 02r T

& 100} \ 298 K | ool ]

O I | i 1 i L . 1 . ] 1 " 1 L | " 1

= 400 500 600 700 800 300 310 320 330
Wavelength (nm) Temperature (K)

Figure S16. Left. Temperature-dependent UV-Vis experiments of PDAC-Me (hexanes, 2 mM) between
298 K and 335 K. Right. Plot of aag at 400 nm against temperature (K).

The plotted degree of aggregation of PDAC-Me could not be fit to any supramolecular assembly fits. This

is likely due to the limited conditions available to observe assembly, as the PDAC molecules were soluble
in a limited number of solvents.
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Figure S17. Left. Temperature-dependent UV-Vis experiments of PDAC-CN (85:15 vol
hexanes:chloroform, 0.5 mM) between 298 K and 335 K. Right. Plot of aag.at 385 nm against temperature
(K) (green circles) with data fit obtained from isodesmic model (black line).

Table S3. Thermodynamic parameters obtained from temperature-dependent UV-Vis experiments based
on isodesmic model for PDAC-CN

Tam (K) AH (kJ mol ™) AS (J mol' K Ko (M)
315.65 = 0.244 1632+ 6.47 7.56 1.2x 10°

** Measured at 300 K
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Figure S18. Zoomed in regions of isosbestic points of temperature-dependent UV-Vis experiments of
PDAC-CN, PDAC-Me, PDAC-OMe, and PDAC-NMe: (0.25 mM 85:15 vol hexanes:chloroform, 2 mM
hexanes, 0.5 mM 95:5 vol hexanes:chloroform, 0.5 mM 92:8 vol hexanes:chloroform, respectively)
between 298 K and 335 K
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Figure S23. PDI branched arm model compound absorbance in chloroform to hexanes at 0.01mM

We made a branched PDI compound to investigate whether the branched alkyl tail influences the assembly
of the PDACs. Here we observe a small hypsochromic shift with increasing non-polarity, which is the
opposite trend we observed with the PDACs.
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Figure S24. Left. Photoluminescence spectra for the PDAC-NMe; for the monomer (chloroform, pink),
partially assembled (50:50 vol hexanes:chloroform, yellow), and assembled (95:5 vol hexanes:chloroform,
blue) solutions. Here, the low energy charge-transfer feature appears for the partially assembled (690 nm)
and assembled (620 nm). All solutions were collected under 405 nm excitation at 10 uM. Right. Spectrally
separated fluorescence decays for the PDAC-NMe; solutions (monomer in chloroform (light pink), partially
assembled 50:50 vol hexanes:chloroform(light yellow), and assembled 95:5 vol hexanes:chloroform (light
blue)). A 650 nm long-pass (LP) and 550 nm LP filter were used to isolate the charge transfer state for the
partially assembled and assembled solutions, respectively. All decays were collected under pulsed 405 nm
excitation at 1 MHz.
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E. Calculations

The equilibrium geometries of PDAC and its derivatives in the ground state (So) were calculated using the
density functional theory (DFT at the M06-2X/6-31G(d,p) level).*> The absorption spectrum and excitation
energy (So-S1) were calculated using the Time-dependent DFT (TDDFT) method at the TD-M06-2X/6-
31G(d,p) level. The integral equation formalism polarizable continuum model (IEFPCM) was used
(chloroform solvent).® The highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) were visualized and were also calculated at the M06-2X/6-31G(d,p) level.
. The dipole moment was calculated using Multiwfn program.” All DFT calculations were carried out using
the Gaussian 16 program and TDDFT calculations.® To investigate the self-assembly behavior of PDAC
derivatives in assembly conditions (hexanes), molecular dynamics (MD) simulations of 15 PDAC
derivatives and 300 hexane molecules were performed using the Dreiding® force field at 300 K and 1 atm
for 10 ns. The MD simulations were carried out using the commercial software Materials Studio.!°

Table S4. Experimental and calculated maximum absorbance wavelength and excitation energies

PDAC-NMe:  PDAC-OMe PDAC-Me PDAC-CN
Experimental Amax, absorption 456,557nm 498nm 484 nm 477 nm
(nm)
Calculated Value Amax, absorption 447nm 396 nm 388 nm 381 nm
£
Calculated Value Amax, absorption 494nm 468nm 460 nm 441 nm
sk
Oscillator strength* 0.2982 0.1500 0.1145 0.0678
Transition* H—L H-1—L H-1—L H-1—L
(So—S) (So—S) (So—S) (So—S1)
Experimental Amax, absorption 2.23eV 249eV 2.56 eV 2.60 eV
(eV)
Excitation energy (S¢—S1)* 2.78 eV 3.13 eV 3.19eV 3.26eV
Excitation energy 2.51eV 2.65eV 2.70 eV 2.81eV
(S()*’SO’X"k
HOMO-LUMO gap* 4.04 eV 4.75 eV 4.92 eV 5.05eV

* Calculated value with model PDAC compound (no side chains)
** Calculated value with full PDAC molecules (side chains)
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Table S5. Simulated PDAC assembly dimer summary

Dimer Type PDAC-CN PDAC-Me PDAC-OMe PDAC-NMe;
Head-to-head 1 (7.600 A) 0 1(3.598 A) 0
Head-to-tail 0 0 1(3.407 A) 0
Rotational offset 0 1(10.124 A) 2(3.572 A, 3.232A) 2(3.369 A, 5.586 A)
Total 1 1 4 2

Figure S33. Extracted conformations of PDAC-OMe in hexanes
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Figure S35. Extracted conformations of PDAC-CN in hexanes
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Figure S36. PDAC-NMe, rotation-offset dimer A) top B) front C) side view observed in simulated
assembly

Figure S37. PDAC-NMe: rotation-offset dimer A) top B) front C) side view observed in simulated
assembly
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Figure S38. PDAC-OMe rotation-offset dimer A) top B) front C) side view observed in simulated assembly
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Figure S39. PDAC-OMe rotation-offset dimer A) top B) front C) side view observed in simulated assembly
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Figure S40. PDAC-OMe head-to-tail dimer A) top B) front C) side view observed in simulated assembly
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Figure S41. PDAC-OMe head-to-head dimer A) top B) front C) side view observed in simulated assembly
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Figure S42. PDAC-Me rotational offset dimer A) top B) front C) side view observed in simulated assembly
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Figure S43. PDAC-CN head-to-head dimer A) top B) front C) side view observed in simulated assembly
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Figure S45. "H-NMR (CDCls, 400 MHz) spectrum of Compound 3
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Figure S47. '"H-NMR (CDCls, 400 MHz) spectrum of Compound 5
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Figure S49. 'H-NMR (CDCls, 400 MHz) spectrum of octyldodecylamine
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G. Mass spectrrometry
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