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1. Computational Section

1.1. Data featurization

The molecules in Data set 1 and Data set 2 are stored in the form of SMILES strings. RDKit was 

utilized to compute the Morgan fingerprints (radius = 3, nBits = 2048) and 17 physicochemical 

descriptors for each compound. Additionally, molecular graph representations were generated using 

RDKit as another input for the 1-PS-GCN model. The feature vectors for each atom in the molecular 

graph were also computed. The detailed physicochemical properties and node (atom) features are 

summarized in Table S1. Finally, all atomic features were concatenated into a feature vector with a 

dimensionality of 131.

1.2. 1-PS-GCN

In this study, we developed the 1-PS-GCN model by integrating graph convolutional network (GCN) 

with molecular Morgan fingerprints to accurately distinguish type I PSs from non-type I PSs. GCN is 

deep learning model commonly applied to graph-structured data, with their core mechanism relying 

on message-passing. This mechanism facilitates the exchange of information and the updating of 

features between connected nodes, enabling the model to learn high-dimensional node representations 

as well as the overall structural properties of the graph.

The molecular graph serves as one of the inputs to the 1-PS-GCN model. The molecular atomic 

features are refined using GCNConv, a graph convolutional layer. The operation of each graph 

convolutional layer is mathematically represented by the following equation: 
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After performing graph convolution, we applied global average pooling (GAP) to compute the 

average of all node features within each graph, thereby generating a global representation with a feature 

dimension of 64. The 64-dimensional molecular graph features were then concatenated with the 2048-

dimensional Morgan fingerprints and 17 physicochemical property features, resulting in a 2129-

dimensional feature vector. This concatenated vector was passed through two fully connected layers. 

In the first layer, the 2129-dimensional features were mapped to 128 dimensions, followed by a ReLU 
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activation function to introduce nonlinearity and a dropout operation (with a probability of 0.5) to 

improve the model’s generalization. The second layer further reduced the 128-dimensional features to 

a 2-dimensional output, completing the classification task. Detailed hyperparameters and the 

optimization process are provided in Table S2.

1.3. Baseline models

Deep neural networks (DNN). DNN is a simple deep learning model, which is widely used to process 

complex data and solve nonlinear problems. DNN has multiple hidden layers between the input layer 

and the output layer. After the data is fed into the network, each neuron aggregates the information of 

the connected neurons, and then applies nonlinear activation function to process and transform the 

input. Through layer-by-layer processing, the DNN is able to capture increasingly abstract features, 

thereby effectively modeling complex input-output relationships. During the training process, the 

parameters (weights and biases) are adjusted to minimize the error between the output and the true 

label, and the weights and biases are updated using backpropagation and gradient descent algorithms 

to minimize the prediction error.

Convolutional neural networks (CNN). CNN is one of the most popular and widely used deep 

learning networks. Its main advantage is that it can automatically detect important features without 

any human supervision. CNN is classified as a multi-layer feedforward neural network. Its core design 

includes convolutional layers, activation functions, pooling layers, fully connected layers, etc. During 

training, CNN extracts local features of the image through convolutional layers, reduces the dimension 

using pooling layers, and performs classification or regression through fully connected layers. Its local 

connection and weight sharing characteristics reduce the number of parameters and improve training 

efficiency. This makes CNNs particularly well-suited for processing grid-structured data, such as 

images and videos, where they have demonstrated outstanding performance in computer vision tasks.

k-nearest neighbor (KNN). KNN is an instance-based learning method for classification task. The 

core idea follows the principle that “similar instances are grouped together”. By calculating the 

distance (e.g., Euclidean distance) between the unknown sample and each training sample, the closer 

the distance to the unknown sample is, the higher the weight of the sample. Then, the class label 

assigned to the unknown sample is determined based on the majority class among these k nearest 

neighbors. Although KNN is a simple and intuitive algorithm that does not require an explicit training 

phase, it may be computationally intensive during prediction and is highly sensitive to outliers. 

Therefore, selecting an appropriate k value and distance metric is critical to optimizing the performance 

of a KNN model.
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Random forest (RF). RF is an ensemble learning algorithm based on the idea of baggingS1. It trains 

and predicts samples by constructing multiple decision trees (DTs). Each tree randomly selects 

samples and features during the training process, and finally establishes a strong regression or 

classification model suitable for different data sets by voting or averaging the prediction results of each 

decision tree. In the modeling process of RF, randomness is reflected in two key aspects: random 

sampling and random feature selection. By performing bootstrap sampling on the training data and 

randomly selecting feature subsets at each split, the diversity between RF-based learners can be 

improved, the risk of overfitting of a single decision tree can be reduced, and the generalization 

performance of the model can be enhanced.

Support vector machine (SVM). SVM is an efficient and powerful supervised learning algorithm 

used for classification, regression, and outlier detectionS2. It maximizes the margin between two classes 

of samples by finding an optimal hyperplane, which is a boundary that is equidistant from the nearest 

positive and negative sample points (support vectors). Its versatility covers both linearly separable and 

inseparable scenarios. For linearly inseparable problems, the original data needs to be mapped to a 

high-dimensional space through kernel function techniques, making the originally linearly inseparable 

data separable in the high-dimensional space. SVM is called SVR when used for regression and SVC 

when used for classification. It is well suited to handle high-dimensional problems with less training 

data. Its ability to perform well relies on the principle of structural risk minimization, which makes it 

widely used in different fields such as structural reliability analysis and drug discovery.

1.4. Model evaluation

To evaluate the predictive performance of the model, we selected several effective metrics: accuracy 

(ACC), precision (Pre) and the area under the receiver operating characteristic curve (ROC-AUC). The 

equations for the first two metrics are expressed as follows:

(2)
𝐴𝐶𝐶 =  

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(3)
𝑃𝑟𝑒 =  

𝑇𝑃
𝑇𝑃 + 𝐹𝑃

where TP (true positive), TN (true negative), FP (false positive), and FN (false negative) represent the 

corresponding counts for each class. The values of these metrics range from 0 to 1, and higher values 

indicate better model performance.

In addition, we used the area under the receiver operating characteristic curve (ROC-AUC) to 

evaluate model performance. The ROC-AUC score is a commonly used metric for binary classifiers 

and represents the area under the ROC curve. The ROC curve plots the true positive rate (TPR) against 
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the false positive rate (FPR), illustrating the classifier's performance across different decision 

thresholds. The ROC-AUC score ranges from 0 to 1, where an ROC-AUC of 0.5 indicates poor 

performance (equivalent to random guessing), and an ROC-AUC of 1 signifies excellent performance 

with perfect classification. The formulas for calculating TPR and FPR are as follows:

(4)
𝑇𝑃𝑅 =  

𝑇𝑃
𝑇𝑃 +  𝐹𝑁

(5)
𝐹𝑃𝑅 =  

𝐹𝑃
𝐹𝑃 +  𝑇𝑁

1.5. Multi-stage screening

In this study, we designed a multistage screening process to identify PSs with multiple desired 

properties. In the first stage, high-throughput screening of type I PSs was performed using the 1-PS-

GCN model. In the second stage, to further refine potential type I photosensitizer candidates with good 

synthetic accessibility and low molecular weight, we used SAscore to evaluate the feasibility of 

molecule synthesis. The SA score ranges from 1 to 10, with 1 representing high synthetic accessibility 

(easy to synthesize) and 10 indicating low synthetic accessibility (difficult to synthesize). Additionally, 

molecular weight was considered a critical criterion, as smaller molecular weights often enhance 

biological activity and synthetic feasibility. In the context of tumor therapy, small molecules targeting 

RNA have demonstrated superior photodynamic efficacy in prior studies. Therefore, we employed 

RSAPred, an open-source machine learning tool, for the third stage of screening. This tool calculates 

various features based on RNA sequences and small molecule structures and uses a multiple linear 

regression (MLR) algorithm to construct a regression model that predicts the binding affinity between 

small molecules and six RNA subtypes. The binding affinity is reflected by the log-scale dissociation 

constant (pKd) for each RNA-small molecule pair. Using this tool, each candidate molecule and a 

widely prevalent RNA G4 sequence in cancer cells (Terra 5'-

UUAGGGUUAGGGUUAGGGUUAGGG-3') were input into the model. The resulting pKd values 

were ranked to identify type I PS candidates with the highest potential for RNA targeting.

1.6. t-SNE and visualization of chemical space

t-SNE (t-distributed stochastic neighbor embedding) is a widely used dimensionality reduction 

technique for visualizing high-dimensional data in low-dimensional spaces. It is particularly effective 

for uncovering and analyzing complex patterns and structures within datasets. The method works by 

modeling the similarity between data points in high-dimensional space and their counterparts in low-

dimensional space through the construction of similar probability distributions in both spaces and 
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minimizing their divergence. This process enables the effective mapping of data points into a lower-

dimensional space for visualization. In this study, t-SNE was applied to the Morgan fingerprints of 

molecules to visualize their chemical space.

1.7. Model interpretability method

To further understand the decision-making process of the deep learning model and open the “black-

box” of deep learning, we employed a series of interpretability methods to analyze the internal working 

mechanisms of the 1-PS-GCN model. Since 1-PS-GCN is a hybrid model combining molecular 

fingerprint and GCN, we separately investigated the feature extractors of these two parts.

To investigate the contribution of molecular fingerprint features to the model’s predictions, we 

employed the Integrated Gradients method for interpretability analysis on the fully connected layers. 

This technique quantifies the influence of input features on prediction outcomes by calculating the 

gradient-weighted average, resulting in an importance score for each feature dimension. The 

contributions of individual fingerprint features were visualized using bar charts (Fig. 2d). Additionally, 

to explore the connection between fingerprint features and molecular structural information, we 

utilized the Draw.DrawMorganBit function in the RDKit package to depict the molecular structures 

corresponding to the top three most important fingerprint features (Fig. 2e).

For interpreting molecular graph features, we adopted GNNExplainerS3, a graph neural network 

visualization method. GNNExplainer is specifically designed for graph neural network (GNN) and 

generates explanations for any GNN and graph mining task by analyzing both network structures and 

node attributes. In this study, we set the training iterations for GNNExplainer to 100 and the learning 

rate to 0.001 to effectively capture the importance of graph structures and node features. Finally, the 

top 10 most important features identified by the model were visualized using bar charts (Fig. 2f).

1.8. Expert-AI consensus to select best candidate

Top 10 molecules were shown in Fig. S2. PYD was identified through an expert-AI consensus. 

Literature analysis revealed that the absorption wavelengths of compounds No. 2, 5, 7, 8, and 9 are all 

below 600 nm. Structurally, compound No. 6 is not resistant to photobleaching. Although compounds 

No. 1, 3, and 4 meet the criteria for NIR absorption and photobleaching resistance, their synthesis 

routes are relatively complex. Ultimately, compound No. 10 (PYD) was chosen as the optimal 

candidate for synthesis and performance validation due to its rigid structure, which confers resistance 

to photobleaching. Additionally, its structural similarity to the commercial RNA detection reagent 

Pyronine highlights its strong potential as a high-performance photosensitizer.

1.9. Molecular docking and density functional theory (DFT) calculations
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Molecular docking. Nucleic acid crystal structures for docking were obtained by RNAComposer 

server prediction (https://rnacomposer.cs.put.poznan.pl/). The nucleic acid structures were processed 

using PyMol 2.5.5 before docking beganS4, 5. All processed small molecules as well as nucleic acids 

were converted into the PDBQT format required for AutoDock Vina 1.1.2 docking, which was done 

using ADFRsuite 1.0S6. For docking, the global search thoroughness was set to 32 and the remaining 

parameters were left at their default settings. We considered the highest scoring output docking 

conformation to be the binding conformation and finally visualised and analysed the docking results 

using PyMol 2.5.5.

DFT calculations. a Gaussian package was used for all density functional theory calculations. The 

ground state geometries for PYD was optimized at the B3LYP/6-311++G(d,p) level. The vertical 

excitation (UV-vis absorption) of PYD was obtained based on the optimized ground state geometries. 

Geometry optimizations were performed at TD-B3LYP/B3LYP/6-311++G(d,p) for the singlet (S1) 

and triplet (T1) excitated states of the compounds. The solvent (water) effect was included in all 

calculations using the solvation model based on the density (SMD). The spin-orbit coupling (SOC), 

<SnIHSOITm>, between singlet and triplet excited states for PYD was calculated by PYSOC 

programS7.

2. Experimental Section

2.1. Reagents and instruments

6-amino-1,2,3,4-tetrahydronaphthalen-1-one and methyl iodide were purchased from Titan 

Scientific. (Shanghai, China). Phosphorus oxychloride, sulfuric acid and perchloric acid were obtained 

from Sinopharm Chemical Reagents Co., Ltd. Organic solvents of analytical grade were obtained from 

Energy Chemical. MCF-7 cells (Human breast cancer cell line) and 4T1 cells (Mouse breast cancer 

cell line) were obtained from the cell bank of Central Laboratory at Xiangya Hospital (Changsha, 

China). RPMI 1640 medium, DMEM high glucose medium, penicillin, streptomycin and 10% heat-

inactivated fetal bovine serum were purchased from Thermo Fisher (MA, USA). Thin-layer 

chromatography (TLC) was performed on silica gel aluminum sheets with an F-254 indicator. The 

column chromatography was conducted using 200-300 mesh SiO2 (Shanghai Haohong Biomedical 

Technology Co., Ltd.). Dihydrorhodamine 123, 9,10-anthracenediyl-bis(methylene)-dimalonic acid 

(ABDA), Singlet Oxygen Sensor Green (SOSG) were obtained from Life Technologies. 2,7-

Dichlorodihydrofluorescein diacetate (DCFH-DA), 2,7-Dichlorodihydrofluorescein (DCFH) and 3’-

(4-hydroxyphenyl) fluorescein (HPF, Molecular Probes Invitrogen) were purchased from Sigma-

Aldrich. Dihydroethidium (DHE), Hoechst, Annexin V-FITC apoptosis detection kit, RNase A and 

DNase I were purchased from Beyotime biotechnology. Calcein-AM/propidium iodide (PI) Double 
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Stain Kit was obtained from KeyGen Biotech. All nucleic acids were purified by high performance 

liquid chromatography and obtained from Sangon Biotech (Shanghai, China). The nucleic acids were 

dissolved in Tris-HCl buffer (10 mM, pH 7.4) and their concentrations were determined based on 

absorbance at 260 nm. For dissolving RNAs, the solutions were treated with diethyl pyrocarbonate. 

Stock solutions of PYD (10 mM) were dissolved in DMSO and stored at -20°C. Ultrapure water with 

an electric resistance >18.25 MΩ was obtained from a Millipore Milli-Q water purification system 

(Billerica, MA, USA) and used throughout the experiments. 
1H NMR and 13C NMR spectra were recorded on a Bruker Avance-III 400 instrument (Bruker) 

using tetramethylsilane (TMS) as an internal standard. High-resolution mass spectrometry analysis 

was performed on LCQ advantage ion trap mass spectrometry (Thermo Fisher Scientific, Bremen, 

Germany). UV-Vis absorbance spectra were recorded on UV-2450 spectrophotometer (Shimadzu, 

Japan) with an interval of 2.0 nm. Fluorescence spectra were recorded on an FLS1000 

spectrofluorometer (Edinburgh Instruments, United Kingdom) with excitation and emission slits of 5.0 

nm. Fluorescence lifetime (τ) measurements were carried out with a time correlated single photon 

counting (TCSPC) nanosecond fluorescence spectrometer (Edinburgh FLS920, United Kingdom) at 

ambient temperature (298 K). Electron spin resonance (ESR) spectra were performed on a JES-FA200 

spectrometer (JEOL, Japan). Confocal fluorescence imaging was performed on a Nikon A1+ confocal 

microscope (Nikon, Japan) with 20× or 100× objective lens. In vivo fluorescence imaging was 

performed on an IVIS Lumina XR small animal imaging system (Caliper, Switzerland). 

2.2.  In vitro Assays

Spectral experiment. For absorption measurements, PYD was mixed with or without RNA (dissolved 

in DEPC) in Tris-HCl buffer. Fluorescence spectra of PYD with or without RNA were recorded in 

Tris-HCl buffer using an excitation wavelength of 640 nm. In selectivity studies, PYD was co-

incubated with nucleic acids of different structures (Table S5) including ssDNA (single stranded 

DNA)), dsDNA (double strand DNA), dsRNA (double strand RNA), DNA G4s, RNA G4s, ssRNA 

(single stranded RNA), ions, amino acid and reactive oxygen and fluorescence spectra were recorded. 

In fluorescence titrations, PYD was incubated with different concentrations of RNA and fluorescence 

spectra were obtained. For photostability studies, PYD incubated with or without RNA in buffer were 

irradiated on a Quanta Master 8000 for 2 h and fluorescence intensities at 690 nm recorded in real 

time. For reference, cyanine 5 (Cy5) was also exposed to the same irradiation conditions, and the 

fluorescence intensities at 660 nm were documented.
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Determination of ROS in vitro. To determine the ability to produce ROS, PYD (10 μM) with or 

without RNA were incubated with DCFH (10 μM). For 1O2 detection, PYD with or without RNA were 

incubated with ABDA (50 μM in DMSO) or SOSG (10 μM in MeOH). For O2
−• and OH• detection, 

PYD with or without RNA G4s were incubated with DHR123 (10 μM) and HPF (10 μM), respectively. 

The samples were irradiated with an LED light (660 nm, 10 mW/cm2, 10 min). For dynamic 

monitoring of ROS production, the samples were irradiated for different times and fluorescence or 

absorption spectra for the corresponding indicators were acquired. Excitation wavelength for DCFH: 

504 nm, emission wavelength: 529 nm. Excitation wavelength for SOSG: 490 nm, emission 

wavelength: 525 nm; Excitation wavelength for DHR123: 488 nm, emission wavelength: 526 nm.

2.3. Cellular Studies

Cellular assays. MCF-7 cells and 4T1 cells were obtained from Xiangya Hospital (Changsha, China) 

and cultured in configured medium of DMEM or RPMI-1640. After MCF-7 cells were cultured in cell 

confocal dishes (1 × 105 cells) for 12 h, cells were washing three times with PBS and incubated with 

PYD (5.0 μM) in culture medium for 30 min at 37℃ before imaging. For enzyme digestion imaging 

experiments, MCF-7 cells were first fixed with 4% paraformaldehyde and then permeabilised with 

PBS containing Triton X-100, stained with PYD (5.0 μM) and hoechst for 30 min, and washed again 

twice with PBS. Finally, cells were treated with DNase I (100 U/mL), RNase A (20 μg/mL) or PBS 

for 4 h before fluorescence imaging. PYD: (Ex:640 nm, Em: 660 nm-750 nm); Hoechst: (Ex: 405 nm, 

Em: 430 nm-490 nm).

Intracellular detection of ROS. To determine the ability of PYD to generate ROS in cells, MCF-7 

cells were pretreated with or without PYD (5.0 μM) for 30 min, followed by incubation with 10 μM 

of DCFH-DA, DHE or HPF for 30 min. The cells were washed with 1×PBS and irradiated with an 

LED light (660 nm, 100 mW/cm2, 10 min). To test the ability of PYD to produce ROS in hypoxic 

conditions, the cells were cultured in 2% oxygen atmosphere, treated with PYD and incubated with 

DCFH-DA and irradiated. To quench the effect of ROS, the cells were pretreated with N-

acetylcysteine (NAC, 5.0 mM) for 2 h before staining with PYD and DCFH-DA. To inhibit the activity 

of superoxide dismutase (SOD), the cells were treated with 2-methoxyestradiol (2ME2, 5.0 μM). To 

quench the effect of O2
−•, pre-treated the cells with vitamin C (50 μM) for 2.0 h prior to staining with 

PYD and DHE. DCFH-DA and HPF: Ex:488 nm, Em: 530 ± 15 nm; DHE: Ex:488 nm, Em: 600 ± 30 

nm.

Cytotoxicity studies. The cytotoxicity of PYD was assessed under both light and non-light conditions 

using the WST-1 cell proliferation assay. Various cell lines were seeded into 96-well cell culture plates 

and incubated at 37°C for 24 h. The cells were then treated with different concentrations of PYD (0, 
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0.25, 0.5, 1.0, 2.0, 5.0 μM) for 30 min, washed, and transferred to fresh medium. They were further 

incubated for 6 h under normoxic or hypoxic conditions and subsequently irradiated with a 660 nm 

LED at 100 mW/cm² for 10 min. After irradiation, the cells were allowed to incubate for an additional 

24 h. Cell viability was evaluated by adding WST-1 reagent and incubating the cells for 4 h. 

Absorbance was measured at 450 nm using a microplate reader.

Live/dead cell assay. MCF-7 cells were seeded and grown in confocal cell culture dishes for 24 h. 

Cells were treated with PYD (5.0 μM) for 30 min at 37°C followed by illumination with and without 

illumination. Before confocal fluorescence imaging cells were co-stained with calcein AM and PI 

Calcein. AM Ex: 488 nm, Em: 515 ± 10 nm; PI Ex: 561 nm, Em: 625 ± 15 nm.

Flow cytometric assay. To investigate the cell killing mechanism of PYD, MCF-7 cells were cultured 

in cell plates for 24 h. The cells were incubated with PYD (5.0 μM) for 30 min, replaced with a fresh 

medium and irradiated for different time intervals (0, 2, 5, 8, 10 min). The treated cells were incubated 

for another 4 h, and costained with Annexin V-FITC and PI.

2.4. Vivo Studies

Tumor in vivo model. The animal studies were all authorised by the Hunan Provincial Department of 

Science and Technology and passed the animal ethical review (Ethics No. CSU-2024-0144). Female 

BALB/c mice were provided by the Animal Breeding Room of Xiangya Medical College. To establish 

a mouse subcutaneous transplantation tumor model, 4T1 cells (5.0 × 106 cells) were implanted 

subcutaneously into the abdomen of each mouse. Before imaging or treatment, the tumors grew to 

approximately 80 - 90 mm3. Tumor size was calculated as follows: V = 1/2 × length × width × width.

Blood circulation analysis. Healthy female Balb/c mice (n = 3) were intravenously injected with PYD 

(50 µM, 50 µl), blood samples were collected at different time points via the orbital venous plexus and 

incubated at 4 °C. Fluorescence spectra for PYD were recorded. The blood concentrations of PYD at 

different times were determined based on their standard curves. Pharmacokinetic parameters were 

calculated as following S8: 

𝐶 = 𝐴 '𝑒‒ 𝛼𝑡 + 𝐵'𝑒‒ 𝛽𝑡 ‒ 𝐶'𝑒 ‒ 𝑘
𝑎

 𝑡 

𝐶 is the concentration of the PYD at a specific time, 𝑡 is the specific time, 𝛼 is distribution rate constant, 

𝛽 is elimination rate constant. When 𝑡 is long enough, 𝑘𝑎 ≫ 𝛼, 𝛼 ≫ 𝛽. So , the above equation is 

simplified as follows: 

𝑒‒ 𝛽𝑡→0, 𝑒‒ 𝑘𝑎→0 

𝐶 = 𝐵'𝑒‒ 𝛽𝑡 , so lg 𝐶 = lg 𝐵' ‒ 0.4343 𝛽𝑡 
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A semi-logarithmic graph was plotted for lg 𝐶 vs t, and the elimination rate constant (𝛽) was calculated 

based on the slope. For PYD, 𝛽= 0.1911, so t1/2 = 0.693/𝛽 = 3.6 min

In vivo tumor treatment via PDT. To investigate the antitumor efficacy of PYD-mediated PDT, 

tumor-bearing mice were randomly divided into four groups (n = 4). Group I and group II received 

intratumoral injections of PBS (10 μL), while group III and group IV were injected with PYD (10 μL). 

Both groups were injected every two days for a total of three times. Mice in group II and group IV 

were irradiated with LED light (660 nm, 100 mW/cm², 10 min) 1.0 h post-injection. The tumor sizes 

were measured every other day for 14 days, and on day 15, the mice were euthanized. The tumors and 

major organs (hearts, livers, spleens, lungs and kidneys) were harvested. Fluorescence images were 

acquired with the IVIS imaging system. For histological analysis, blood biochemistry analysis, the 

tumor tissues and major organs were excised on day 14 after treatment. The excised organs and tumors 

were fixed with 4% formaldehyde, embedded in paraffin, sliced into 5.0 μm in thickness and stained 

with haematoxylin and eosin (H&E). 

2.5. Synthesis of compounds

6-(dimethylamino)-3,4-dihydronaphthalen-1(2H)-one: Methyl iodide (3.0 eq) was added to a 

solution of 6-amino-3,4-dihydro-1(2H)-naphthalenone (1.0 eq) in anhydrous ethanol, potassium 

carbonate (1.0 eq) as a catalyst. The mixture was refluxed for 12 hours. Subsequently, the product 

was filtered and washed with diethyl ether (Et2O), then evaporated to yield the crude product. The 

crude product was purified using silica gel chromatography. (EA: PE = 1: 10) to obtain 6-

(dimethylamino)-3,4-dihydronaphthalen-1(2H)-one as a white solid (58 %). 1H NMR (400 MHz, 

DMSO-d6) δ (ppm): 7.704 (d, J = 8.8, 1H), 6.640-6.636 (m, 1H); 6.475 (d, J = 2.4, 1H); 2.995 (s, 

6H); 2.821 (t, J = 6.0, 2H); 2.434(t, J = 6.8, 2H); 1.982-1.920 (m, 2H). 13C NMR (100 MHz, DMSO-

d6): 195.70, 153.74, 146.71, 128.80, 121.39, 110.53, 109.84, 40.03, 30.22, 23.64.

1-chloro-6-(dimethylamino)-3,4-dihydronaphthalene-2-carbaldehyde: Phosphoryl trichloride (1.5 

eq) was added to a solution of 6-(dimethylamino)-3,4-dihydronaphthalen-1(2H)-one (1.0 eq) in 

anhydrous N, N-dimethylformamide. The mixture was reaction under ice bath conditions for 4 h. After 

that the reaction solution was introduced into ice water, the organic phase was extracted with ethyl 

acetate and rotary evaporation. The crude product was purified by silica gel chromatography (ethyl 

acetate: petroleum ether = 1: 4) to obtain product as a yellow solid (56%). 1H NMR (400 MHz, DMSO-

d6) δ (ppm): 10.127 (s, 1H); 7.612 (d, J = 8.8, 1H), 6.664 (d, J = 8.8, 1H); 6.620 (s, 1H); 3.014 (s, 6H); 

2.745 (t, J = 8.0, 2H); 2.481(t, J = 7.6, 2H). 13C NMR (100 MHz, DMSO-d6): 189.34, 152.87, 146.51, 

141.33, 128.24, 126.97, 126.25, 1225.19, 119.06, 117.01, 110.94, 110.38, 45.24, 27.74, 21.96.
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Synthesis of PYD: 1-chloro-6-(dimethylamino)-3,4-dihydronaphthalene-2-carbaldehyde (1.0 eq) and 

6-(dimethylamino)-3,4-dihydronaphthalen-1(2H)-one (1.0 eq) was added to a round-bottomed flask, 

10 mL of sulphuric acid was added to the round-bottomed flask, and the mixtures were reacted at 90℃ 

for 4 h. After completed of the reaction, the mixture was introduced into ice water and 1mL perchloric 

acid was added into the mixture immediately. The mixed system was filtered and washed with water, 

and the crude product was purified by silica gel chromatography (MeOH: DCM = 1: 10) to give PYD 

as a black solid (62% yield). 1H-NMR (400 MHz, DMSO-d6) δ (ppm): 8.025 (s, 1H), 7.970 (s, 1H), 

7.948 (s, 1H), 6.842 (d, J = 2.4, 1H); 6.8195 (d, J=1.4, 1H); 6.722(d, J=1.2, 2H); 3.129 (s, 12H); 2.972-

2.906 (m, 8H), 13C NMR (100 MHz, DMSO-d6):162.83, 154.41, 146.90, 143.78, 127.54, 124.66, 113. 

03, 111.93, 111.13, 27.24, 25.35. MS (ESI) m/z: calcd for C25H27N2O+ [M]+ m/z 371.21, found 371.21.

Scheme S1 Synthetic routes for PYD
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3. Additional Figures

Fig. S1 Distribution plots of the 17 physicochemical properties of data set 2 used in this study. 
Detailed definitions of each descriptor can be found in Table S1.
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Fig. S2 The top 10 molecules identified through multi-stage screening.

Fig. S3 t-SNE visualization of molecules in Data set 1 in the 1-PS-GCN feature space. TP: correctly 
predicted type I; TN: correctly predicted non-type I; FP: non-type I misclassified as type I; FN: type 

I misclassified as non-type I.
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Fig. S4 (a)Absorption and (b) emission spectra of PYD in different solvents and (c) its water-
dependent fluorescence characteristics in a 1,4-dioxane/water system.

Fig. S5 Time-dependent fluorescence spectra of DCFH for PYD (10 μM) in the absence or presence 
of RNA in Tris-HCl buffer (10 mM, pH = 7.4) upon irradiation (660 nm, 10 mW/cm2).

Fig. S6 Time-dependent fluorescence spectra of DHR123 for PYD (10 μM) in the absence of RNA 
in Tris-HCl buffer (10 mM, pH = 7.4) upon irradiation (660 nm, 10 mW/cm2).
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Fig. S7 Time-dependent fluorescence spectra of HPF for PYD (10 μM) in the absence or presence of 
RNA in Tris-HCl buffer (10 mM, pH = 7.4) upon irradiation (660 nm, 10 mW/cm2).

Fig. S8 Time-dependent absorption spectra of ABDA for PYD (10 μM) in the absence or presence of 
RNA in Tris-HCl buffer (10 mM, pH = 7.4) upon irradiation (660 nm, 10 mW/cm2).

Fig. S9 Time-dependent fluorescence spectra of SOSG for PYD (10 μM) in the presence of RNA in 
Tris-HCl buffer (10 mM, pH = 7.4) upon irradiation (660 nm, 10 mW/cm2).
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Fig. S10 Photobleaching experiment of PYD and Cy5 and magnified curves of PYD and PYD+RNA.
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Fig. S11 Fluorescence lifetime of PYD with or without RNA.

Fig. S12 Under normal oxygen and hypoxic conditions, the IC50 values of light PYD for MCF-7 and 
4T1 cells.
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Fig. S13 Whether to perform PYD(50 μM, 50 μL) fluorescence imaging on the fixed tumor tissue 
sections after RNase A treatment. 

Fig. S14 Blood circulation for PYD (50 μM, 50 μL) in healthy BALB/c mice (n = 3). Inset: linear 
correlation between the logarithm of PYD concentrations and time.

Fig. S15 Representative hematoxylin-eosin staining images for organs from mice bearing 4T1 
tumors after injection with PYD (50 μM, 20 μL) or PBS with or without irradiation.
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Fig. S16 After PYD injection, the cardiac blood tests of mice showed kidney function (kidney 
function: CREA).
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4. NMR and MS spectra

Fig. S17 1H NMR spectrum of 6-(dimethylamino)-3,4-dihydronaphthalen-1(2H)-one.

Fig. S18 13C NMR spectrum of 6-(dimethylamino)-3,4-dihydronaphthalen-1(2H)-one.
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Fig. S19 1H NMR spectrum of 1-chloro-6-(dimethylamino)-3,4-dihydronaphthalene-2-carbaldehyde.

Fig. S20 13C NMR spectrum of 1-chloro-6-(dimethylamino)-3,4-dihydronaphthalene-2-carbaldehyde.
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Fig. S21 1H NMR spectrum of PYD.

Fig. S22 13C NMR spectrum of PYD.
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Fig. S23 HR-MS spectrum of PYD.
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5. Additional Tables

Table S1 The node (atom) features and physicochemical properties of small molecules.
Node (atom) features Size Description

Atomic number 101 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,…,99, 100, other] 
(one-hot)

Degree 7 Number of bonds for each atom [0, 1, 2, 3, 4, 5, other] 
(one-hot)

Formal charge 8 Electrical charge [-3, -2, -1, 0, 1, 2, 3, other] (one-hot)

Hydrogens 6 Number of bonded hydrogens [0, 1, 2, 3, 4, other] (one-
hot)

Hybridization 6 [sp, sp2, sp3, sp3d, sp3d2, other] (one-hot)
Ring 1 Whether the atom is in ring [0/1] (one-hot)

Aromaticity 1 Whether the atom is part of an aromatic system [0/1] 
(one-hot)

Atomic mass 1 Atomic mass
Physicochemical 

properties Size Description

logP 1 Partition coefficient
HBA 1 Number of hydrogen bond acceptors
HBD 1 Number of hydrogen bond donors

Rotable 1 Number of rotable bonds
Amide 1 Number of amide bonds
Bridge 1 Number of bridgehead atoms
Hetero 1 Number of hetero atoms
Heavy 1 Number of heavy atoms
Spiro 1 Number of spiro atoms

FCSP3 1 The fraction of sp3 carbon
Ring 1 Number of rings

Aliphatic 1 Number of aliphatic rings
Aromatic 1 Number of aromatic rings
Saturated 1 Number of saturated rings
HeteroR 1 Number of heterocycles
TPSA 1 Topological polar surface area
MW 1 Molecular weight
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Table S2 Hyper-parameters for 1-PS-GCN model.
Model Parameters to be optimized Results Package

The number of GCN layer: [1, 2] 2
The number of nodes of each GCN 
hidden layer: [256, 128, 64, 32] [64, 64]

The pooling layers: 
[global_add_pool, 
global_mean_pool, 
global_max_pool]

global_mean_pool

The number of FC hidden layer: [2, 
3, 4] 2

The neurons of FC1 hidden layer: 
[2048, 1024, 512, 256, 128, 64, 32] 128

The dropout rate of each FC hidden 
layer: [0, 0.1, 0.2, 0.3, 0.4, 0.5] 0.5

The learning rate: [1e-3, 1e-4, 1e-5] 1e-4
The activation function: ReLU ReLU
The optimizer: Adam Adam
The number of epochs: 100 100
The patience of early stopping: 10 10

1-PS-GCN

The batch size of DataLoader: [32, 
16] 16

PyG
(2.4.0)
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Table S3 Hyper-parameters for DNN and CNN models.

Model Parameters to be optimized Results Packag
e

The number of FC hidden layer: [2, 3, 4] 2
The neurons of FC1 hidden layer: [1024, 
512, 256, 128, 64, 32] 128

The dropout rate of FC hidden layer: [0, 
0.1, 0.2, 0.3, 0.4, 0.5] 0.5

The learning rate: [1e-3, 1e-4, 1e-5] 1e-4
The activation function: ReLU ReLU
The optimizer: Adam Adam
The number of epochs: 1000 1000
The patience of early stopping: 10 10

DNN

The batch size of DataLoader: 16 16

torch
(2.0.1)

The number of FC hidden layer: [2, 3, 4] 2
The neurons of FC1 hidden layer: [1024, 
512, 256, 128, 64, 32] 128

The dropout rate of FC hidden layer: [0, 
0.1, 0.2, 0.3, 0.4, 0.5] 0.5

The learning rate: [1e-3, 1e-4, 1e-5] 1e-4
The activation function: ReLU ReLU
The optimizer: Adam Adam
The number of epochs: 1000 1000
The patience of early stopping: 10 10

CNN

The batch size of DataLoader: 16 16

torch
(2.0.1)
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Table S4 Hyper-parameters for three classical machine learning classifiers.
Model Parameters to be optimized Results Package

n_estimators: range (50, 301, 
50) 200

min_samples_split: range (2, 
11, 1) 3

min_samples_leaf: range (1, 
11, 1) 8

max_depth: range (2, 11, 1) 10

RF

max_features: range (sqrt, 
log2, None) log2

scikit-learn (1.3.0)

RandomForestClassifier

C: [1, 10, 50, 100] 100
gamma: [1e-2, 1e-3, 1e-4] 1e-3SVM
kernel: [linear, poly, rbf] rbf

scikit-learn (1.3.0)
SVC

n_neighbors: range (1, 31, 1) 23

weights: [uniform, distance] distanc
eKNN

algorithm: [auto, ball_tree, 
kd_tree, brute] auto

scikit-learn (1.3.0)

KNeighborsClassifier

Table S5 Sequences for nucleic acids of different structures used in this study.

Structure Names Sequences(5'to3')
NRAS (RNA G4) 5'-GGGAGGGGCGGGUCUGGG-3'
Terra (RNA G4) 5'-UUAGGGUUAGGGUUAGGGUUAGGG-3'
Bcl2 (RNA G4) 5'-GGGGGCCGUGGGGUGGGAGCUGGGG-3'

Hp26 5'-r(CAGUACAGAUCUGUACUG)-3'
dsRNA-2 5'-r(UUUUUAAAAA)-3'
ssRNA-1 5'-r(UUUUUGGGGGG)-3'

RNA

VEGF (DNA G4) 5'-GGGAGGGTTGGGGTGGG-3'
C-Myc (DNA G4) 5'-TGAGGGTGGGGAGGGTGGGGAA-3'
Bcl2 (DNA G4) 5'-GGGCGGGCGCGGGAGGAAGGGGGCGGG-3'

Bom17 (DNA G4) 5'-GGTTAGGTTAGGTTAGG-3'
Tel26 (DNA G4) 5'-AAAGGGTTAGGGTTAGGGTTAGGGAA-3'

ds-15GC-2 5'-GAAAAAAGAGAGAGG-3'
ds26 5'- CAATCGGATCGAATTCGATCCGATTG-3'

ds-DNA-9-1 5'-CATGCGCGCATG-3'
ss-21T 5'-TTTTTTTTTTTTTTTTTTTTT-3'

DNA

ss-DNA-3 5'-CCTCTCTCTTTTTTC-3'
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