Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Femtosecond Real-Time Fragmentation Dynamics of Nitrobenzene Anion Reveal the Dissociative Electron Attachment Mechanism

Sejun An, Jun Won Choi, Junggil Kim, Dabin Kim, and Sang Kyu Kim*

Department of Chemistry, KAIST, Daejeon (34141), Republic of Korea

*Corresponding author: sangkyukim@kaist.ac.kr

Table of Contents

- 1. Photoelectron Spectra of Nitrobenzene Dimer and Trimer Anions
- 2. Photofragments of Nitrobenzene Trimer Anions
- 3. Theoretical Calculation Details
- 4. PST Calculation for Unimolecular Statistical Dissociation
- 5. Fitting Procedure for TRPD transients
- 6. Laser Power Curve for Photoexcitation Spectra

7.

References

1. Photoelectron Spectra of Nitrobenzene Dimer and Trimer Anions

Fig. S1 Photoelectron spectra of nitrobenzene dimer and trimer anions obtained at photon energies of 2.48, 3.54, 4.13, and 4.59 eV. A thermionic emission feature is observed in each of the photoelectron spectra.

Fig. S2 Time-of-flight photofragment mass spectrum of the nitrobenzene anion at a photon energy of 4.28 eV. $C_6H_5NO_2^-$ is the major photofragment, with NO_2^- also observed. The spectrum obtained at 3.87 eV, shown by the red line in the inset, reveals additional small photofragments, but these have not been assigned to specific species.

2. Photofragments of Nitrobenzene Trimer Anions

3. Theoretical Calculation Details

Fig. S3 Active space orbitals employed in the CASPT2/CASSCF(15,11)/(aug-)cc-pVDZ calculations. SOMO or asterisk denotes that the corresponding molecular orbital is singly-occupied or unoccupied in the $D_0(^2B_1)$ state of nitrobenzene radical anion.

The vertical excitation energies (VEEs) and the associated oscillator strengths in the optical transitions from the ground state (D₀, 1²B₁) to several valence excited states (D_n) were then obtained using complete active space second order perturbation theory (CASPT2) based on a state-averaged self-consistent field wavefunction. The CAS(15,11) active space was comprised of 15 electrons and 11 valence molecular orbitals, as illustrated in Fig. S3. Only excited states belonging to ²B₁ or ²A₂ symmetry were considered in the VEE calculations as the optical transitions of ²B₂ \leftarrow ²B₁ or ²A₁ $\leftarrow {}^{2}B_{1}$ are practically forbidden with oscillator strength < 0.005.¹ The C–N bond dissociation threshold energy was also obtained from CASPT2 method. The energy difference between the nitrobenzene anion and the sum of its fragments ($\cdot C_{6}H_{5}$ and NO_{2} -) was calculated to 1.82 eV.

One-dimensional potential energy curves for the four lowest electronic excited states were calculated by scanning the C–N bond length from $R_{CN} = 1.0$ Å to 2.8 Å while fixing the other geometric parameters at the D₀ equilibrium geometry. Meanwhile, one-dimensional potential energy curve for the first ²A₁ state was independently obtained in the geometries of elongated C–N bond lengths ranging from 1.6 Å to 2.8 Å. Here, we additionally employed an extra virtual molecular orbital of σ_{Bz}^* character in order to describe the C–N bond dissociation channel, giving CAS(15,12) active space. The resulting curves for the five electronic states of nitrobenzene radical anion were carefully normalized to the energy of D₀ curve to give a combined rigid-body potential energy curves along the C–N bond dissociation coordinate in Fig. 3b.

4. PST Calculation for Unimolecular Statistical Dissociation

In this section, the Phase Space Theory (PST) calculation for the unimolecular dissociation rate of the nitrobenzene anion, $C_6H_5NO_2^- \rightarrow \cdot C_6H_5 + NO_2^-$ is presented. Using Eq. 1, the energy (*E*) and angular momentum quantum number (*J*)-specific rate constant, k(E, J) can be calculated.^{2, 3}

$$k(E,J) = \frac{N^{\dagger}(E,J)}{h\rho_R(E,J)} (Eq. 1)$$

where $N^{\dagger}(E, J)$ represents the number of states of the transition state, *h* is Planck's constant, and $\rho_R(E, J)$ is the density of states of the reactant for a given *E* and *J*. $N^{\dagger}(E, J)$ can be calculated using density of states of products, ρ_P , according to Eq. 2.⁴

$$N^{\dagger}(E,J) = \sum_{\substack{l,J_p \\ |l-J_p| \le J \le l+J_p}} \int_0^E \rho_P(\epsilon,J_P,l) \frac{\sigma(P,R)}{\pi[\lambda(E-\epsilon)]^2} d\epsilon \quad (Eq. 2)$$

In this equation, $\sigma(P, R)$ is the cross-section of the reverse association reaction, ϵ is the integral variable, and $\lambda(E - \epsilon)$ is de Broglie wavelength with translational energy $(E - \epsilon)$. $J_{P'}$ and l denote the total rotational angular momentum quantum number of the product and the orbital angular momentum quantum number between the fragments, respectively. Note that $\sigma(P, R)/\pi[\lambda(E - \epsilon)]^2$ equals to $(2J + 1)/(2J_p + 1)(2l + 1)$.⁵ The number of product states $N_p(E, J_{p'}l)$ is calculated using PST⁶ under the rigid and harmonic oscillator assumptions. The vibrational density of states $\rho_{vib}(E)$ and the number of states $N_{vib}(E)$ are derived from harmonic frequencies obtained using the B3LYP-DFT method with a 6-311G++(3pd, 3df) basis set.⁷

Since all molecules in the dissociation reaction are asymmetric tops, the rotational energy $E_{rot}(J, K)$ is calculated using a symmetric top basis set.⁸ The density of states $\rho(E,J)$ and the number of states N(E,J) are calculated as following equation.²

$$N(E,J) = \frac{1}{\sigma_{rot}} \sum_{K} N_{vib} (E - E_{rot}(J,K)) \quad (Eq. 3)$$
$$\rho(E,J) = \frac{dN(E,J)}{dE} \quad (Eq. 4)$$

where σ_{rot} is rotational symmetric number of a molecule. The total vibrational number of product states $N_{tot, vib}(E)$ is calculated as:

$$N_{tot, vib}(E) = \int_{0}^{E} N_{prod1, vib}(\varepsilon) \rho_{prod2, vib}(E - \varepsilon) d\varepsilon \quad (Eq. 5)$$

A Morse potential and centrifugal barrier under rigid rotor approximation between centers of mass of two fragments are used to calculate the energy levels of orbital angular momentum. The total potential is expressed as:

$$V(r,l) = V_{morse}(r) + V_{cen}(r, l) \quad (Eq. 6)$$

where:

$$V_{morse}(r) = D_e \left(1 - e^{-\beta (r - r_e)}\right)^2 \quad (Eq. 7)$$
$$V_{cen}(r, l) = \frac{l(l+1)\hbar^2}{2\mu \left(r + \Delta r_{Ph} + \Delta r_{NO_2^-}\right)^2} \quad (Eq.8)$$

Here, D_e is dissociation threshold energy of the reactant, $\beta = 2\nu_0 \pi / (2D_e/\mu)^{1/2}$, r_e is C–N bond length, ν_0 is vibrational C–N stretching mode, and μ is the reduced mass between the two fragments. Δr_{Ph} and $\Delta r_{NO_2}^-$ are distances from centers of mass of the fragment phenyl radical and NO₂⁻ to the atoms C and N, respectively.

The maximum point of the V(r,l), which corresponds to the reaction barrier in the reverse association reaction, must be found numerically using the following conditions.⁹

(i)
$$\left. \frac{dV}{dr} \right|_{r=r_{max}(l)} = 0$$

(ii) $\left. \frac{d^2V}{dr^2} \right|_{r=r_{max}(l)} < 0$

The total number of product states, $N_{tot}(E, J_p, l)$ is then calculated as:

 $N_{tot}(E, J_p, l) =$

$$\frac{1}{\sigma_{rot, prod1} \sigma_{rot, prod2}} \frac{1}{\sum_{J_1 J_2} \sum_{\substack{J_1 J_2 \\ |J_1 - J_2| \le J \le J_1 + J_2 \\ (Eq. 9)}} \sum_{K_{prod1} K_{prod2}} (2l+1) N_{tot, vib}(E - E_{prod1, rot}(J_1, K_1) - L_{prod1} K_{prod2})$$

The factor 2l + 1 accounts for the degeneracy factor of the orbital angular momentum. Using Eq. 2 and Eq. 4, $N^{\ddagger}(E, J)$ is calculated as:

$$N^{\ddagger}(E,J) = \sum_{\substack{lJ_p \\ |l-J_p| \le J \le l+J_p}} \frac{(2J+1)N_{tot}(E,J_p)}{2J_p+1} \quad (Eq. 10)$$

The mean reaction time rate constant k(E) is derived from k(E,J) using the population distribution P(J), which represents the probability of the reactant possessing an angular momentum quantum number J.¹⁰

$$k(E)^{-1} = \sum_{J} \frac{P(J)}{k(E,J)}$$
 (Eq. 11)

For this calculation, a Boltzmann distribution at 150 K is used. However, the actual distribution might be affected by photoexcitation, altering angular momentum J as expressed by the Honl-London factor.¹¹ Boltzmann distribution P(J) at a given temperature T is:

$$P(J) = \sum_{K} \exp\left(-\frac{E_{rot}(J,K)}{k_{B}T}\right) / \sum_{J} \sum_{K} \exp\left(-\frac{E_{rot}(J,K)}{k_{B}T}\right) \quad (Eq. 12)$$

Energy conservation for the reactants and products is given by:

Ε

$$= h\nu + k \mathbb{Z}_B T = E_{reac, vib} + E \mathbb{Z} \mathbb{Z}_{reac,rot} = E_{prod,vib} + E_{prod,rot} + E_{cen} - E_{reac,ZPE} \quad (Eq. 13)$$

 $E_{reac, ZPE}$ and $E_{prod, ZPE}$ represent half of the sum of harmonic vibrational frequencies of the reactant and products, respectively.

Used parameters.

Dissociation energy threshold $({}^{D}_{e})$ is 1.82eV.

Nitrobenzene vibrational frequencies (cm⁻¹)

112.82930000000	157.42070000	00000	249.27320000)0000
389.927900000	000 403.0	55800000	439.9	63600000000
522.805900000	000 567.5	69000000	627.6	75200000000
656.121000000	000 678.2	207000000	00 716.0	33500000000
795.917500000	000 816.2	13800000	000 843.5	31200000000
958.859100000	962.3	8665000000	979.6	49600000000
1016.301300000	000 1077.	.147700000	1083.	61050000000
1155.498200000	000 1177.	.406200000	1300.	10720000000
1337.662500000	000 1364.	.292800000	1378.	89520000000
1473.482500000	000 1493.	.648200000	000 1547.	98190000000
1611.69060000	000 3129.	.506400000	00 3136.	13710000000
3168.399400000	000 3217.	.612600000	000 3218.	47770000000

 v_0 =403.0558cm⁻¹ was used as C–N stretching mode in morse potential.

Phenyl radical vibrational frequencies (cm ⁻¹)							
401.064900000000	427.7529000	00000	602.115500	000000			
621.2617000000	000 666.	6753000000	000 721	.929400000000			
817.133900000	000 898.	2266000000	000 974	.039000000000			
995.188300000)00 996.	9052000000	000 101	6.95850000000			
1050.637700000	000 1072	2.240300000	000 117	5.6308000000			
1176.26600000	000 1302	2.697800000	000 132	3.5818000000			
1460.816800000	000 1470).479500000	000 156	8.24490000000			
1625.428400000	000 3160).577000000	000 316	6.58000000000			
3180.549600000	000 3182	2.441700000	000 319	3.27050000000			

NO₂⁻ vibrational frequencies (cm⁻¹) 801.66370000000 1299.55620000000 1338.02370000000

Nitrobenzene rotation	nal frequencies (cm ⁻¹)	
0.130670000000000	0.04280000000000000	0.0322400000000000
Phenyl radical rotatio	nal frequencies (cm ⁻¹)	
0.211160000000000	0.188310000000000	0.0995400000000000
NO ₂ - rotational frequ	encies (cm ⁻¹)	
4.00753000000000	0.461920000000000	0.414180000000000
Distance from center	of mass of the fragmer	at Ph and NO- to atoms C
	of mass of the magnier	111111111111110_2 to atoms C
Δr_{Ph}		
1.3630Å		

and N

 $\Delta r_{NO_{2}^{-}}$ 0.4572Å

5. Fitting Procedure for TRPD transients

To fit the TRPD transients of $C_6H_5NO_2^-$, $(C_6H_5NO_2)_2^-$ and $(C_6H_5NO_2)_3^-$, the mathematical model from our recent work¹² was employed. The dissociation mechanism of nitrobenzene and its cluster anions involves two-step process, comprising fast internal conversion ($^{\tau_1}$) and relatively slow dissociation ($^{\tau_2}$).

 $D_0 \xrightarrow{hv} D_2 \xrightarrow{\tau_1} D_0^* \xrightarrow{\tau_2} Fragments$

Assuming τ_2 is much larger than τ_1 , the transient equation simplifies to:

$$[D_0(t)] = 1 - \frac{1}{\sqrt{2\pi}w} \int_{-\infty}^{t} e^{-\frac{x^2}{2w^2}} dx = \frac{1}{2} \left(1 - \operatorname{erf}\left(\frac{t}{\sqrt{2}w}\right) \right),$$

where $\operatorname{erf}(t) = \frac{2}{\sqrt{\pi}} \int_{0}^{t} e^{-x^2} dx$

$$[D_2(t)] = \frac{1}{\sqrt{2\pi}w} \int_{-\infty}^{t} e^{-\frac{x^2}{2w^2}} \cdot e^{-\frac{(t-x)}{\tau_1}} dx = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{t}{\sqrt{2}w} - \frac{w}{\tau_1}\right)\right) \cdot e^{\frac{w^2}{2\tau_1^2} - \frac{t}{\tau_1}}$$

$$\begin{bmatrix} D_0^*(t) \end{bmatrix} = \begin{cases} (1 - \begin{bmatrix} D_0(t) \end{bmatrix} - \begin{bmatrix} D_2(t) \end{bmatrix}) & (t < 0) \\ & -\frac{t}{\tau_2} \\ (1 - \begin{bmatrix} D_0(t) \end{bmatrix} - \begin{bmatrix} D_2(t) \end{bmatrix}) \cdot (e^{-\frac{t}{\tau_2}}) & (t \ge 0) \end{cases}$$

$$[Fragments(t)] = \begin{cases} 0 & (t < 0) \\ -\frac{t}{\tau_2} \\ \left(1 - e^{-\frac{t}{\tau_2}}\right) & (t \ge 0) \end{cases}$$

Through a linear combination of these equations, fragment depletion by the probe pulse, F(t), can be fitted using coefficients the c_n , τ_n , and C. Here, c_n is the fitting coefficient, which depends on detachment cross-section of the anion in the 'n'th reaction stage, τ_n is the lifetime for that stage, and C represents the offset values.

$$F(t) = C + c_1[D_0(t)] + c_2[D_2(t)] + c_3[D_0^*(t)] + c_4[Fragments(t)]$$

6. Laser Power Curve for Photoexcitation Spectra

Fig. S4 Laser power curve of the OPO output (NT342, Ekspla) used for the photoexcitation spectra

7. References

- 1. H. Nakashima, Y. Honda, T. Shida and H. Nakatsuji, *Mol. Phys.*, 2015, **113**, 1728–1739.
- 2. D. M. Wardlaw and R. A. Marcus, Chem. Phys. Lett., 1984, 110, 230–234.
- 3. C. E. Klots, J. Phys. Chem., 1971, 75, 1526–1532.
- 4. K. Morokuma, B. C. Eu and M. Karplus, J. Chem. Phys., 1969, 51, 5193–5203.
- 5. P. Pechukas and J. C. Light, J. Chem. Phys., 1965, 42, 3281–3291.
- 6. J. C. Light, J. Chem. Phys., 1964, 40, 3221–3229.
- 7. S. E. Stein and B. S. Rabinovitch, J. Chem. Phys., 1973, 58, 2438–2445.

8. P. F. Bernath, *Spectra of Atoms and Molecules*, Oxford University Press, New York, 2nd edn., 2005.

- 9. E. V. Waage and B. S. Rabinovitch, *Chem. Rev.*, 1970, **70**, 377–387.
- 10. S. J. Klippenstein and R. A. Marcus, J. Chem. Phys., 1989, 91, 2280–2292.
- 11. I. C. Chen, W. H. Green, Jr. and C. B. Moore, J. Chem. Phys., 1988, 89, 314–328.
- 12. S. An and S. K. Kim, Nat. Commun., 2025, 16, 5743.