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DFT Calculations

The dataset used for model training comprises a wide range of Pt2CoM bulk systems. It

includes previously studied systems such as PtCo, Pt2CoCu, Pt2CoNi, Pt2CoMn, Pt2CoFe,

Pt2CoGa, and Pt2CoTi,1 as well as additional compositions where M = Cr, Zn, Nb, Mo,

Ru, Rh, Pd, Ag, Cd, Ta, W, Re, Os, Ir, Pt, Au, and Hg. These elements span diverse

groups and periods in the periodic table, significantly enriching the chemical space of the

dataset. To ensure adequate coverage of structural complexity, we systematically sampled

configurations with varying degrees of M-site ordering, using a hierarchical approach that

captures ordering patterns across both Pt–Co/M and Co–M sublattices. To ensure the ro-

bustness and generalizability of the developed machine learning potential, we constructed a

diverse training dataset that includes not only fully optimized structures at local minima but

also non-equilibrium configurations. Specifically, we generated PtCoM alloy structures with

varying degrees of ordering and extracted structural, energetic, and force information from

each ionic step during their DFT relaxation trajectories. This approach enables the model to

learn from configurations that deviate from equilibrium, enhancing its reliability in practical

simulations. In addition, the pretrained DPA model was initialized using the OC20 dataset,

which contains extensive non-equilibrium data, including DFT trajectories, single-point cal-

culations on randomly perturbed structures, and short-time high-temperature AIMD sim-

ulations. These diverse data sources provide rich coverage of the potential energy surface,

enabling the model to accurately describe both near-equilibrium and far-from-equilibrium

structures.

DFT calculations were carried out using the Vienna Ab Initio Simulation Package (VASP).2

The core and valence electron interactions were modeled using the projected-augmented

wave (PAW) method.3 A plane-wave basis set with a kinetic energy cutoff of 400 eV was ap-

plied. The exchange-correlation energy was approximated using the Perdew-Burke-Ernzerhof

(PBE) functional within the generalized gradient approximation (GGA).4 An energy conver-

gence criterion of 5× 10−5 eV was set for electronic structure calculations, and the geometry
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optimization was performed until the forces on all atoms were below 0.03 eV/Å. The PtCo

unit cell, with the P4/mmm space group, was obtained from the Materials Project.5 To

create the Pt2CoM unit cell (where M represents the third element doped into PtCo), the

PtCo unit cell was replicated, and one of the Co atoms was replaced by an M atom. The

lattice constants of the Pt2CoM unit cells were then re-optimized using DFT. A (3×3×3)

supercell was constructed based on the DFT-optimized Pt2CoM unit cell, which contains a

total of 108 atoms. The (3×3×3) and (9×9×9) Monkhorst-Pack k-point grids were utilized

to sample the Brillouin zone for the unit cell and supercell model.6

Monte Carlo Simulation

The Monte Carlo process employed in this study aims to explore atomic configurations

and calculate various thermodynamic properties, including short-range order (SRO), free

energy, and configurational entropy, for a system composed of three atomic species (Pt,

Co, M). A fixed cutoff radius of 1.4 Å is used to define the neighbors for each atom, and

this neighbor list is then utilized to compute the short-range order (SRO), which is tracked

throughout the simulation to monitor the system’s local ordering behavior. The potential

energy for each configuration is evaluated using a fine-tuned machine learning potential

model, and the configuration is optimized via the BFGS algorithm to minimize atomic

forces. Configurational entropy is subsequently calculated by considering the distribution of

atomic types and the probabilities of different pairwise configurations in the neighbor list.

The formula for calculating configurational entropy is:

Smix = kB

n∑
j,k=1

cjfjk ln

(∑n
l=1 clflk
cjfjk

)
(1)

where cj is the ratio of element j, kB is the Boltzmann constant, and fij is the probability

of finding a j atom next to a k atom. The Monte Carlo simulation iteratively generates new

atomic configurations by randomly swapping atom types between neighboring atoms. The
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Metropolis criterion is applied to accept or reject mutated configurations based on changes

in free energy. If the energy decreases, the new configuration is always accepted; otherwise,

it is accepted with a probability proportional to the Boltzmann factor. Key thermodynamic

properties, including energy, SRO, enthalpy, and entropy, are recorded at each Monte Carlo

step. The final configuration with the lowest energy is saved, along with data on SRO and

free energy. The simulation consists of 5000 steps and is independently repeated five times

to select the configuration with the minimum energy, thereby avoiding local minima.

Ordering energy calculation

To calculate the thermodynamic driving force for the disorder-to-order in PtCo and Pt2CoM

systems, we randomly generated Pt2CoM configurations with predefined degrees of ordering.

Monte Carlo algorithm was applied to swap atomic positions such that the structural ordering

evolved toward the target value. The finetuned machine learning potential was then used to

optimize these structures and evaluate their energies. For PtCo, one ordered structure with

αPt-Co = −1/3 and 180 random structures with αPt-Co = 0 were generated. For Pt2CoM,

we generated 180 ordered structures with αPt-Co/M = −1/3, which exhibit varying degrees

of Co–M ordering (αCo-M = −6/54, 1/54, 8/54, 15/54, 22/54, 29/54, 36/54, 43/54, 50/54), as

well as 180 random structures with αPt-Co/M = 0.

Estimation of Bond Energies for Co-M, M-M, and Co-Co Pairs

To approximate the relative bond strengths of Co-M, M-M, and Co-Co pairs discussed, we

employed a simplified bond decomposition approach based on total energies of representative

supercell structures. Specifically, we constructed bulk models of pure Pt, Co, and M metals,

as well as ordered ternary PtCoM alloys and related binary systems including PtCo and PtM.

The supercell contains 108 atoms, each coordinated with 12 nearest neighbors. Considering

each pair is counted once, this results in 648 unique nearest-neighbor bonds. We then

assumed that the total energy of each structure can be approximately decomposed into
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contributions from these 648 pairwise bonds, following the relations:

EPt bulk = 648EPt–Pt (2)

ECo bulk = 648ECo–Co (3)

EM bulk = 648EM–M (4)

EPtCo bulk = 108EPt–Pt + 108ECo–Co + 432EPt–Co (5)

EPtM bulk = 108EPt–Pt + 108EM–M + 432EPt–M (6)

EPtCoM bulk = 108EPt–Pt + 9ECo–Co + 9EM–M + 216EPt–Co + 216EPt–M + 90ECo–M (7)

Solving this system of six linear equations yields approximate values for the six bond

energies: Pt-Pt, Co-Co, M-M, Pt-Co, Pt-M, and Co-M. This pairwise decomposition is

a simplification that neglects many-body effects and local environmental variations, but it

serves as a reasonable approximation to assess the relative bond preferences. These estimates

were used to rationalize the energetic driving forces behind elemental ordering or segregation

in PtCoM ternary alloys, as illustrated in Figure S7.

Vacancy Migration Energy Barrier Calculation

We fine-tuned the machine learning potential by incorporating a small set of transition-state

data from climbing image nudged elastic band (CI-NEB) calculations of vacancy migration

in PtCo, aiming to improve its accuracy in predicting transition states. Then the model was

used to calcualte the vacancy migration energy barrier in PtCoM. The vacancy is introduced

by randomly removing a metal atom from the PtCoM system. The structures before and

after the vacancy migration are optimized using a machine learning potential, which serves

as the initial and final configurations for the transition state calculation. To represent the

reaction pathway, intermediate structures—referred to as NEB images—are created between

the initial and final states. In this study, three intermediate images are generated, resulting
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in a total of five images: one initial, three intermediate, and one final. The atomic positions

of these intermediate images are interpolated to generate an initial reaction path connecting

the initial and final configurations. The machine learning potential model is then used to

calculate the forces acting on the atoms and the potential energy of the system, ensuring

accurate energy calculations during the optimization process. The NEB path is subsequently

optimized using the BFGS algorithm, which iteratively minimizes the forces on the atoms.

The optimization continues until a force tolerance of 0.03 eV/Å is achieved. This optimized

path provides the basis for determining the transition state energy and activation barrier for

the vacancy migration process.
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Figure 1: The PtCo and PtCoM supercell model contraining 108 atoms.
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Figure 2: Distribution of ordering degree for PtCo, Pt2CoCu, Pt2CoNi, Pt2CoGa, Pt2CoMn
and Pt2CoFe dataset.
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Figure 3: Distribution of ordering degree for Pt2CoM dataset (M=Cr, Zn, Nb, Mo, Ru, Rh,
Pd, Ag, Cd, Ta, W, Re, Os, Ir, Pt, Au, Hg).
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Figure 4: Comparison of different fine-tuning strategies: ”From scratch” refers to training
a model from the beginning, where all parameters are re-initialized without inheriting any
from a pre-trained model; ”Finetune1” adjusts only the parameters in the fitting network,
while keeping all other parameters frozen; ”Finetune2” allows adjustment of both the fitting
and descriptor network parameters; ”Finetune3” allows all parameters to be adjusted.
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Figure 5: Machine learning predicted energy as a function of αCo-M at αPt-CoM=−1/3 for
different kinds of Pt2CoM.
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Figure 6: (a) Depiction of mean energy difference between structures with diverse chemical
αCo-M at αPt-CoM = −1/3. (b) Energy differences between ordered (αCo-M = −3/27) and
randomly arranged Co and M atom structures. (c) Energy differences between segregated
(αCo-M = 25/27) and randomly arranged Co and M atom structures.
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Figure 7: Distribution of elements tend to disorder or order as a function of ECo−M and
EM−M.
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Table 1: The number of DFT calculated configurations for different Pt2CoM used to training
machine learning potential.

Alloy Number Alloy Number
PtCo 109 Pt2CoRh 35
Pt2CoCu 120 Pt2CoPd 35
Pt2CoNi 116 Pt2CoAg 35
Pt2CoGa 107 Pt2CoCd 35
Pt2CoMn 106 Pt2CoTa 35
Pt2CoFe 116 Pt2CoW 35
Pt2CoTi 116 Pt2CoRe 35
Pt2CoV 35 Pt2CoOs 35
Pt2CoCr 35 Pt2CoIr 35
Pt2CoZn 35 Pt2CoPt 35
Pt2CoNb 35 Pt2CoAu 35
Pt2CoMo 35 Pt2CoHg 35
Pt2CoRu 35
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Table 2: Thermodynamic driving force for PtCoCu ordering under different sampling num-
bers

Sampling number Thermodynamic driving force (eV/atom)
9 0.0824
27 0.0828
35 0.0829
135 0.0825
180 0.0821
270 0.0817
360 0.0816
405 0.0817
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Table 3: Comparison of energy prediction accuracy for different machine learning modeling
approaches on PtCo-based ternary alloys

Model Dataset Energy MAE (eV/atom)
Finetuned DPA PtCoM 0.0022
Finetuned MACE PtCoM 0.0029
Cluster Expansion PtCoCu 0.0082

PtCoNi 0.0035
Descriptor + GPR PtCoCu 0.0058

PtCoNi 0.0036
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Table 4: Experimental synthesis cases of highly ordered Pt2CoM alloys for ORR electrocat-
alyst.

Alloy Reference
PtCoTi ACS Catalysis, 2022, 12(13): 7571–7578
PtCoV Chemistry of Materials, 2012, 24(22): 4283–4293
PtCoNi Nature Communications, 2024, 15(1): 415

JACS, 2020, 142(45): 19209–19216
Nano Energy, 2024, 120: 109154

PtCoCu Nature Communications, 2024,15(1): 415
JACS, 2020, 142(45): 19209–19216

PtCoZn Journal of Colloid and Interface Science, 2023, 652: 388–404
PtCoAg Electrochimica Acta, 2016, 219: 531–539
PtCoAu Electrochimica Acta, 2021, 384: 138266

Advanced Functional Materials, 2020, 30(22): 2001575
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Table 5: Machine learning predicted average energy difference between the ordered arrange-
ment of Pt and Co/M structures (αPt-CoM = −1/3) and the random arrangement of Pt and
Co/M structures (αPt-CoM = 0).

Metal Energy difference
(eV/atom)

Energy difference relative
to PtCo (eV/atom)

Ti 0.0645 0.0028
V 0.0603 -0.0014
Cr 0.0311 -0.0306
Mn 0.0199 -0.0418
Fe 0.0340 -0.0277
Co 0.0617 0.0000
Ni 0.0683 0.0066
Cu 0.0694 0.0077
Zn 0.0894 0.0277
Nb 0.0530 -0.0087
Mo 0.0384 -0.0233
Ru -0.0091 -0.0708
Rh 0.0224 -0.0393
Pd 0.0362 -0.0255
Ag 0.0407 -0.0210
Cd 0.0686 0.0069
Ta 0.0453 -0.0164
W 0.0250 -0.0367
Re -0.0266 -0.0883
Os -0.0485 -0.1102
Ir -0.0156 -0.0773
Pt 0.0145 -0.0472
Au 0.0263 -0.0354
Hg 0.0383 -0.0234

Max 0.0894 0.0277
Min -0.0485 -0.1102
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Table 6: Machine learning predicted extra ordering energy casued by ordering of Co and M
(second column) and segregation of Co and M (third column).

Metal Energy different (eV/atom) Energy different (eV/atom)
Ti 0.0921 -0.0930
V 0.0377 -0.0352
Cr 0.0031 -0.0031
Mn -0.0059 0.0039
Fe -0.0035 0.0026
Co 0.0000 0.0000
Ni -0.0045 0.0046
Cu -0.0097 0.0123
Zn -0.0051 0.0077
Nb 0.0952 -0.0846
Mo 0.0127 -0.0118
Ru 0.0004 -0.0022
Rh -0.0018 0.0055
Pd -0.0209 0.0264
Ag -0.0544 0.0635
Cd -0.0380 0.0473
Ta 0.1159 -0.1092
W 0.0273 -0.0310
Re 0.0041 -0.0121
Os 0.0097 -0.0180
Ir 0.0066 -0.0064
Pt -0.0046 0.0111
Au -0.0385 0.0469
Hg -0.0563 0.0554

Max 0.1159 0.0635
Min -0.0563 -0.1092
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Table 7: Mean vacancy diffusion barrier in PtCo, PtCoCu, PtCoNi, and PtCoZn.

System Atom Mean vacancy diffusion barrier (eV/atom)
PtCo Pt / Co 1.33 / 1.17

PtCoCu Pt / Co / Cu 1.07 / 1.02 / 0.76
PtCoNi Pt / Co / Ni 1.06 / 1.06 / 0.97
PtCoZn Pt / Co / Zn 0.95 / 1.01 / 0.68
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