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S1 The relationship between mean first passage time ratios
and mobilities for cable bacteria

This section motivates eqn (3) of the main text, linking ratios of mean first passage times (MFPTs)
to mobilities. In d-dimensional isotropic systems, the diffusion coefficient is proportional to the
mean-squared displacement. The diffusion constant can be written as the sum of mean-squared

displacements in each direction:*
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Here, (r?) is the mean-squared displacement in d-dimensions, (z;?) is the mean-squared displacement
in dimension ¢, D is the diffusion coefficient, and ¢ is the time. ¢ is taken to the infinite limit, and
the diffusion coefficient is defined as being proportional to the mean-squared displacement over the

elapsed time ¢:12
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For an anisotropic medium, we expand the sum in eqn (S1.1) as a sum of distinct directional

diffusion coefficients: !
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If D; = D for all i, the sum in eqn (S1.1) is recovered. eqn (S1.1.2) follows from the one-dimensional

diffusion relation for direction i:2%?3
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We focus on the electronic mobility in direction ¢ between the source and drain electrodes in our

study. The Einstein-Smoluchowski relation describes the mobility as being proportional to the

diffusion constant divided by temperature:*

qD;
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where p; is the electronic mobility in direction ¢, ¢ is the charge of the moving particle, kg is
Boltzmann’s constant, and 7" is the temperature. The ratio of mobility in a 1D chain to the mobility
in the CB model with junctions (taking the mobility in the direction of current, i.e., parallel to the

fibers) is:
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In the main text, for ease of computation, we compute the mean first passage time (MFPT) given
by: 23

ti = —um; (S1.3)

for a single dimension.

The ratio of MFPTs for CB and 1D chains is:
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Since the right-hand side of eqn (S1.2.1) equals the right-hand side of eqn (S1.3.1) , we have (from

the main text):
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This result indicate that the ratio of MFPTs for two systems is equal to the reciprocal of the ratio

of the systems’ mobilities.

S2 Statistical analysis of cable bacteria conductivity data

This section describes the challenge of modeling electrical conductivities and mobilities in CB,

given the wide range of reported structures and conductivities.

S2A  Conductivity spread and focus on mobility

The scarce CB mobility data for the Ca. FElectrothriz Communis RB species of CB are narrowly
distributed around a mean value of 0.19 ¢cm?/V's (there are 4 reported mobilities ranging from 0.09
to 0.27 em?/V's).°While there are significantly more measurements of CB conductivities (as many
as 270 measurements across all species and all measurement methods - see Table S1), the difference
between minimum and maximum conductivity values spans 4 (grouping i) to 11 (grouping a) orders
of magnitude, depending on the data considered (grouping d spreads over 7 orders of magnitude
- see table S2) . This spread of the data presents a theoretical challenge, as assessing a model as
being compatible or incompatible with this conductivity data depends on which points are modeled.
For example, one might expect that the minimum (2.46 x 107> S/cm in group d) and maximum
(546 S/em in group d) are produced by different mechanisms. Rather than consider the wide
range of mechanisms that could arise from the broad spread conductivity data, we instead analyze
the electronic mobilities. A number of explanations for the wide variance in the CB conductivity
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data are plausible: variation in CB diameters,%” growth conditions, oxygen exposure, or

damage to samples during fiber sheath preparation.®?!112 While these issues may influence the



group group description sample mean median standard
letter size deviation
a All data points (excluding the averages of already in- 270 835 1.10 39
cluded replicas)
b All data points representing replicas by their average 252 8.82 095 403
¢ All data points, excluding total conductivity from pro- 249 9.05 1.60 40.5
tonic conductivity experiments (and excluding the aver-
ages of already included replicas)
d* All data points, excluding total conductivity from pro- 231 9.62 141 42
tonic conductivity experiments, representing replicas by
their average
i 4 probe Rattekaai measurements (excluding the aver- 23 11.61 1.75 19
ages of already included replicas)
j 4 probe Rattekaai measurements, representing replicas 15 17.21 10.00 21.7
by their average
k Rattekaai 2 probe measurements (excluding the aver- 160 11.55 2.01  49.7
ages of already included replicas)
1 Rattekaai 2 probe measurements, representing replicas 150 12.18 1.68  51.3
by their average
t all Electrothrix communis RB 17 0.13 0.10 0.154

Table S1: Summary Statistics for Select Literature Conductivities. All values are in S/cm (except
sample size, which is a unitless number). The table shows summary statistics for selected groupings
of literature data. Additional data summary statistics and grouping methods appear below. The
jump in group letters makes it clear that this is not an exhaustive list of all the groupings we
considered, but is rather an illustrative subsample. *Statistics for group d are referenced in the
main text.



group letter relative standard deviation min max (Q1-Min)/IQR (Max-Q3)/IQR

a 4.67 1.23e-09 564 0.0235 126

4.57 1.23e-09 564 0.0183 106

c 4.47 2.46e-05 564 0.0371 106

d* 4.36 2.46e-05 564 0.0233 89.5
i 1.64 0.31 74 0.0469 4.03

j 1.26 0.63 74 0.0473 2.17

k 4.31 0.0034 264 0.035 75.2
1 4.21 0.0034 264 0.0297 66.1

t 1.16 0.000282 0.553 0.199 2.71

Table S2: Selected Distribution Descriptors. Columns "min” and "max” are in S/em. All other
columns are unitless. A description of what the group letters correspond to is found in table
S1. Note that the group letters being non-sequential indicates that this is only an illustrative
subsample of all the data groupings we considered (the full set can be found in the accompanying
spreadsheet “Supplement_fullLitData.csv”). The relative standard deviation is calculated as the
standard deviation divided by the mean. The last two columns indicate how far the extrema of the
distribution are from the nearest quartile to show that a few points may have a dramatic effect on
the mean. *Statistics for group d are referenced in the main text.

conductivities, it is unclear whether these factors can account for the 7 orders or more of variation

in the observed conductivities.

S2B Method of analyzing conductivity statistics

In the main text, (and below, in the supporting information), we present summary statistics and
distribution descriptors for the CB conductivities (see tables S1 and S2, and the accompanying
spreadsheet “Supplement_fullLitData.csv”). We included all published peer-reviewed conductivity

57810,12714) * These summary statistics de-

data available at the time of submission (see references
pend on which literature data are included in the analysis. As shown in table S1, the reported
conductivities vary with the experimental methods (2 probe vs 4 probe), the source of the CB, and
the species of CB. The large variance in conductivities between species and sample collection sites
may reasonably lead one to conclude that only samples from a single source (e.g., Rattekaai) should

be included in the data analysis. However, some data’ suggest that CB have broadly similar metal-

lic compositions and that conductivities associated with different sample locations may not differ



in a statistically significant way. As such, one could reasonably suggest that the charge-transfer
mechanism is conserved across CB, and that all data from all sampling locations and species should
be included in the statistical analysis. As both of these interpretations are reasonable - but con-
tradictory - we believe choosing one strategy over the other would add subjectivity to the analysis.
To avoid this, we compute summary statistics for over 20 different ways to represent the literature
data (see “Supplement _fulllitData.csv”). Choices about data inclusion influence the interpretation
of the statistics. We also considered how best to represent repeated measurements on the same CB
specimen. If all CB specimens have the same conductivity mechanism, every individual measure-
ment should be considered equally in the statical analysis. If the mechanisms differ between CB
specimens, then one could average repeated measurements on the same physical specimen. This
averaging would avoid over representing a single specimen that may have atypical characteristics.
For example, the median conductivity value of the 4 probe Rattekaai measurements is 1.75 S/cm
if all repeated measurements are included in the statistical analysis. However, the median 4 probe
Rattekaai conductivity value is 10 S/cm if repeated measurements on the same physical specimen
are averaged and then the single averaged value is used in the subsequent statistical analysis. In or-
der to avoid subjectivity in the treatment of repeated measurements, we report statistics computed

by both methods.

S2C Utility of CB median conductivity data

Although we focus on electronic mobility, when conductivity is cited, we refer to the conductivity of
a typical CB specimen, namely the median conductivity of the CB, regardless of species or source.
We use the median conductivity rather than the mean conductivity to better represent a typical
CB, as some CB are much more or less conductive than others. When discussing group d, it is
important to note that this group excludes proton conduction experiments of Ref.'3. Although
the proton conductivity experiments do measure a total conductivity (which includes both electron
and proton contributions)!3!3. However, these experiments use significantly different techniques to

measure conductivities compared to experiments that focus on the electronic conductivity. As such,



the conductivities of the two kinds of experiments may not be comparable. In group d, we average
repeated measurements on the same CB specimen before the final statistical analysis. However,
comparing the data of group d to that of group ¢ (which includes each individual measurement,
rather than their average value) shows that - for this specific data set - either way of representing
the repeated measurements produces similar results.

In most discussions of the conductivity (in the SI and main text), we focus on median values. The
median values rather than the mean values better represents a typical CB, because the vast majority
of CB data groupings have points far above the 3rd quartile. The IQR (interquartile range) value
is a common statistical metric to identify outlying data.® !® Data beyond 1.5-IQR above the 3rd
quartile are frequently considered to be outliers.!® As seen in table S2, most strategies to group the
data produce maximum values well above 1.5-IQR above the third quartile, with many (including
grouping d) having points more than 50-IQR above the third quartile. This finding suggests that
a few extreme points may dramatically increase the mean conductivity value. This increase in the
mean conductivity, relative to the median conductivity, is not a reflection of the conductivity of a
typical specimen. Rather the mean is strongly influenced by high conductivities of a few points.
Regardless of which data are included in the calculation, the median remains largely unchanged
- with values around ~ 10° S/ecm. A notable exception occurs for group j, where the median is
10 S/em. As group j includes 4 probe measurements, these values may indicate that the Rattekaai
CB be different (more conductive) than the freshwater CB and CB from other locations. However,
reaching the conclusion that the Rattekaai CB may have a different charge transport mechanism
depends upon how repeated measurements on the same sample are treated (groups i vs j). For
these reasons, we focus on group d data.

The largest CB conductivity data points (> 500 S/cm) would qualify as being outliers. Nonethe-
less, the largest conductivity data are not necessarily non-physical or erroneous. Rather, the outlying
conductivity measurements are atypical. While the difference in conductivity between typical and
outlying measurements may arise from unknown sources of error, these differences may also arise

from a different conductivity mechanism in the outliers. Many factors influence the conductivity



(see section S2A), but our understanding of their influence remains qualitative. As such, rather than
focusing on a maximum hypothetical conductivity of CB, we choose to focus on the conductivity

values of typical CB.

S3 Convergence of computed MFPTs for CB

We now motivate the choice of convergence criteria used for the random walk simulations of MFPTs
in CB. We also discuss the influence of convergence hyperparameter choices on the computed MFPT's
for CB.

The converged MFPT is the sum of the probability-weighted first passage times over infinitely

many trajectories (the MEPT is approximate for a finite number of trajectories):

tnfp = (ti)neoo = sz‘tz' (S3.1)
=0

t; is the ith first passage time, and p; is the probability of a particle taking path i . We compute
the first passage times for 100 independent random walks between chain ends. The mean of these
first passage times (the sample MFPT - denoted (¢;),—100) approximates the converged MFPT. To
better approximate the converged MFPT, we use the central limit theorem. This theorem prescribes
that when one averages over many (m — 0o0) sample means (samples of size n with mean (x),),
the difference between the mean value of the sample means (((z),),, and the true population mean
Upop) approaches zero:

tim () — Hipap) = 0 (S3.1.1)

m—o0

For approximate MFPTs, we denote the mean of the sample means over m samples of size n

each as ((x)n)m. We can recover the converged MFPT ((¢;),=100) in the limit of m — oc:

€ = <<x>n:100>m — <ti>n:100 (8312)
Tim (€) = 0 (S3.1.3)



eqn (S3.1.2) defines the difference between the MFPT (approximated by averaging over m
samples of size n = 100) and the converged MFPT. Since we cannot reach the infinite m regime
numerically, we must assess when the convergence of the mean of sampled MFPTs is reached,
where the value of € approaches zero. Since € becomes arbitrarily close to zero as the number of
samples m approaches infinity, we expect €’s standard deviation to shrink (since the converged
MFPT is a constant, the standard deviation of € is determined entirely by the mean of MFPTs).
We determine the convergence of € to be reached when the relative standard deviation of the mean
of sample MFPTs (o4 ppr) is less than the threshold value # = 0.001. As we focus on the value
of sy ppr in the converged limit, we compute o4y ppr over the last w = 20 samples - w defines
our window size. Computing the actual value of the mean of MFPTs requires averaging over all
samples - even those outside of the window. Next, we explore the influence of choosing different
values for # and w, and we demonstrate that the influence of these values on the mean of sampled
MFPTs is much smaller than the CB dimensionality effects on the approximated converged MFPT
(which determines mobilities) that we discussed in the main text. We refer to the relative absolute
difference (RAD) below, namely the absolute difference in the outcome of a MFPT calculation
performed with a lower level of certainty, M F'PT}, (a lower level of certainty due to the smaller 6
or w values) and a calculation performed with a higher level of certainty, M F PTy, divided by the

higher certainty result:

\MFPT, — MFPTy|
MFPTy

RAD = (53.2.0)

S3A Validation of MFPT calculations on a 1D chain

The MFPTs computed using the 1D chain model agree within 1% of the expected analyti-
cal result (Fig. S1). Errors in the MFPT are not systematic over or underestimates, suggesting

that they originate from the finite convergence threshold and not from systematic errors. For the



Numerical vs Analytical MFPT for 1D Chains
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Figure S1: Comparison of the MFPT calculated for a random walk with window size 25 and
convergence threshold 0.0001 for various test lengths. All of the points agree with the analytical
result, with less than 1% error.
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MFPT value dependance on convergence threshold
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Figure S2: The RAD (relative to the point with the lowest convergence threshold) as a function
of the convergence threshold (#). The data indicate that the error relative to a two orders of
magnitude lower value of 6 is less than 1.5% for §=0.001 - which was used in the main text.
Here, j in the key represents the number of junctions.

comparison of CB MFPTs to 1D chain MFPT described in the main text, we used analytically
computed 1D MFPTs. The small threshold value for the 1D chain MFPT convergence is computa-
tionally tractable for these test chains, but we also examined the influence of different convergence

thresholds for the MFPTs for larger systems in the SI section S3B.
S3B Dependence of the mean of sampled MFPTs on convergence thresh-

olds

The convergence threshold value #=0.001 (used in calculations of the main text) generally produces
small errors in the mean of sampled MFPTs compared to more strictly converged calculations -

with errors less than 1.5%(Fig. S2). Although there are large differences in the errors, depending
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MFPT Difference vs Window Size
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Figure S3: The RAD (relative to the point with the largest sampling window) is shown as a
function of the window size w. The errors are small for all values of w (compared to the errors
shown in Fig. S2 for the same value of #). The large variation of the RAD in MFPTs, and
the small magnitudes of the RAD in MFPTs, suggest that these differences may arise from
stochastic effects on the value of the MFPT, rather than being caused by the value of the
window size.

on system size (number of junctions), § > 0.01 produces errors that are similar for all system sizes

when 6 < 0.001, and the errors no longer correlate with the system size for § < 0.001.

S3C Dependence of the mean of sampled MFPTs on window size

The RAD in the MFPT is small compared to the difference (see Fig. S3 and Fig. S2). The differences
found for 6=0.001 in Fig. S3 are smaller and have greater variation in the RAD compared to the
RAD due to different values of 6 seen in the Fig. S2. As such, the RADs in Fig. S3 do not depend
on w, but rather originate in stochastic differences in the MFPTs based on the value of . When

w > 10, the RAD is < 1%, which is much smaller than the error due to any other effect.
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S3D Convergence parameters used in the MFPT analysis

All calculations of MFPTs in the main text used § = 0.001 and w = 20, with 60 fibers and a
coarse-graining diameter of 501 physical redox sites, unless otherwise noted. Discussion of the
coarse-graining diameter can be related to a coarse-graining radius r using diam = 2r+1. Fig. 4 of
the main text uses closed circles to indicate the convergence criteria noted above. In that figure, the
open circles indicate more relaxed convergence criteria, chosen for computational expediency. This
more relaxed convergence criterion is § = 0.01 with a coarse-graining diameter of 1,001 physical

redox sites.

S4 MFPT sensitivity to coarse graining diameter

This section explores the sensitivity of the coarse-grained analysis to the coarse-graining radius.
Section S4A explores the effects in a 1D periodic chain and a 2D square lattice, where MFPT
results are known analytically. Section S4B shows that the coarse-graining method is exact for 1D
periodic chains. Section S4C shows that coarse-graining provides an excellent approximation for

the branched CB system.

S4A 1D vs 2D Systems with well-known MFPTs

MFPTs for cubic lattices with identical nearest neighbor hopping rates scale as ¢, o< % (where
d is the system dimensionality).!® The MFPTs that we refer to here arise for transport in a single
direction (i.e., the current direction). To test our numerical methods, we compare MFPT results
for 1D and 2D lattices. The ratio of the MFPTs for 1D and 2D lattices is equal to 2. The results
in Fig. S4 are converged to 5% relative standard deviation. Fig. S4 shows that the ratio of MFPTs
in 2D to 1D lattices is independent of the coarse-graining diameter, because the ratio of MFPTs
fluctuates tightly around the value two (with all ratios within 5% of two) for all choices of the
coarse-graining diameter. In both 2D and 1D lattices, the MFPT was computed for a particle to

traverse a distance of 11 lattice sites along the x-axis.
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Figure S4: The ratio of MFPTs for a 2D lattice and a 1D chain is influenced by coarse-
graining. The analytically expected ratio of the MFPT on a 2D grid to the MFPT on the same
length 1D chain is two. The influence of coarse-graining on the computed MFPTs is likely
much smaller than the influence of sampling noise (based on MFPTs that are converged to 5%
relative standard deviation).

S4B Validity of the coarse graining approach for computing MFPTs in

1D networks

The MFPT simulations count the particle’s position and the number of hops (which is proportional
to the time elapsed). We use units of time = number of hopsx rate™ and distance = xo—x ¢ (where
xo and x; are the initial and final particle positions, respectively) along a given transit direction.
In these units, the diffusion coefficient is 1/2 in units of hopping time™! hopping distance™. The

resulting MFPT expression for a 1D chain is:

by = (%) (S4B.1)

x is the particle displacement and the superscript a indicates a displacement over physical sites. If
a system can be successfully coarse-grained using the procedure in the main text (Section 2.3, then

we need to be able to decompose the physicaldistance x* into a number of coarse-grained sites (A),
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where each coarse-grained site has the diameter B. For coarse-graining to be physically meaningful,
we require that there is an integer number of coarse-grained sites (A), that each coarse-grained
site contains an integer number of physical sites (B), and that the total number of physical sites
represented by course-gained sites is the same as the number of physical sites in the full system

(z* = AB). With these conditions, we can write eqn (S4B.1) as:

tmp = A*B? (S4B.2)

We compute the MFPT for the coarse-grained model of the 1D system using eqn (S4B.1) :

g = A (S4B.3)

In eqn (S4B.3) , the C'G superscript refers to a MFPT for a coarse-grained distance. Multiplying
this expected number of coarse-grained hops by the expected number of physicalhops per coarse-
grained hop, we obtain the expected number of physicalhops (tmfpa). The expected number of

physicalhops associated with coarse-grained hops between sites with diameter (B) is:

¢ = B2 (S4B.4)

The superscript a/CG indicates that this is the number of physicalhops for one coarse-grained

unit. Multiplying eqn (S4B.3) and eqn (S4B.4) , we recover eqn (S4B.2) :

Ty ¢ Ty Y = A2B? =T, " (S4B.5)

As such, the MFPT computed using coarse-graining is exact in 1D.
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Relative Absolute Error vs Coarse Graining Diameter
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Figure S5: The relative absolute error in the computed MFPT for CB models as a function of
the coarse-graining diameter. The plot indicates that there is no clear correspondence between
the error and either the coarse-graining diameter or the system size. The relative absolute error
in MFPTs for the coarse-grained system compared to the full system is always less than 2%.
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S4C Influence of coarse graining the structure of the CB transport

networks on MFPT

We now describe CB models with 20 junctions and 8 fibers for both the coarse-grained and full
systems MFPT analysis. These models describe structures smaller than those of biological CB and
allow us to assess the validity of the coarse-graining approximations. These smaller model systems
contain 27,502 physical sites (54 physical sites on each spoke with an inter-site distance of 9.3nm), a
model with 25,454 physical sites (50 physical sites per spoke and inter-site distances of 10 nm), and
a model with 50,030 physical sites (98 physical sites per spoke and inter-site distances of 5.1 nm).
In all of these models, the fundamental CB topology (consisting of fibers, junctions, and spokes -
as discussed in main text Section 2.1) remained unchanged. The lengths of the fibers, junctions,
and spokes also remained the same as described in the main text Section 2.1. For these validating
calculations, we changed the distance between hopping sites (which also changes the total number
of sites in a fixed physical distance). Decreasing the number of sites provides computational ease,
and the total number of sites must be divisible into an integer number of coarse-grained sites to
apply the coarse-graining methodology. Furthermore, the total number of sites must be divisible
into different numbers of coarse-grained sites (with each division corresponding to a unique coarse-
graining diameter) to be able to study the effect of changing the coarse-graining diameter on the
MFPT. The large inter-cofactor distances used for these validation calculations have no direct link
to experiments - they provide a model structure to investigate the influence of different coarse-
graining diameters on the calculated MFPT. The validation calculations demonstrate that the
relative absolute error was consistently less than 2%. Although these calculations were simplified
from the perspective of the structure of biological CB, the absence of correlation between the number
of physical sites or the coarse-graining diameter suggests that errors are likely to be similarly small

for much larger calculations.
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Figure S6: The fibers in CB could be built of either non-interacting 1D chains (B) or interacting
chains (forming a 3D lattice) (C) - which may be represented by a higher-dimensional lattice.
Panel (A) shows a schematic CB as described in main text Fig. 1. The red box shows where a
cross-section of the fiber is taken. Panels (B) and (C) show the zoomed-in cross section and the
1D chains (purple), which experiment indicate” constitute the CB fibers. Panel (B) shows that
the 1D fibers are made up of tightly aligned and confined redox sites (blue ovals), constitute
non-interacting 1D chains. Panel (C) shows that if the redox sites are not tightly confined, or lie
on the edge of the 1D chain, this can create interactions between chains that are not captured
in a simple 1D model.

S5 Assessment of how the conducting fiber model influ-

ences the computed MFPTs

This section explores the ability to describe transport through individual conducting fibers using
1D hopping chain models. CB fibers are much larger (>20 nm in diameter®) than the conduction
channels of other biological conductors, like bacterial nanowires (<4 nm in diameter®). While
bacterial nanowire conduction is usually attributed to single 1D chain of heme cofactors, the CB
size allows for more complex transport networks. Prior studies'! modeled the structure of fibers

as a series of tightly packed 1D chains of redox active units. However, there is limited structural
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information on the fibers. Imagining” supports the presence of multiple 1D chains within a fiber;
the resolution of this data is not sufficient to determine the placement or orientation of redox active
units. If the redox sites are confined to the interior of each chain that make up each fiber, the
chains can likely be treated as non-interacting conducting chains (as shown in Fig. S6B). If fibers
are comprised of non-interacting transport chains, the MFPT analysis in the main text accurately
describes the electronic mobilities. Dimensionality is known to influence mobility, so if the fibers
consist of interacting chains (Fig. S6C), the mobility of non-interacting chains would be an over
estimate (see main text Section 2.2). Here, we examine the extreme case of representing fibers as
consisting of a 3D cubic lattice (to represent a highly interconnected network of hopping chains).
We find that our model 1D chain analysis qualitatively reproduces the results for 3D lattices.

To explore the nature of the 3D cubic lattice model, we compare the ratio of the mean first
passage times for 1D lattices compared to finite width and height 3D cubic lattices. We selected a
cutoff length of 2,000 sites and a width/height of 5 sites. These dimensions were chosen to model
fibers that are much longer than they are wide, corresponding to CB.? Assuming that the conductive
fiber is confined to a ~ 20 nm diameter cylinder (motivated by structural data)®, a small CB (only
8 um long) would be 400 times longer than it is wide (which is why 2,000/5 = 400 was chosen).
Such a small CB structure has a lower length-to-width/height ratio than a typical experimental
specimen on the 100spum to cm scale. The MFPT and electrical mobility of a model short 3D CB
fiber will have a higher MFPT and lower mobility than for an experimentally sized longer 3D CB
fiber. Performing an unbiased random walk on the short 3D fiber model and the short 1D fiber
model produces a ratio of MFPTs (t3p/t1p) of 2.61. Applying the scaling ratio of MFPTs leads to
a nearly identical range of possible carrier hopping parameter values (as shown in Fig. S7).

Even if the fiber structure is built of a 3D square lattice, rather than non-interacting 1D par-
allel conduction channels, the conclusion in the main text remains qualitatively unchanged - as
shown in Fig. S7. Although the inter-cofactor distances required to replicate the experimental CB
mobilities and the couplings are larger than those presented in the main text, these values of the

inter-cofactor distances and couplings may be plausible for CB, depending on the specific cofactors’
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Figure S7: The hopping transfer parameters for the 3D fiber structure model based on the
1D chain expression, with a correction factor (from the MFPT ratio) for the 3D structure:
[sp = %NID‘ Here, p1p is given in main text eqn (6) . The shaded region represents the
combination of hopping parameters that fit the experimental mobility data within one half of

an experimental standard deviation.
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electronic structure. The redox active nickel species proposed to exist in CB are suggested to be
connected by conjugated ligands.® The suggested cofactor structures are square planar®?!, which
presents the possibility of stacking the conjugated building blocks to enhance their couplings. Some
have suggested that CB cofactors may have extended conjugation (10s of nm)!!, but even limited
conjugation (1-5 nm) could produce larger cofactor-cofactor couplings than are found in stacked
hemes. Furthermore, a length-to-width ratio of W/L = 400 represents a CB of only a few microme-
ters length. A length-to-width ratio of 400 is an overestimate compared to that of most CB samples,
which are often tens of micrometers or several centimeters long. The 3D cubic lattice model pro-
vides a conservative overestimate of the MFPT because it overestimates the length-to-width ratio
of CB. Since the 3D cubic lattice model overestimates the MFPT, the hopping parameters for CB
structures are likely to lie between those derived in the main text for a 1D chain model and those

derived for a 3D lattice model (see Fig. S7).

S6 Additional Marcus parameter discussion

S6.1 Grid Search details

As described in the main text, we probed the range of Marcus parameters: 0.5 < r < 2.5 nm,
1< Hpa <30meV, 0.16 < X <0.36 €V, and AG® =0 eV. To explore this range of parameters,
we examined 1,160,000 points corresponding to step sizes of AN = 1meV, AHps = 1meV, Ar =
0.1A= 0.01nm (resulting in 1.16 million grid points in parameter space). These step sizes were
chosen to be similar to the degree of precision at which these parameters are often reported.?23.
To ensure that our result is robust with respect to the number of grid points chosen, we also
calculated the proportion of points that agree with the experimental average mobility within one
experimental standard deviation and experimental precision using an order of magnitude smaller

(1200 points) and an order of magnitude larger (1.16 billion points) step sizes for all parameters.

When we decreased the step size (1.16 billion points) 22.59% (~ 262 million points) were within
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one standard deviation of the experimental mobility and 2.16% (~ 25.1 million points) were within
the experimental precision of the average experimental mobility. This is similar to the 22.03%
(~255 thousand points) within one standard deviation and 2.11%(24.535 thousand points) within
experimental precision observed in the original 1.16 million grid points. When we increased the step
size by an order of magnitude (1.2 thousand points), the proportions became 13.5% (162 points)
within one standard deviation and 1.5% (18 points) within experimental precision. This suggests
that our original 1.16 million point grid was sufficiently fine as the result did not substantially
change upon increasing the number of points, but that a coarser grid would have missed significant

portions of the parameter space.

S6.2 Discussion of parameters that are inconsistent with experimental mobilities

We discuss analysis of transport for over one million sets of Marcus parameters that were chosen in
a range typical for biological structures (in the main text and SI section S6.2). This analysis finds a
sizable region of parameter space (~ 25%) of points that are within 1 experimental standard devia-
tion of the experimental average mobility. This finding suggests that CB mobility can be explained
using a biologically typical set of Marcus parameters. We do not expect all of the tested Marcus
parameters to produce mobilities close to the experimental values. The full range of mobilities
produced is shown in Fig. S8A. Many of the experimentally inconsistent computed mobilities are
larger than the experimentally measured mobilities. The parameter distributions that did or did
not produce experimentally consistent mobilities appear in Fig. S8B-E. These plots indicate that
most Marcus parameter values that we considered, in combination with other in-range Marcus pa-
rameters, produced mobilities consistent with experiment. However, some of the lowest couplings
sampled were not members of parameter sets that produced experimentally consistent mobility
data (Fig. S8D). A coupling of at least ~ 3 meV is required to describe CB mobility data using
a multi-step hopping model. Since both the squared coupling and inter-cofactor distance appear
in the mobility, changing either value can be compensated by changing in the other one in propor-

tion. The product of the coupling and distance must be between 0.00614 and ~ 0.03574 nm eV to
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Figure S8: Panel (A) shows the distribution of calculated mobility values. In the orange is shown
the mobilities which agree with the experimental average within one experimental standard
deviation. Panels B, C, and D show the distribution of the Marcus parameter which produce
mobilities that either are (orange) or are not (blue) consistent the experimental mobility within
one standard deviation. Panels B-D show that a wide range of parameters across the allowed
values could produce the experimental mobility when present in the right combination. Panel
E shows the distribution of the combined inter-cofactor distance and the coupling. By grouping
these two terms one can compare the distributions of quadratic terms in the mobility expression
(coupling and distance) to the exponential terms (reorganization energy).
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agree with the experimental mobility ( Fig. S8E). Values of r,,, - Hpa > 0.03574 nm eV produce
mobilities that are too high to be compatible with the measured experimental mobilities. That
is, for r,, > 2.5 nm, the coupling must be Hp, < 14.2 meV for the calculated hopping mobil-
ity to be consistent with the experimental CB mobility data. On the lower end of the r,, - Hpa
range, which produce experimentally consistent mobilities, a coupling of Hpa < 5 meV would re-
quire r,, > 1.23 nm for the calculated hopping mobility to be compatible with the experimentally

reported average mobility within one standard deviation (as indicated in Figure S8E).

S7 The limit of junction conductivities lower than fiber
conductivities

There is evidence that conductivities of the junctions are lower than, or at least different from,
the conductivities of the fibers.?* If the junctions are much less conductive than the fibers, the
factor of 2/3 that corrects the 1D chain mobilities for the presence of conductive junctions can
be neglected. Setting this correction factor to unity leads to acceptable Marcus parameters that
replicate the experimental mobilities (see Fig. S9). The main differences between the case of
uniform hopping throughout the CB (presented in the main text) and the case of low conductivity
junctions (Fig. S9) are that the range of parameters for the low conductivity junctions necessitates

smaller couplings or smaller inter-cofactor distances than are found in the uniform conduction case.

S8 Conductivity and density of charge carriers

This section describes how the results of our study may be linked to CB conductivity measurements.

To compute a conductivity from a set of Marcus parameters, we use 0 = Nepu, with the mobility
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Figure S9: The hopping transfer parameters is shown for a CB in the limit where the junctions
are much more resistive than the fibers, producing individual conduction pathways that behave
as 1D transport chains.
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Figure S10: The distribution of conductivities produced for different values of the carrier density.

expression in eqn (6) of the main text.

N = p/(7rm,(d/2)?) (S8.1)

We model the charge carrier density in eqn (S8.1) by assuming that each conduction channel is a

cylinder of diameter d (d = 2nm™!)

, and each cofactor is a cylinder of the same diameter and of
height 7,,.11 p is the fraction of cofactors that is reduced. We also multiply eqn (6) of the main
text by a mean-field correction that accounts for higher particle densities (a multiplicative factor
of 1 — p).? Using this definition of the charge carrier density, we computed the conductivity for
each Marcus parameter combination. This produces the conductivities shown in Fig. S10. Note
that Fig. S10 is not expected to represent the experimental distribution of conductivities, as this
would imply that CB exhibit all of the combinations of Marcus parameters tested. Rather, we

assume that a narrow range of Marcus parameters is recruited in CB. As such, if a narrow range

of Marcus parameters exists where the calculated mobility agrees with the experimental mobility,
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we consider it to be plausible that a Marcus mechanism could manifest in CB. We expect a narrow
set of Marcus parameters to plausibly describe transport in CB, and to yield a narrow region
of experimentally consistent conductivities. Since we find a narrow window of parameters that is
consistent with experimental CB conductivities (~ 1—10 S/cm), we say that our model is consistent
with the experimental conductivities. Interestingly, Fig. S10 shows that much larger conductivities
(~ 30 S/cm) may be accessed in a Marcus-like hopping theory CB. While we believe our theory offers
a satisfactory understanding of typical CB conductivities, a more complete theory would explain
the full range of CB conductivities observed experimentally. Further experimental investigation
into the mobilities of especially highly conductive CB could provide a better understanding of the
source these high conductivity values (> 50 S/em). The fact that our modeling produces typical
CB conductivities (~ 1 — 10 S/cm) at carrier densities of p < 0.1 supports the relevance of our low

carrier density assumption.

S9 Relevance of transient localization theory to cable bac-
teria

Studies suggest that CB use a polaron-mediated charge transport mechanism, and that transient
localization theory (TLT) may describe the transport.!??% While Pankratov et al.'? proposed this
mechanism with caution, it seems unlikely to describe CB transport based on the temperature-
dependent mobilities and conductivities described in our analysis below. TLT was developed to
describe why high-purity single-crystal organic semiconductors may exhibit lower mobilities than
expected from band transport theories.?” TLT is intended to capture anti-Arrhenius transport mech-
anisms.>” However, anti-Arrhenius charge transport is not consistent with the observed temperature
dependence of mobilities found in CB.? As such, TLT seems unlikely to describe charge transport
in CB. In this section of the SI, we explore the TLT model parameter requirements to produce an
Arrhenius temperature dependence for the conductivity at temperatures up to 300K. We explain

how TLT studies?® indicate that such a high temperature Arrhenius temperature dependency in
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the conductivity requires electronic coupling between hopping sites in excess of 250 meV.

S9A Transient localization theory

Band theory suggests that defect-free organic crystals should be able to realize mobilities in excess
of 10 em?/Vs.2” In contrast, ultra-high-purity organic crystals are found to have mobilities of
< 50 ¢cm?/V's (with many high-purity organic crystals near 10 ¢m?/V's).2%2" This indicates that
the application of band theory to ultra-high-purity organic crystals may be flawed. TLT explains
that the finding of mobilities lower than predicted from band theory for high-purity organic crystals
may arise because phonons can assist with charge carrier localization.?® The TLT description of
the mobility posits that the wave function in a pure crystal is delocalized throughout the crystal
at T = 0 K. As the crystal is heated, phonon modes will become populated, and TLT suggests
that these phonon modes couple to electrons with sufficient strength to stabilize the formation of
large polarons (in this context, larger than the unit cell).?® While this polaron is delocalized over
many molecules in the crystal (and may be large compared to expectations based on the Marcus
small polaron theory), the extent of delocalization is much less than that of a fully delocalized wave
function at T = 0 K. This localization, due to intrinsic dynamic thermal disorder, is what causes

the reduction in mobility relative to the values predicted by band-theory.

S9B Applications of TLT to disordered hopping networks

In many implementations of TLT?%?8, a relaxation time approximation is used to calculate the
mobility. This approach is similar to using the ergodic hypothesis (the time average of a quantity is
equal to its ensemble average).?® The relaxation time approximation in TLT prescribes that, instead
of computing the average of the time-dependent localization length, we can instead compute the
average the localization length at several static instances in time. This approximation is applicable
when the disorder is of equal magnitude in the two treatments. In practice, the relaxation time
approximation is realized by representing the system with the following Hamiltonian for a given

instance of disorder. 26
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Hy = (eief e+ norm(0, 0aric)) + Y (J5 + norm(0, o4yn)) (S9B.1)
i ij

Here, ¢; is the site energy, ¢ (¢;) is the creation operator (annihilation), Jioj is the equilibrium -
dynamic disorder absent - coupling, and norm(0, o4,,) is a random instance of dynamic disorder
sampled form a normal distribution with mean zero and standard deviation ogy,. norm(0, ogatic) is
a random instance of static disorder (the random disorder for different sets of site energies) sampled
from a normal distribution of site energies with mean zero and standard deviation oq.. In section
S9B.1, we set all Jj; = J and all ¢; = €.

Using the model Hamiltonian in eqn (S9B.1) , we can calculate the squared localization length

(L;) for a given random realization of the dynamic disorder:

2y L 2|(nlj|m)|2e 75"
Li(r)=—> G + (BB (S9B.2)

n.m
Here, Z is the partition function, ;j is the current operator, n and m are the eigenstates of the
Hamiltonian, F,, and E,, are the corresponding Hamiltonian eigenvalues, and 7 is the characteristic
electronic fluctuation time scale (introduced from the relaxation time approximation discussed in
ref.26). We compute the average squared localization length ”(7) = LSV L3(7) and the mobility
from eqn (S9B.2) :

e 2(7’)
B.
=175 (S9B.3)

To evaluate the Hamiltonian in eqn (S9B.1) , we require that o4y, appropriately samples changes
in the couplings driven by the phonons at a specific temperature. The variance in the coupling
between sites i and j is calculated using:

8a2(J0)2T

Odyn

Here, M is the molecular mass, « is the dimensionless electron-phonon coupling, J° is the average
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Figure S11: The figure shows the temperature-dependent TLT mobility data extracted from
Ref.?5. The mobility shown is for a system with ogatic = 0.5J° The TLT Arrhenius to anti-
Arrhenius temperature-dependent mobility transition. For additional details describing the
behavior and calculation of the mobility in TLT such as exact values of all parameters and
mobility normalization procedure, see Ref.?6. Panel (A) shows the temperature-dependent
mobility in the same log-log plot as Ciuchi et al., and panel (B) shows the same data on a linear
scale.

coupling, and w is the phonon frequency. The remainder of the discussion below focuses on the

analysis of Cuichi et al.?% (see ref.? regarding choices of TLT parameters).

S9B.1 TLT mobility vs temperature

For TLT to be consistent with the temperature-dependent conductivity and mobility data for CB,
TLT needs to produce Arrhenius temperature-dependent mobilities in the 50-300K temperature
range. Most systems that are believed to exhibit TLT behavior have an anti-Arrhenius temperature-
dependent mobility in this temperature range.?” While this temperature dependence alone suggests
that charge transport in CB poorly described by TLT. Ciuchi et al.?® showed theoretically that
systems with static disorder exhibit a transition from Arrhenius to anti-Arrhenius temperature
dependency the coupling changes (see Fig. S11).

Ciuchi et al.?® calculated the temperature dependent mobility as a function of disorder. They
found that ogaue = 0.5J° has an Arrhenius to anti-Arrhenius temperature-dependent mobility

transition at T* ~ 0.1J°. For the experimental CB temperature-dependent mobility /conductivity
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data to be explained by a TLT mechanism, and for the CB mobility to have the observed Arrhe-
nius temperature-dependent conductivity /mobility, the transition to anti-Arrhenius temperature-
dependent mobility must occur at a temperature above 300K (the maximum temperature of the
experimental studies). By setting 7% = 300K and solving for J° we find that a coupling of at
least 250 meV is required (with static disorder at least ogsiaric = O.5J0) to have T* > 300K. As
temperature-dependent conductivity data for CB does not generally exist above 300K, we cannot
assess whether or not an Arrhenius to anti-Arrhenius temperature dependent transition consistent
with TLT might occur above 300K. A 250 meV coupling between cofactors is much larger than is
typical in biological systems (see main text), and the value is even large than is found in most cova-
lently linked donor-acceptor structures (many synthetic systems have couplings in the 50-200 meV
range).?%3Y Considering the high coupling required to produce Arrhenius temperature-dependent
mobilities with a TLT-based charge transport mechanism in the 50-300K range, it seems that a TLT
mechanism in CB is unlikely. However, we cannot rule out a TLT mechanism without knowledge of
the electronic coupling interactions. In the main text, we showed that large couplings or biologically
unlikely charge transport mechanisms are not required to explain the CB mobility data. That is, a

multi-step (small polaron) hopping transport mechanism suffices to explain the reported data.
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