Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Pd-Cu Dual Sites Turning H Adsorption for Efficient Electrocatalytic

Hydrogenation of HMF

Materials and methods

1. Materials

 $\text{Cu(NO}_3)_2 \cdot 3\text{H}_2\text{O}$ (99 %), PdCl_2 (98 %), NaCl (99 %), $\text{C}_6\text{H}_{12}\text{O}_6$ (95 %), and KHCO₃ (99.5 %) were purchased from Aladdin. Purified water ($\rho > 18~\text{M}\Omega$ cm) was produced in the laboratory.

2. Synthesis of Pd/Cu@3DC catalysts

First, 18.3 g of NaCl, 0.469 g of glucose, $Cu(NO_3)_2 \cdot 3H_2O$ and $PdCl_2$ in different ratios (n_{Cu} : $n_{Pd} = 99$:1, 97:3, 95:5) were dissolved in 60 mL of purified water with stirring. The solution was then freeze-dried at -20 °C for 20 h. The yellow-green powder obtained was calcined at 700 °C in an H_2 /Ar atmosphere for 2 h at a ramp rate of 10 °C/min. The resulting product was washed three times with purified water to remove NaCl and dried overnight to obtain the Pd/Cu@3DC catalyst.

3. Material characterization

Scanning electron microscopy (SEM) measurements were performed using a Hitachi S4800 at 15 kV. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and scanning transmission electron microscopy measurements were carried out using a JEM-F200 equipped with an EDS detector (at 200 kV) to analyze the microstructure of the samples. X-ray diffraction (XRD) patterns were obtained using a Bruker D8 with Cu Kα radiation, operated at 40 mA and 40 kV. X-ray photoelectron spectroscopy (XPS) was performed using an ESCALAB 250Xi with a standard Al Kα X-ray source, standard lens pattern, and an analyzer passing energy at 20 eV.

4. Electrochemical measurements

5 mg electrocatalyst was dispersed in 950 μL of anhydrous ethanol and 50 μL of 5 wt% Nafion solution by sonication for 30 min, and then the ink was dripped onto a 3 mm diameter L-shaped glassy carbon electrode with a loading of 0.42 mg cm⁻². All electrochemical tests were carried out at room temperature using a three-electrode setup on a CHI760E in an aqueous 0.5 M KHCO₃ solution saturated with N₂. An H-type electrolytic cell was used with an Ag/AgCl electrode as the reference electrode and a graphite rod as the counter electrode. At first, the samples were reduced by galvanostatic at 10 Ma for 10 min. All linear sweep voltammetry (LSV) tests were

performed at a scan rate of 5 mV s⁻¹. Electrochemical Impedance Spectroscopy (EIS) tests were performed over a frequency range from 10^6 to 0.05 Hz. For product testing, electrocatalyst ink was uniformly coated on carbon paper and used as the working electrode at constant current -0.90 V to -1.10 V (vs. Ag/AgCl) potentials. To evaluate the ECSA (electrochemically active surface area) in terms of the double-layer capacitance ($C_{\rm dl}$) using the equation ECSA = $C_{\rm dl}/C_{\rm s}$, where $C_{\rm s}$ refers to the surface bilayer capacitance of the ideal at electrode (40 μ F cm⁻², and cyclic voltammogram (CV) curves were collected in the non-faradaic region (-0.2 V~ -0.35 V vs. Ag/AgCl) at varied scan rates from 20 to 100 mV s⁻¹.

PEM test: the catalyst ink was sprayed on the carbon paper with a loading of 1 mg cm⁻². The proton exchange membrane (PEM)-based HMF hydrogenation electrolysis was performed on a single cell with serpentine flow fields (25 cm⁻²). Titanium felt and carbon paper were taken as the anode and cathode, and Nafion 115 was used as the PEM. An aqueous 0.5 M KHCO₃ solution with or without 10 mM HMF flowed into the cathode or anode with a flow rate of 1 ml min⁻¹ respectively.

5. Product analysis.

The substrates and products were analyzed by high-performance liquid chromatography (HPLC). For HPLC sample preparation, 20 μ L of electrolyte was collected in a sample vial before and after electrolysis and diluted with 980 μ L of deionized water and filtered to obtain the HPLC sample. The HPLC is equipped with Ultimate XB-C18 column (4.6mm \times 250mm ,5 μ m) and a UV-visible detector. The detector's wavelength was set to 230 nm. The chromatographic column was operated at 45 °C with isocratic elution of water and acetonitrile, and the flow rate was set at 0.6 mL min⁻¹, the ratio of water to acetonitrile was 85%:15%. HMF and BHMF eluted at around 8.8 min and 7.6 min, respectively, and 5-MF eluted at around 21.9 min.

HMF conversion (Conv.), product selectivity (Sel.), and FE were calculated by the following equations.

Conv. (HMF) (%) = n (HMF)
$$_{consumed}$$
 / n (HMF) $_{initial}$ ×100% (1)

Sel. (%) =
$$n (BHMF)_{formed} / n (HMF)_{consumed} \times 100\%$$
 (2)

FE (%) = n (BHMF) formed
$$\times 2 \times F / Q_{passed} \times 100\%$$
 (3)

where n is the molar amount of a component measured by HPLC, F is Faraday's constant (96485 C mol⁻¹), and Q is the charge recorded at the electrochemical workstation.

BHMF was extracted from the electrolyte with ethyl acetate three times and then removed the solvent using a rotary evaporator. The product was obtained after vacuuming dry.

6. The pseudo-first-order kinetic test.

The pseudo-first-order kinetic pattern for the electrochemical hydrogenation of HMF can be calculated by using Equation (1):

$$\ln\left(\frac{C_0}{C}\right) = kt$$
(1)

Wherein, C is the HMF concentration at different time (t) intervals (mol·L⁻¹), and C_0 is the initial HMF concentration (mol·L⁻¹), and k is the apparent pseudo-first-order reaction rate constant (min⁻¹), and t is the reaction time (min).

7. BHMF separation and polymerization

At the end of the reaction, the water in the electrolyte is removed in a rotary evaporator at a 65°C. The remaining solid was washed 5 times with ethyl acetate. Finally, the BHMF was recrystallized from the solution by removing the ethyl acetate.

Poly(2,5-furandimethylene succinate) (PFS) was synthesized via a modified method from a literature.¹ At first, BHF (1.5 g), SA (1.38 g), and N,N-dimethyl-4-aminopyridine (4.28 g) were dissolved in 20 mL anhydrous dichloroethane under N₂ atmosphere. Then, N,N'-diisopropylcarbodiimide (4.43 g) was slowly dropped into the above solution. After stirring at room temperature for 24 h, the solvent evaporated. Purification by precipitation (chloroform → excess methanol) afforded the product as a yellow solid.

8. Theory calculations

Density functional theory (DFT) calculations were carried out by using the Vienna ab initio simulation package (VASP)²⁻⁴. Projector-augmented wave (PAW) pseudopotentials^{5, 6} were adopted with an energy cutoff of 450 eV. The generalized

gradient approximation with the function of Perdew–Burke–Ernzerhof (GGA-PBE)⁷ was applied to describe the exchange-correlation function. The convergence criterion of the residual Hellmann-Feynman force and energy during structure optimization were set to 0.02 eV Å⁻¹ and 10⁻⁵ eV, respectively. The Brillouin zone was built with the 2×2×1 Monkhorst-Pack grid k-points for all models in the structural optimization and Denser k-point meshes (4×4×1) were used for density of states (DOS) calculations. The vacuum space of 20 Å was adopted above the surfaces to avoid periodic interactions. The impact of van der Waals interactions was evaluated using the DFT-D2 semi-empirical force field method⁸.

The adsorption energy of Pd/Cu-H is calculated as follows:

$$E_a = E_{Pd/Cu-H} - E_{Pd/Cu} - n/2E_{H2}$$

Where $E_{Pd/Cu-H}$ is the energy of the whole system, $E_{Pd/Cu}$ is the energy of Pd/Cu structure, and E_{H2} is the energy of H₂ molecule.

The Gibbs free energy is given as follow:

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S$$

where ΔE , ΔE_{ZPE} and $T\Delta S$ denote total energy from DFT calculations, zero-point energy and entropic contributions (at 298 K), respectively.

9. Techno-economic analysis (TEA)

To evaluate the economic potential of the BHMF electrosynthesis by the proposed HMFRR process, a TEA was performed based on the recently reported model.

Assumptions:

- (1) The electrolyzer cost, anticipated service life of the electrolyzer, electricity cost and working time were 920 \$ m⁻², 20 years, and 350 day per year, respectively. ⁹
- (2) The electricity price was considered to be 0.03 \$ kWh⁻¹.¹⁰
- (3) The balance of plant factor and maintenance factor were 0.35 and 0.025, respectively. ⁹
- (4) Separation equipment: Evaporator *2: 700000 \$; Vacuum filter: 7000 \$; Dryer *2: 24000 \$; Condenser: 36000 \$.11
- (5) The maintenance factor were 2 in the KHCO₃ system.
- (6) HMF price: $217.24 \text{ } \text{kg}^{-1}$; BHMF price: $1336.91 \text{ } \text{kg}^{-1}$; O_2 price: $0.05 \text{ } \text{kg}^{-1}$. 12
- (7) The daily productivity of BHMF was assumed to be 1000 kg day⁻¹. Calculation processes:

- (1) The KHCO₃ system:
 - 1) The base case scenario based on the flow cell experiments in 0.5 M KHCO₃ system: FE_{BHMF} of 91%, productivity_{BHMF} of 250 μmol cm⁻² h⁻¹, current density of 2.4 mA cm⁻², and cell voltage of -2.4 V.
 - 2) After calculation, it can be seen that for every 1 kg of BHMF produced, the mass of HMF consumed were 1.16 kg. The FE of the cathode OER was assumed to be 100% and the mass of O₂ produced was 0.15 kg.
 - 3) The energy consumption was calculated as:

Energy consumption

$$= 1000 \frac{kg}{day} \times \frac{mol}{128.13g} \times 2e^{-} \times 96485 \frac{C}{mol} \times \frac{1}{91\%} \times \frac{h}{3600s} \times 2.4V$$

$$\approx 1103.33 \frac{kWh}{day}$$

4) The required total current was calculated as:

$$Total\ current = 1103.33 \frac{kWh}{day} \times \frac{1000W}{kW} \times \frac{day}{24h} \times \frac{1}{2.4V} \approx 19155.03A$$

5) The needed electrolyzer area was calculated as:

$$Electrolyzer\ area = 19155.03A \times \frac{cm^2}{2.4mA} \times \frac{1000mA}{A} \times \frac{m^2}{10000cm^2} \approx 798.13m^2$$

- 6) Capital costs:
 - i. Electrolyzer:

Electrolyzer cost
$$= 798.13m^{2} \times 920 \frac{\$}{m^{2}} \times \frac{1}{20year} \times \frac{year}{350day} \times \frac{day}{ton_{RHMF}} \approx 104.90$$

ii. Separation equipment:

Separation equipment cost

=
$$(700000\$ + 7000\$ + 24000\$ + 36000\$) \times \frac{1}{20year} \times \frac{year}{350day} \times \frac{day}{ton_{BHMF}} \approx 109.57 \$ ton_{BHMF}^{-1}$$

iii. Balance of plant:

Balance of plant cost = (104.90 + 109.57) \$ $ton_{BHMF}^{-1} \times 0.35 \approx 75.06$ \$ ton_{BHMF}^{-1}

- 7) Operating costs:
 - i. Electricity:

$$Electricity = 1103.33 \frac{kWh}{day} \times 0.03 \frac{\$}{kWh} \times \frac{day}{ton_{BHMF}} \approx 33.10 \$ ton_{BHMF}^{-1}$$

ii. Separation:

$$Separation = 33.10 \$ ton_{BHMF}^{-1} \times 2 \approx 66.20 \$ ton_{BHMF}^{-1}$$

iii. Maintenance of electrolyzer:

$$798.13m^2 \times 920 \frac{\$}{m^2} \times 0.025 \times \frac{year}{350day} \times \frac{day}{ton_{BHMF}} \approx 52.45 \$ ton_{BHMF}^{-1}$$

iv. Maintenance of separation equipment:

$$157.35 \frac{\$}{ton_{BHMF}} \times \frac{ton_{BHMF}}{day} \times \frac{365day}{year} \times 20year \times 0.025 \times \frac{year}{350day} \times \frac{day}{ton_{BHMF}}$$

$$\approx 82.05 \$ ton_{BHMF}^{-1}$$

8) Material costs:

HMF:

$$1.16 \frac{kg_{HMF}}{kg_{BHMF}} \times 217.24 \frac{\$}{kg_{HMF}} \times \frac{1000 kg_{BHMF}}{ton_{BHMF}} \approx 251998.40 \ \$ \ ton_{BHMF}^{-1}$$

9) Catalyst and membrane replacement cost. The electrolyzer uses Platinised titanium felts as the anode and 3% Pd-Cu@3DC as the cathode. The cost of Pd is significantly higher at \$37 per gram, compared to Cu, which cost \$0.006 per gram. Therefore, Pd cost dominates the overall catalyst cost. For this analysis, we considered a catalyst loading of 2 mg cm⁻², which is the typical cathode loading for this work. This results in a catalyst unit area cost of \$46 m⁻². The cost of the membrane is estimated to be \$180 m⁻², based on a previous study. ¹³

$$Catalyst\ and\ membrane\ cost = \frac{226\frac{\$}{m^2} \times 798.13m^2}{350\frac{day}{year} \times 1\frac{ton_{BHMF}}{day} \times 5\ year}$$

$$\approx 103.07 \$ ton_{BHMF}^{-1}$$

10) Total cost:

Total cost
$$= (104.90 + 109.57 + 75.06 + 33.10 + 66.20 + 52.45 + 82.05 + 103.07) \$ ton_{BHMF}^{-1} \approx 252624.80 \$ ton_{BHMF}^{-1}$$

11) Revenue (except BHMF):

$$O_{2}: \frac{kg_{O2}}{kg_{BHMF}} \times 0.05 \frac{\$}{kg_{O2}} \times \frac{1000kg_{BHMF}}{ton_{BHMF}} \approx 7.5 \$ ton_{BHMF}^{-1}$$

12) BHMF levelized cost:

BHMF levelized cost = $(252624.80 - 7.5) \cdot ton_{BHMF}^{-1} \approx 252617.30 \cdot ton_{BHMF}^{-1}$

Calculation of Net Present Value

Assumptions:

- i. . 38.9% Income tax
- ii. 10% Nominal Interest Rate⁹

In year zero, the facility is built, hence the cumulative present value:

Year 0 cumulative value
$$= -Fixed\ Capital\ Investment - (Working\ Capital\ + Startup)$$

$$= -\left(798.13m^2 \times 920\frac{\$}{m^2}\right) - (355940\$ + 40000\$)$$

$$-\left(\left(798.13m^2 \times 920\frac{\$}{m^2}\right) + (700000\$ + 7000\$ + 24000\$ + 36008) \right)$$

$$\times 0.35 - \left(1103.33\frac{kWh}{day} \times 0.05\frac{\$}{kWh}\right) - \left(1103.33\frac{kWh}{day} \times 0.05\frac{\$}{kWh}\right)$$

$$\times 2 - \left(226\frac{\$}{m^2} \times 798.13m^2\right) \approx -2207270.34\$$$

 $Year\ 1\ depreciation$

= Fixed Capital Investment
$$\times$$
 deprication rate = $\begin{pmatrix} 798.137 \\ \times 1.35 \times 0.05 \approx 101336.37 \end{pmatrix}$

Yearly profit
$$= (Product\ income\ - operating\ cost) \times 350\ days = (1336.9) \times 350\ days \approx 75355420\ \$\ year^{-1}$$

Year 1 net earnings
=
$$(Net\ Profit - Year\ 1\ deprication) \times (1 - Income\ tax) = (75355420\$ - 101336.37\$) \times (1 - 0.389) ≈ 45980245.10\$$$

Year 1 discounted cash flow

= $Year\ 1\ net\ Earnings\ + Year\ 1\ deprication\ = 45980245.10\ $+101336.37$ $\approx 46081581.50$$

 $Year\ 1\ cash\ flow\ =\ Year\ 1\ discounted\ cash\ flow\ \times \frac{1}{(1+Interest\ Rate)^{time}}$

$$= 46081581.50\$ \times \frac{1}{(1+0.1)^1} = 41892346.80\$$$

Year 1 cumulative present value

= $Year\ 0$ cumulative value + $Year\ 1$ cash flow =- $2207270.34\ + 41892346.80\ \approx 39685076.40\$

10. In situ ATR-SEIRAS tests

In situ ATR-SEIRAS tests were performed on PerkinElmer Spectrum 3 provided by Hefei in situ technology Co., Ltd. China. Au-coated Si pillar with 3%Pd-Cu@3DC catalysts coating was as working electrode, while a platinum wire and an Ag/AgCl were used as the counter and reference electrodes, respectively. The potential was applied to the working electrode ranged from -0.7 to -1.7 V. At the same time, infrared spectra were acquired within the wave number range of 4000-1000 at a spectral resolution of 4 cm⁻¹.

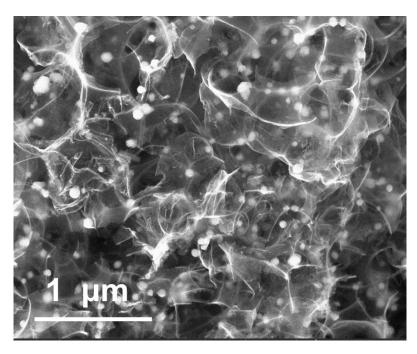


Figure S1 SEM image of 3%Pd-Cu@3DC

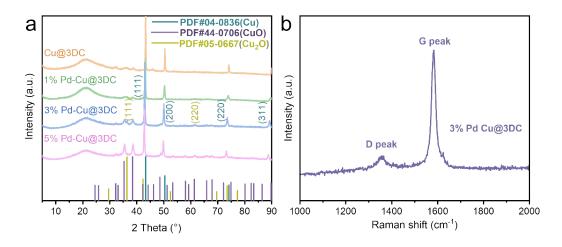


Figure S2 (a) XRD and (b) Raman patterns of the samples

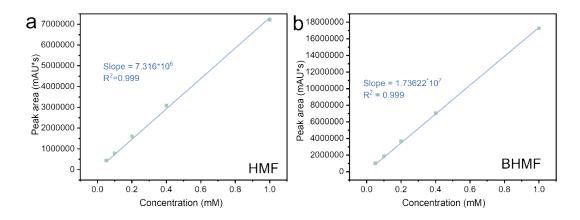


Figure S3 HPLC analysis standard curves of (a) HMF and (b)BHMF

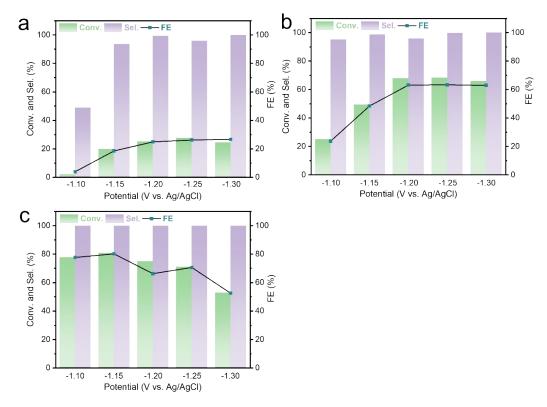


Figure S4 Potential-dependent activity profiles of (a) Cu@3DC, (b) 1%Pd-Cu@3DC, (c) 5%Pd-Cu@3DC

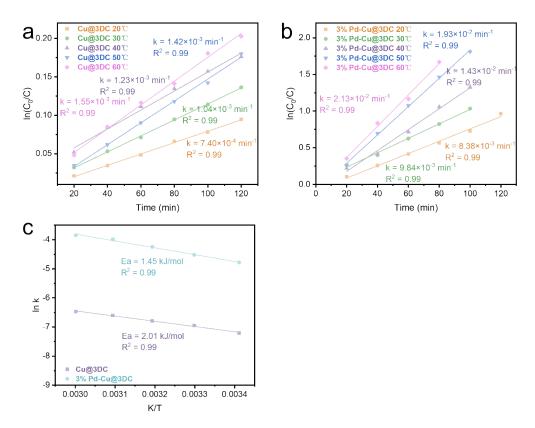


Figure S5 $\ln(C_0/C) \sim t$ plots at different temperatures for (a) Cu@3DC and (b) 3%Pd-Cu@3DC. (c) Arrhenius plots.

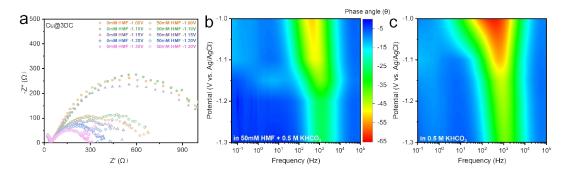


Figure S6 EIS characterization of Cu@3DC, (d) Nyquist and (e-f) Bode plots.

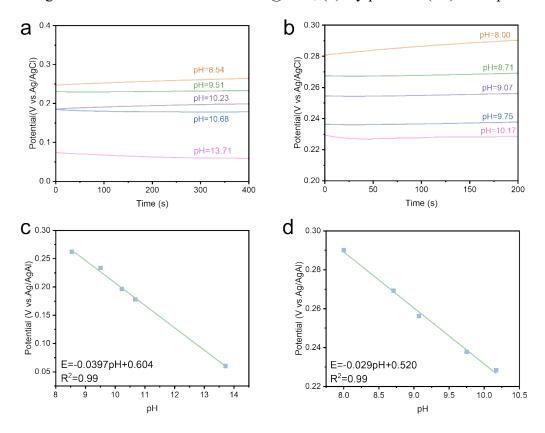


Figure S7 pH measurements at electrode surface of 3%Pd-Cu@3DC and Cu@3DC. (a-b) Open circuit potential (OCP) of 3%Pd-Cu@3DC and Cu@3DC electrode at different pH values. (c-d) Derived standard curve of OCP vs solution pH.

The measurements were performed in 0.5 M KHCO₃. The pH values of the solution were adjusted by adding KOH. Measurements of pH on the electrode surface of (a) 3%Pd-Cu@3DC and (d) Cu@3DC with loading mass of 0.16 mg cm⁻² at increased anodic potentials. Pt foil was used as the counter electrode, and Ag/AgCl was used as the reference electrode.

Test conditions: in 0.5 M KHCO₃ with the working electrode rotating at a speed of 1600 rpm and scan rate of 1 mV s⁻¹.

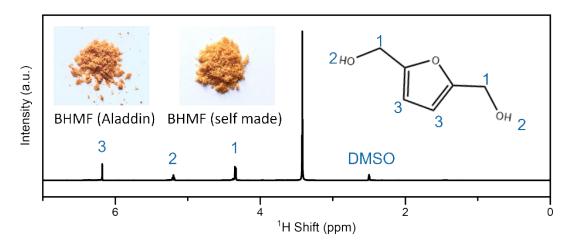


Figure S8 H NMR analysis of BHMF. (Insert: BHMF photograph)

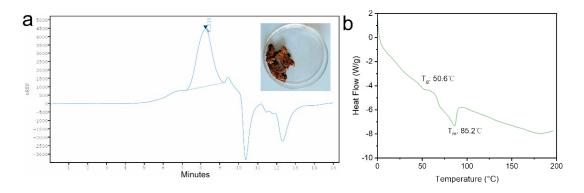


Figure S9 (a) GPC and (b) DSC characterization of PFS

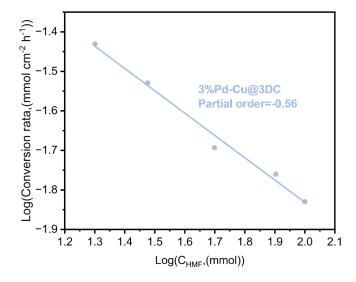


Figure S10. The conversion rate for the electrochemical reduction of HMF over 3%Pd-Cu@3DC as a function of HMF content in the 0.5 M KHCO₃ solution. Reaction condition: -1.15 V (vs. Ag/AgCl), all tests control the conversion of HMF

<15%, error bars represented three independent tests.

Note: As shown in our work, competitive adsorption between HMF and H₂O is involved in the 3%Pd-Cu@3DC. According to the Lopez-Ruiz's work,¹⁴ the rate expression for Langmuir—Hinshelwood (L-H) competitive adsorption follows as:

$$r_{LH} = \frac{k_T \times K_{sub} \times [sub] \times (K_{H^+} \times a_{H_30^+})^2}{(1 + K_{sub} \times [sub] + K_{H^+} \times a_{H_30^+})^3}$$
(S1)

Wherein, k_T is the kinetic constant of the hydrogenation step, K_{sub} is the adsorption equilibrium constant of the sub, [sub] is the concentration of substrate, K_H^+ is the adsorption equilibrium constant of H_3O^+ , and aH_3O^+ is the activity of H_3O^+ .

The expression in our cases could follow:

$$r_{LH} = \frac{k_T \times K_{HMF} \times [HMF] \times (K_{H_2O} \times a_{H_2O})^2}{(1 + K_{HMF} \times [HMF] + K_{H_2O} \times a_{H_2O})^3}$$
(S2)

 k_T is the kinetic constant of the hydrogenation step, K_{HMF} is the absorption equilibrium constant of sub, [HMF] is the concentration of substrate, K_{H_2O} is the absorption equilibrium constant of H_2O , and a_{H_2O} is the activity of H_2O .

With the increased HMF bulk concentration, $K_{HMF} \times [HMF] > 1$ and the expression could be simplified as:

$$r_{LH} = \frac{k_T \times (K_{H_2O} \times a_{H_2O})^2}{(K_{HMF} \times [HMF])^2}$$
 (S3)

Accordingly, equation S3 reflects the L-H mechanism with competitive adsorption between HMF and H₂O, which predicts a negative order with an elevation of HMF concentration.

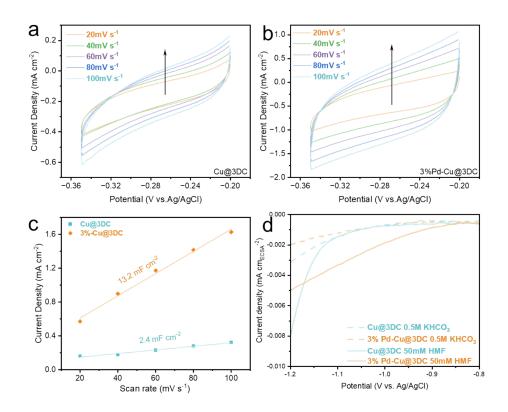


Figure S11. Cyclic voltammograms (CVs) of (a) Cu@3DC and (b)3%Pd- Cu@3DC. (c) C_{dl} curves. (d) LSV curves of the current density normalized by ECSA.

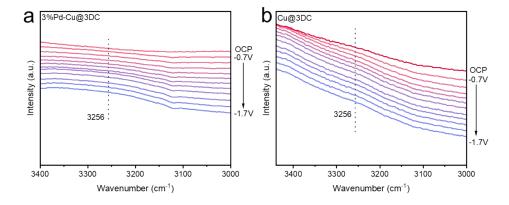


Figure S12 In situ ATR-SEIRAS spectroscopy recorded on (a) 3%Pd-Cu@3DC and (b) Cu@3DC.

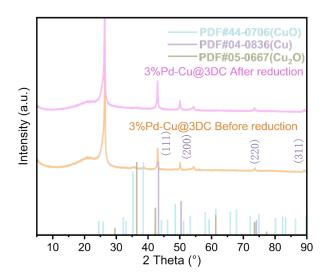


Figure S13 XRD patterns of 3% Pd-Cu@3DC before and after reduction.

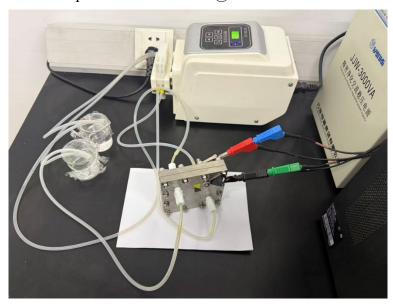


Figure S14 Photograph of the PEM flow reactor for the continuous electroreduction of HMF to BHMF

Table S1 Performance comparison with catalyst in literature

Catalyst	Con.	Sel.	FE	Total	внмғ	Ref.
				cycle time	Yield (%)	
Pt-Cu		94%	90%	10h		10.1016/j.jechem.2025.02.010
Ru₁Cu SAA	87%	97%	85%	4h	84	10.1002/ange.202209849
Cu(OH)₂ER/CF	92%	90%	92%	10h	83	10.1016/j.jechem.2023.05.003
Ag₁Cu₁/PA	93%	94%	62%	12h	87	10.1016/j.ijhydene.2022.06.211
CuFeO _x /CF	90%	93%	98%	15h	90	10.1002/cssc.202401278
Pd Nps/XC-72		90%	50%	8 cycles		10.1002/adma.202307799
RhCu-CTAB	75%	~100%	74%	26h	75	10.1002/anie.202407121
3%Pd-Cu@3DC	97%	99%	97%	31h	96	This work

Table S2 GPC test results of PFS

sample	M _n	M _v	Mz	M_{z+1}	polydispersity
PFS	10861	19364	31992	46475	1.782893

Reference

- 1. Zeng, C.; Seino, H.; Ren, J.; Hatanaka, K.; Yoshie, N., Bio-Based Furan Polymers with Self-Healing Ability. *Macromolecules* **2013**, *46* (5), 1794-1802.
- 2. Blöchl, P. E., Projector augmented-wave method. Physical Review B 1994, 50 (24), 17953-17979.
- 3. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 1758-1775.
- 4. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77 (18), 3865-3868.
- 5. Kresse, G.; Hafner, J., Ab initiomolecular dynamics for open-shell transition metals. Physical Review B 1993, 48 (17), 13115-13118.
- 6. Kresse, G.; Furthmüller, J. J. P. R. B., Electronic-structure-based chemical descriptors:(In) dependence on self-interaction and Hartree-Fock exchange. Physical Review B 1996, 54, 11169-11186.
- 7. Kresse, G.; Furthmüller, J. J. C. M. S., Generalized gradient approximation made simple. Physical Review Letters 1996, 6, 15-50.
- 8. Grimme S., Journal of Computational Chemistry. 2006, 27(15):1787-99.
- 9. Patel, P.; Schwartz, D.; Wang, X.; Lin, R.; Ajao, O.; Seifitokaldani, A., Technoeconomic and Life-Cycle Assessment for Electrocatalytic Production of Furandicarboxylic Acid. ACS Sustainable Chemistry & Engineering 2022, 10 (13), 4206-4217.
- 10. Zhao, B.-H.; Chen, F.; Wang, M.; Cheng, C.; Wu, Y.; Liu, C.; Yu, Y.; Zhang, B., Nature Sustainability 2023, 6(7): 827-837.
- 11. Appendix D: Capital Cost Guidelines. In Rules of Thumb in Engineering Practice, 2007; pp 376-436.
- 12. Nabil, S. K.; Muzibur Raghuman, M. A.; Kannimuthu, K.; Rashid, M.; Shiran, H. S.; Kibria, M. G.; Khan, M. A., Acid-base chemistry and the economic implication of electrocatalytic carboxylate production in alkaline

electrolytes. Nature Catalysis 2024, 7 (3), 330-337.

- 13. U.S. Geological Survey, 2020, Mineral commodity summaries 2020: U.S. Geological Survey, 200 p, https://doi.org/10.3133/mcs2020
- 14. Lopez-Ruiz, J. A.; Sanyal, U.; Egbert, J.; Gutiérrez, O. Y.; Holladay, J. Kinetic Investigation of the Sustainable Electrocatalytic Hydrogenation of Benzaldehyde on Pd/C: Effect of Electrolyte Composition and Half-Cell Potentials. ACS Sustainable Chemistry & Engineering 2018, 6 (12), 16073–16085. DOI: 10.1021/acssuschemeng.8b02637.