

Supplementary information

Aggregation Favors Singlet Formation in TES-ADT Triplet Annihilator for Photon Upconversion

Justas Lekavičius,^a Edvinas Radiunas,^a Gediminas Kreiza,^a Augustina Jozeliūnaitė,^b Edvinas Orentas^b and Karolis Kazlauskas ^{*a}

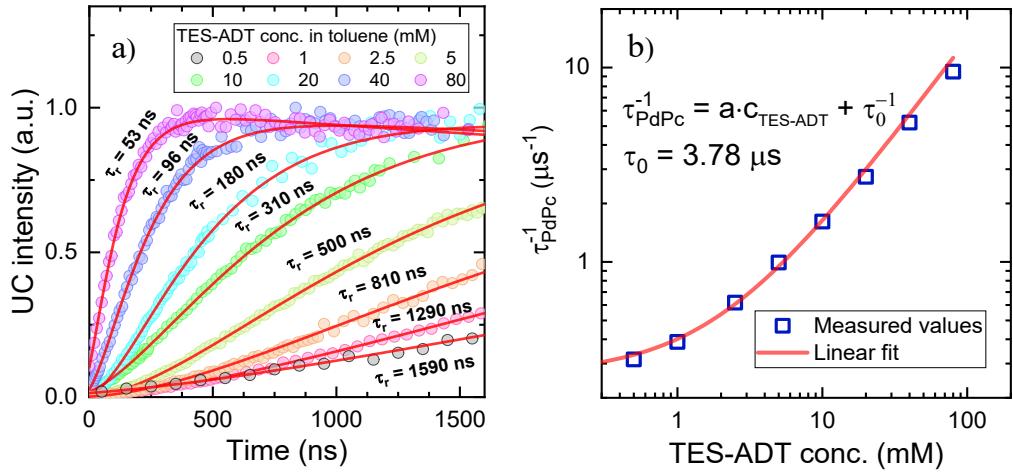
^a Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.

^b Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

*e-mail: karolis.kazlauskas@ff.vu.lt

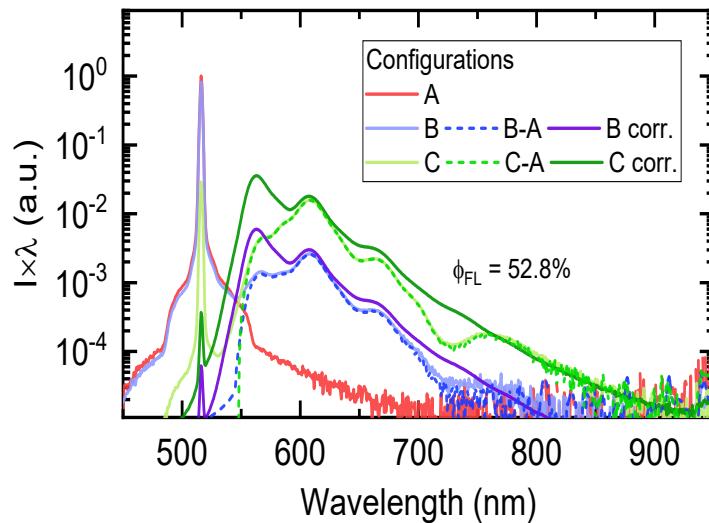
Determination of TET quantum yields from UC transients

UC transients measured at low excitation power density were approximated by the following function:¹


$$I_{UC}(t) \propto [T_A]^2 = \left(A \cdot \exp\left(-\frac{t}{\tau_{PdPc}}\right) - B \cdot \exp\left(-\frac{t}{\tau_T}\right) \right)^2, \#(S1)$$

where τ_{PdPc} and τ_T represent sensitizer and annihilator triplet decay times, respectively. From this function, UC rise (τ_r) and decay (τ_{UC}) times can be calculated as $\tau_r = \frac{1}{2}\tau_{PdPc}$ and $\tau_{UC} = \frac{1}{2}\tau_T$.

Triplet energy transfer yield (ϕ_{TET}) was determined from the rise transients of the UC signal using the quenched sensitizer lifetime (τ_{PdPc}) and the natural triplet lifetime of the sensitizer (τ_0) via the following equation:

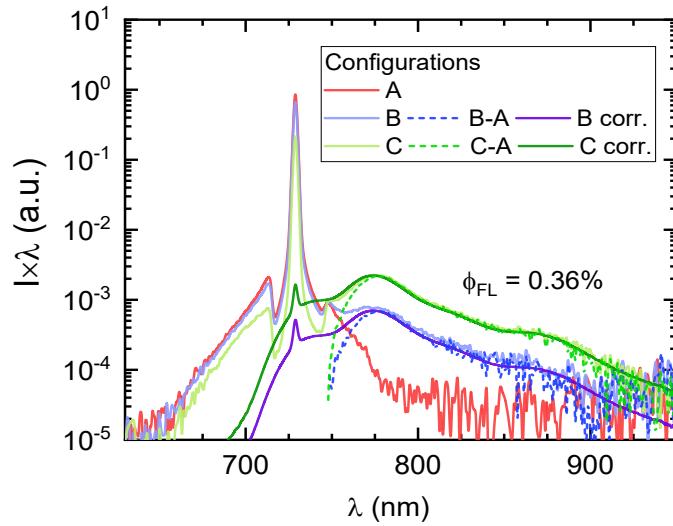

$$\phi_{TET} = 1 - \frac{\tau_{PdPc}}{\tau_0}. \#(S2)$$

τ_0 was extrapolated from a linear fit of the sensitizer triplet decay rate (τ_{PdPc}^{-1}) plotted against the annihilator concentration.

Fig. S1 a) UC emission rise profiles of TES-ADT:PdPc solutions with a constant sensitizer concentration (15 μM). $\tau_r (= 0.5\tau_{PdPc})$ is the UC signal rise time. b) Dependence of the sensitizer decay rate (τ_{PdPc}^{-1}) on TES-ADT concentration. A linear fit in the region of 0.5 to 10 mM of TES-ADT was used to determine the intrinsic triplet lifetime (τ_0) of the sensitizer.

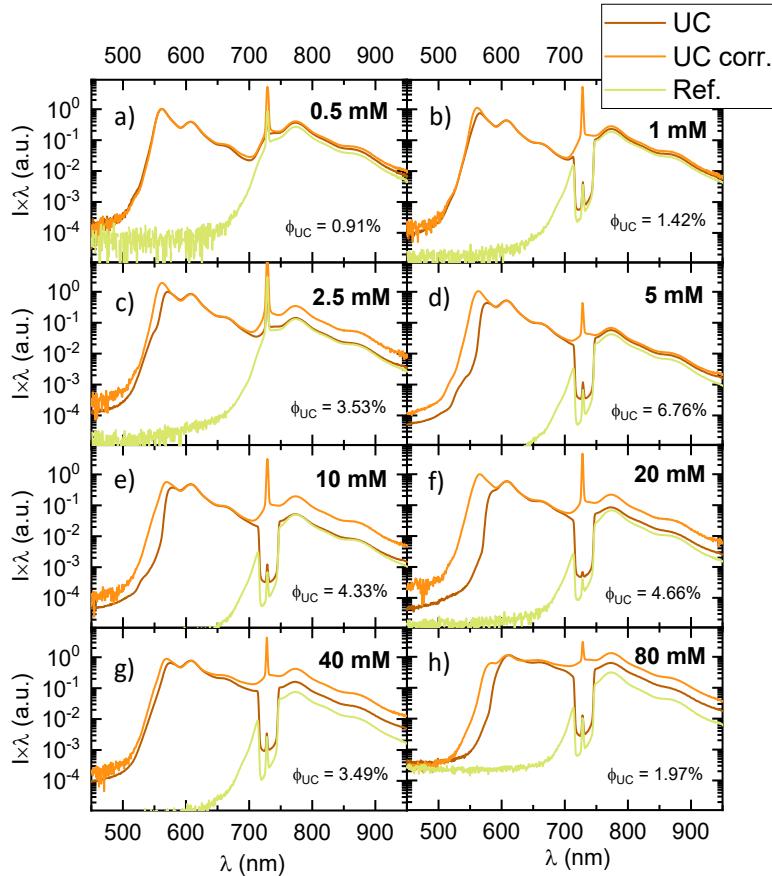
FL quantum yields of TES-ADT:PdPc solutions (corrected for reabsorption)

Fig. S2 Representative data set for FL quantum yield evaluation with an integrating sphere, featuring the UC solution containing 10 mM TES-ADT and 15 μM PdPc. 510 nm CW laser was employed for excitation. In A configuration, the integrating sphere contains only a toluene-filled cuvette as a reference. In B configuration, the sample is excited only by the scattered laser light, whereas in C configuration, the excitation beam passes directly through the


sample. B-A and C-A spectra were obtained by subtracting the reference spectrum (A), serving as a background, from the B and C spectra. B corr. And C corr. Refer to TES-ADT emission spectra measured outside the sphere, which were used to correct for spectral distortions caused by PdPc absorption (around 650 and 730 nm) and TES-ADT self-absorption (around 550 nm) within the integrating sphere. This correction procedure was applied consistently across all TES-ADT concentrations to obtain corrected ϕ_{FL} .

UC quantum yields of TES-ADT:PdPc solutions (corrected for reabsorption)

UC quantum yields of the samples were evaluated using a comparative method relative to PdPc fluorescence. 15 μ M PdPc solution in toluene, matching the PdPc concentration in the UC solutions, served as the reference with a known FL quantum yield of $\phi_{PdPc} = 0.36\%$. Given that the absorption coefficients of the reference and UC solutions at 730 nm are equal, ϕ_{UC} was calculated using the following formula:


$$\phi_{UC} = \phi_{PdPc} \frac{I_{UC}}{I_{PdPc}}, \#(S3)$$

where I_{UC} and I_{PdPc} are spectrally integrated UC and FL_{PdPc} intensities of the UC solution and reference, respectively, each multiplied by the emission wavelength. ϕ_{UC} values for each solution were measured at different excitation power densities, as shown in Fig. S5.

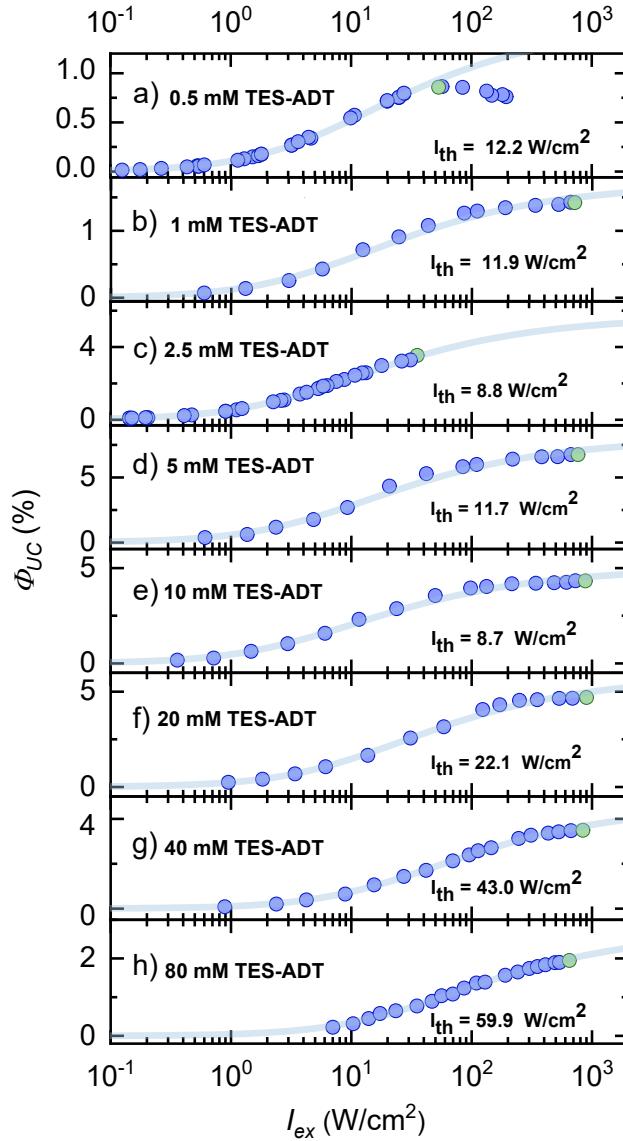
Fig. S3 Set of spectra used for FL quantum yield evaluation of 15 μ M PdPc solution in toluene (a reference solution) with an integrating sphere. A 730 nm notch filter was placed in front of

the detector to reduce the intensity of the laser stray light by a factor of 20.64 (measured separately).

Fig. S4 (a-h) UC quantum yield estimations for UC solutions (TES-ADT:PdPc) at different annihilator concentrations (indicated), measured by a relative method with 15 μM PdPc toluene solution as the reference ($\phi_{FL} = 0.36\%$). Emission spectra of the UC solutions (brown lines) and the reference solution (green lines) were recorded under identical experimental conditions by exciting the center of a 1-mm-thick quartz cuvette. Additional UC spectra (yellow lines) were obtained by exciting the edge of the same cuvette and were used to correct for TES-ADT self-absorption.

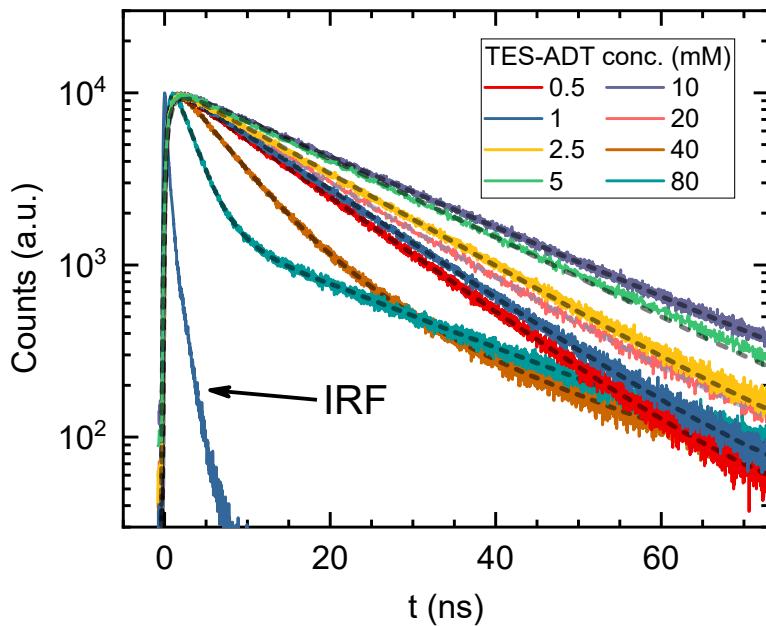
Determination of saturated UC quantum yield and threshold

The saturated UC quantum yield (ϕ_{UC}^{∞}), defined as the yield at infinitely high excitation power density, and the excitation threshold (I_{th}) were determined from measurements of UC signal


intensity as a function of excitation power density (I_{ex}). The data were converted to ϕ_{UC} versus I_{ex} , considering that

$$\phi_{UC} \propto \frac{I_{UC}}{I_{ex}} \#(S4)$$

and rescaled using known ϕ_{UC} values (see the previous section). The relevant parameters were extracted by fitting the experimental data to the function proposed by *Murakami et al.*:²

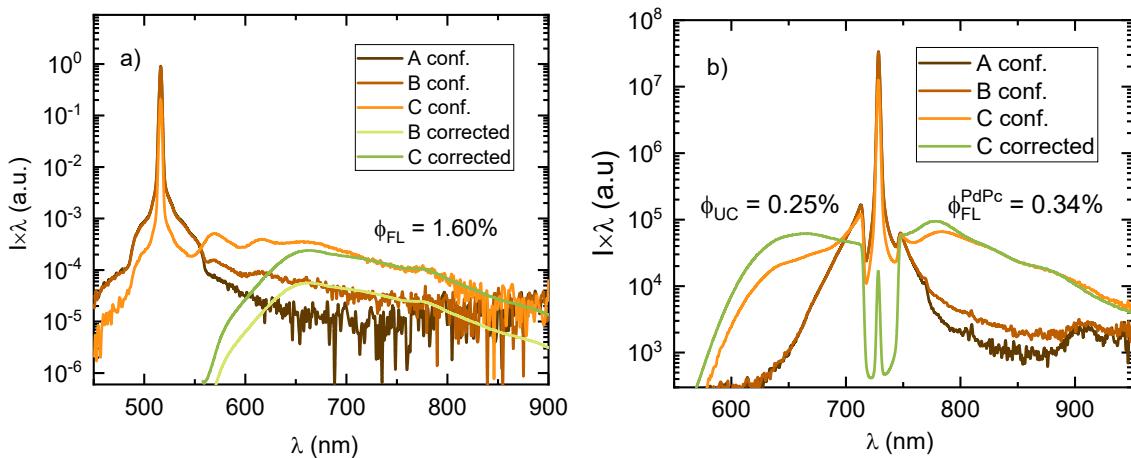

$$\phi_{UC} = \phi_{UC}^{\infty} \left(1 + \frac{1 - \sqrt{1 + 4I_{ex}/I_{th}}}{2I_{ex}/I_{th}} \right) \#(S5)$$

In this model, I_{th} corresponds to the excitation power density at which $\phi_{UC} = 0.382 \cdot \phi_{UC}^{\infty}$.

Fig. S5 (a-h) UC quantum yield as a function of excitation power density I_{ex} for UC solutions with varying TES-ADT concentration. ϕ_{UC} values measured using a relative method are marked in green.

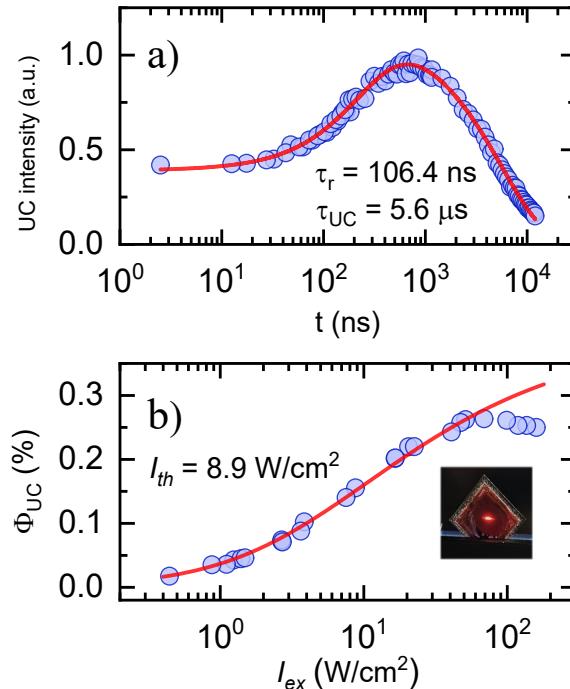
FL transients of TES-ADT in toluene

Fig. S6 FL transients of sensitizer-free TES-ADT in toluene at various concentrations (indicated), excited at 510 nm and detected at 660 nm. IRF, instrument response function. Dashed lines represent single- or multi-exponential fits of the measured transients. The extracted decay lifetimes (τ_1 and τ_2), along with their fractional contributions (c_1 and c_2), are summarized in Table S1.


Table S1. FL decay lifetimes τ_i and fractional contributions of each decay component c_i to the overall decay of TES-ADT in toluene.

TES-ADT conc. (mM)	τ_1 , ns	c_1 , %	τ_2 , ns	c_2 , %
0.5	10.8	100	–	–

1	9.4	100	—	—
2.5	13.2	100	—	—
5	15.9	100	—	—
10	8.9	55.20	16.6	44.80
20	8.4	20.36	15.1	79.64
40	6.0	72.52	22.8	27.48
80	2.0	45.35	22.4	54.65


The slight increase in the FL decay lifetime (τ_1) of monomolecular TES-ADT species with rising concentration from 0.5 to 5 mM is attributed to enhanced re-absorption and re-emission effects. The subsequent rapid reduction of this lifetime (τ_1) at TES-ADT concentrations above 10 mM is due to energy transfer from single molecules to lower-energy aggregate states. The appearance of the second FL decay component above 10 mM TES-ADT, with a lifetime (τ_2) in the range of 15-23 ns, is specifically associated with TES-ADT aggregates.

Spin-statistical factor of TES-ADT:PdPc solid film

Fig. S7. Evaluation of (a) FL and (b) UC quantum yields for a neat TES-ADT film doped with 0.1 wt% PdPc. Both yields were measured using an integrating sphere. The samples were laser-excited at 510 nm for ϕ_{FL} and at 730 nm for ϕ_{UC} . 730 nm notch filter was placed in front of the detector for ϕ_{UC} measurement to reduce the laser stray light by a factor of 41 (measured

separately). FL signal observed between 550 and 650 nm in the integrating sphere measurements (B and C conf.) is attributed to single-molecule emission, likely caused by indirect excitation of the sample edges. This signal was excluded from the final ϕ_{FL} calculations, with the true spectral shape taken from separate correction measurements performed outside the integrating sphere.

Fig. S8 a) UC transients and (b) ϕ_{UC} as a function of excitation power density (I_{ex}) for neat TES-ADT film doped with 0.1 wt% PdPc. The data was fitted up to 50 W/cm 2 , as experimental values at higher power densities are affected by sample photodegradation. τ_r – signal rise

time, $\tau_{UC} = \frac{\tau_T}{2}$ – UC decay time, I_{th} - excitation threshold power density.

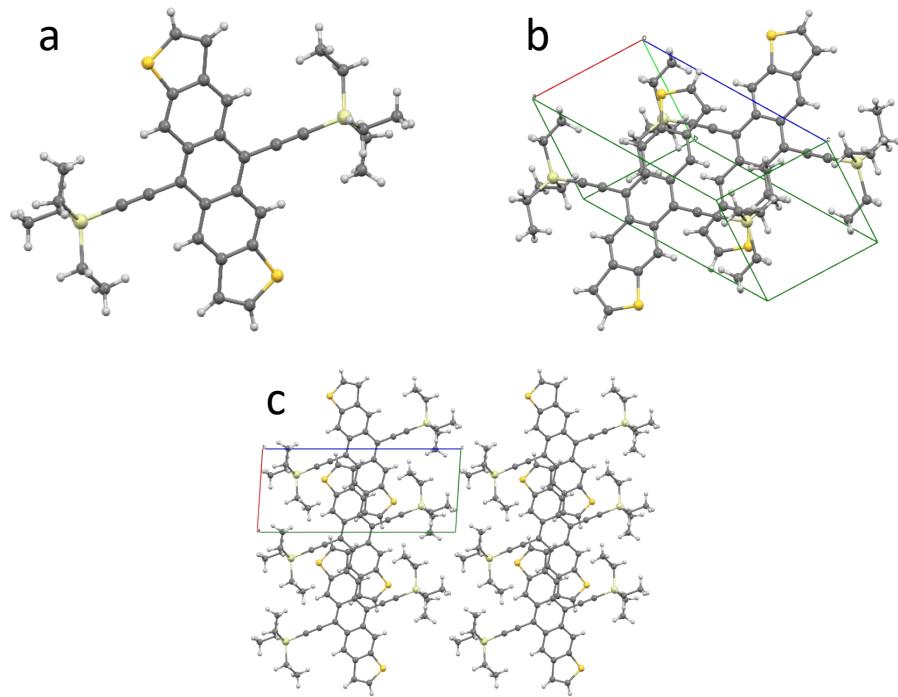
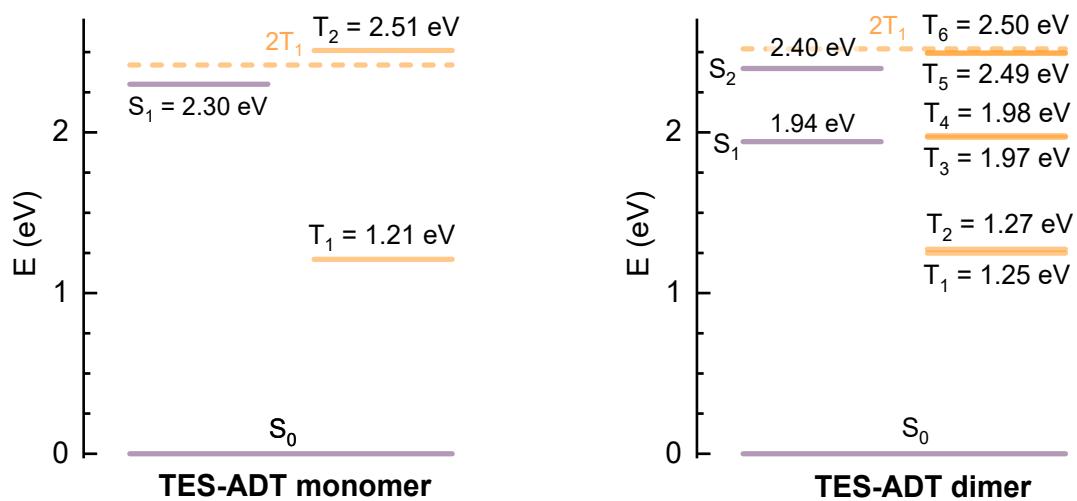

TES-ADT crystallographic data

Table S2. Crystallographic data of TES-ADT crystal.

Formula	C ₃₄ H ₃₈ S ₂ Si ₂
$D_{calc.}$ (g·cm $^{-3}$)	1.154
μ (mm $^{-1}$)	2.325


Formula Weight	566.94
Colour	Red
Shape	Plate
Size (mm ³)	0.41×0.23×0.04
Temperature (K)	300.1(7)
Crystal system	triclinic
Space group	<i>P</i> 1
<i>a</i> (Å)	6.9092(2)
<i>b</i> (Å)	7.4194(2)
<i>c</i> (Å)	16.6957(5)
α (deg)	96.226(2)
β (deg)	91.986(2)
γ (deg)	106.077(2)
Volume (Å ³)	815.66(4)
<i>Z</i>	1
<i>Z'</i>	0.5
Wavelength (Å)	1.54184
Radiation type	Cu K _α
Θ_{min} (deg)	2.668
Θ_{max} (deg)	77.119
Measured Refl.	7857
Independent Refl.	3287
Reflections with $I > 2(I)$	2862
R_{int}	0.0247
Parameters	175
Restraints	3
Largest Peak	1.762
Deepest Hole	-0.768
GooF	1.865
<i>wR</i> ₂ (all data)	0.3991

wR_2	0.3878
R_1 (all data)	0.1193
R_1	0.1122

Fig. S9 Molecular geometry (a) and packing (b-c) of TES-ADT crystals.

DFT calculations

Fig. S10 Transition energies from ground to excited singlet and triplet states of TES-ADT monomer and dimer, calculated at TD-DFT level. TES-ADT monomer ground state geometry optimization and TD-DFT calculations were performed using B3LYP functional and 6-311G(d) basis set. TES-ADT dimer geometry was obtained from experimental XRD data of a TES-ADT crystal.

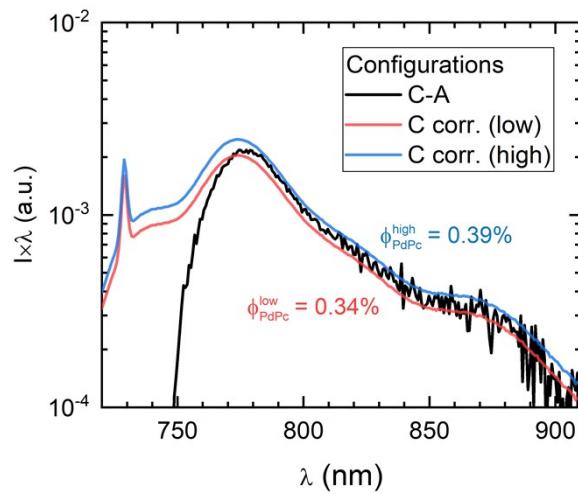
Table S3. Calculated SOC matrix elements between excited triplet and singlet states for TES-ADT dimer using XRD-derived geometry.

Molecular state		SOC matrix elements (cm ⁻¹)
T ₁	S ₁	0.03
T₁	S₂	0.21
T ₂	S ₁	0.00
T ₂	S ₂	0.00
T ₃	S ₁	0.00
T ₃	S ₂	0.00
T ₄	S ₁	0.04
T₄	S₂	0.14
T ₅	S ₁	0.00
T ₅	S ₂	0.00
T₆	S₁	0.44
T₆	S₂	0.16

According to the energy scheme in Fig. S10, the energetically viable transitions for the TES-ADT dimer are $T_6 \rightarrow S_1$ and $T_6 \rightarrow S_2$.

Error analysis

Triplet energy transfer yield (ϕ_{TET}).


Using Eq. (S2), the uncertainty was obtained by standard error propagation from the fitted PdPc lifetimes in the UC sample, τ_{PdPc} , and the intrinsic PdPc lifetime, τ_0 :

$$\Delta\phi_{TET} = \sqrt{\left(\frac{\Delta\tau_{PdPc}}{\tau_0}\right)^2 + \left(\frac{\tau_{PdPc}}{\tau_0^2}\Delta\tau_0\right)^2} \cdot \#(S6)$$

The uncertainty is derived from fits of the UC transient decays for each concentration (Fig. S1a and Fig. 3), while $\Delta\tau_0$ is common to all samples and obtained from the fit in Fig. S1b ($\Delta\tau_0 = 299$ ns).

Fluorescence quantum yield (ϕ_{FL}).

The dominant uncertainty originates from scaling the correction spectrum C_{corr} to match the spectrum measured inside the integrating sphere. Variations in B_{corr} were found to have a negligible impact. We therefore determined limiting cases (ϕ_{FL}^{low} and ϕ_{FL}^{high}) by varying the C_{corr} scaling within the range, yielding physically reasonable spectral matching, and used their spread to calculate $\Delta\phi_{FL}$. An example of spectral matching under two limiting cases is shown in Fig. S11 for 15 μ M PdPc solution in toluene, which was used as a reference for the comparative ϕ_{UC} determination.

Fig. S11 Acquisition of the ϕ_{PdPc} value range, achieved by varying the scaling factor of C_{corr} spectrum.

Upconversion quantum yield (ϕ_{UC}).

From Eq. (S3), and assuming the dominant uncertainty arises from the reference yield ϕ_{PdPc} (while spectral integrals I_{UC} and I_{PdPc} contribute negligibly due to high signal-to-background; Fig. S4), we estimate:

$$\Delta\phi_{UC} \approx \frac{\Delta\phi_{PdPc}}{\phi_{PdPc}} \phi_{UC} \#(S7)$$

$$\frac{\Delta\phi_{UC}}{\phi_{UC}}$$

which gives a constant relative uncertainty $\frac{\Delta\phi_{UC}}{\phi_{UC}} \approx 0.11$ for all solutions.

Asymptotic UC quantum yield (ϕ_{UC}^∞).

ϕ_{UC}^∞ was obtained by fitting (Fig. S5). The relative fit error $\left(\frac{\Delta\phi_{UC}^\infty}{\phi_{UC}^\infty}\right)^{fit}$ is found to be small (0.001–0.025) compared to the propagated uncertainty from $\frac{\Delta\phi_{UC}}{\phi_{UC}} \approx 0.11$, hence:

$$\Delta\phi_{UC}^\infty \approx \frac{\Delta\phi_{UC}}{\phi_{UC}} \phi_{UC}^\infty \approx \frac{\Delta\phi_{PdPc}}{\phi_{PdPc}} \phi_{UC}^\infty \#(S8)$$

Spin-statistical factor (f).

Finally, Δf was obtained by propagating uncertainties in ϕ_{UC}^∞ , ϕ_{FL} , and ϕ_{TET} :

$$\Delta f = f \sqrt{\left(\frac{\Delta\phi_{UC}^\infty}{\phi_{UC}^\infty}\right)^2 + \left(\frac{\Delta\phi_{TET}}{\phi_{TET}}\right)^2 + \left(\frac{\Delta\phi_{FL}}{\phi_{FL}}\right)^2} \#(S9)$$

All resulting uncertainties are summarized in Table S4 and are reflected directly as the error bars in Fig. 5, thereby quantifying the range of f values supported by the measurements.

Table S4. Propagated uncertainties for all experimentally determined and derived photophysical parameters used in the error analysis, as a function of TES-ADT concentration.

$c_{TES-ADT}$ (mM)	$\Delta\tau_{PdPc}$ (ns)	$\Delta\phi_{TET}$ (%)	$\Delta\phi_{FL}$ (%)	$\Delta\phi_{UC}$ (%)	$\Delta\phi_{UC}^\infty$ (%)	Δf (%)
0.5	34	6.72	6.65	0.10	0.16	10.14
1	13	5.41	4.14	0.15	0.19	2.91
2.5	7	3.40	4.29	0.38	0.62	4.28
5	5	2.10	2.75	0.74	0.87	4.37
10	3	1.30	2.96	0.47	0.54	2.80
20	2	0.76	4.28	0.51	0.63	6.78
40	1	0.40	1.56	0.38	0.50	7.02
80	1	0.22	1.05	0.22	0.29	8.92
UC film	5	0.46	0.23	0.04	0.06	10.60

Impact of triplet recycling on the spin-statistical factor

Back-FRET not only lowers the observed annihilator fluorescence yield (ϕ_{FL}) but can also recycle excitations by generating new sensitizer triplets, potentially biasing the inferred f . To quantify this, we introduce a simple steady-state recycling model for the TTA-dominated regime ($\phi_{TTA} \approx 1$). Without recycling, the standard relation is

$$\phi_{UC}^{\infty} = \frac{1}{2} \phi_{ISC} \phi_{TET} f \phi_{FL} \quad \#(S10)$$

Including recycling, each loop contributes a factor

$$\alpha = \frac{1}{2} \phi_{ISC} \phi_{TET} f \phi_{bFRET} \quad \#(S11)$$

meaning that a fraction α of the triplet population is regenerated in each successive back-FRET/ISC/TET cycle. Consequently, the effective triplet yield equals the sum of the initial and recycled contributions, $r_{eff} = r_0(1 + \alpha + \alpha^2 + \dots) = r_0/(1 - \alpha)$ (for $|\alpha| < 1$). Therefore, the effective triplet yield is multiplied by $1/(1 - \alpha)$, giving

$$\phi_{UC,eff}^{\infty} = \frac{\phi_{ISC} \phi_{TET} f \phi_{FL}}{2 - f \phi_{ISC} \phi_{TET} \phi_{bFRET}} \quad \#(S12)$$

Solving for the intrinsic f (denoted f_i) yields

$$f_i = \frac{2 \phi_{UC,eff}^{\infty}}{\phi_{ISC} \phi_{TET} (\phi_{FL} + \phi_{bFRET} \phi_{UC,eff}^{\infty})} \quad \#(S13)$$

To estimate ϕ_{bFRET} under the most demanding solid-state conditions, where back-FRET is strongest, we prepared neat TES-ADT films and films with 0.1 wt% PdPc under identical spin-coating conditions. The FL quantum yield was found to decrease from 3.20% to 2.17%, giving $\phi_{bFRET} = 1 - \phi_{FL}^{wPdPc} / \phi_{FL} = 0.322$. $\#(S14)$

Using the film parameters in the manuscript ($\phi_{UC,eff}^{\infty} = 0.004$, $\phi_{FL} = 0.016$, $\phi_{ISC} = 1$, $\phi_{TET} = 0.944$) yields $f_i = 49.0\%$, compared to $f = (53.0 \pm 10.6)\%$ from Eq. S10 without recycling. Thus, even in this worst-case scenario, triplet recycling via back-FRET changes f by only ~ 4 percentage points. As this is well within our experimental uncertainty, it does not affect the conclusions.

References

- 1 E. Radiunas, S. Raišys, S. Juršėnas, A. Jozeliūnaitė, T. Javorskis, U. Šinkevičiūtė, E. Orentas and K. Kazlauskas, *J. Mater. Chem. C*, 2020, **8**, 5525–5534.
- 2 Y. Murakami and K. Kamada, *Phys. Chem. Chem. Phys.*, 2021, **23**, 18268–18282.