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Computational Methods

Electronic Structure Calculations

In this work, all density functional theory (DFT) calculations were performed using the

CP2K/Quickstep package.1 The DFT implemented in CP2K is based on a hybrid Gaussian

plane wave (GPW) scheme. The orbitals were described by an atom centered Gaussian-type

basis set, and an auxiliary plane wave basis set was used to re-expand the electron density in

the reciprocal space. The Perdew-Burke-Ernzerhof (PBE) functional with Grimme’s dispersion

correction with Becke-Johnson damping (PBE-D3BJ) and the double-ζ plus polarization

(DZVP) basis set were used.2–4 An energy cutoff of 800 Ry was set for the plane-wave basis

set. The core electrons were modeled using Goedecker-Teter-Hutter (GTH) norm-conserving

pseudopotentials.5,6 Periodic boundary conditions were applied in all dimensions. The wave

function optimization was performed using matrix diagonalization method at Γ point. The

convergence criterion for wave function optimization was set by a maximum electronic gradient

of 1× 10−7 a.u. and an energy difference tolerance between self-consistent field (SCF) cycles

of 1× 10−14 a.u., respectively. Constrained DFT calculations employed the outer SCF loop

with a convergence threshold of 1× 10−7 a.u.. Specially, the proton potentials for the seven

different O-O distances began with the seven average structures. For each average structure,

the hydrogen was moved along a grid of 36 points spanning the axis, and a single point CDFT

calculation was performed using the triple-ζ valence double-polarized (TZV2P) basis set and

a stricter convergence criterion of 1 × 10−8 a.u.. These energies were then interpolated to

create a grid of 1024 points using a cubic spline interpolation scheme, as implemented in

previously reported methodology.7,8 Ab initio molecular dynamics (AIMD) simulations were

performed in the canonical (NVT) ensemble using a Nosé-Hoover thermostat at 330 K, and

integrated with a 0.5 fs timestep.
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Workflow for Machine Learning Potentials Construction

Three separate machine learning potentials (MLPs) were constructed using a concurrent

learning strategy combine with well-tempered MetaDynamics (WT-MetaD). The workflow

contains three main components: training, exploration and labeling. These three steps are

repeated iteratively until the final MLPs are accurate enough for atomic simulation which

are implemented in ai2-kit package.9 The initial structures for AIMD were prepared using

the freely available PACKMOL and pre-equilibrated with 1 ns via classical NVT molecular

dynamics using the SPC/E water potential.10,11 Subsequently, 5 ps of CDFT-based AIMD

simulations were carried out in the NVT ensemble, starting from both chemisorption and

physisorption configurations. For each AIMD trajectory, 25 configurations were randomly

sampled. This procedure generated six trajectories, from which potential energies and atomic

forces were extracted to compose the initial training datasets.

In the training step, a committee of four MLPs was trained based on the energies and

forces using the Deep Potential Smooth Edition (DeepPot-SE) descriptor with a cutoff radius

of 6Å.12–14 The number of neurons in each hidden layer of the embedding net and the fitting

net was [25, 50, 100] and [240, 240, 240], respectively. The MLPs were trained in 2 × 105

steps, with each step using a batch size of 1. During learning, the learning rate was reduced

exponentially from 1×10−3 to 1×10−8, where the learning rate was updated every 2000 steps.

Both energies and atomic forces were included in the loss function for model optimization.

The weight for energies in the loss function started from 0.02 and ended at 1, while that for

atomic forces started from 1000 and ended at 1. In the exploration step, new configurations

were generated by performing MD simulations based on one of the MLPs trained in the

previous step. In each exploration step, MD simulations with various initial configurations

were performed at various temperatures. Considering that MLPs are expected to be good at

interpolating but poor at extrapolating, the deviations in the results predicted by the four

MLPs trained in the previous step can be used to estimate in how far a given configuration is

already represented by the existing training dataset. Configurations for which the deviations
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in atomic forces laid between 0.2 and 0.4 eV/Å were selected as candidates to form additional

training data. In each iteration, a certain number of these candidate configurations was

chosen randomly from the candidate structures and added to the training dataset. In the

labeling step, DFT calculations were performed for the selected configurations from the

exploration step with the computational setup specified above. Through this iterative process,

the final training datasets for the adiabatic, diabatic 1, and diabatic 2 potential energy

surfaces comprised 4302, 3102, and 5440 configurations, respectively.

Free Energy Calculations

These workflows combined WT-MetaD with MLMD to obtain free energy profiles for CO2

adsorption and proton-coupled electron transfer (PCET) step at different temperatures. As a

collective variable, the distance of geometric centroid distance between the CO2 molecule

and the surface Cu atom along the z-axis was used for inner-sphere ET, for *CO2-to-

*COOH, two collective variables R1 and R2 were used, which is illustrated in Figure S1.

To accelerate sampling along the free-energy surface, WT-MetaD was employed at 330

K, utilizing a Gaussian width of 0.2, a hill height of 5 kJ/mol, and a bias factor of 16.8.

Minimum energy paths (MEP) were computed by optimizing the two-dimensional free-energy

surfaces (FESs) using the Nudged Elastic Band (NEB) method, with the limited-memory

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm serving as the optimizer via SciPy’s

implementation. The MD simulations were performed using LAMMPS and PLUMED in

the NVT ensemble using a Nosé-Hoover thermostat at 330 K, and integrated with a 0.5

fs timestep.15,16 WT-MetaD introduces a time-dependent bias Gaussian potential along

the collective variable, enabling enhanced sampling of rare events in molecular simulations.

By biasing the system away from previously sampled regions of configuration space, WT-

MetaD allows the reconstruction of the FES as a function of the chosen collective variable.

Each simulation was carried out for 10–20 ns to ensure convergence. To determine the

equilibrium distribution and corresponding Boltzmann probability distribution for the distance
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R between the CO2 oxygen (proton acceptor) and H2O oxygen (proton donor), umbrella

sampling simulations were performed. A series of initial configurations was generated, each

corresponding to a specific donor-acceptor distance within the range of 2.50 to 3.10Å, with

increments of 0.1Å. In each configuration, the R was harmonically restrained at its target

distance using an umbrella biasing potential of 200 kJ/(mol · Å2
). This restraint enabled

efficient sampling of the configurational space within defined windows along the donor-

acceptor reaction coordinate. Adjacent windows were spaced to ensure sufficient overlap of

the sampled reaction coordinate, a prerequisite for robust potential of mean force (PMF)

reconstruction. Molecular dynamics (MD) simulations were conducted for each window using

the Nosé-Hoover thermostat (T = 330 K) and an integration timestep of 0.5 fs, as previously

described. Each trajectory was propagated for 5 ns. Following simulation, the weighted

histogram analysis method (WHAM) was employed to combine the sampled distributions from

all windows. This analysis yielded the one-dimensional PMF along the reaction coordinate

and the corresponding equilibrium Boltzmann probability distribution for the donor-acceptor

distance.

The solvent reorganization free energy for the inner-sphere ET step, two independent

molecular dynamics simulations with MLPs trained on the two diabatic surfaces are performed.

Physisorbed (QR) and chemisorbed (QP ) geometries were used as the initial configurations

on the neutral and anionic surfaces, respectively; each system was equilibrated for 10 ns, and

snapshots were stored every 1 ps, giving 10000 frames per trajectory. For every configuration

Q, we computed the vertical energy gap as

∆ER(Q) = ⟨EP (Q)− ER(Q)⟩R, ∆EP (Q) = ⟨EP (Q)− ER(Q)⟩P (1)

the angle brackets denote averages over the corresponding trajectory, thereby obtaining the

energy gap variances δ2R and δ2P from the R- and P -trajectories.

δ2R = ⟨(∆ER − ⟨∆ER⟩R)2⟩R, δ2P = ⟨(∆EP − ⟨∆EP ⟩P )2⟩P (2)
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With the framework of Marcus theory and leveraging the linear-response approximation

validated by free energy perturbation (FEP), the ET free energy difference (∆F ) and solvent

contribution to the reorganization free energy are given by

∆F = −kBT ln
〈
e−β∆E

〉
Q

(3)

λR =
δ2R

2kBT
, λP =

δ2P
2kBT

(4)

The distribution of ∆E for both states are Gaussian, as shown in Figure S8 and S9, confirming

the validity of the linear-response approximation in Marcus theory for the solvent. This

computational scheme was extended to quantify the reorganization energy for PCET. Here,

the reactant state equilibrium geometry QR has the proton on its donor (H2O), while the

product state geometry QP has the proton on its acceptor (CO –
2 ). To calculate ER(QP ), the

proton was optimized on the donor with all other nuclei fixed to QP . Conversely, for EP (QR),

the proton was optimized on the acceptor with all other nuclei fixed to QR. These geometry

optimizations were performed using the adiabatic machine learning potential function with the

BFGS algorithm, as implemented in CP2K. The convergence criterion for these optimizations

was set to a maximum force of 1× 10−4 a.u..

Vibronic Coupling Calculations

For the inner-sphere ET, electron from the d-band of Cu transfer to the LUMO of CO2. This

charge injection is quantitatively described by the Newns-Anderson Hamiltonian:

H =
∑
k

ϵkc
†
kck + ϵac

†
aca +

∑
k

[
Vakc

†
ack + V ∗

akc
†
kca

]
(5)

where ϵk are the energies of the metal one-electron states within the conduction band, ϵa

is the LUMO energy level, and Vak quantifies the metal-adsorbate coupling strength. The
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resulting adsorbate local density of states (LDOS) derives from the retarded Green’s function:

ρa(ϵ) = − 1

π
Im

[
1

ϵ− ϵa − Σ(ϵ) + iδ

]
(6)

with the hybridization self-energy Σ(ϵ):

Σ(ϵ) = P
∫

Λ(ϵ′)

ϵ− ϵ′
dϵ′ − iπ∆(ϵ) (7)

where ∆(ϵ) = π
∑

k |Vak|2δ(ϵ− ϵk) is the d-band projection coupling function, Λ denotes the

shift of the orbital energy caused by this interaction. We than applied this methodology

to extract the electronic coupling matrix element at the crossing point. Two hundred

transition configurations were sampled from the MD trajectory at 1 ps intervals, with the

ensemble-averaged electronic coupling obtained by averaging the computed values.

Within the theoretical framework of PCET,17–19 the center quantity that governs nonadi-

abatic PCET is the vibronic coupling Vaµkν . The vibronic coupling and proton vibrational

wavefunctions depend strongly on the proton donor-accept distance R. To construct the

relevant potential energy surfaces, diabatic proton potentials were generated by performing

CDFT calculations at averaged reactant and product geometries for discrete values. These

geometries served as crossing-point structures, yielding a family of one-dimensional diabatic

proton potentials connecting the equilibrium proton positions in the reactant and product

states. The one-dimensional Schrödinger equation was solved numerically for each potential

to obtain the proton vibrational eigenfunctions and their overlap integrals.

Solvent Friction Kernel

The adiabatic transition state theory and diabatic vibronic representation of PCET theory

relies critically on the assumption of fast solvent dynamics.18,20 This assumption posits that

solvent relaxation occurs on a timescale significantly shorter than the reaction itself, ensuring

that solvent degrees of freedom maintain thermal equilibrium throughout the reaction process.
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Moreover, Landau-Zener theory requires constant velocity near the crossing seam, velocity

relaxation otherwise facilitate adiabatic processes and diminishing nonadiabatic suppression.

To address solvent response lags arising from inertial polarization effects, we incorporate

the Grote-Hynes (GH) theory which based on the generalized Langevin equation (GLE),

explicitly describes the dynamical coupling between the solvent environment and the reactive

system via a frequency-dependent friction kernel.21,22 According to the GH theory, reactive

frequency is determined by solving the GH equation:23,24

ω2
GH − ω2

eq + ωGH

∫ ∞

0

γTS(t)e
−ωGH tdt = 0 (8)

Here, ωGH and ωeq denote the reactive frequency and equilibrium frequency, respectively.

The equilibrium frequency ≈ 600cm−1 was obtained from normal mode analysis using DFT.

The time-dependent friction kernel γ(t) can be calculated from the autocorrelation of the

forces exerted on the reaction coordinate.

γ(t) =
⟨F (0)F (t)⟩
mkBT

(9)

Where m is the reduced mass of the reaction coordinate. To understand in more detail how

the environment dynamics influence the reaction we need to identify which motions couple

with the reaction coordinate and how they contribute to the friction kernel. With this purpose

we have obtained the friction spectra as the Fourier transforms of the friction kernels:

γ(ω) =

∫ +∞

−∞
γ(t)eiωtdt (10)

Although curve-crossing models yield cusp-shaped barriers where solvent dynamics mini-

mally barrier crossing, solvent reorganization often emerges as the rate-determining factor. To

characterize this solvent-reaction coordinate coupling, we compute the friction kernel through

constrained simulations initiated at the PCET crossing point using the RATTLE algorithm.

8



For each configuration, 200 trajectories were propagated on diabatic potential energy surfaces

(PESs). The force autocorrelation functions (FACFs) were then calculated from the forces on

the reaction coordinate. The friction coefficient, which quantifies the dissipative coupling

between the reaction coordinate and the solvent environment, was obtained by integrating

the time-dependent friction kernel over time. All MD simulations were performed at 330 K

with a time step of 0.1 fs to ensure a good convergence of the constraint under the NVT

ensemble.
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Figure S1. Illustration of atomic models used. (a) Collective variables used for well-tempered
metadynamics and umbrella sampling. (b) 3D periodic supercell used in molecular dynamics
simulations.
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Figure S2. Prediction errors of the MLP for adiabatic state potential energies and atomic
forces on training datasets.

Figure S3. Prediction errors of the MLP for neutral state potential energies and atomic
forces on training datasets.
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Figure S4. Prediction errors of the MLP for anionic state potential energies and atomic
forces on training datasets.

Figure S5. Validation errors in MLP-predicted adiabatic state potential energies and atomic
forces using datasets sampled from WT-MetaD trajectories.
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Figure S6. Validation errors in MLP-predicted neutral state potential energies and atomic
forces using datasets sampled from WT-MetaD trajectories.

Figure S7. Validation errors in MLP-predicted anionic state potential energies and atomic
forces using datasets sampled from WT-MetaD trajectories.
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Figure S8. Evolution of the mean net Mulliken charge on CO2 along the reaction coordinate
for adiabatic ET. The data is extracted from 20 configurations per window sampled across
20 windows of the WT-MetaD trajectory.
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Figure S9. Probability distributions of the energy gap (a) ∆ER(Q) for the reactant state
and (b) ∆EP (Q) for the product state along the inner-sphere ET.

Figure S10. Probability distributions of the energy gap (a) ∆ER(Q) for the reactant state
and (b) ∆EP (Q) for the product state along the CEPT.
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Figure S11. Lorentzian fit (blue line) to the chemisorption function at the Γ-point. The
resonance energy ϵ = −0.327 eV, with a half width at half maximum γ = 0.111 eV.
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Figure S12. Proton potentials and corresponding vibrational wavefunctions at donor-
acceptor distance of (a) 2.5 (b) 2.6 (c) 2.8 (d) 2.9 (e) 3.0 and (f) 3.1Å. The energy scale on
the left corresponds to the proton potential, while the scale on the right corresponds to the
vibrational energy levels of the proton.
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Figure S13. The electrostatic potential as a function of distance from the electrode for
various applied potentials relative to the potential of zero charge.
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Figure S14. Potential-dependent rate constants for concerted PCET processes originating
from the ground vibrational state and the first vibrationally excited state.
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