

Supporting Information

Chemo-enzymatic One-Pot Depolymerization of β -Chitin

Joseph Brehm,^a Richard J. Lewis,^a Alan F. Scott,^{†b} David J. Morgan,^{a,c} Thomas E. Davies,^a Nigel G. J. Richards^{*b,d} and Graham J. Hutchings^{*a}

^a Max Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF24 4HQ, UK. E-mail: hutch@cardiff.ac.uk

^b School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK

^c HarwellXPS, Research Complex at Harwell (RCaH), Didcot, OX11 OFA, UK

^d Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA. E-mail: nrichards@ffame.org

† Present address: eXmoor pharma, Cell & Gene Therapy Centre, Britannia Road, Bristol BS34 5TA, UK.

Materials and Methods

β -chitin and the enzyme *N*-acetylglucosamine oxidase (NAGox) were sourced from France Chitin (Marseille, France) and Gecco Biotech BV (Groningen, Netherlands), respectively. The pET-30Xa/LIC vector containing the gene encoding chitobiase was a gift from the Protein Engineering and Proteomics Group, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences. Palladium (II) chloride (99.995% purity), and gold (III) chloride (99.9% purity) were purchased from Merck and Strem Chemicals, respectively. Titanium dioxide (P25) was supplied by Degussa.

Expression and purification of recombinant smAA10A (CBP21)

A *pET3a* plasmid harboring a codon-optimized gene encoding *smAA10A* was synthesized by GenScript Biotech (UK) (Oxford, England) and transformed into BL21^{STAR} (DE3) cells (25 μ L). A single colony was used to inoculate LB media (10 mL) containing ampicillin (500 μ g mL⁻¹). After incubation with shaking (200 rpm) at 37 °C for 16 h, this cell culture was diluted 1:100 into LB-ampicillin media and incubated with shaking (200 rpm) at 37 °C for an additional 16 h. Cells were then harvested by centrifugation (3300g, 15 min) and stored at -80 °C until required for enzyme purification. *smAA10A* was extracted from the cell pellets following a cold osmotic shock protocol, as previously described.¹ Thus, a cell pellet (100 g) was defrosted and resuspended in 50 mM Tris-HCl buffer (300 mL), pH 8.5, containing 20% (w/v) sucrose and lysozyme (7.5 mg), before being incubated with shaking (250 rpm) at 2 °C for 1 h. Solid MgSO₄ (180 mg) was then added to a final concentration of 5 mM, and the solution incubated with shaking (250 rpm) at 2 °C for a further 30 min. This solution was clarified by centrifugation (3000 g, 20 mins) and stored on ice. Additional protein was obtained by resuspending the pellet in a minimum volume of ice-cold water, shaking at 2 °C for 1 h, and clarification by centrifugation (34220 g for 40 min). These extracts were combined and concentrated to give a solution (10 mL) that was mixed with 5 mM CuSO₄ (400 μ L) at 4°C for 16 h. This procedure yielded Cu(II)-containing *smAA10A*, which was then applied at a flow rate of 2.5 mL min⁻¹ to a chitin bead column (New England Biolabs, Beverly, MA) that had been pre-equilibrated in 20 mM K₂HPO₄/KH₂PO₄ buffer, pH 8.0. Holo-*smAA10A* was eluted by changing the mobile phase to 20 mM aq. AcOH (pH 3.6). Fractions containing pure *smAA10A* were combined, and buffer-exchanged into 20 mM K₂HPO₄/KH₂PO₄ buffer, pH 8.0, using a HiPrep 26/10 desalting column (Sigma Aldrich) (Fig. S1). Aliquots (0.5 mL) of the purified, recombinant WT *smAA10A* were flash frozen with liquid N₂ and stored at -80 °C.

Expression and purification of WT *b*-*N*-acetylhexosaminidase (chitobiase)

Recombinant chitobiase was expressed and purified based on literature procedures.² A *pET-30Xa/LIC* vector containing the gene encoding *Serratia marcescens* chitobiase with a cleavable N-terminal His-tag was transformed into BL21^{STAR} (DE3) cells (25 μ L). A single colony was used to inoculate LB media (10 mL) containing kanamycin (50 μ g mL⁻¹). After incubation with shaking (200 rpm) at 37 °C for 16 h, this cell culture was diluted 1:100 into fresh LB-kanamycin media (1 L) and incubated with shaking (200 rpm) at 37 °C until OD₆₀₀ = 0.5. Protein expression was induced by IPTG (0.1 mM), and the incubation temperature was lowered to 30 °C. After 3 h, the cells were harvested by centrifugation (3300g, 15 min) and re-suspended in 20 mM Tris.HCl, pH 8, containing 20 mM imidazole. The cells were lysed by sonication (5 s sonication, 5 s pause for 4 mins at 30% amplitude, 4 °C), and the lysate clarified by centrifugation (34220g, 40 min) and subsequent filtration (0.2 μ m). After loading the lysate onto Ni-sepharose 6 FF resin (Cytiva), pre-equilibrated with Tris.HCl buffer (20 mM, pH 8.0), containing imidazole (20 mM), the recombinant chitobiase was eluted from the column using 20 mM Tris.HCl buffer, pH 8.0, containing 500 mM imidazole. Samples containing the pure enzyme were concentrated (30 μ M), and buffer-exchanged into 20 mM Tris.HCl buffer, pH 8.0, containing 20 mM imidazole using a

HiPrep 26/10 desalting column. The purified, N-terminally tagged chitobiase was flash frozen with liquid N₂ and stored at -80 °C (0.5 mL aliquots).

pH-Dependence of recombinant WT *smAA10A* activity

The pH-dependent peroxygenase activity of recombinant WT *smAA10A* could be conveniently assayed using a chromogenic substrate, 2,6-dimethoxyphenol (2,6-DMP) (Fig. S2).³ In these experiments, a cuvette was charged with 10 mM 2,6-DMP (100 µL) and 5 mM H₂O₂ (20 µL) in 100 mM buffer (33% NaOAc, 33% Tris.HCl, 33% BisTris.HCl) (860 µL) adjusted to the appropriate pH value. After incubating the mixture at 30 °C for 15 min, the reaction was initiated by adding 120 µM recombinant WT *smAA10A* dissolved in the same buffer (20 µL). The rate of coerulignone production was continuously monitored at 469 nm ($\epsilon = 53200 \text{ M}^{-1} \cdot \text{cm}^{-1}$) for 5 min using a Shimadzu UV-1900 spectrophotometer.

Preparation of a chitobionic acid standard

Solutions of 10 mM diacetylchitobiose in 50 mM K₂HPO₄/KH₂PO₄ buffer, pH 8 (0.2 mL), 6 µM NAGox in 50 mM K₂HPO₄/KH₂PO₄ buffer, pH 8 (0.5 mL) and >100U catalase (2 µL), were mixed with 50 mM K₂HPO₄/KH₂PO₄ buffer, pH 8 (0.5 mL). After stirring (150 rpm) at 21°C for 4 h, acetonitrile (1 mL) was added to precipitate the protein. Filtration then gave chitobionic acid as a solid.³

General procedure for making the chemo-catalyst

The procedure to produce 0.5%Pd–0.5%Au/TiO₂ (2 g) is based on previously reported protocols.⁴ Briefly, aqueous acidified PdCl₂ solution (1.667 mL, 0.58 M HCl, [Pd] = 6 mg mL⁻¹) and aqueous HAuCl₄·3H₂O solution (0.8263 mL, [Au] = 12.25 mg mL⁻¹, Strem Chemicals) were mixed in a 50 mL round-bottom flask and heated to 65 °C with stirring (1000 rpm) in a thermostatically controlled oil bath, with total volume fixed to 16 mL using H₂O (HPLC grade, Fischer Scientific). Upon reaching 65 °C, TiO₂ (1.98 g, P25) was added over the course of 5 min with constant stirring. The resulting slurry was stirred at 65 °C for a further 15 min, following this the temperature was raised to 95 °C for 16 h to allow for complete evaporation of water. The resulting solid was ground prior to a reductive heat treatment (5% H₂/Ar, 400 °C, 4 h, 10 °C min⁻¹). Brunauer-Emmett-Teller (BET) measurements showed that the surface area of the 0.5%Au-0.5%Pd/TiO₂ catalyst and the as-received TiO₂ were 50 and 58 m² g⁻¹, respectively.

pH-Dependence of chemo-catalyst-dependent H₂O₂ synthesis

Radley glass RBFs (50mL; certified to 5 bar) in a multi-reaction system were charged with the 0.5%Au-0.5%Pd/TiO₂ chemo-catalyst (1 mg) and K₂HPO₄/KH₂PO₄ buffer (100 mM, 10 mL). Each RBF was then purged and pressurized with H₂ (1.6 bar) and compressed air (0.4 bar). Reaction mixtures were stirred (250 rpm) at 21 °C and depressurized at appropriate timepoints (Fig. S3). After removing the solid material by filtration, an aliquot (1 mL) of the solution was added to an equal volume of 0.02 M aq. potassium titanium oxalate dihydrate acidified with 30 % H₂SO₄ to pH 1. Immediately after mixing, the H₂O₂ concentration was determined from the absorbance at 400 nm using a standard curve. These measurements were performed on a Shimadzu UV-1900 spectrophotometer.

smAA10A-catalyzed β -chitin degradation with *in situ* H_2O_2 generation

Reactions were carried out in 50 mL Radleys glass round bottom flasks (RBFs) (certified to 5 bar) on a multi-reaction system (Fig. S4). Under our standard conditions, each RBF was charged with the 0.5%Au-0.5%Pd/TiO₂ heterogeneous catalyst (1 mg), β -chitin (100 mg), and 0.5 μM smAA10A and 1 mM ascorbate dissolved in 50 mM K₂HPO₄/KH₂PO₄ buffer, pH 6, (10 mL total volume). The reaction was initiated by pressurization with H₂ (1.6 bar) and compressed air (0.4 bar); *these values are outside the flammability limits of H₂ and O₂*. Reaction mixtures were stirred (250 rpm) at 21 °C and depressurized at appropriate timepoints (Fig. S5). After removing solid material by filtration, and an aliquot (100 μL) of the reaction mixture was incubated with 3 μM recombinant WT chitobiase in 20 mM Tris-HCl buffer, pH 8, at 37 °C for 2 h (110 μL total volume) (Figs. S6 and S7). The resulting concentrations of chitobionic acid and N-acetylglucosamine were determined by HPLC (Fig. S8). The amount of residual H₂O₂ in the post-reaction solution was also measured. All measurements for each reaction at a given timepoint were performed in triplicate.

Quantifying the extent of β -chitin degradation

MALDI-TOF mass spectrometry was used to confirm the chitinolytic activity of recombinant WT smAA10A under a given set of reaction conditions. In these measurements, 2,5- dihydroxybenzoic acid (18 μg) dissolved in 30% aq. acetonitrile (2 μL) was mixed with an aliquot of the reaction solution (1 μL) on an MTP 384 ground steel target plate TF (Bruker Daltonics), and the resulting solution dried under a stream of air. Samples were analyzed using an Autoflex MALDI-TOF mass spectrometer (Bruker Daltonics GmbH) operated in positive acquisition mode (Bruker FlexControl 3.4 software). Spectra were gathered with an acceleration voltage of 25 kV, a reflector voltage of 16 kV, and pulsed ion extraction of 120 ns in the positive ion mode. The acquisition range was m/z 0-5000, and reflector voltages 1 and 2 were set to 21 and 9.55 kV, respectively. Data were collected by averaging 400 laser pulses with the lowest laser energy necessary, and peak lists generated from the MS spectra (Bruker FlexAnalysis 3.4 software). MALDI-TOF MS analysis of post-reaction solutions revealed the presence of signals associated with the Na⁺ and K⁺ adducts of the aldonic acid forms of soluble oligomers built from 4, 6, and 8 saccharide units (DP) (Fig. S5), consistent with prior literature findings. No evidence for oxidative cleavage at the 4'-position of N-acetylglucosamine was seen in these experiments.

For those samples containing soluble oligomers built from 4, 6, and 8 saccharide units, the extent of β -chitin degradation was determined by incubating two aliquots of the reaction solution (100 μL) for 24 h at 37 °C with 3 μM recombinant chitobiase in 20 mM Tris-HCl buffer, pH 8 (10 μL), (total volume 110 μL). One of these solutions as used to quantify chitobionic acid by hydrophilic interaction chromatography (HILIC) on an Agilent 1260 infinity HPLC system. Analytes were eluted isocratically (0.4 mL min⁻¹) at 60 °C on an Acquity BEH Amide column (2.1 mm x 50 mm) with a 78:22 mixture of acetonitrile and 15 mM Tris.HCl buffer, pH 8 (Fig. S8). Similarly, the second solution was used to determine the amount of N-acetyl glucosamine by ion exchange chromatography. Analytes were eluted isocratically (0.6 mL min⁻¹) at 60 °C on a Hi Plex Na²⁺ column (7.7 mm x 50 mm) with water. Residual ascorbate was measured from the absorbance of the post-reaction solution at 266 nm and comparison with a standard curve of ascorbate in the reaction solution.

smAA10A-catalyzed β -chitin degradation with pre-prepared H₂O₂ solutions

Reactions were carried out in 50 mL RBFs sealed by a rubber septum (Fig. S9). Each RBF was charged with β -chitin (100 mg) and smAA10A (0.5 μM) dissolved in 50 mM K₂HPO₄/KH₂PO₄ buffer, pH 6 (10 mL total volume), unless otherwise stated. After injecting 1 mM ascorbate (100 μL) dissolved in 50 mM K₂HPO₄/KH₂PO₄ buffer, pH 6, the reaction was initiated by either (i) the immediate introduction of flow-

fed 10 mM H₂O₂ (0.252 μ mol min⁻¹, 25 μ L min⁻¹ in 50 mM K₂HPO₄/KH₂PO₄ buffer, pH 6), over a time of 4 hours (determined from examining the effect of reactants on *in situ* H₂O₂ production (Fig. S11)), or a single injection of 1 mM H₂O₂ (605 μ L) in 50 mM K₂HPO₄/KH₂PO₄ buffer, pH 6. Each reaction was stirred (250 rpm) at 21 °C with β -chitin degradation being monitored by incubating filtered aliquots (100 μ L) with chitobiase (3 μ M) in 20 mM Tris-HCl buffer, pH 8, at 37 °C for 2 h (110 μ L total volume). The analysis of reaction products by HPLC and residual H₂O₂ in the post-reaction solution was then carried out. All measurements for each reaction at a given timepoint were performed in triplicate. All of these measurements were made in individual experiments. The reaction mixtures were not sampled online.

smAA10A-catalyzed β -chitin degradation under aerobic conditions

Reactions were carried out in 50 mL Radleys glass round bottom flasks (RBFs) (certified to 5 bar) on a multi-reaction system. Under our standard conditions, each RBF was charged with β -chitin (100 mg), 0.5 μ M smAA10A and 1 mM ascorbate dissolved in 50 mM K₂HPO₄/KH₂PO₄ buffer, pH 6, (10 mL total volume) that was not de-gassed. After pressurization with N₂ (2.0 bar), reaction mixtures were stirred (250 rpm) at 21 °C and depressurized at appropriate timepoints. Aliquots (100 μ L) were then taken and incubated with recombinant WT chitobiase (3 μ M) in Tris-HCl buffer (20 mM, pH 8), at 37 °C for 2 h (110 μ L total volume). The analysis of reaction products by HPLC and residual H₂O₂ in the post-reaction solution was then carried out. All measurements for each reaction at a given timepoint were performed in triplicate.

Top-up experiments with β -chitin and ascorbate

Reactions were carried out in 50 mL Radleys glass round bottom flasks (RBFs) (certified to 5 bar) on a multi-reaction system (Fig. S9). An identical procedure to that outlined above for the chemo-enzymatic degradation of β -chitin was followed for a reaction time of 2 h. Stirring was then stopped and the RBF depressurized prior to the addition of ascorbate (1.0 mM) or smAA10A (0.5 μ M). After being re-pressurized with H₂ (1.6 bar) and compressed air (0.4 bar), the reaction mixture was stirred (250 rpm) for a further 2 h and the products analyzed following the procedures outlined above.

Characterization of the 0.5%Au-0.5%Pd/TiO₂ chemo-catalyst

Aberration-corrected scanning transmission electron microscopy was performed using a probe-corrected Thermo Fisher Scientific Spectra 200 Cold-FEG operating at 200 kV. The instrument was equipped with a HAADF detector, and the imaging was done at a probe current of 120 pA and convergence angle of 30 mrad. Samples were dry dispersed onto 300 mesh copper grids coated with a holey carbon film. Energy-dispersive X-ray (EDX) mapping was performed using a Super-X G2 detector at a dwell time of 25 μ s. All images and EDX data were processed using Velox software (Fig. 4, Figs. S13-S15, S17 and S18)

XPS measurements (Fig. S16) were performed on a Thermo Scientific K-Alpha⁺ photoelectron spectrometer was used to collect XP spectra utilizing a micro-focused monochromatic Al K α X-ray source operating at 72 W. Data were collected over an elliptical area of \sim 400 μ m² at pass energies of 40 and 150 eV for high-resolution and survey spectra, respectively. Sample charging effects were minimized through a combination of low-energy electrons and Ar⁺ ions; consequently, this resulted in a C (1s) line at 284.8 eV for all samples. All data were processed using CasaXPS v2.3.24 using a Shirley background,⁵ Scofield sensitivity factors,⁶ and an electron energy dependence of -0.6 as recommended by the manufacturer.

Metal leaching studies

To provide an indication of the extent of metal leaching during the *in situ* chemo-enzymatic degradation of β -chitin reaction, indicative studies were conducted in the absence of β -chitin (to remove the potential for homogeneous metal adsorption). The heterogeneous catalyst (10 mg, *i.e.* ten times that utilized for the chemo-enzymatic degradation of β -chitin reaction) was added to an RBF containing ascorbic acid (1 mM) and smAA10A (0.5 μ M) dissolved in 50 mM K_2HPO_4/KH_2PO_4 buffer, pH 6 (10 mL total volume). The RBF was pressurized with H_2 (1.6 bar) and compressed air (0.4 bar) and stirred (250 rpm) for the desired reaction time (up to 96 h) at 21 °C (table S5). Post-reaction, the chemo-catalyst was removed by filtration and the reaction solution analyzed using an Agilent 7900 ICP-MS equipped with an I-AS auto-sampler (5-point calibration using certified reference materials (Perkin Elmer) and a certified internal standard (Agilent). All calibrants were matrix matched.

The role of leached metal species on the efficiency of smAA10A-catalyzed β -chitin degradation was assessed using the following procedure. Ascorbate (1 mM) was added to a heterogeneous mixture of β -chitin (100 mg) in 50 mM K_2HPO_4/KH_2PO_4 buffer, pH 6, (10 mL total volume) containing smAA10A (0.5 μ M) and $PdCl_2$ (0.148 μ g L⁻¹) or $HAuCl_4$ (0.068 μ g L⁻¹) or $NaCl$ (2.32 μ M). The reaction was then stirred (250 rpm) for 2 h at 21 °C after pressurization with H_2 (1.6 bar) and compressed air (0.4 bar). The RBF was then depressurized, and substrate was removed by filtration. Aliquots of the supernatant were then analyzed for chitobionic acid and *N*-acetylglucosamine concentration using standard procedures as outlined above (Table S6).

Catalyst reusability measurements

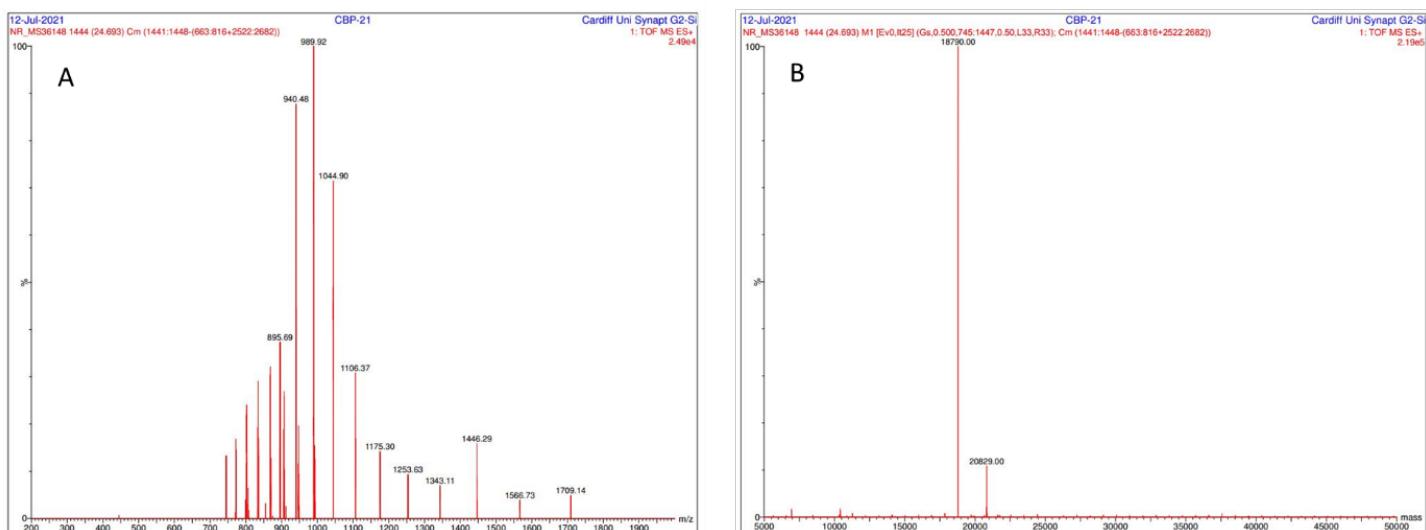
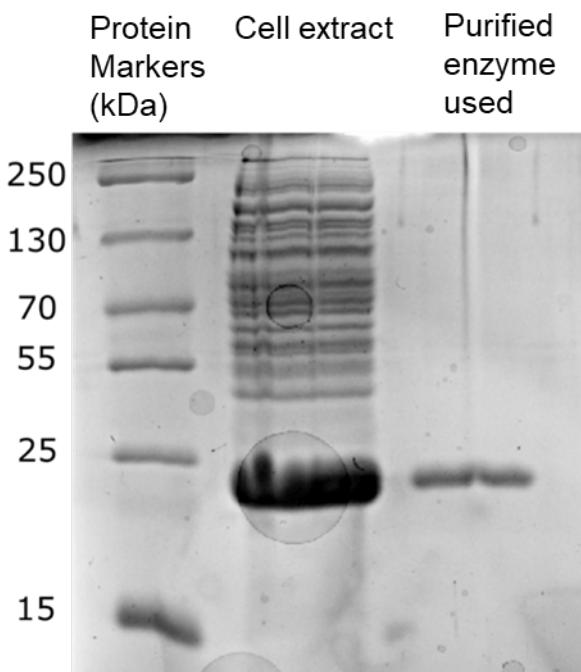
Using our standard method, 0.5%Au-0.5%Pd/TiO₂ chemo-catalyst (1 mg), β -chitin (100 mg), and 0.5 μ M smAA10A and 1 mM ascorbate dissolved in 50 mM K_2HPO_4/KH_2PO_4 buffer, pH 6, (10 mL total volume) was stirred (250 rpm) under an atmosphere of H_2 (1.6 bar) and compressed air (0.4 bar) at 21 °C for 2 h. After depressurization, solid material (consisting of the chemo-catalyst and β -chitin) was separated from the post-reaction solution by filtration, washed (2 x 5 mL HPLC grade water) and dried under vacuum (30 °C, 16 h). The concentrations of CBA and residual H_2O_2 in the filtrate were then determined using the procedures described above. The dried solid material was then added to a solution of 0.5 μ M smAA10A and 1 mM ascorbate dissolved in 50 mM K_2HPO_4/KH_2PO_4 buffer, pH 6, (10 mL total volume). The resulting mixture was then stirred (250 rpm) under an atmosphere of H_2 (1.6 bar) and compressed air (0.4 bar) at 21 °C for 2 h, and the solid material isolated and dried again. This procedure was repeated again to evaluate the stability of the 0.5%Au-0.5%Pd/TiO₂ chemo-catalyst (table S7).

Supplementary Text

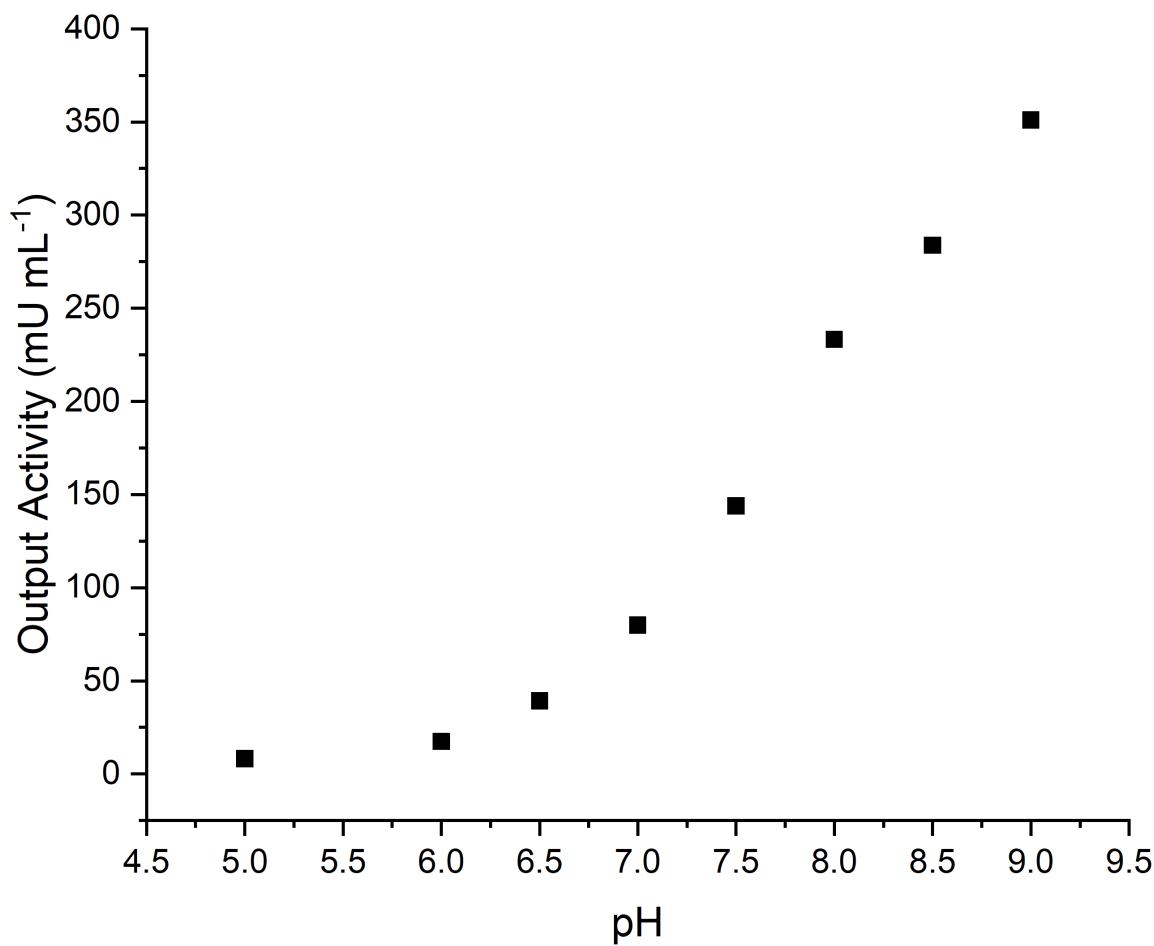
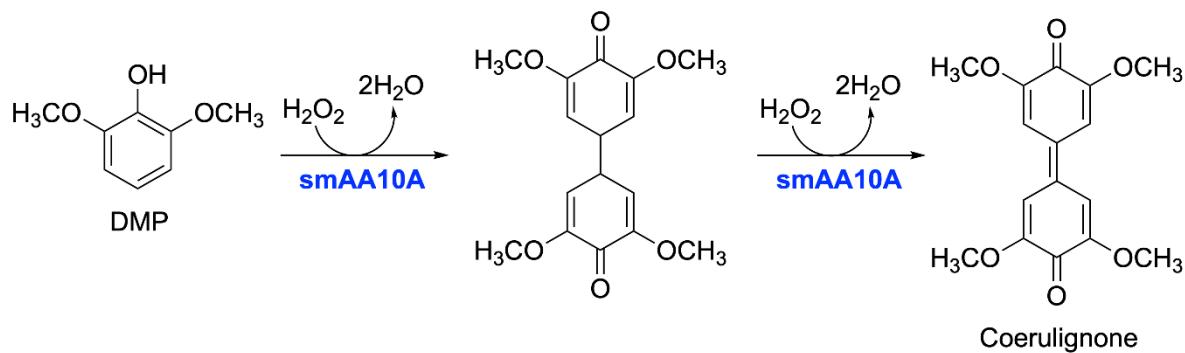
Technical reasons for not performing product inhibition studies

LPMO's such as CBP-21 are processive, surface active enzymes, which act on polymeric substrates, such as β -chitin, in their crystalline form that result in the stepwise shortening by oligomeric unit composed of 4, 6, or 8 residues, as confirmed by mass spectrometry (Fig S5). Given the scarcity of chain ends (*i.e.* the low effective substrate concentration) there is a preference for the enzyme to remain attached to the polymeric substrate, while cleaving these dimeric units. Despite our best efforts we were unable to source the oligomeric units, which would have allowed for product inhibition studies.

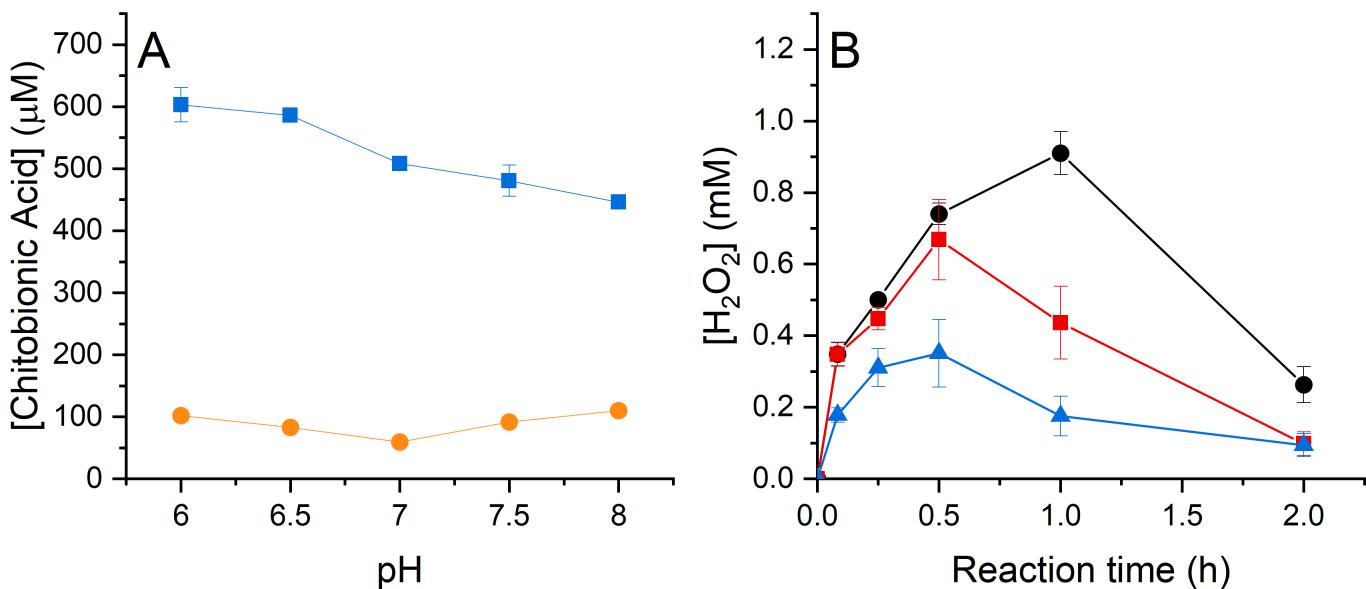
Determination of β -Chitin saccharification in the 0.5%Au-0.5%Pd/TiO₂ /smAA10A system.



The number of moles of *N*-acetylglucosamine (221.21 g mol⁻¹) present in the initial mass of β -chitin is calculated using the following expression (Eqn. S1):

$$\text{Initial } N\text{-acetylglucosamine (mol)} = \text{mass of } \beta\text{-chitin (g)} / 221.21 \text{ (g mol}^{-1}\text{)}$$



The final number of moles of *N*-acetylglucosamine after oxidative cleavage of β -chitin by smAA10A and subsequent treatment of the fragments with chitobiase is calculated, based on HPLC measurements, using the following expressions (Eqn. S2):

$$\text{Final } N\text{-acetylglucosamine (mol)} = \text{measured } \{N\text{-acetylglucosamine (mol)} + 2 \times \text{chitobionic acid (mol)}\}$$


$$\% \text{ saccharification} = 100 \times \text{Initial } N\text{-acetylglucosamine (mol)} / \text{Final } N\text{-acetylglucosamine (mol)}$$

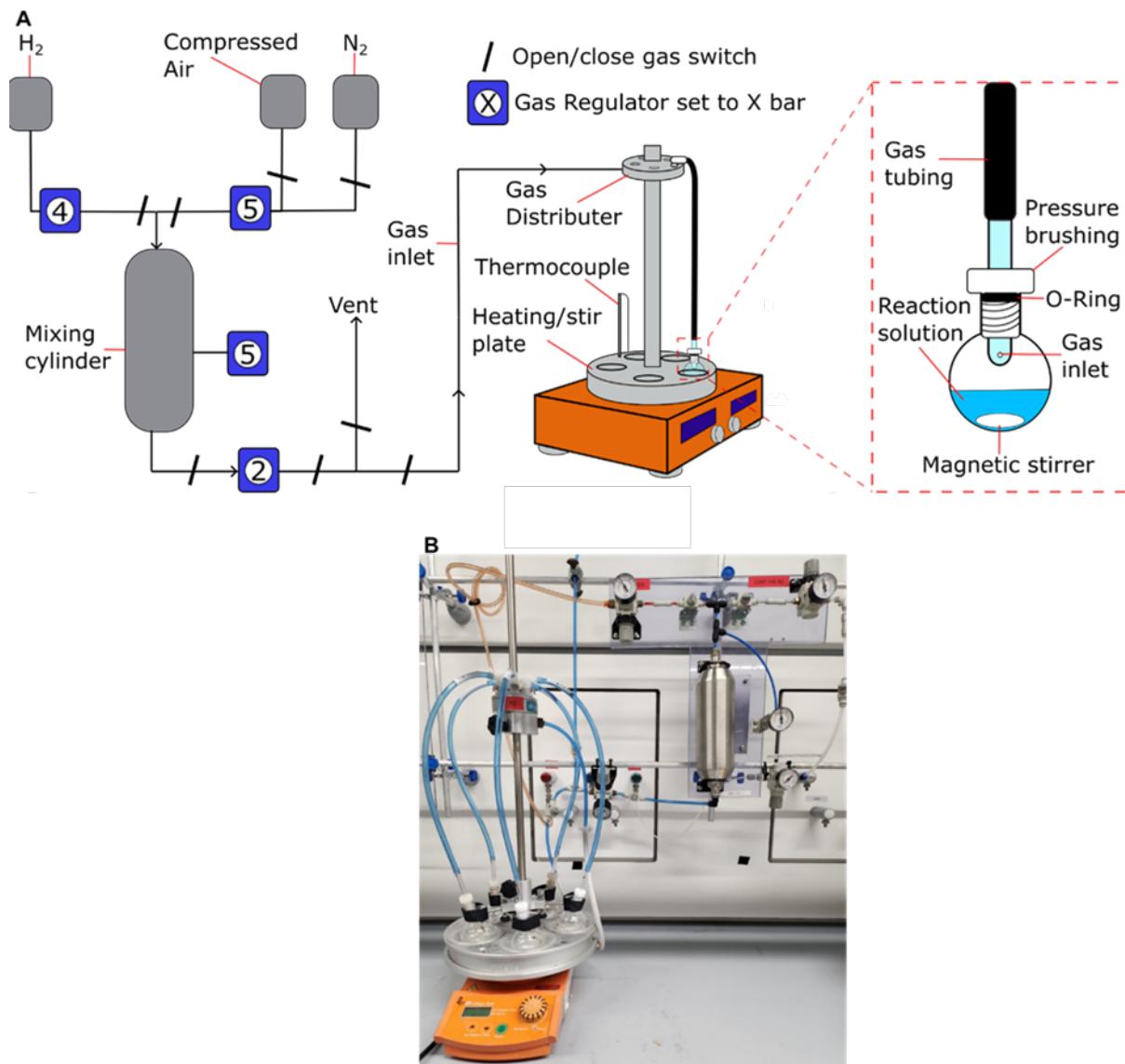

Figure S1. Characterization of recombinant WT smAA10A. (top) SDS-PAGE gel showing the purity of the enzyme used in the chemo-catalyst/smAA10A system; (bottom) MALDI-TOF mass spectra of purified, recombinant WT smAA10A (left) and the deconvoluted spectrum (right). Observed mass = 18790 Da; Expected mass = 18793 Da.

Figure S2. Effect of pH on *smAA10A* activity. (top) Enzyme activity in these experiments was measured by monitoring the conversion of 2,6-dimethoxyphenol (DMP) into coerulignone at 469 nm. Reaction mixtures contained DMP (1 mM), and H_2O_2 (100 μM), dissolved in universal buffer (100 mM, consisting of 33.3 mM NaAc, 33.3 mM Tris-HCl, 3.33 mM Bris Tris) adjusted to the desired pH (980 μL total volume), and were initiated by the addition of *smAA10A* (20 μL) and incubated at 30 °C for 5 min; (bottom) **Coerulignone production rates (1 U is equivalent to coerulignone formation of 1 $\mu\text{mol}/\text{min}$) as a function of pH.** Concentrations were obtained from absorbance values using an extinction coefficient of $53,200 \text{ M}^{-1}\text{cm}^{-1}$ at 469 nm.

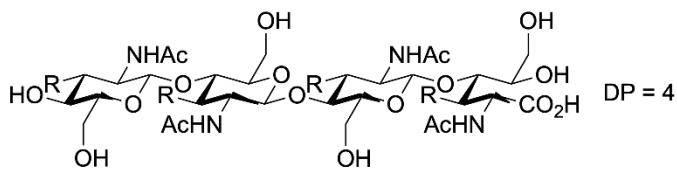


Figure S3. Effect of pH on the chemo-catalyst/smAA10A cascade. (A) pH-Dependence of the ability of *smAA10A* to degrade β -chitin with (■) and without (●) *in situ* H_2O_2 generation by the 0.5%Au-0.5%Pd/TiO₂ chemo-catalyst. Reaction mixtures included *smAA10A* (0.5 μM), ascorbate (1 mM), β -chitin (100 mg), in K₂HPO₄/KH₂PO₄ buffer (50 mM, 10 mL final volume) adjusted to the desired pH under an H₂ (1.6 bar)/air (0.4 bar) atmosphere. Reactions were stirred (250 rpm) at 21 °C for 2 h; (B) pH-Dependence of *in situ* H_2O_2 generation by the 0.5%Au-0.5%Pd/TiO₂ chemo-catalyst (1 mg) under an H₂ (1.6 bar)/air (0.4 bar) atmosphere in 50 mM K₂HPO₄/KH₂PO₄ buffer adjusted to pH 6 (●), pH 7 (■) or pH 8 (▲) (10 mL total volume). Reaction mixtures were stirred (250 rpm) at 21 °C.

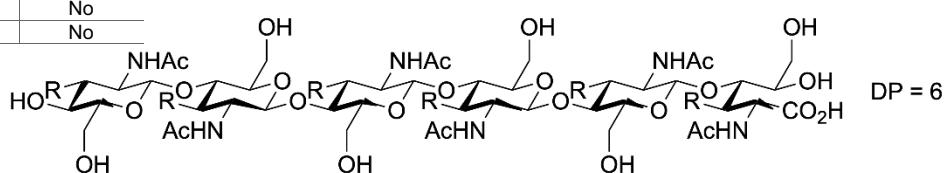
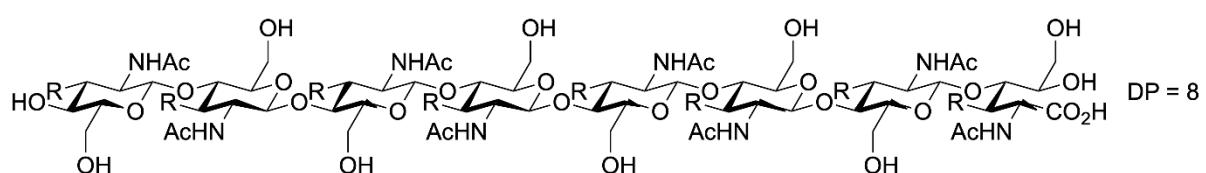
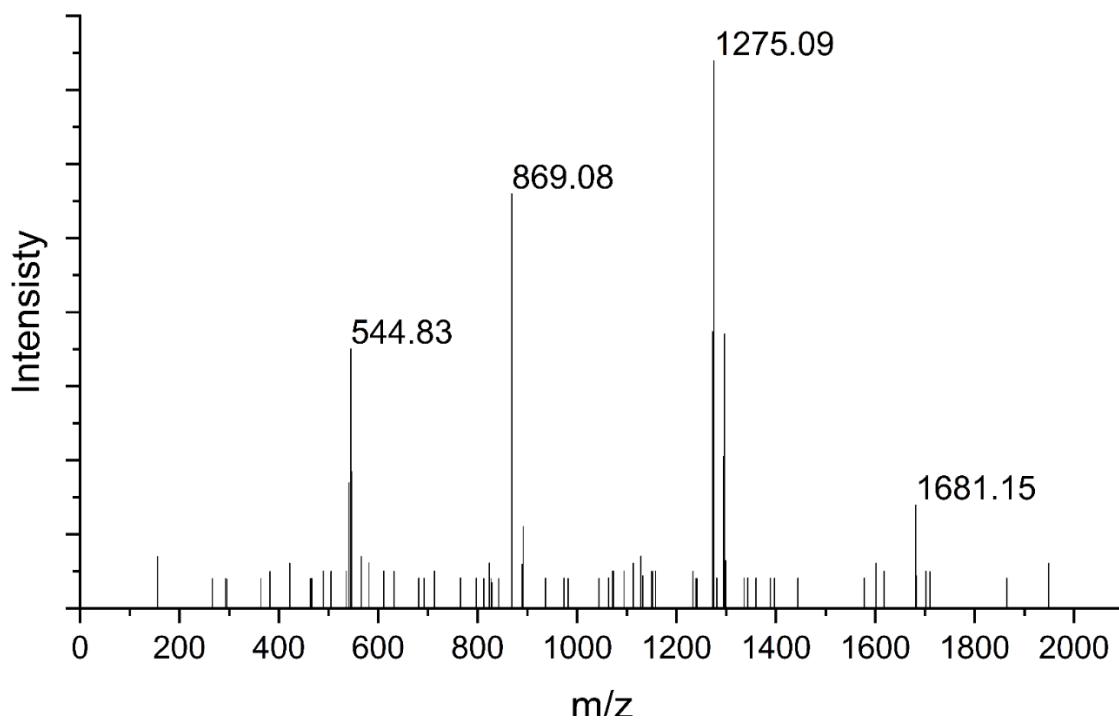
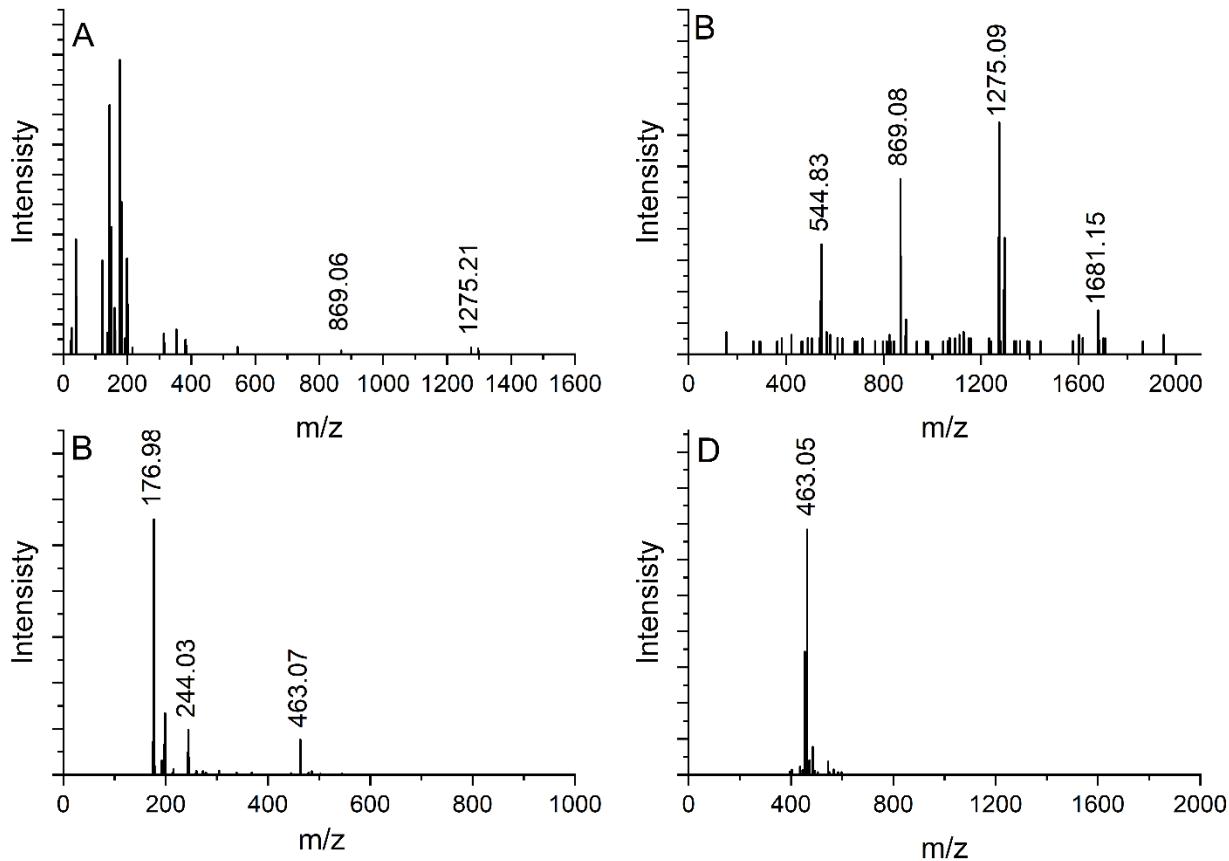
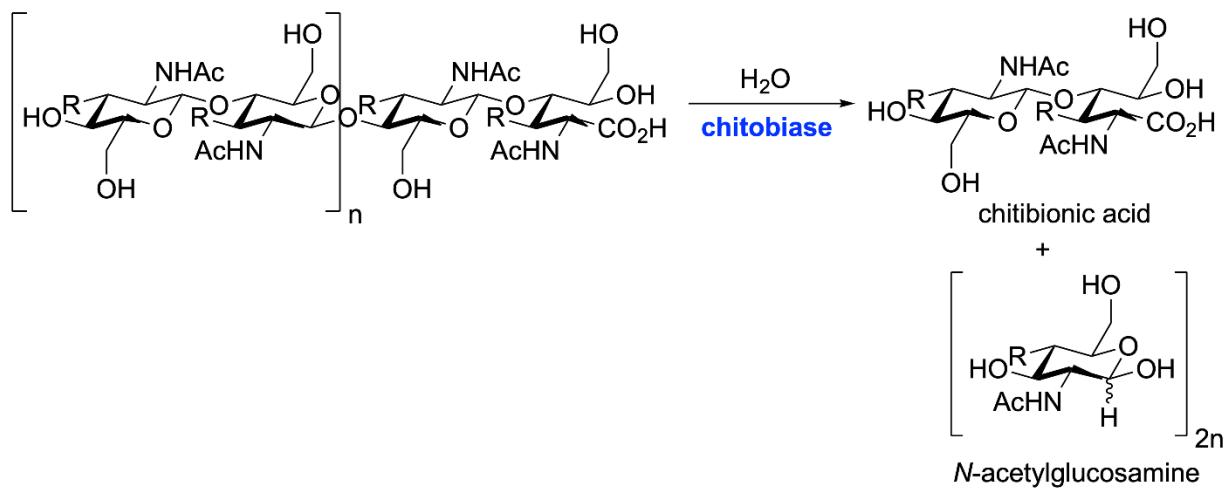


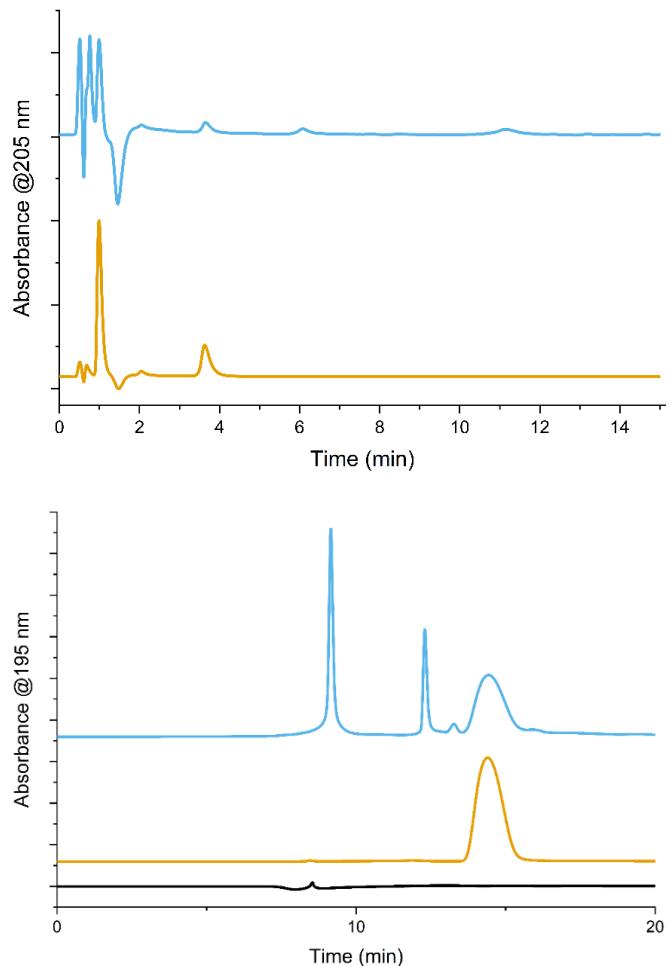
Figure S4. Experimental setup used to evaluate the chemo-enzymatic cascade.

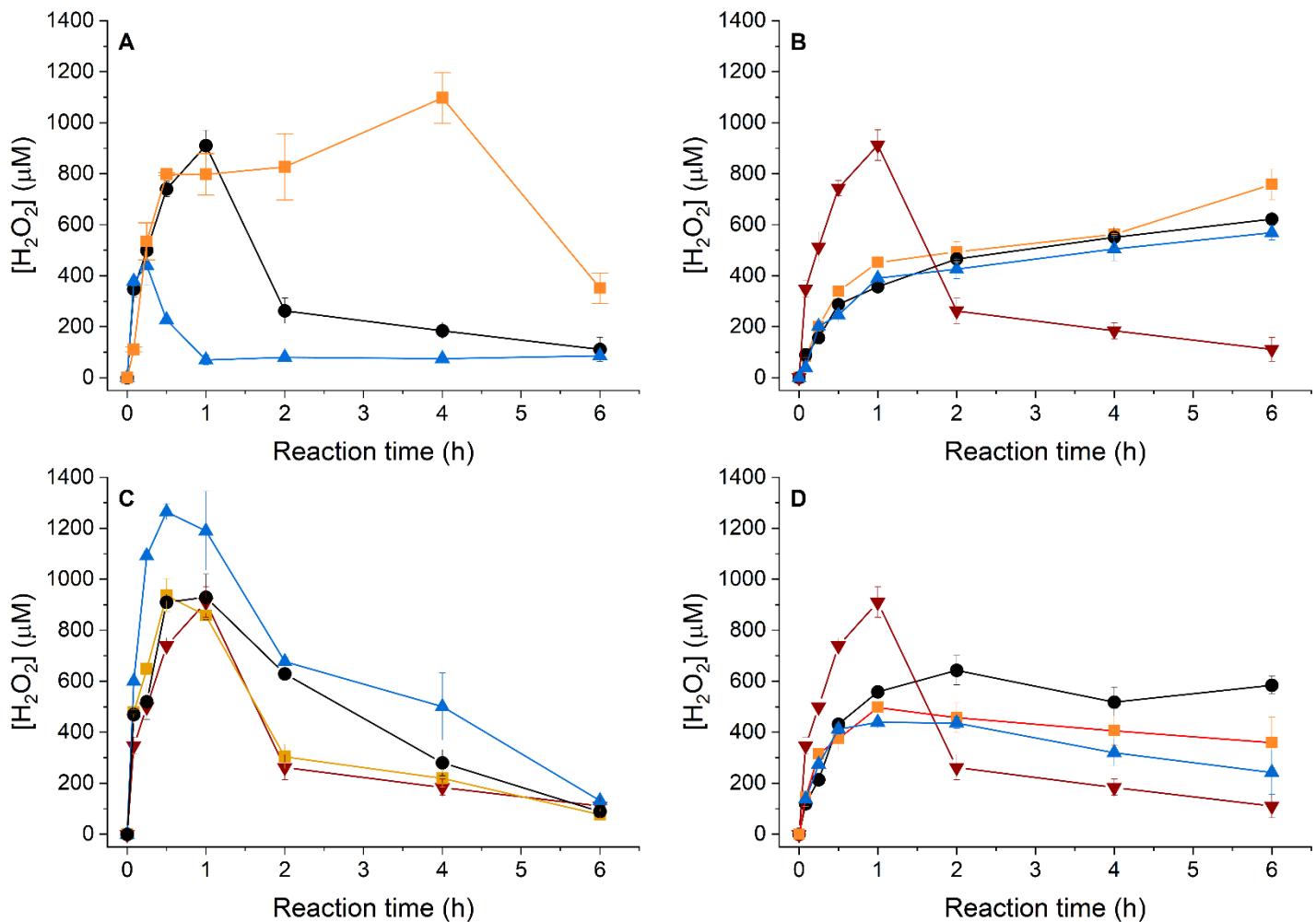

<i>smAA10A</i>	CuSO_4	Ascorbate	β -chitin	Chito-oligomers
+	-	+	+	Yes (DP = 4,6,8)
-	+	+	+	No
+	-	+	-	No
-	-	+	+	No
+	-	-	+	No

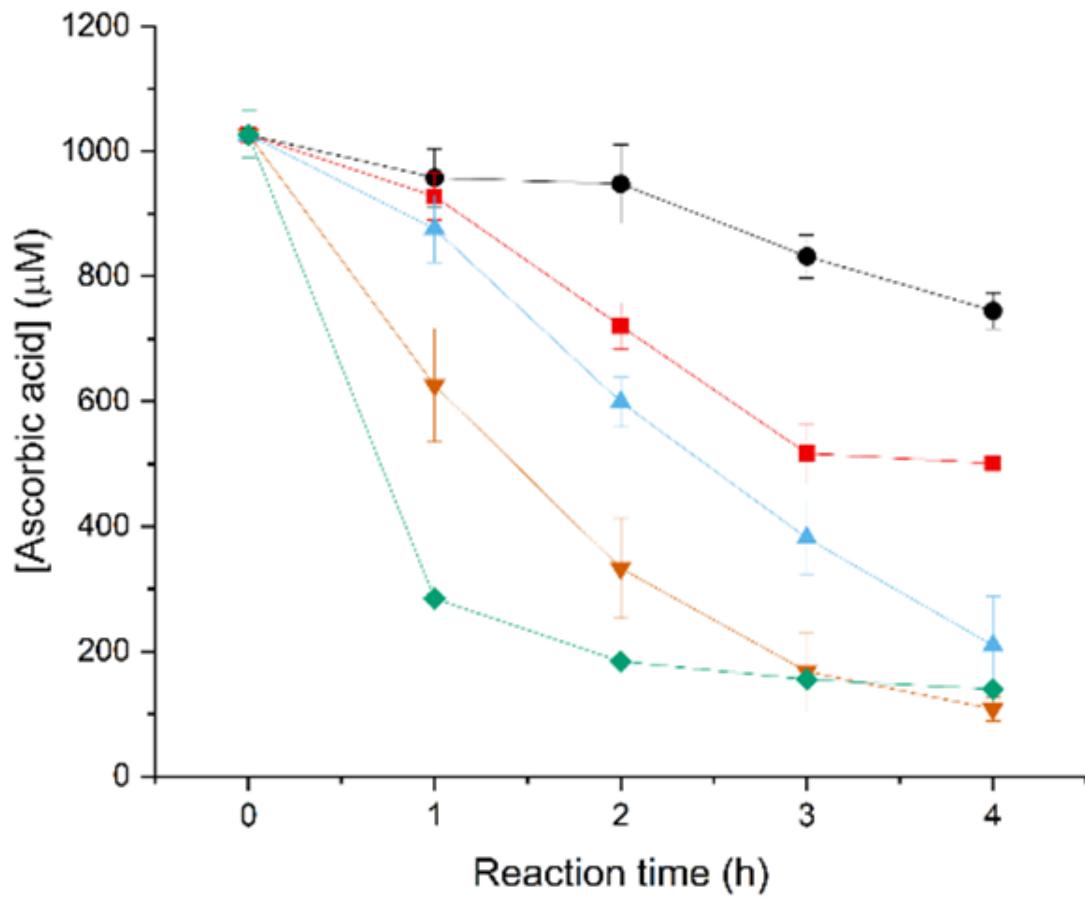

DP = 4

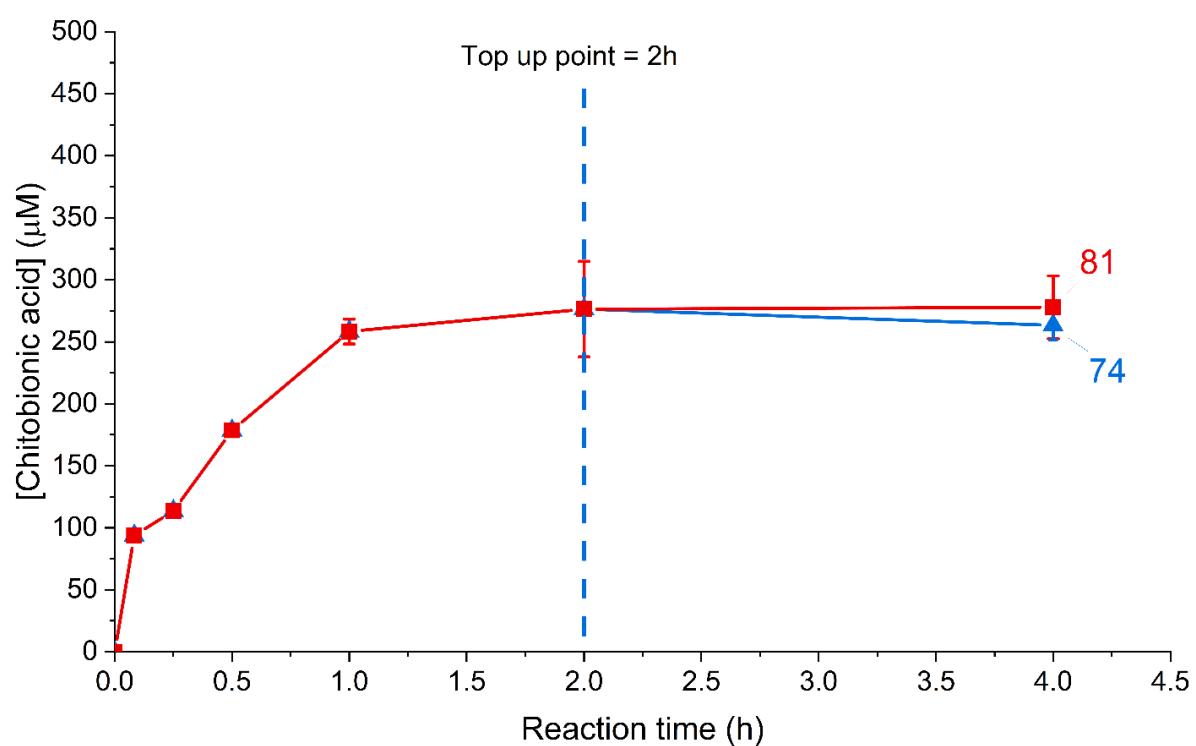
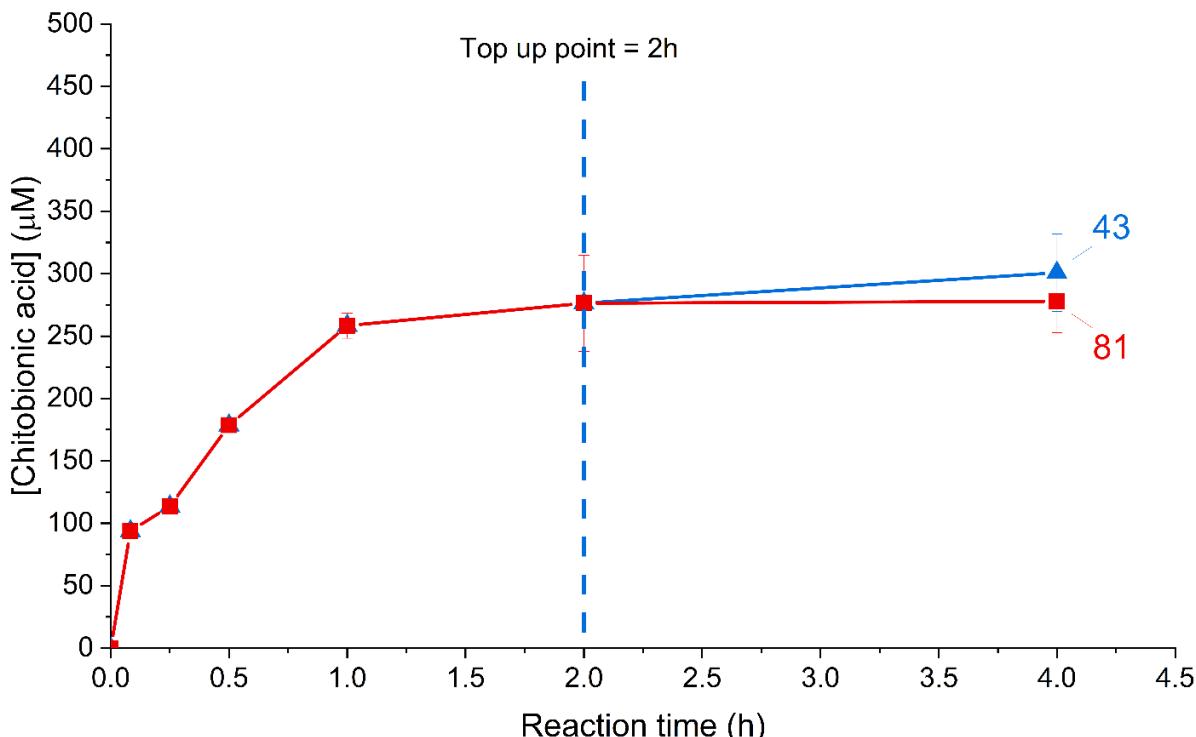

DP = 6

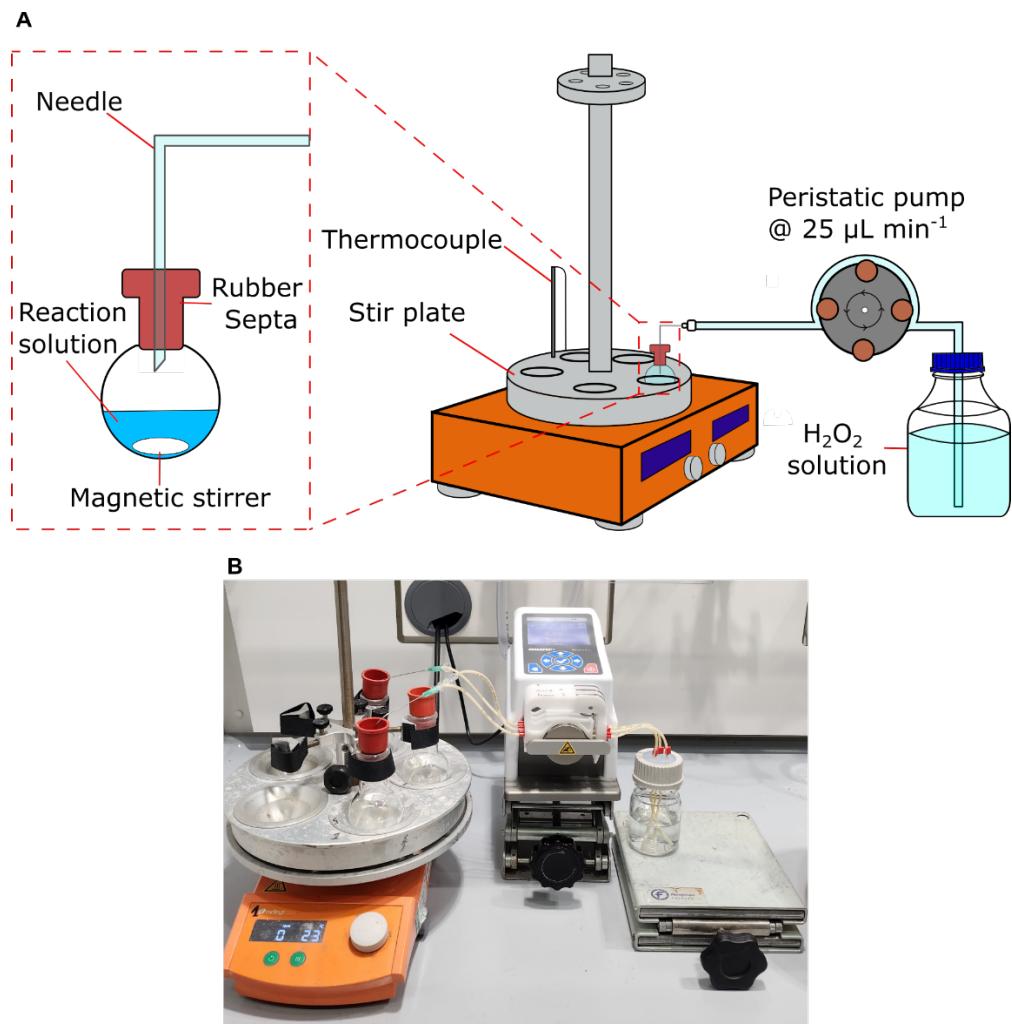

DP = 8

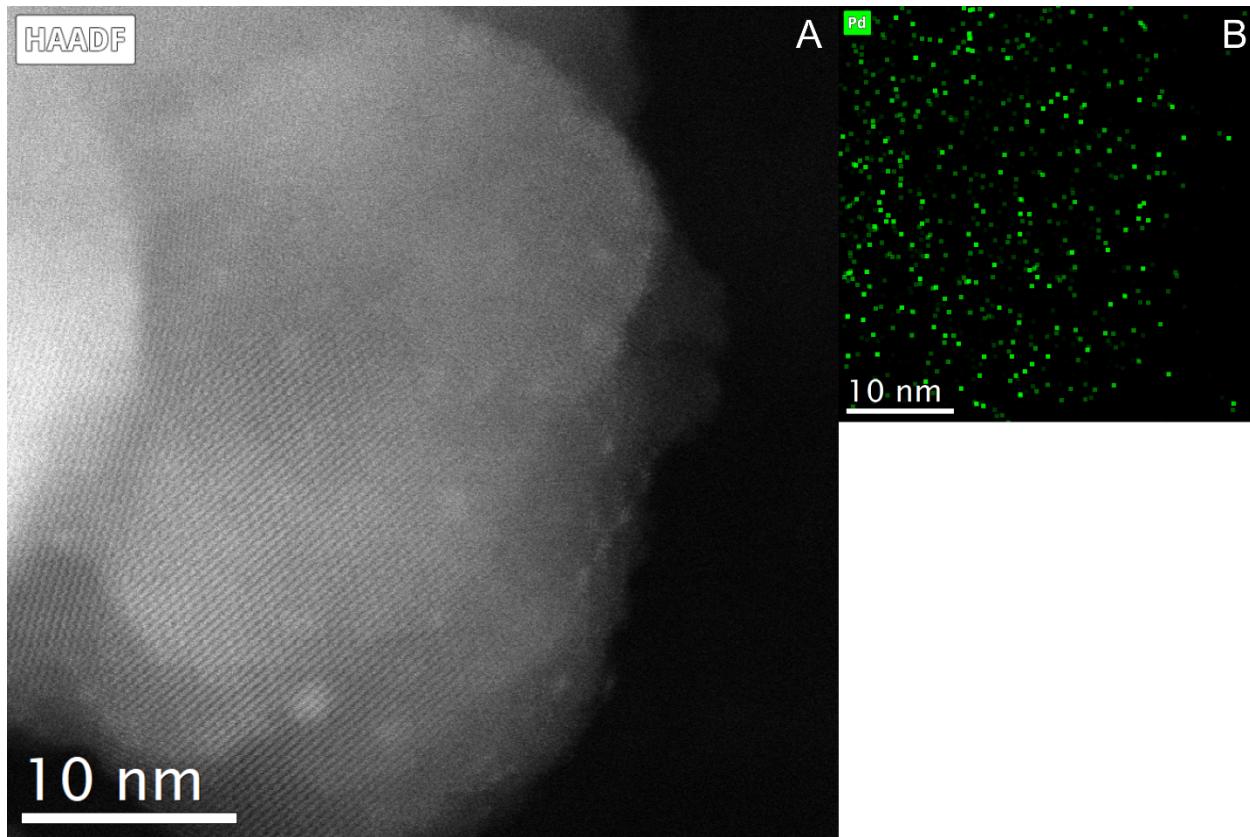

Figure S5. MALDI-TOF mass spectrometric characterization of *smAA10A*-catalyzed β -chitin breakdown under aerobic conditions. (top) Oligomeric products identified in the reaction mixture only when the enzyme is present (table inset). Replacing *smAA10A* with CuSO_4 (10 μM), did not result in β -chitin oxidation. R = OH and DP is the degree of polymerization. Reaction mixtures containing *smAA10A* (0.5 μM), ascorbate (1 mM) and β -chitin (10 mg) in Tris.HCl, (50 mM, pH 8, total volume 1 mL) were shaken in a thermomixer at 40 °C for 16 h; **(bottom)** MALDI-TOF spectrum showing the Na and K adducts of the aldonic acid forms of chito-oligomers with DP = 4, 6 or 8. Ions of m/z less than 400 are suppressed.

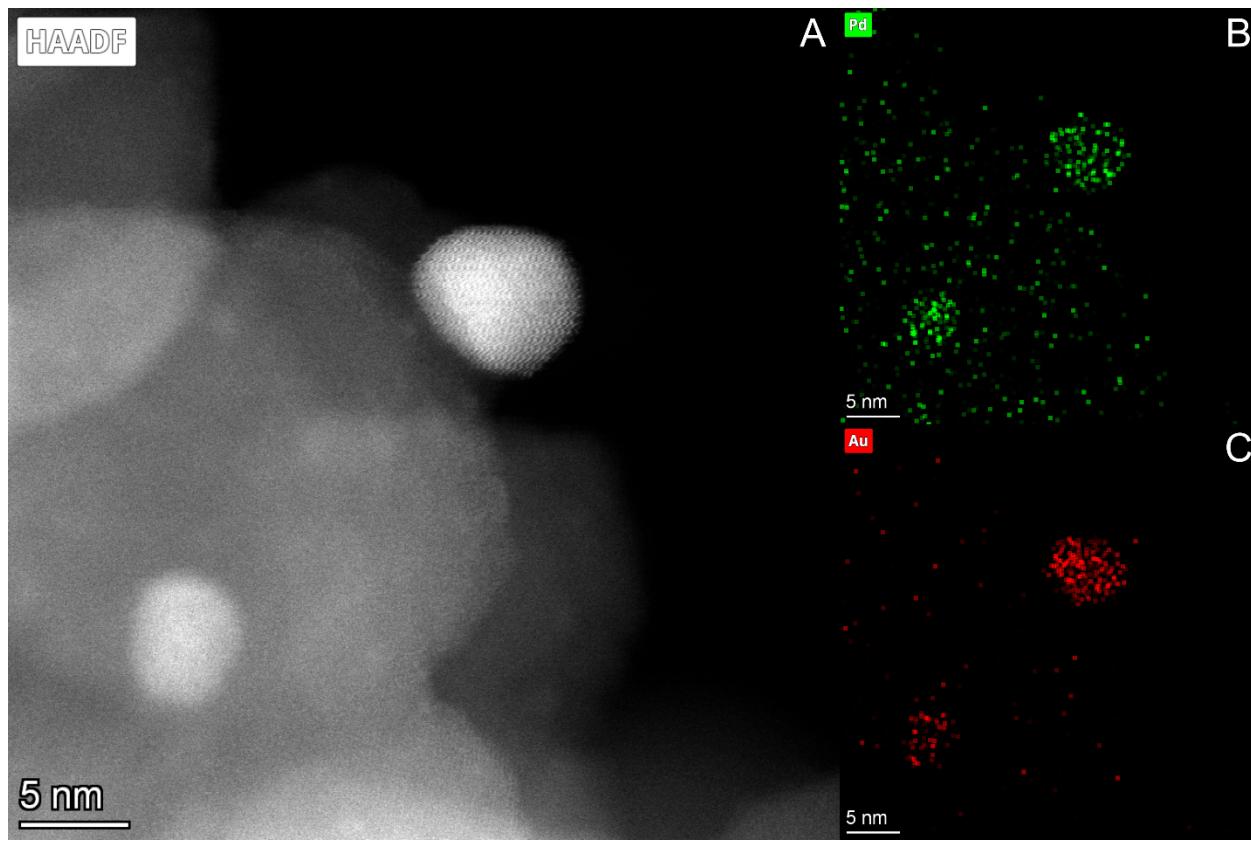

Figure S6. MALDI-TOF mass spectra showing the effect of adding recombinant WT chitobiase to products formed by *smAA10A*-catalyzed β -chitin degradation under aerobic conditions. Reaction mixtures containing *smAA10A* (0.5 μ M), ascorbate (1 mM) and β -chitin (10 mg) in Tris.HCl, (50 mM, pH 8, total volume 1 mL), were stirred (1000 rpm) at 40 $^{\circ}$ C for 16 h. (A) Mass spectrum of initial product mixture without suppression of ions of m/z less than 400; (B) Mass spectrum of initial product mixture with suppression of ions of m/z less than 400; (C) Mass spectrum (without suppression of ions of m/z less than 400) of products formed by incubating the post-reaction solution with 3 μ M chitobiase at 37 $^{\circ}$ C for 2 h. Peaks with m/z = 244 and 463 correspond to the Na^+ adducts of N-acetylglucosamine and chitobionic acid, respectively. (D) Mass spectrum (with suppression of ions of m/z less than 400) of products formed by incubating the post-reaction solution with 3 μ M chitobiase at 37 $^{\circ}$ C for 2 h. Peak with m/z = 463 corresponds to the Na^+ adduct of chitobionic acid.

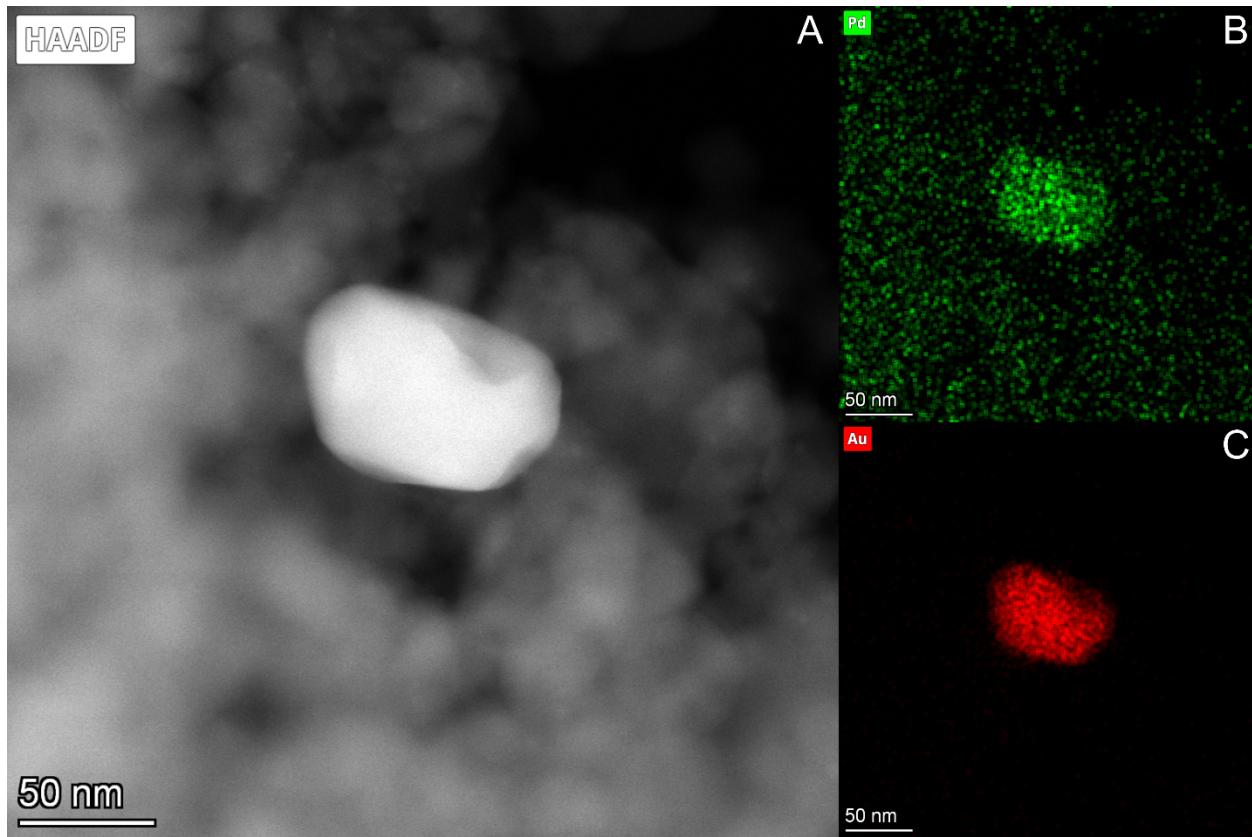

Figure S7. Chitobiase-catalyzed hydrolysis of the chito-oligomers produced by smAA10A-catalyzed β -chitin oxidation. The concentration of chitobionic acid is equivalent to the number of oxidative cleavage sites and can be used to calculate the % saccharification in combination with the final concentration of N -acetylglucosamine.

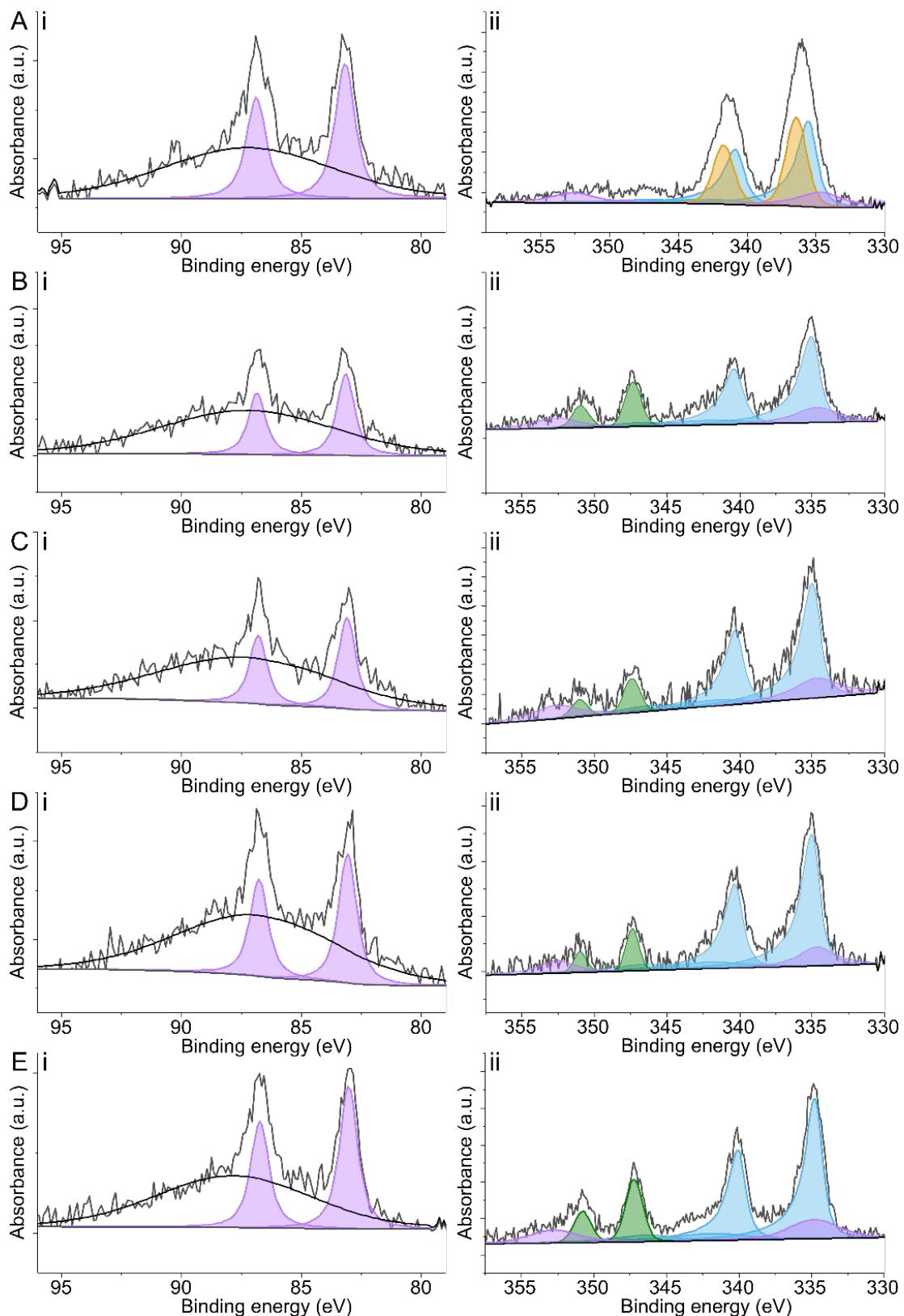


Figure S8. HPLC-based separations of reaction products after treatment with chitobiase. (top) Chromatograms of the reaction mixture with (---) and without (---) chitobiase incubation. The identity of the new peak (retention time of approx. 4 min) as chitobionic acid was established by comparison to an authentic standard. Analytes were eluted isocratically (0.4 mL min^{-1}) at 60°C on an Acquity BEH Amide column ($2.1 \text{ mm} \times 50 \text{ mm}$) with a 78:22 mixture of acetonitrile and 15 mM Tris.HCl buffer, pH 8; (bottom) Chromatograms of the solvent matrix (---), an authentic standard of *N*-acetylglucosamine (---), and the reaction mixture after chitobiase incubation (---). Analytes were eluted isocratically (0.6 mL min^{-1}) at 60°C on a Hi Plex Na^{2+} column ($7.7 \text{ mm} \times 50 \text{ mm}$) with water.

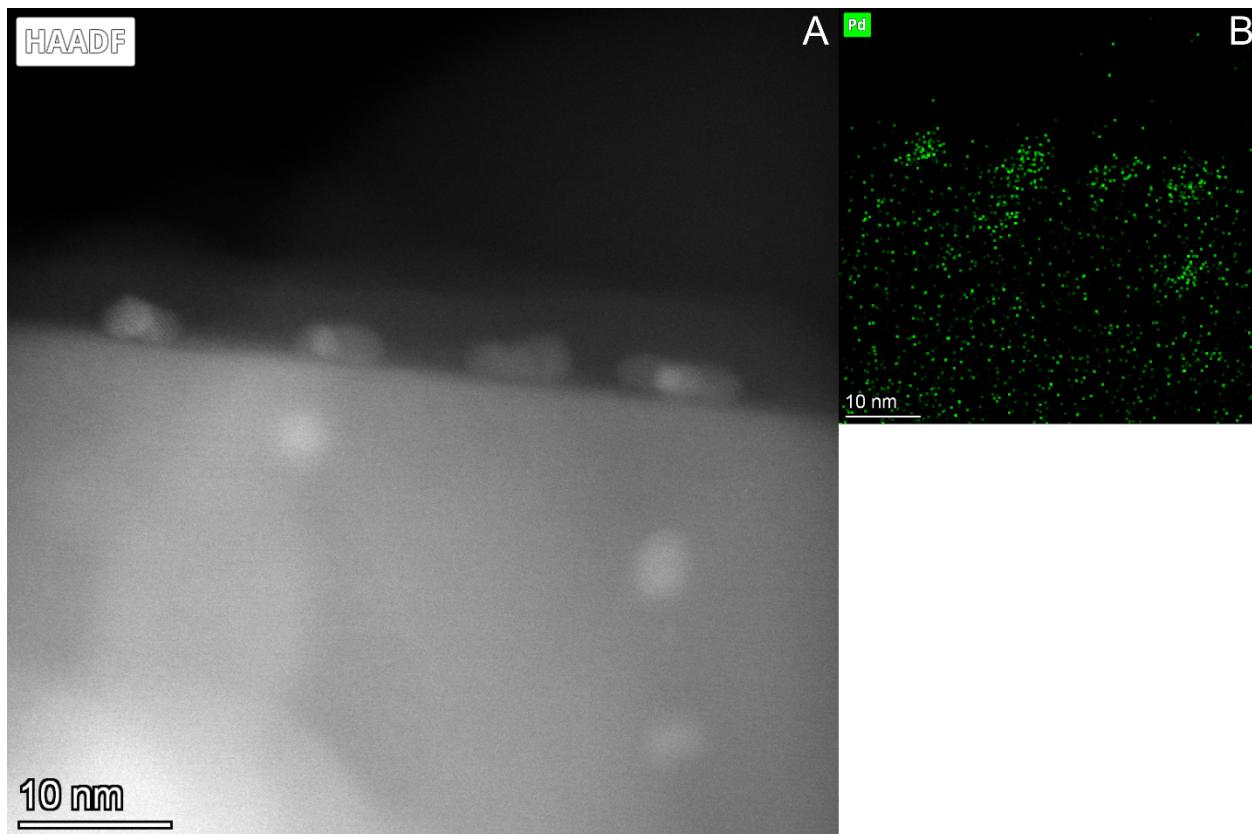

Figure S9. Effects of reactants on *in situ* H_2O_2 production. Unless stated otherwise, all reactions were performed using 0.5%Au-0.5%Pd/TiO₂ catalyst (1 mg) in 50 mM K₂HPO₄/KH₂PO₄ buffer, pH 6 (10 mL) at 21 °C with stirring (250 rpm) under a H₂ (1.6 bar) and air (0.4 bar) gas mixture. Variable amounts of (A) the chemo-catalyst at 0.5 mg (■), 1 mg (●), and 2 mg (▲); (B) β -chitin at 0 mg (▼), 50 mg (■), 100 mg (●), and 200 mg (▲); (C) ascorbate at 0 mM (▼), 0.5 mM (■), 1 mM (●), and 2 mM (▲); (D) smAA10A at 0 mM (▼), 0.25 μM (■), 0.5 μM (●), and 1 μM (▲).


Figure S10. Ascorbic acid breakdown in the presence of 0.5%Au-0.5%Pd/TiO₂. Ascorbate (1 mM) was incubated with (●) 0 mg, (■) 0.5 mg, (▲) 1.0 mg, (▼) 2.0 mg, or (◆) 4.0 mg of the 0.5%Au-0.5%Pd/TiO₂ catalyst in K₂HPO₄/KH₂PO₄ buffer (50 mM, pH 6, 10mL) with stirring (250 rpm) at 21 °C.


Figure S11. Adding ascorbate or smAA10A does not restore β -chitin degradation after cessation of chitobionic acid production in our chemo-enzymatic system. (top) Addition of 1.0 mM (\blacktriangle) and 0.0 mM ascorbate (\blacksquare) at $t = 2$ h; (bottom) Addition of 0.5 μ M (\blacktriangle) and 0.0 μ M (\blacksquare) smAA10A at $t = 2$ h. Numerical values indicate the amount of residual H_2O_2 (μ M) in the reaction mixtures after 4 h. Initial conditions ($t = 0$ h): 0.5%Au-0.5%Pd/TiO₂ (1 mg), β -chitin (50 mg), smAA10A (0.5 μ M), and ascorbate (1 mM) in 50 mM $\text{K}_2\text{HPO}_4/\text{KH}_2\text{PO}_4$ buffer, pH 6 (10 mL). Reaction mixtures were stirred (250 rpm) under a H_2 (1.6 bar) and air (0.4 bar) gas mixture at 21°C.


Figure S12. Experimental setup used to flow-feed H_2O_2 (252 nmol min^{-1}) into smAA10A-containing reaction mixtures.


Figure S13. Catalyst surface structure and morphology of the fresh 0.5%Au-0.5%Pd/TiO₂ catalyst using **(A)** (High-angle annular dark-field scanning transmission electron microscopy, paired with **(B)** X-EDS imaging showing the presence of highly dispersed sub-nano (< 1 nm, Pd-only) particles.


Figure S14. Catalyst surface structure and morphology of the fresh 0.5%Au-0.5%Pd/TiO₂ catalyst using (A) High-angle annular dark-field scanning transmission electron microscopy, paired with (B, C) X-EDS imaging showing the presence of Au-Pd nanoalloys of intermediate size (5-10 nm).

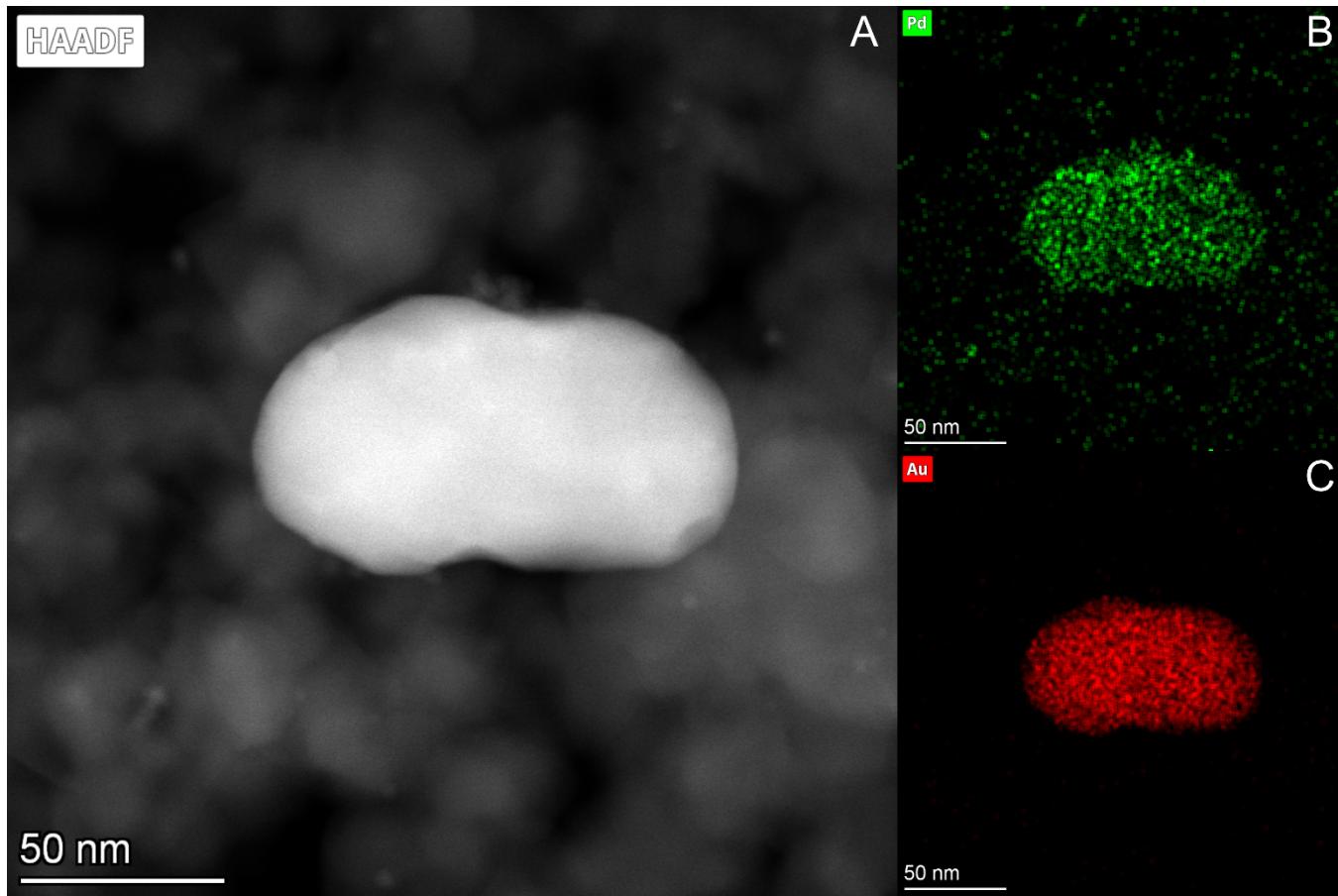

Figure S15. Catalyst surface structure and morphology of the fresh 0.5%Au-0.5%Pd/TiO₂ catalyst using (A) High-angle annular dark-field scanning transmission electron microscopy, paired with (B, C) X-EDS imaging showing the presence of larger (>50 nm) Au-Pd nanoalloys.

Figure S16. Surface atomic compositions of the 0.5%Au-0.5%Pd/TiO₂ catalyst both fresh (**A**) and used after 5 min (**B**), 30 min (**C**), 2 hours (**D**), 96 hours (**E**) as determined by X-ray photoelectron spectroscopy using the Au 4f (i) and Pd 3d/Au 4d (ii) regions. Key: Au⁰, purple; Pd⁰, blue; Pd²⁺, orange; Ca²⁺, green; loss of structure and Pd 4s (black line). a.u means arbitrary units.

Figure S17. Catalyst surface structure and morphology of the 0.5%Au-0.5%Pd/TiO₂ catalyst, used for 2-hour reaction, using (A) (High-angle annular dark-field scanning transmission electron microscopy and paired (B) X-EDS imaging showing small (1-5 nm, Pd only) particles.

Figure S18. Catalyst surface structure and morphology changes of the 0.5%Au-0.5%Pd/TiO₂ catalyst, used for 96-hour reaction, using (A) (High-angle annular dark-field scanning transmission electron microscopy and paired (B,C) X-EDS imaging showing large (>50 nm, alloyed, Au and Pd containing) nanoparticles.

Supplementary Tables

Table S1. Effect of varying the chemo-catalyst/CBP-21 cascade conditions on β -chitin degradation over a 2 h period.^{a,b}

AuPd ^c	TiO ₂ ^c	smAA10A ^d	Ascorbate ^e	β -chitin ^f	H ₂	Air	N ₂	CBA ^g	TON ^h	H ₂ O ₂ ⁱ
								(μ M)		(μ M)
+	-	+	+	+	+	+	-	603	1206	0 ^j
-	-	+	+	+	+	+	-	114 ^j	228	0
-	+	+	+	+	+	+	-	109 ^j	218	0
+	-	+	+	+	-	-	+	98 ^j	196	0
+	-	+	-	+	+	+	-	0	0	300
+	-	-	+	+	+	+	-	0	0	250
+	-	+	+	-	+	+	-	0	0	530

Footnotes: (a) + and – denote the presence or absence of the reaction component, respectively; (b) All experiments were performed with stirring (250 rpm) in 100 mM K₂HPO₄/KH₂PO₄ buffer, pH 6 (10 mL), under a H₂ (1.6 bar) and air (0.4 bar) gas mixture or N₂ (2.0 bar); (c) 1 mg of 0.5%Au-0.5%Pd/TiO₂ or TiO₂ added when present; (d) 0.5 mM when present; (e) 1 mM when present; (f) 10 mg when present; (g) Chitobionic acid (CBA) produced after 2 h as determined by HPLC; (h) TON calculated based on smAA10A; (i) Amount of residual H₂O₂ after completion of the reaction. A zero value indicates that the amount was below the limit of detection (8.8 μ M). (j) These residual activities arise from the aerobic activity of the enzyme using oxygen dissolved in the reaction buffer.

Table S2. Effect of catalyst, gas atmosphere and stirring rate on *smAA10A* activity.^{a,b,c}

0.5%Pd-0.5%Au/TiO ₂ (mg)	TiO ₂ (mg)	H ₂ (bar)	Air (bar)	N ₂ (bar)	Stirring Rate (rpm)	Activity Loss (%)
0	0	0	1	0	0	7.9 ± 0.3
0	0	0	1	0	250	9.9 ± 0.2
0	1	0	1	0	250	11.1 ± 0.1
1	0	0	1	0	250	15.0 ± 1.4
0	0	0	0	2	250	11.2 ± 0.3
0	0	0	2	0	250	11.2 ± 0.2
0	0	2	0	0	250	11.1 ± 0.3
0	0	1.6	0.4	0	250	11.7 ± 0.2
1	0	0	0	2	250	14.0 ± 0.05

Footnotes: (a) + and – denote the presence or absence of the reaction component, respectively; (b) All reaction mixtures contained *smAA10A* (0.5 µM), dissolved in 50 mM K₂HPO₄/KH₂PO₄, pH 6 (10 mL). After incubation at 21 °C for 2 h, an aliquot (880 µL) of the resulting solution was mixed with 10 mM 2,6-DMP (100 µL) in a cuvette. After heating at 30°C for 10 min, 5 mM H₂O₂ (20 µL) was added and activity assayed by monitoring the adsorption at 469 nm over a period of 5 min; (c) Exposure to β-chitin gives no activity in the 2,6-DMP assay because *smAA10A* binds tightly to β-chitin and the enzyme is therefore removed in the filtration step. In addition, this assay requires the use of well-defined amounts of H₂O₂, and so we were unable to use an H₂/air mixture in the presence of the 0.5%Au-0.5%Pd/TiO₂ chemo-catalyst.

Table S3. Deactivation of *smAA10A* when exposed to the 0.5%Au-0.5%Pd/TiO₂ chemo-catalyst.^a

0.5%Pd-0.5%Au/TiO ₂ (mg mL ⁻¹)	Exposure Time (min)	Activity Loss (%)
0.05	120	10 ± 1.4
0.1	5	11.6 ± 0.1
0.1	15	14 ± 1
0.1	30	13.5 ± 0.2
0.1	45	15 ± 2.1
0.1	60	16 ± 1
0.1	120	15 ± 1.4
0.1	240	15.8 ± 0.8
0.2	120	19 ± 1.2
0.3	120	25.2 ± 0.8

Footnote: (a) The 0.5%Au-0.5%Pd/TiO₂ catalyst was added to a solution of *smAA10A* (0.5 μM), in 50 mM K₂HPO₄/KH₂PO₄, pH 6 (10 mL). After incubation at 21 °C for a given time, the catalyst was removed by filtration. An aliquot (880 μL) of the filtrate was mixed with 10 mM 2,6-DMP (100 μL) in a cuvette. After heating at 30°C for 10 min, 5 mM H₂O₂ (20 μL) was added and activity assayed by monitoring the adsorption at 469 nm over a period of 5 min.

Table S4. Effect of varying the gas mixture on β -chitin degradation by the chemo-catalyst/CBP-21 cascade over a 2 h period with stirring (250 rpm).^{a,b}

AuPd	smAA10A ^c	Ascorbate ^d	β -chitin	H ₂	Air	N ₂	TON ^e	H ₂ O ₂ / μ M
+	-	-	+	-	+	+	0	0 ^f
+	-	-	+	+	-	+	0	170
+	-	-	+	-	+	-	0	600
+	+	+	+	-	+	+	204 ^g	0
+	+	+	+	+	-	+	168 ^g	0

Footnotes: (a) + and – denote the presence or absence of the reaction component, respectively; (b) All experiments were performed with β -chitin (100 mg) and 0.5%Au-0.5%Pd/TiO₂ (1 mg) in 100 mM K₂HPO₄/KH₂PO₄ buffer, pH 6 (10 mL) and charged with gas (H₂(1.6 bar)/air (0.4 bar), H₂(1.6 bar)/N₂(0.4 bar), or air(0.4 bar)/N₂(1.6 bar)); (c) 0.5 mM when present; (d) 1 mM when present; (e) TON calculated based on chitobionic acid (CBA) produced after 2 h, as determined by HPLC, and the smAA10A concentration; (f) Amount of residual H₂O₂ after completion of the reaction. A zero value indicates that the amount was below the limit of detection (8.8 mM). (g) These residual activities arise from the aerobic activity of the enzyme using oxygen dissolved in the reaction buffer.

Table S5. Time-dependence of metal leaching in the absence of β -chitin, as determined by ICP-MS analysis of the post-reaction solution.^a

Reaction time (h)	Pd loss (%)	Au loss (%)
0.083	0.02	0.00
0.5	0.02	0.00
2	0.03	0.01
96	0.02	0.01

Footnote: (a) Experiments used 0.5%Au-0.5%Pd/TiO₂ (10 mg), smAA10A (0.5 μ M), Ascorbic acid (1 mM) dissolved in 50 mM K₂HPO₄/KH₂PO₄ buffer, pH 6 (10 mL) under a H₂(1.6 bar) and air (0.4 bar) gas mixture. with stirring (250 rpm) at 21 °C,

Table S6. Impact of adding metal precursors on smAA10A-catalyzed β -chitin saccharification.^{a,b}

Metal Salt	CBA (μ M)	Residual H_2O_2 (μ M)
None	109 \pm 5	0 ^e
^c $\text{PdCl}_2/\text{HAuCl}_4$	102 \pm 6	0 ^e
^d NaCl	120 \pm 15	0 ^e

Footnotes: (a) All experiments used β -chitin (100 mg), smAA10A (0.5 μ M) and ascorbate (1 mM) dissolved in 50 mM $\text{K}_2\text{HPO}_4/\text{KH}_2\text{PO}_4$, pH 6 (10 mL total volume) under a H_2 (1.6 bar) and air (0.4 bar) gas mixture. (b) Reaction mixtures were stirred (250 rpm) at 21 °C for 2 h, and the concentrations of CBA and residual H_2O_2 determined as described elsewhere. Metal salts were added at the following concentrations: (c) 0.83 μ M PdCl_2 and 0.17 μ M HAuCl_4 ; (d) 2.33 μ M NaCl . (e) Zero value indicates that the amount was below the limit of detection (8.8 μ M). **Note:** concentrations of PdCl_2 and HAuCl_4 based on model leaching experiments conducted over 2 h, as outlined in **table S.5**. NaCl concentration utilised is equivalent to Cl present from metal precursors used in (c).

Table S7. Effect of reusing 0.5%Au-0.5%Pd/TiO₂ on smAA10A-catalyzed β -chitin saccharification.^a

Number of Uses	CBA (μ M)	TON
1	600 \pm 27	1206
2	505 \pm 6	1008
3	460 \pm 36	912

Footnotes: (a) Reaction mixtures contained 0.5%Au-0.5%Pd/TiO₂ (1 mg) mixed with β -chitin (100 mg) and 0.5 μ M smAA10A and 1 mM ascorbate dissolved in 50 mM $\text{K}_2\text{HPO}_4/\text{KH}_2\text{PO}_4$ buffer, pH 6 (10 mL total volume). After stirring (250 rpm) under an atmosphere of H_2 (1.6 bar) and compressed air (0.4 bar) at 21 °C for 2 h, the reaction was depressurized and filtered. CBA concentrations in the filtrate were determined as outlined above. The solid was then washed and dried before being re-used twice (Materials and Methods).

Table S8. Comparison of the chemoenzymatic depolymerization of chitin with enzymatic approaches reported in the literature.

H ₂ O ₂ Delivery Method	LPMO	Substrate	Conditions	Reaction time / h	TON	Saccharification / %	Reference
0.5%Au-0.5%Pd/TiO ₂	smAA10A	β-chitin	LPMO (0.5 μM), substrate (10 mg mL ⁻¹), Ascorbic acid (1 mM), potassium phosphate buffer (50 mM, pH 6, 10 mL), compressed air (0.4 bar), H ₂ (1.6 bar), 21°C, stirring (250 rpm).	96	6372	36.0	This work
AgChOx/ChCl	smAA10A	β-chitin	LPMO (1 μM), substrate (10 mg mL ⁻¹), Ascorbic acid (0.1 mM), ChCl (2.5 mM), AgChOx (100 nM), sodium phosphate buffer (50 mM, pH 7, 2 mL), 37 °C, shaking (850 rpm).	25	950	N.D	7
AgChOx/ChCl	smAA10A	α-chitin	LPMO (1 μM), substrate (10 mg mL ⁻¹), Ascorbic acid (0.1 mM), ChCl (1 mM), AgChOx (100 nM), sodium phosphate buffer (50 mM, pH 7, 2 mL), 37 °C, shaking (850 rpm).	6	150	N.D	7
two-electron reduction of O ₂	smAA10A	β-chitin	LPMO (1 μM), substrate (10 mg mL ⁻¹), Ascorbic acid (1 mM), sodium phosphate buffer (50 mM, pH 7, 2 mL), 37 °C, shaking (850 rpm).	24	910	N.D	8
two-electron reduction of O ₂	smAA10A	β-chitin	LPMO (1 μM), substrate (10 mg mL ⁻¹), Gallic acid (1 mM), Catalase (100 ug mL ⁻¹), Tris-HCl (50 mM, pH 8, 2 mL), 37 °C, shaking (850 rpm).	24	1050	N.D	8
two-electron reduction of O ₂	smChiA (40 %) smChiB (30 %) smChiC (15 %) smAA10A (3 %) smCHB (12 %)	Alkaline and acid pre-treated shrimp shell	LPMO cocktail (15 mg _{cocktail} g ⁻¹ _{substrate}), substrate (15 mg mL ⁻¹), Bistris (10 mM, pH 6.2, 2 mL), 45 °C, shaking (800 rpm).	50	N.D	74.8	9

Table S9. Comparison of the chemoenzymatic depolymerization of chitin with chemical approaches reported in the literature.

Strategy	LMPO	Substrate	Conditions	Reaction time / h	TON	Saccharification / %	Reference
0.5%Au-0.5%Pd/TiO ₂	smAA10A	β-chitin	LPMO (0.5 μM), substrate (10 mg mL ⁻¹), Ascorbic acid (1 mM), potassium phosphate buffer (50 mM, pH 6, 10 mL), compressed air (0.4 bar), H ₂ (1.6 bar), 21°C, stirring (250 rpm).	96	6372	36.0	This work
Acid hydrolysis (Microwave assisted)	N.A	chitin	HCl (8 mol/L); chitin: HCl at 1: 12 (w/v), 400 watts	0.42	N.A	67.1	10
Low- acid hydrolysis (Microwave assisted)	N.A	α-chitin	HCl (0.12 mol/L), 160 °C for 25 min, then 150 °C for 20 min	0.75	N.A	27.0	11
Acid Hydrolysis (Co-solvent Promoted)	N.A	ball-mill treated chitin	4/1 (v/v) mixture of diethylene glycol diethyl ether and water, H ₂ SO ₄ (100 mM), 175 °C	1	N.A	80.0	12
Acid hydrolysis (sonication-assisted)	N.A	chitin	Phosphoric acid (85 wt%) and 40 kHz, 130 W ultrasonic; 50 °C	2	N.A	28.9	13
Acid hydrolysis (using acidified molten salts)	N.A	chitin	60% LiBr AMSH (containing 40 mmol/L HCl), 120 °C	0.5	N.A	71.5	14

Acid hydrolysis (using acidified molten salts)	N.A	chitin	chitin (100 mg), NS-0.1 (80 mg), and LiBr MSH (4 mL) at 130 °C for 120 min.	2	N.A	63.0	15
Acid hydrolysis	N.A	α -chitin + β - chitin	Conc Hydrochloric acid at 40 °C	1	N.A	17.0	16

N.A: Not applicable. N.D: Not determined

Supplementary References

1. R. L. Brown, K. Y. Lo, J. Van Gorkom and M. J. Claussen, *Science* 1986, **233**, 1403.
2. E. Breslmeyer, M. Hanžek, A. Hanrahan, C. Leitner, R. Kittl, B. Šantek, C. Oostenbrink and R. Ludwig, *Biotechnol. Biofuels* 2018, **11**, 79.
3. J. S. M. Loose, Z. Forsberg, M. W. Fraaije, V. G. H. Eijsink and G. Vaaje-Kolstad, *FEBS Lett.* 2014, **588**, 3435.
4. N. Fairley, V. Fernandez, M. Richard-Plouet, C. Guillot-Deudon, J. Walton, E. Smith, D. Flahaut, M. Greiner, M. Biesinger, S. Tougaard, D. Morgan and J. Baltrusaitis, *Appl. Surf. Sci. Adv.* 2021, **5**, 100112.
5. J. Brehm, R. J. Lewis, T. Richards, T. Qin, D. J. Morgan, T. E. Davies, L. Chen, X. Liu and G. J. Hutchings, *ACS Catal.* 2022, **12**, 11776.
6. J. H. Scofield, *J. Electron Spectrosc. Relat. Phenom.* 1976, **8**, 129.
7. N. Hoang, O. Golten, Z. Forsberg, V. G. H. Eijsink and M. Richter, *ChemBioChem* 2023, **24**, e202300363.
8. O. Golten, I. Ayuso-Fernández, K. R. Hall, A. A. Stepnov, M. Sørlie, Å. K. Røhr and V. G. H. Eijsink, *FEBS Lett.* 2023, **597**, 1363.
9. S. Mekasha, I. R. Byman, C. Lynch, H. Toupalová, L. Anděra, T. Næs, G. Vaaje-Kolstad and V.G.H. Eijsink, *Proc. Biochem.* 2017, **56**, 132,
10. N. Rokhati, T. D. Kusworo, H. Susanto, I. N. Widiasa, N. Aryanti, A. Adhiartha; Y. Fahni and N. A. Hamada, *AIP Conf. Proc.* 2020, **2197**, 070001.
11. Y. Li, M. Dan, J. Shen, G. Zhao, Y. Wang and D. Wang, *LWT* 2023, **186**, 115230.
12. J. Zhang and N. Yan, *ChemCatChem.* 2017, **9**, 2790.
13. X. Zhang, Y. Mao and R. M. Briber, *Carbohydr. Polym.* 2022, **276**, 118736.
14. G. Gözaydın, S. Song, and N. Yan, *Green Chem.* 2020, **22**, 5096.
15. G. Gözaydın, Q. Sun, M. Oh, S. Lee, M. Choi, Y. Liu and N. Yan, *ACS Sustainable Chem. Eng.* 2023, **11**, 2511.
16. N. Kazami, M. Sakaguchi, D. Mizutani, T. Masuda, S. Wakita, F. Oyama, M. Kawakita and Y. Sugahara, *Carbohydr. Polym.* 2015, **132**, 304.