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Figure S1. MADE error plot for ion sites determined using ERIN+SIIE. The active and 
inactive ionic positions have been optimized with MACE. Stars indicate the most stable 
(lowest energy) ion arrangements in each organic structure, and crosses indicate the 
thermodynamically unfavorable (high energy) structures. 
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Table S1. MADE in Å of the ELIISE and SIIE workflow, with ion positions optimized 
using MACE and DFT for various systems considered. Li2NDC and Li4NDC (di and 
tetra lithium 2,6-naphthalene dicarboxylate),1,2 Li2BDC and Li4BDC (di and tetra lithium 
1,4-benzene dicarboxylate),1,3 Li2-BPDC (dilithium biphenyl dicarboxylate),4 Li2Mg-p-
DHT (magnesium(2,5-dilithium-oxy)-terephthalate),5 Na2BQ (disodium 
hydroquinone),6 Na2C6O6 (disodium rhodizonate),7 and Na4C6O6 (tetra sodium 
rhodizonate),8 LiH14C8N3O7 (bis(diacetamide)(nitrato)lithium(I)),9 LiH13C8N2O,10 
Li2H2C3N4O2,11 LiH4C5N3O5 (Poly[(𝜇!-nitrato-𝜅!O:O’)(𝜇!-pyrimidin-ium-2-carboxylato-
𝜅! O:O’) lithium(I)]),12 LiH3CN2O (Lithium carbamide),13 Li2H6C10N6O (Lithium 
tricyanomethanide hemiacetonate),14 Li2H8C2N10O4 (dilithium bis(1-amino-tetrazol-5-
one) dihydrate).15 
Material Database code MADE–MACE MADE–DFT 
Li2NDC CCDC 722281 0.016 0.017 
Li4NDC CCDC 2450777 0.037 0.026 
Li2BDC CCDC 145822 0.005 0.004 
Li4BDC CCDC 2450774 0.127 0.048 
Li2-BPDC CCDC 757041 0.011 0.012 
Li2Mg-p-DHT CCDC 2247807 0.001 0.047 
Na2-BQ CCDC 192926 0.039 0.024 
Na2C6O6 CCDC 287536 0.028 0.026 
Na4C6O6 – 0.028 0.024 
LiH14C8N3O7 CCDC 1142135 0.008 0.010 
LiH13C8N2O CCDC 200642 0.047 0.042 
Li2H2C3N4O2 CCDC 2060917 0.040 0.027 
LiH4C5N3O5 CCDC 828497 0.076 0.071 
LiH3CN2O ICSD 427375 0.023 0.025 
Li2H6C10N6O ICSD 428781 0.079 0.026 
Li2H8C2N10O4 ICSD 760113 0.059 0.030 
Average MADE  0.039 0.029 
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Table S2. Structure of the organic framework of Na4C6O6 (C2/m), along with probable 
Na positions predicted by ELIISE. 

Lattice Parameters 
a 12.88 Å 
b 8.17 Å 
c 7.68 Å 
𝜷 120.83° 

Space Group C2/m 
Atomic coordinates 

Species Site label Wyckoff label Fractional coordinates 
C C1 4i 0.0336  0.0000  0.2807 
C C2 4i 0.1773  0.0000  0.1334 
C C3 8j 0.0214  0.1553  0.8224 
C C4 8j 0.1235  0.1566  0.0326 
O O1 4i 0.1207  0.0000  0.4682 
O O2 4i 0.2191  0.5000  0.6950 
O O3 8j 0.0126  0.2925  0.2809 
O O4 8j 0.1739  0.2941  0.1195 
Na Na1 2a 0.0000  0.0000  0.0000 
Na Na2 2b 0.0000  0.5000  0.0000 
Na Na3 2d 0.0000  0.5000  0.5000 
Na Na4 4f 0.2500  0.2500  0.5000 
Na Na5 4h 0.0000  0.1667  0.5000 
Na Na6 4i 0.1208  0.5000  0.8833 
Na Na7 4i 0.1583  0.5000  0.3375 
Na Na8 4i 0.2000  0.0000  0.7958 
Na Na9 8j 0.1292  0.2458  0.6208 
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Table S3. Structure of the organic lattice of Na2BQ (P42/ncm), along with candidate 
Na positions predicted by ELIISE. 

Lattice Parameters 
a 10.5114 Å 
b 10.5114 Å 
c 5.6593 Å 

Space Group P42/ncm 
Atomic coordinates 

Species Site label Wyckoff label Fractional coordinates 
H H1 16j 0.0536  0.1672  0.0986 
C C1 8i 0.1798  0.3202  0.0887 
C C2 16j 0.1344  0.2025  0.1651 
O O1 8i 0.1114  0.3886  0.9307 
Na Na1 4a 0.0000  0.0000  0.2500 
Na Na2 4e 0.0000  0.5000  0.1905 
Na Na3 8h 0.1187  0.1187  0.7500 
Na Na4 8i 0.1094  0.3906  0.5298 
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Table S4. Structure of the Li4NDC determined from single crystal X-ray diffraction from 
Ref 1 and predicted from Li2NDC using the ERIN+SIIE method. The lattice parameters 
and fractional coordinates are in close agreement between the experimental data and 
the predicted structure. 

 Experimental Predicted 
Lattice Parameters 

a 9.7425 Å 9.6243 
b 5.9515 Å 6.0565 
c 8.3569 Å 8.3492 
𝜷 105.758° 107.268° 

Space Group P21/c P21/c 
Atomic coordinates 

Species Wyckoff label Fractional coordinates 
H 4e 0.0130  0.1000  0.3480 0.0114  0.0884  0.3515 
H 4e 0.1960  0.6730  0.0480 0.1924  0.6541  0.0362 
H 4e 0.2240  0.2150  0.2990 0.2304  0.2213  0.2910 
Li 4e 0.3845  0.0886  0.5422 0.3838  0.0800  0.5418 
Li 4e 0.4309  0.6831  0.6684 0.4295  0.6810  0.6667 
C 4e 0.0308  0.6077  0.5302 0.0293  0.6089  0.5272 
C 4e 0.0513  0.2482  0.3895 0.0536  0.2522  0.3937 
C 4e 0.1602  0.6724  0.5093 0.1577  0.6766  0.5015 
C 4e 0.1764  0.1820  0.8637 0.1779  0.1749  0.8639 
C 4e 0.2383  0.5349  0.4204 0.2370  0.5416  0.4159 
C 4e 0.3569  0.6174  0.3754 0.3572  0.6222  0.3718 
O 4e 0.4135  0.5129  0.2685 0.4153  0.5186  0.2668 
O 4e 0.4186  0.6895  0.9353 0.4193  0.6854  0.9326 
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