

Supporting Information

Axially Chiral Thiophene Scaffolds: Configurational Stability and Circularly Polarized Luminescence

Xinyang Li, Shuai Qiu, Wan Xu, Jia Tang, Zhiying Ma and Hua Wang**

Table of Contents

1. Experimental section.....	S2
General procedures and materials.	S2
Synthesis of BDTT-Me	S3
Synthesis of BDTT-Ph	S4
Synthesis of BDTT-1Np	S4
Synthesis of BDTT-2Np	S5
Synthesis of BDTT-2An	S6
Synthesis of BDTT-9An	S6
Synthesis of BDTT-1Py	S7
2. NMR and HRMS spectra	S8
NMR and HRMS spectra of BDTT-Me	S8
NMR and HRMS spectra of BDTT-Ph	S9
NMR and HRMS spectra of BDTT-1Np	S11
NMR and HRMS spectra of BDTT-2Np	S12
NMR and HRMS spectra of BDTT-2An	S14
NMR and HRMS spectra of BDTT-9An	S15
NMR and HRMS spectra of BDTT-1Py	S17
3. Resolution, optical rotations, and racemization of BDTT-Ars	S18
4. Optical and electrochemical data of BDTT-Ars	S33

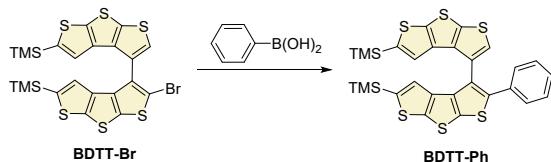
UV-Vis and emission spectra of BDTT , BDTT-Br and BDTT-Me	S33
Optical and electrochemical data of BDTT-Ars	S33
Cyclic voltammetries of BDTT-Ars	S34
5. References.....	S35

1. Experimental details


General Procedures and Materials

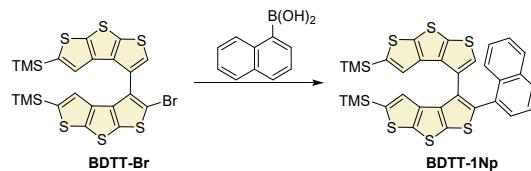
Ether and tetrahydrofuran (THF) for use on vacuum line were freshly distilled from sodium/benzophenone prior to use. The concentration of *n*-BuLi (in hexane) were determined by titration with *N*-pivaloyl-*o*-toluidine.^{S1} Column chromatography was carried out on silica gel (300-400 mesh). Analytical thin-layer chromatography was performed on glass plates of silica gel GF-254 with detection by UV. Standard techniques for synthesis under inert atmosphere, using gasbag and Schlenk glassware equipped with an 8 mm PTFE vacuum stopcock, were employed. All starting materials and reagents were commercially available.

¹H NMR and ¹³C NMR spectra were recorded on 400 or 500 MHz NMR instruments using CDCl₃ (7.26 and 77.00 ppm) as solvent. IR spectra were obtained using an FT-IR instrument. HRMS analysis was carried out on mass spectrometers equipped with MALDI and DART Positive Ion Mode. Melting point determination was taken on a Melt-Temp apparatus and was uncorrected. UV-vis spectra were obtained with a double-beam spectrophotometer at room temperature. The phosphorescence spectra as well as lifetime measurements were recorded on a spectrofluorometer (Edinburgh FLS980). CD spectra were recorded on Aviv Biomedical Inc Model 420SF. Circularly polarized luminescence (CPL) properties were measured with a CPL-300 spectrophotometer (JASCO). Cyclic voltammetry (CV) measurements were performed on a CHI600E electrochemical workstation (Shanghai Chenhua Instrument Co., China). All experiments were carried out with a three electrode system in a electrolytic tank under Ar at room temperature (25±1°C). Platinum electrode (a glassy carbon coated electrode with the size of 6 mm² × 8 cm), Pt wire (1 mm² × 7 cm) and Ag/AgCl electrode (by immersion into HCl/HNO₃ (3/1)) were used as the working electrode, counter electrode and reference electrode, respectively. Polishing material: Shanghai Yue ci α-alumina polishing powder (1 μm), Shanghai Chenhua polished flannel. Prior to measurements, the solvents were dried as described above and additionally degassed by five freeze-pump-thaw cycles. [nBu₄N][PF₆] was employed as the supporting electrolyte (0.1 M). All potential values were


referenced against the FcH/FcH^+ oxidation couple (FcH = ferrocene). Scan rates 100 mV s^{-1} . All cyclic voltammograms were plotted according to the polarographic convention. Further details were in the deposited CIF files. The fluorescence quantum yields (Φ_F) of **BDTT-Ars** were characterized in dichloromethane with quinine sulfate ($\Phi_F = 0.55$, $1 \times 10^{-5} \text{ M}$ in $0.5 \text{ M H}_2\text{SO}_4$) as a standard.^{S2}

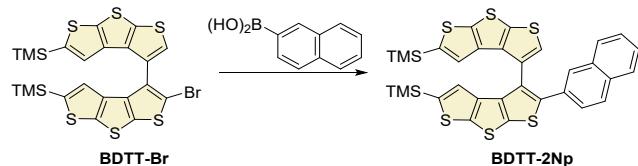
Synthesis of 2-methyl-5,5'-di(trimethylsilanyl)-3,3'-bis-dithieno[2,3-*b*:3',2'-*d*]thiophene (BDTT-Me)

n-BuLi (2.5 M in hexane, 0.3 mL, 1.72 mmol, 2.3 equiv) was added dropwise to diisopropylamine (0.3 mL, 2.1 mmol, 2.8 equiv) in THF (5 mL) at 0 °C. After 2 h at 0 °C, the prepared LDA solution was transferred by syringe into a solution of **BDTT** (400.0 mg, 0.75 mmol) in THF (50 mL) at 0 °C. After 2 h at -78 °C, dry CH_3I (0.14 mL, 2.25 mmol, 1.1 equiv) was added at -78 °C, then warmed up slowly to ambient temperature overnight. After being quenched with CH_3OH at -78 °C, the reaction mixture was extracted with CH_2Cl_2 ($3 \times 20 \text{ mL}$), and the organic phase was washed with H_2O ($3 \times 30 \text{ mL}$) and then dried over Na_2SO_4 . After the solvent was removed under vacuum, the residue was purified by column chromatography on silica gel with petrol ether as the eluent to obtain **BDTT-Me** as a white product (392.5 mg, 93%). M.p.: 181-182 °C. ^1H NMR (500 MHz, CDCl_3) δ (ppm) 7.52 (s, 1H), 6.46 (s, 1H), 6.40 (s, 1H), 2.12 (s, 3H), 0.11 (s, 9H), 0.03 (s, 9H). ^{13}C NMR (125 MHz, CDCl_3) δ (ppm) 144.07, 143.57, 143.42, 143.15, 140.75, 140.65, 139.59, 138.87, 138.62, 127.55, 126.96, 125.84, 125.61, 125.44, 125.30, 125.10, 13.56, -0.35. HRMS (MALDI-FT) m/z [M+H]⁺ calcd for $[\text{C}_{23}\text{H}_{25}\text{S}_6\text{Si}_2]$ 548.9818; found 548.9814. IR (KBr): 3052, 1413, 1229, 976, 851, 756 cm^{-1} .

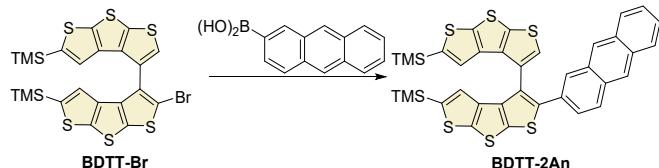

Synthesis of 2-phenyl-5,5'-di(trimethylsilanyl)-3,3'-bis-dithieno[2,3-*b*:3',2'-*d*]thiophene (BDTT-Ph)

Compound **BDTT-Br** (40.0 mg, 0.065 mmol), phenylboronic acid (18.0 mg, 0.065 mmol, 1.0 equiv), $\text{Pd}(\text{PPh}_3)_4$ (1.5 mg, 0.0013 mmol, 0.02 equiv), K_2CO_3 (18.0 mg, 0.130 mmol, 2.0 equiv) and

deoxidized water (1 mL) were added into THF (10 mL). The reaction mixture was heated at 70 °C for 15 h. After cooling down to room, the reaction mixture was extracted with CH₂Cl₂ (3 × 15 mL), and the organic phase was washed with H₂O (3 × 20 mL) and then dried over Na₂SO₄. After the solvent was removed under vacuum, the residue was purified by column chromatography on silica gel with petrol ether as the eluent to obtain **BDTT-Ph** (37.7 mg, 95%) as a white solid. M.p.: 197-198 °C. ¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.35 (d, *J* = 10.0 Hz, 2H), 7.28 (s, 1H), 7.21-7.17 (m, 3H), 6.59 (d, *J* = 10.0 Hz, 2H), 0.13 (s, 9H), 0.12 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ (ppm) 174.03, 143.79, 143.69, 143.52, 143.15, 142.44, 140.77, 140.20, 139.74, 138.72, 137.60, 137.00, 134.27, 128.59, 128.52, 128.32, 127.97, 127.66, 126.25, 125.88, 125.67, 123.97, -0.33, -0.35. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for [C₂₈H₂₇S₆Si₂] 610.9970; found 610.9983. IR (KBr): 2952, 1355, 1249, 982, 835, 756 cm⁻¹.

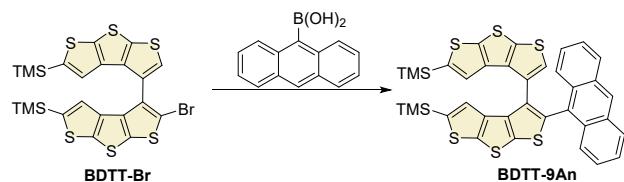

Synthesis of 2-phenyl-5,5'-di(trimethylsilanyl)-3,3'-bis-dithieno[2,3-*b*:3',2'-*d*]thiophene (BDTT-1Np)

Compound **BDTT-Br** (69.0 mg, 0.112 mmol), 1-Naphthylboronic acid (21.2 mg, 0.123 mmol, 1.1 equiv), Pd(PPh₃)₄ (2.6 mg, 0.0023 mmol, 0.02 equiv), K₂CO₃ (30.3 mg, 0.22 mmol, 2.2 equiv) and deoxidized water (0.8 mL) were added into THF (8 mL). The reaction mixture was heated at 70 °C for 15 h. After cooling down to room, the reaction mixture was extracted with CH₂Cl₂ (3 × 15 mL), and the organic phase was washed with H₂O (3 × 20 mL) and then dried over Na₂SO₄. After the solvent was removed under vacuum, the residue was purified by column chromatography on silica gel with petrol ether as the eluent to obtain **BDTT-1Np** (61.5 mg, 83%) as a white solid. M.p.: 217-218 °C. ¹H NMR (500 MHz, CDCl₃) δ (ppm) 7.98 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 5.2 Hz, 2H), 7.53 (d, *J* = 6.1 Hz, 1H), 7.44-7.38 (m, 2H), 7.31 (s, 1H), 6.84 (s, 1H), 6.59 (s, 1H), 6.38 (s, 1H), 0.10 (s, 9H), 0.05 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ (ppm) 143.79, 143.55, 143.12, 140.81, 140.27, 140.07, 139.25, 138.46, 137.49, 137.05, 133.44, 132.80, 132.13, 132.05, 131.95, 131.26, 129.91, 129.08, 128.55, 128.46, 128.22, 126.45, 126.29, 125.99, 125.78, 125.00, -0.34, -0.43. HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for [C₃₂H₂₉S₆Si₂] 661.0127; found 661.0120. IR (KBr): 2947,


1469, 1259, 992, 973, 756 cm^{-1} .

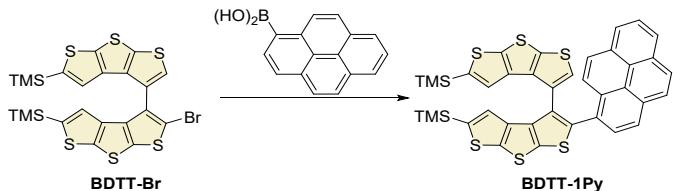
Synthesis of 2,2'-phenyl-5,5'-di(trimethylsilanyl)-3,3'-bis-dithieno[2,3-*b*:3',2'-*d*]thiophene (BDTT-2Np)

Compound **BDTT-Br** (40 mg, 0.065 mmol), 2-Naphthylboronic acid (47.3 mg, 0.072 mmol, 1.1 equiv), $\text{Pd}(\text{PPh}_3)_4$ (1.5 mg, 0.0013 mmol, 0.02 equiv), K_2CO_3 (18.0 mg, 0.130 mmol, 2.0 equiv) and deoxidized water (1 mL) were added into THF (10 mL). The reaction mixture was heated at 70 $^{\circ}\text{C}$ for 17 h. After cooling down to room, the reaction mixture was extracted with CH_2Cl_2 (3×15 mL), and the organic phase was washed with H_2O (3×20 mL) and then dried over Na_2SO_4 . After the solvent was removed under vacuum, the residue was purified by column chromatography on silica gel with petrol ether as the eluent to obtain **BDTT-2Np** (34.7 mg, 80%) as a white solid. M.p.: 211-212 $^{\circ}\text{C}$. ^1H NMR (500 MHz, CDCl_3) δ (ppm) 7.91 (s, 1H), 7.72 (d, $J = 6.1$ Hz, 2H), 7.60 (d, $J = 8.9$ Hz, 1H), 7.44-7.41 (m, 2H), 7.35 (dd, $J = 2, 8.7$ Hz, 1H), 7.28 (s, 1H), 6.63 (s, 1H), 6.59 (s, 1H), 0.13 (s, 9H), 0.08 (s, 9H). ^{13}C NMR (125 MHz, CDCl_3) δ (ppm) 143.89, 143.74, 143.52, 143.21, 142.47, 140.77, 140.19, 139.83, 138.75, 137.83, 137.08, 133.27, 132.53, 131.92, 128.05, 127.66, 127.64, 127.60, 127.58, 126.54, 126.51, 126.34, 126.24, 125.93, 125.79, 124.29, -0.36, -0.39. HRMS (ESI-TOF) m/z [M+H] $^+$ calcd for $[\text{C}_{32}\text{H}_{29}\text{S}_6\text{Si}_2]$ 661.0127; found 661.0125. IR (KBr): 2952, 1460, 1352, 1249, 984, 756 cm^{-1} .


Synthesis of 2-phenyl-5,5'-di(trimethylsilanyl)-3,3'-bis-dithieno[2,3-*b*:3',2'-*d*]thiophene (BDTT-2An)

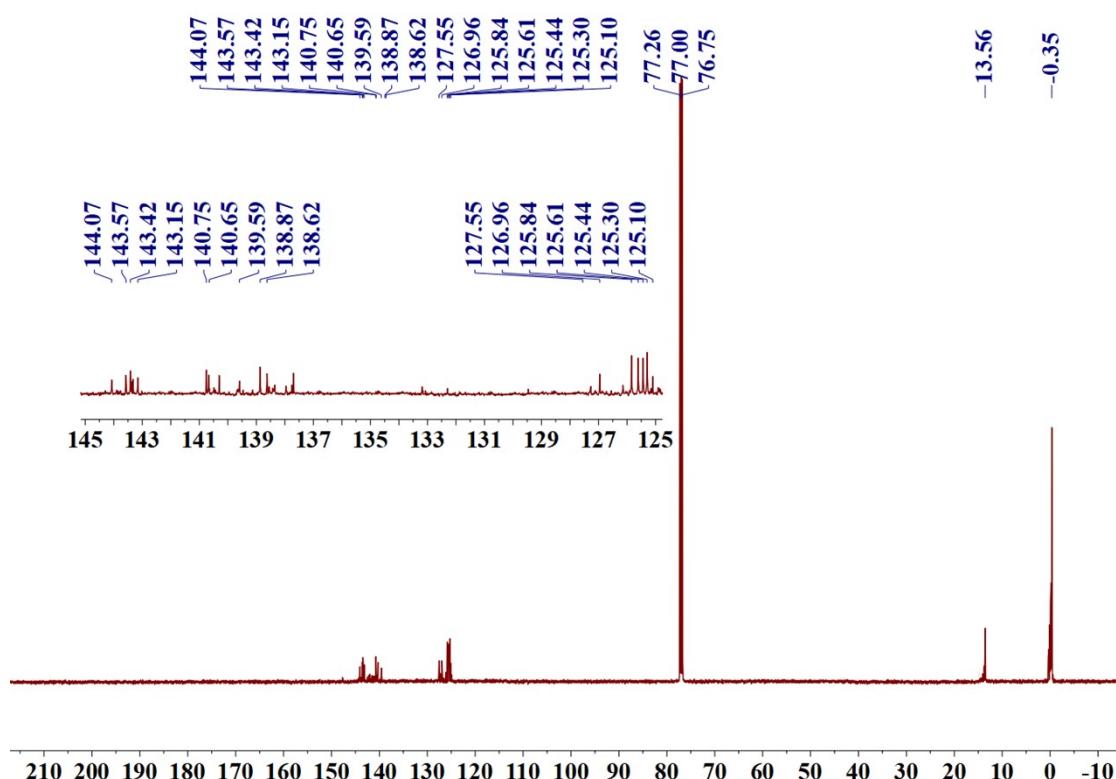
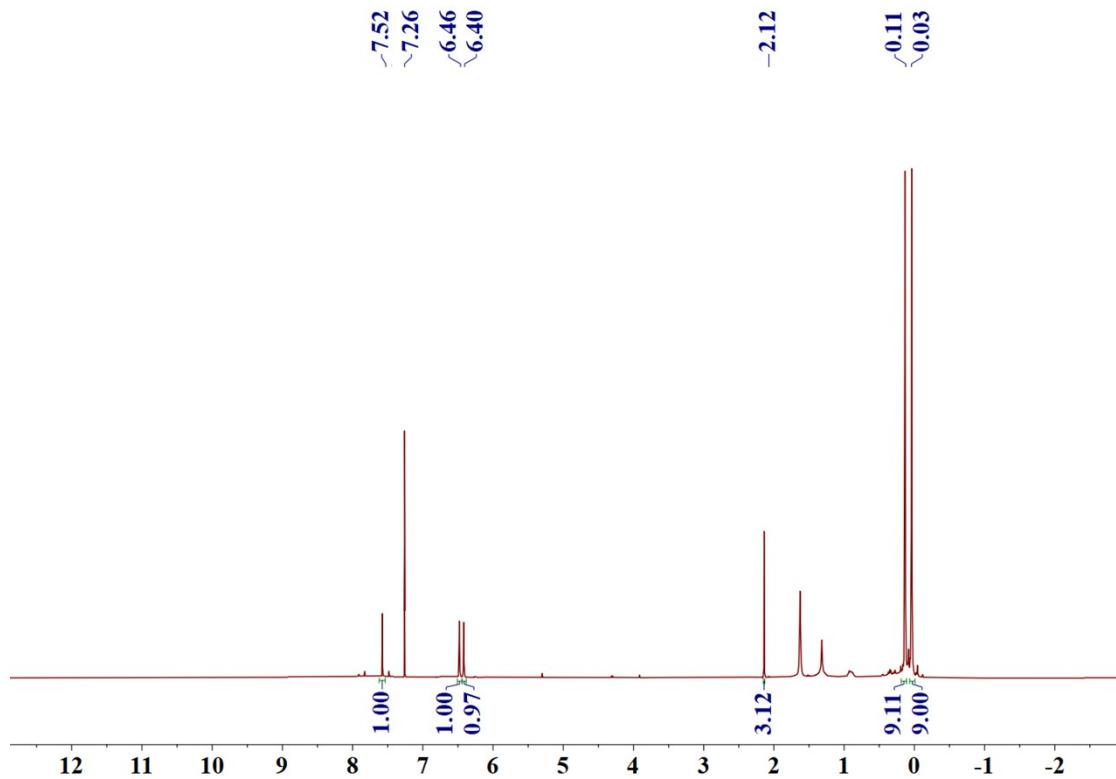
Compound **BDTT-Br** (100 mg, 0.162 mmol), 2-Anthraceneboronic acid (43.4 mg, 0.195 mmol, 1.2 equiv), $\text{Pd}(\text{PPh}_3)_4$ (3.7 mg, 0.00324 mmol, 0.02 equiv), K_2CO_3 (56.0 mg, 0.405 mmol, 2.5 equiv) and deoxidized water (1.5 mL) were added into toluene (15 mL). The reaction mixture was heated at 100 $^{\circ}\text{C}$ for 24 h. After cooling down to room, the reaction mixture was extracted with

CH_2Cl_2 (3×15 mL), and the organic phase was washed with H_2O (3×20 mL) and then dried over Na_2SO_4 . After the solvent was removed under vacuum, the residue was purified by column chromatography on silica gel with petrol ether as the eluent to obtain **BDTT-2An** (90.9 mg, 82%) as a white solid. M.p.: 239-240 $^{\circ}\text{C}$. ^1H NMR (500 MHz, CDCl_3) δ (ppm) 8.30 (d, $J = 6.6$ Hz, 2H), 8.08 (s, 1H), 7.94 (d, $J = 6.9$ Hz, 2H), 7.76 (d, $J = 11$ Hz, 2H), 7.47-7.43 (m, 2H), 7.33-7.32 (m, 2H), 6.66 (s, 1H), 6.60 (s, 1H), 0.13 (s, 9H), 0.06 (s, 9H). ^{13}C NMR (125 MHz, CDCl_3) δ (ppm) 143.35, 141.10, 140.59, 139.46, 139.24, 137.85, 137.62, 137.23, 134.38, 133.84, 133.79, 131.75, 131.41, 131.17, 129.13, 129.07, 128.96, 128.64, 128.54, 127.50, 127.41, 127.13, 126.83, 126.78, 126.73, 126.59, 126.38, 126.03, 125.67, 125.51, 125.49, -0.35, -0.41. HRMS (ESI-TOF) m/z [M+H]⁺ calcd for $[\text{C}_{36}\text{H}_{31}\text{S}_6\text{Si}_2]$ 711.0283; found 711.0276. IR (KBr): 2955, 1465, 1350, 1180, 977, 756 cm^{-1} .


Synthesis of 2-phenyl-5,5'-di(trimethylsilyl)-3,3'-bis-dithieno[2,3-*b*:3',2'-*d*]thiophene (BDTT-9An)

Compound **BDTT-Br** (100 mg, 0.162 mmol), 9-Anthraceneboronic acid (43.4 mg, 0.195 mmol, 1.2 equiv), $\text{Pd}(\text{PPh}_3)_4$ (3.7 mg, 0.00324 mmol, 0.02 equiv), K_2CO_3 (56.0 mg, 0.405 mmol, 2.5 equiv) and deoxidized water (1 mL) were added into toluene (10 mL). The reaction mixture was heated at 100 $^{\circ}\text{C}$ for 36 h. After cooling down to room, the reaction mixture was extracted with CH_2Cl_2 (3×15 mL), and the organic phase was washed with H_2O (3×20 mL) and then dried over Na_2SO_4 . After the solvent was removed under vacuum, the residue was purified by column chromatography on silica gel with petrol ether as the eluent to obtain **BDTT-9An** (86.5 mg, 75%) as a white solid. M.p.: 262-263 $^{\circ}\text{C}$. ^1H NMR (500 MHz, CDCl_3) δ (ppm) 8.51 (s, 1H), 8.23 (d, $J = 6.7$ Hz, 1H), 8.08 (d, $J = 8.0$ Hz, 1H), 7.92 (d, $J = 8.6$ Hz, 1H), 7.67 (d, $J = 8.9$ Hz, 1H), 7.58-7.52 (m, 1H), 7.28 (t, $J = 6.6$ Hz, 1H), 7.09 (t, $J = 7.7$ Hz, 1H), 6.67 (s, 1H), 6.61 (s, 1H), 6.27 (s, 1H), 0.12 (s, 9H), 0.03 (s, 9H). ^{13}C NMR (125 MHz, CDCl_3) δ (ppm) 143.61, 143.09, 140.84, 140.32, 139.20, 139.01, 137.59, 137.36, 136.97, 134.12, 133.58, 133.52, 131.49, 131.15, 130.91, 130.62, 128.87, 128.81, 128.70, 128.28, 126.87, 126.57, 126.52, 126.47, 126.33, 126.12, 125.77, 125.41,

125.25, 125.23, -0.30, -0.45. HRMS (ESI-TOF) m/z [M+H]⁺ calcd for [C₃₆H₃₁S₆Si₂] 711.0283; found 711.0288. IR (KBr): 2955, 1463, 1350, 1250, 939, 756 cm⁻¹.



Synthesis of 2-phenyl-5,5'-di(trimethylsilyl)-3,3'-bis-dithieno[2,3-*b*:3',2'-*d*]thiophene (BDTT-1Py)

Compound **BDTT-Br** (65.3 mg, 0.11 mmol), 1-Pyrenylboronic acid (13.0 mg, 0.11 mmol, 1.0 equiv), Pd(PPh₃)₄ (2.5 mg, 0.002 mmol, 0.02 equiv), K₂CO₃ (36.8 mg, 0.27 mmol, 2.5 equiv) and deoxidized water (1 mL) were added into toluene (10 mL). The reaction mixture was heated at 100 °C for 20 h. After cooling down to room, the reaction mixture was extracted with CH₂Cl₂ (3 × 15 mL), and the organic phase was washed with H₂O (3 × 20 mL) and then dried over Na₂SO₄. After the solvent was removed under vacuum, the residue was purified by column chromatography on silica gel with petrol ether as the eluent to obtain **BDTT-1Py** (61.8 mg, 75%) as a white solid. M.p.: 290-291 °C. ¹H NMR (500 MHz, CDCl₃) δ (ppm) 8.20 (d, J = 9.5 Hz, 2H), 8.14-8.06 (m, 5H), 8.02 (t, J = 9.5 Hz, 2H), 6.82 (s, 1H), 6.67 (s, 1H), 6.40 (s, 1H), 0.12 (s, 9H), 0.06 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ (ppm) 143.79, 143.55, 143.12, 140.81, 140.27, 140.07, 139.25, 138.46, 137.49, 137.05, 133.44, 132.80, 132.13, 132.05, 131.95, 131.26, 129.91, 129.08, 128.55, 128.46, 128.22, 126.45, 126.29, 125.99, 125.89, 125.78, 125.00, -0.34, -0.43. HRMS (MALDI-FT) m/z [M]⁺ calcd for [C₃₈H₃₀S₆Si₂] 751.0596; found 751.0624. IR (KBr): 2952, 1403, 1350, 1249, 1113, 984, 756 cm⁻¹.

2. NMR and HRMS Spectra

NMR and HRMS Spectra of BDTT-Me

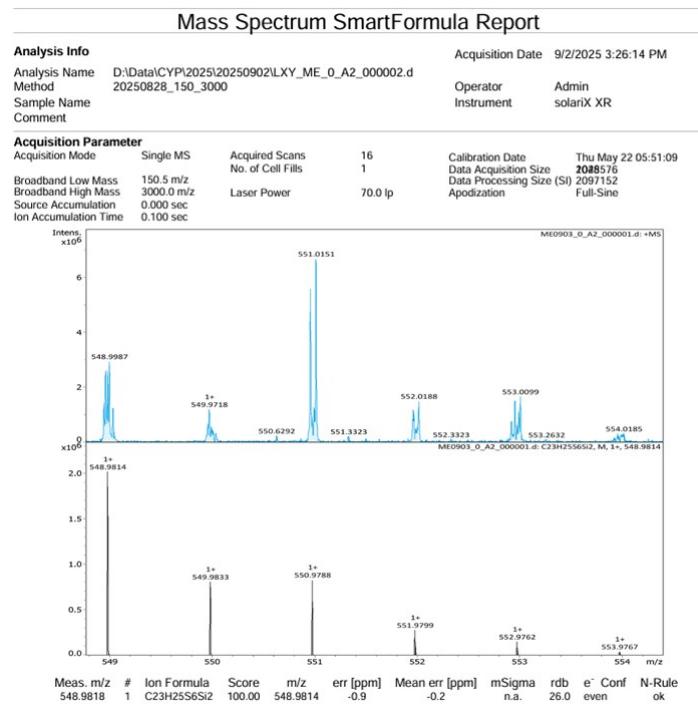


Figure S3. HRMS spectra of BDTT-Me.

NMR and HRMS Spectra of BDTT-Ph

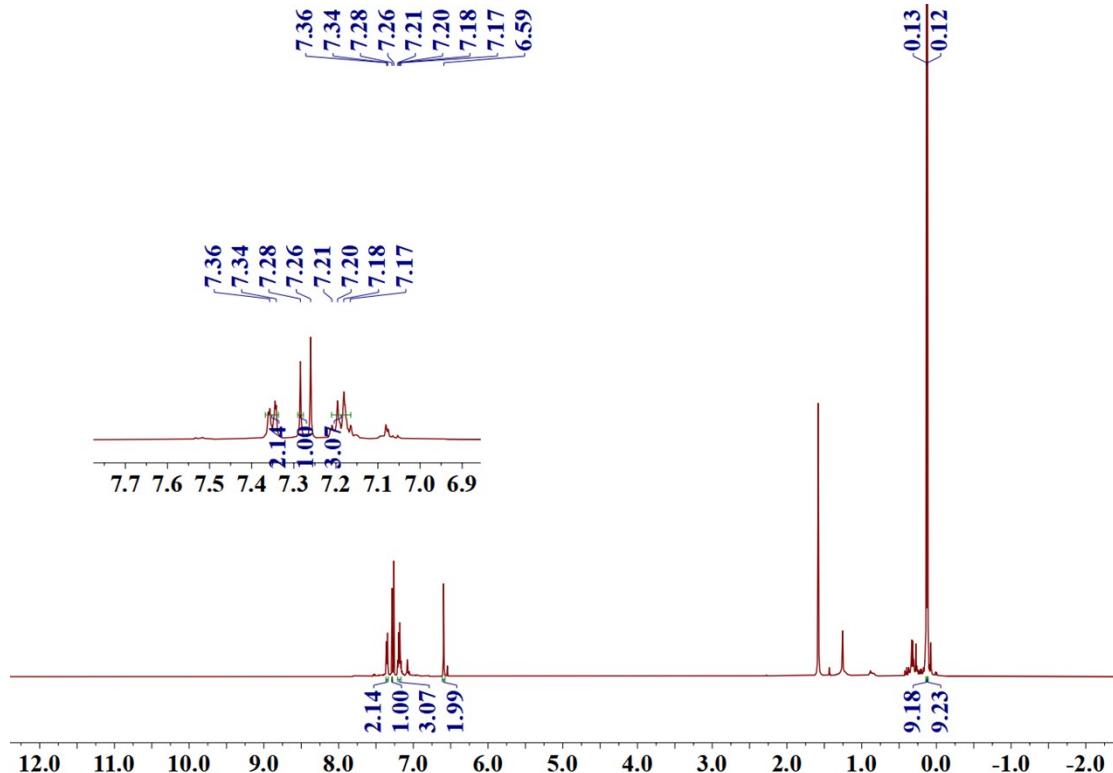


Figure S4. ^1H NMR (500 MHz, CDCl_3) spectra of BDTT-Ph.

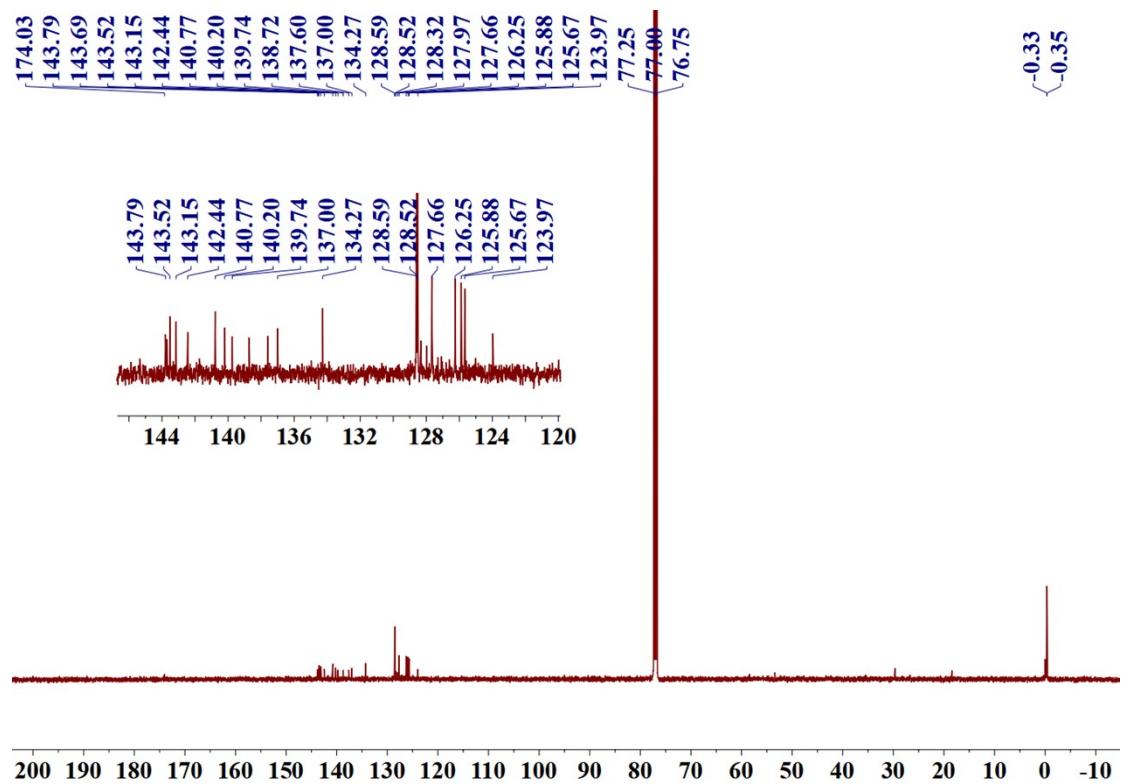


Figure S5. ^{13}C NMR (125 MHz, CDCl_3) spectra of **BDTT-Ph**.

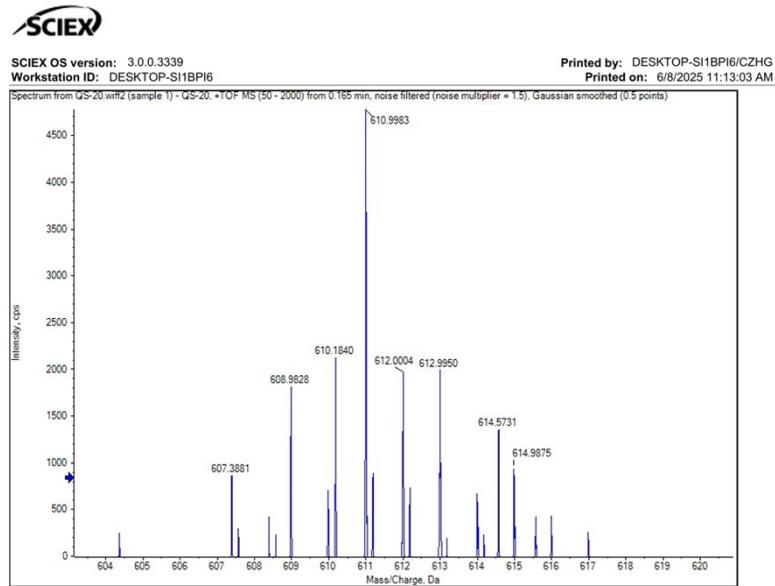


Figure S6. HRMS spectrum of **BDTT-Ph**.

NMR and HRMS Spectra of BDTT-1Np

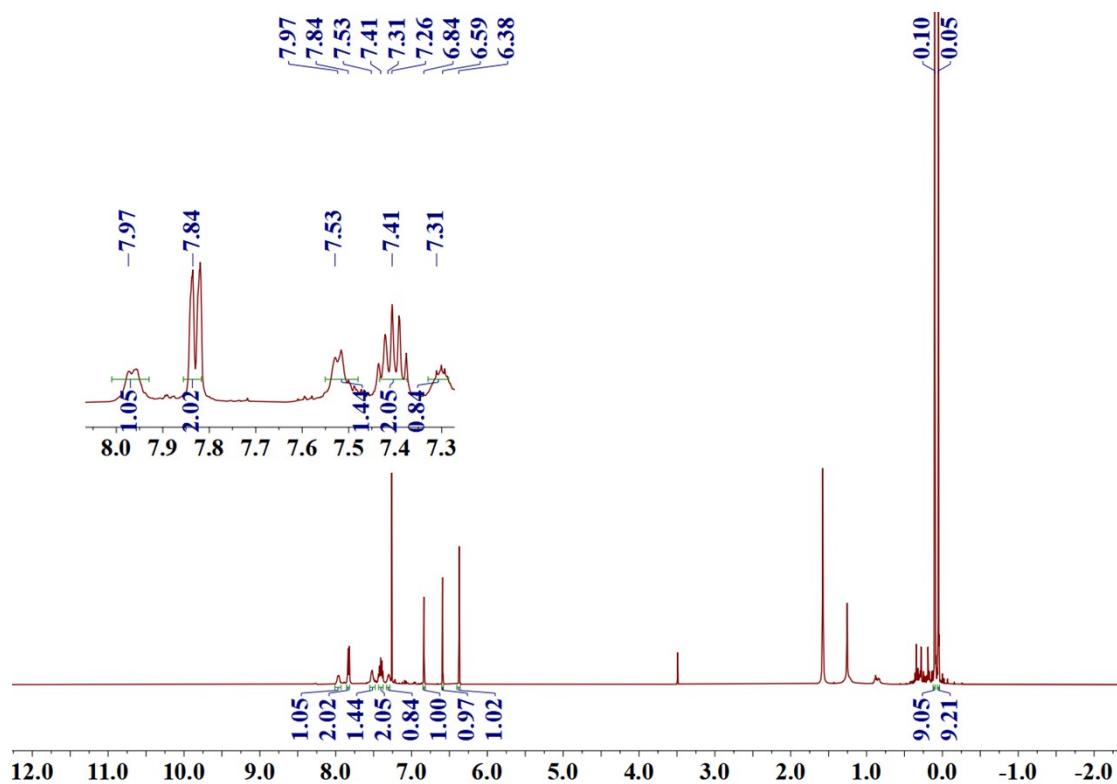


Figure S7. ^1H NMR (500 MHz, CDCl_3) spectra of BDTT-1Np.

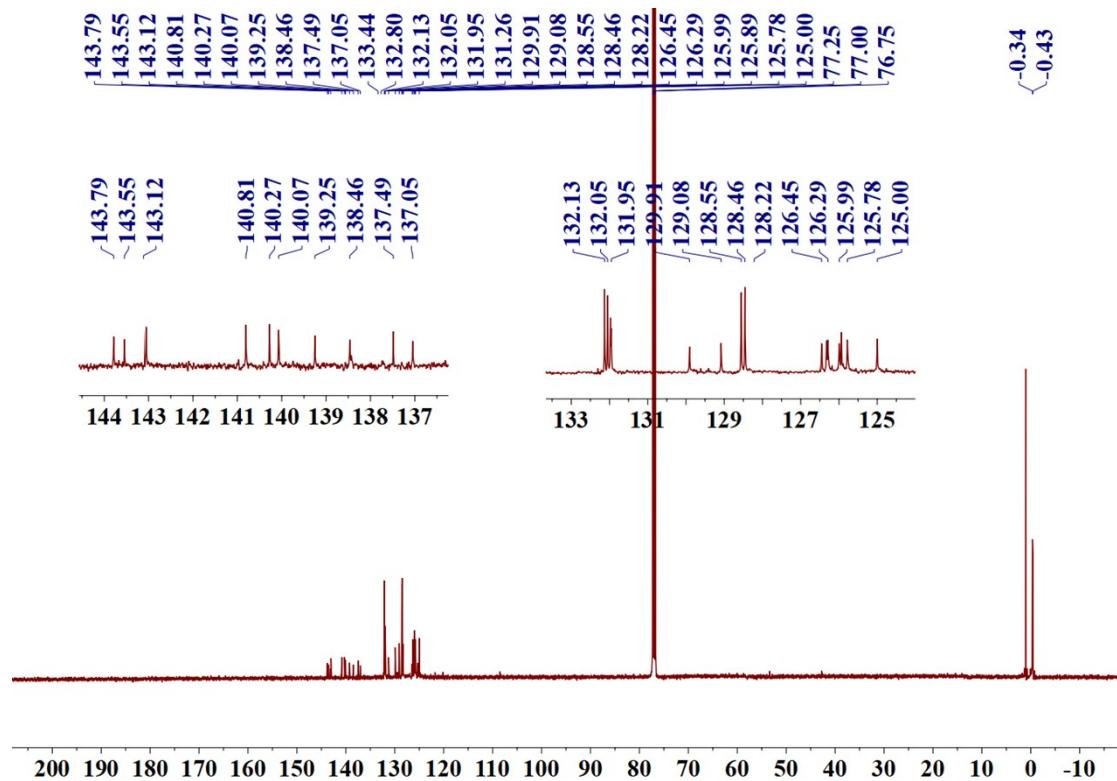
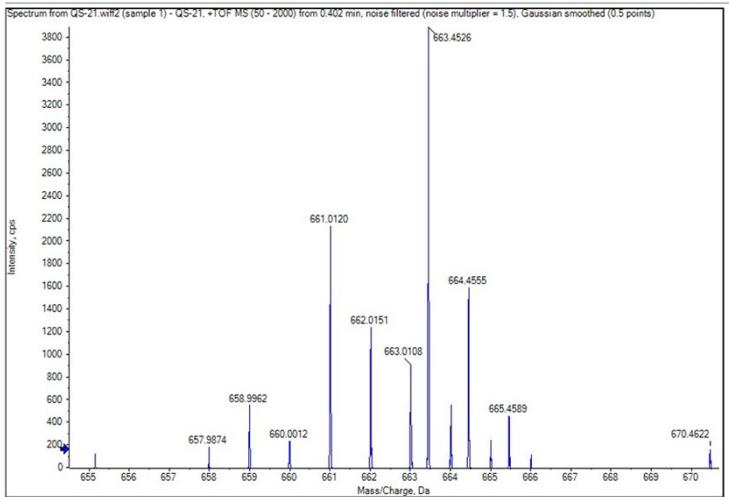
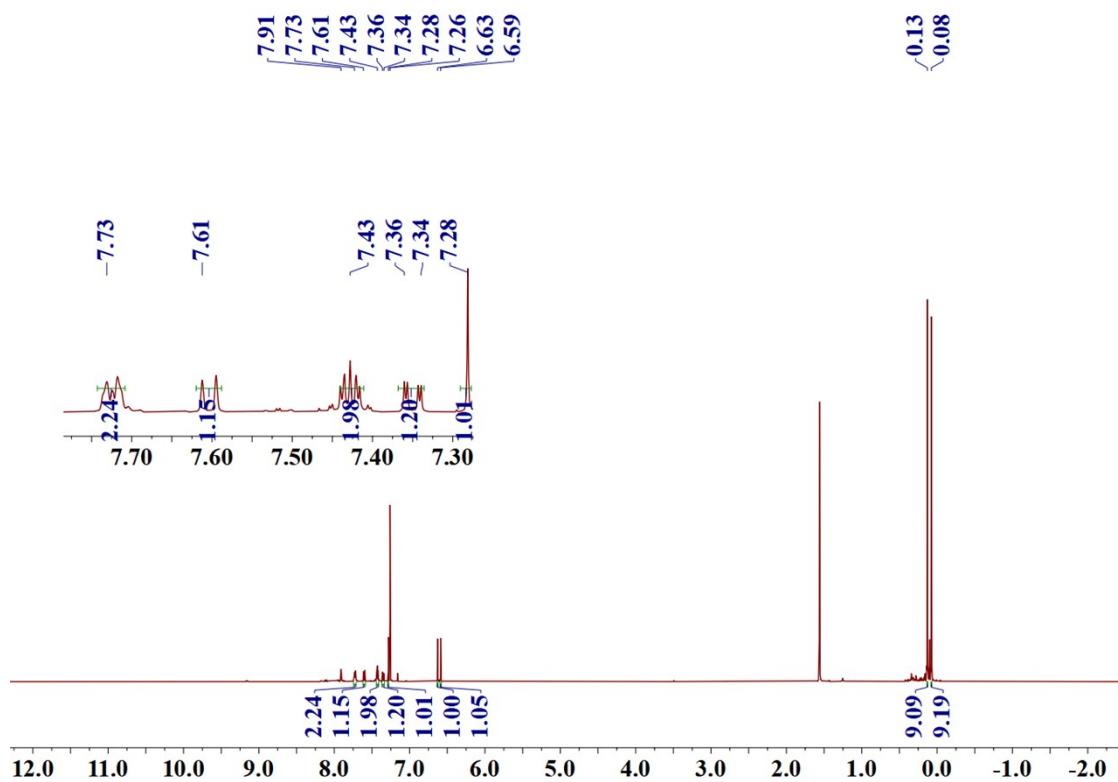




Figure S8. ^{13}C NMR (125 MHz, CDCl_3) spectra of BDTT-1Np.

Figure S9. HRMS spectrum of **BDTT-1Np**.

NMR and HRMS Spectra of BDTT-2Np

Figure S10. ^1H NMR (500 MHz, CDCl_3) spectra of **BDTT-2Np**.

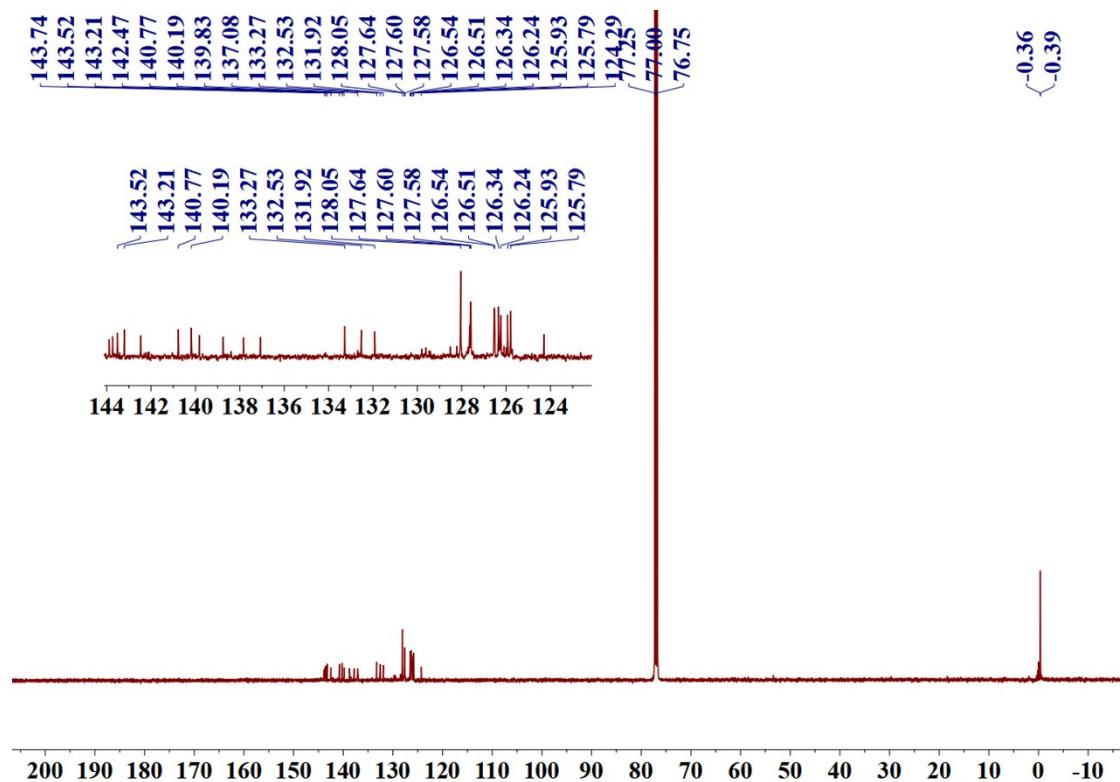


Figure S11. ^{13}C NMR (125 MHz, CDCl_3) spectra of BDTT-2Np.

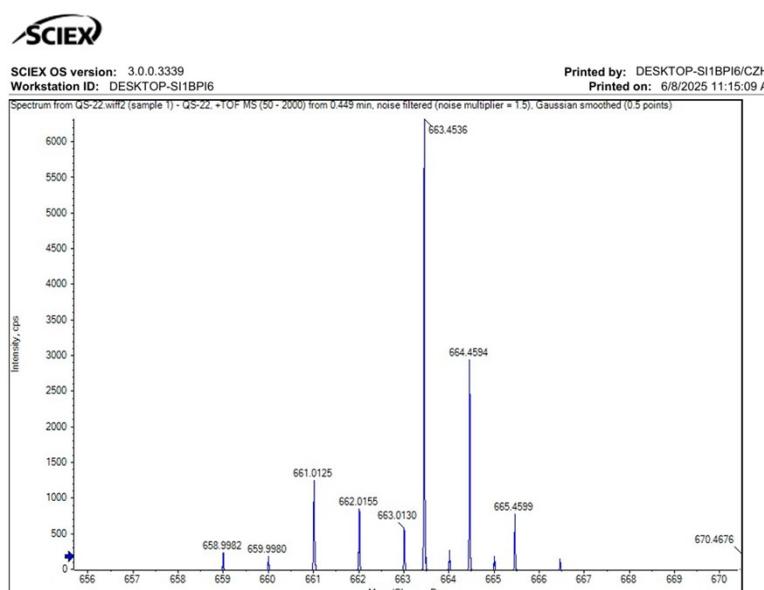


Figure S12. HRMS spectrum of BDTT-2Np.

NMR and HRMS Spectra of BDTT-2An

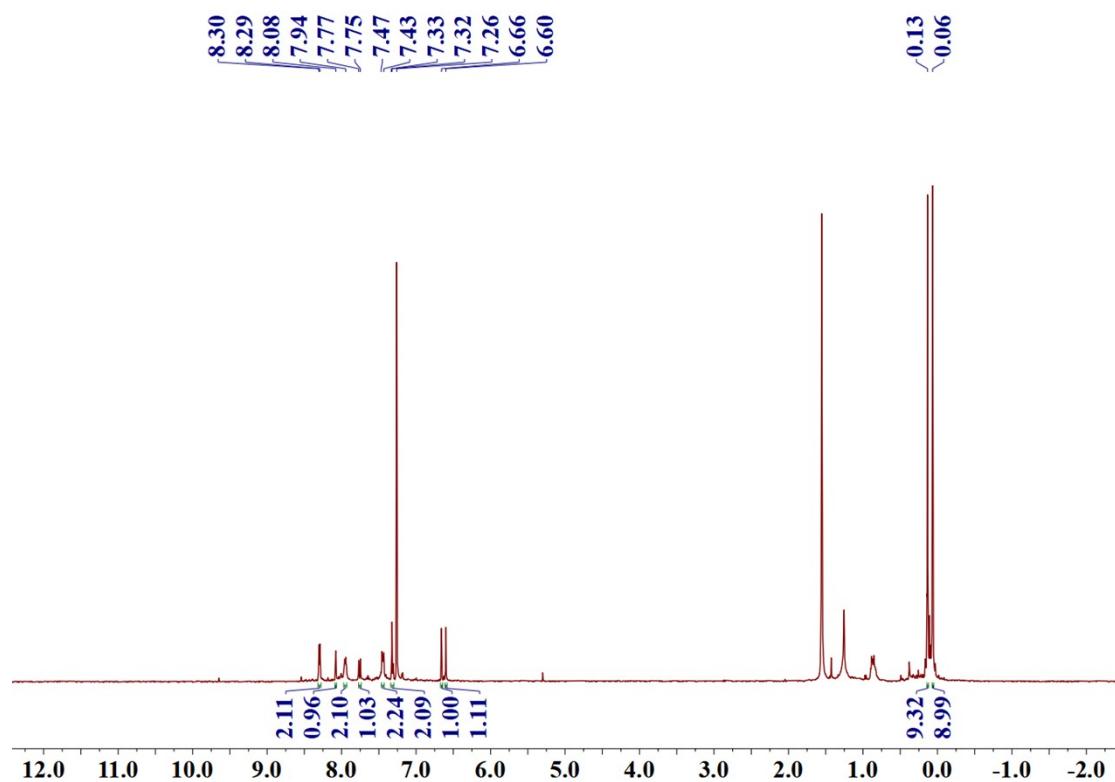


Figure S13. ^1H NMR (500 MHz, CDCl_3) spectrum of BDTT-2An.

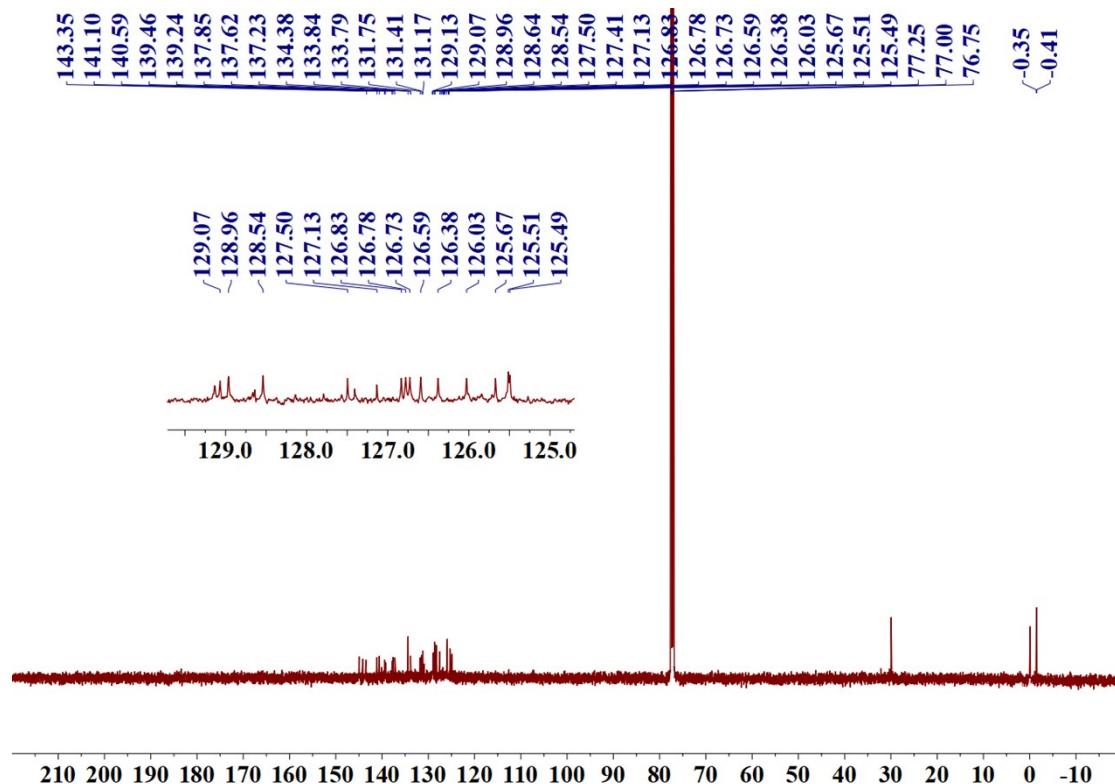
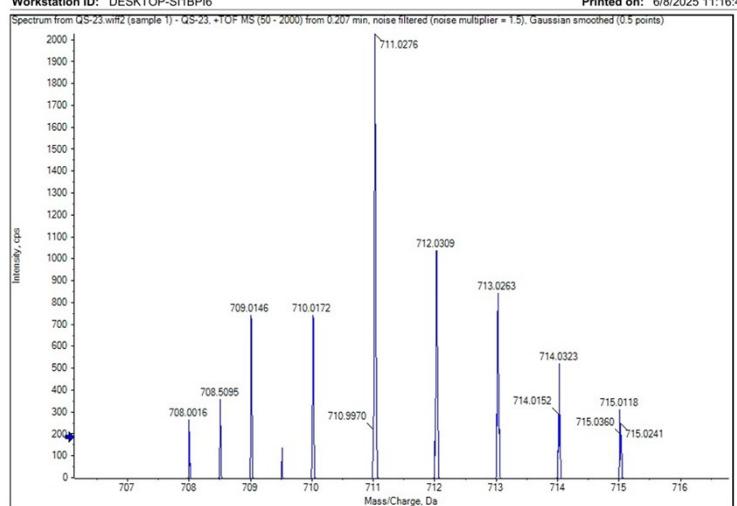
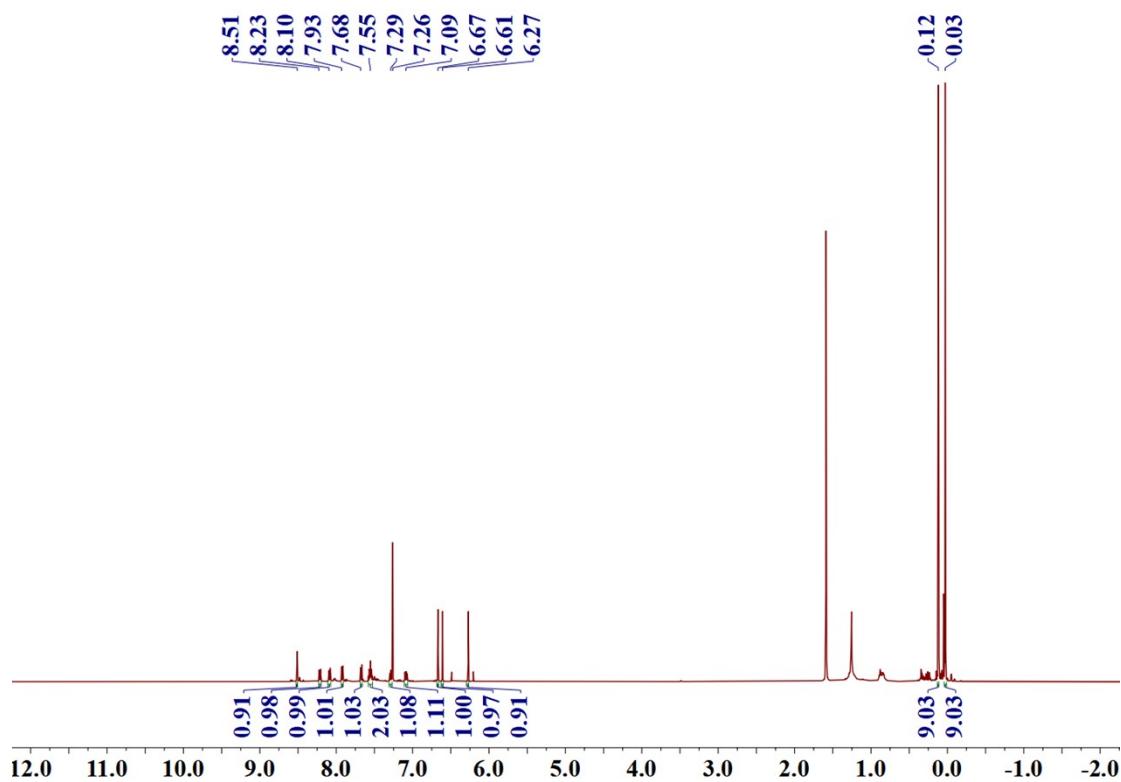




Figure S14. ^{13}C NMR (125 MHz, CDCl_3) spectra of BDTT-2An.

Figure S15. HRMS spectrum of **BDTT-2An**.**NMR and HRMS Spectra of BDTT-9An**Figure S16. ^1H NMR (500 MHz, CDCl_3) spectrum of **BDTT-9An**.

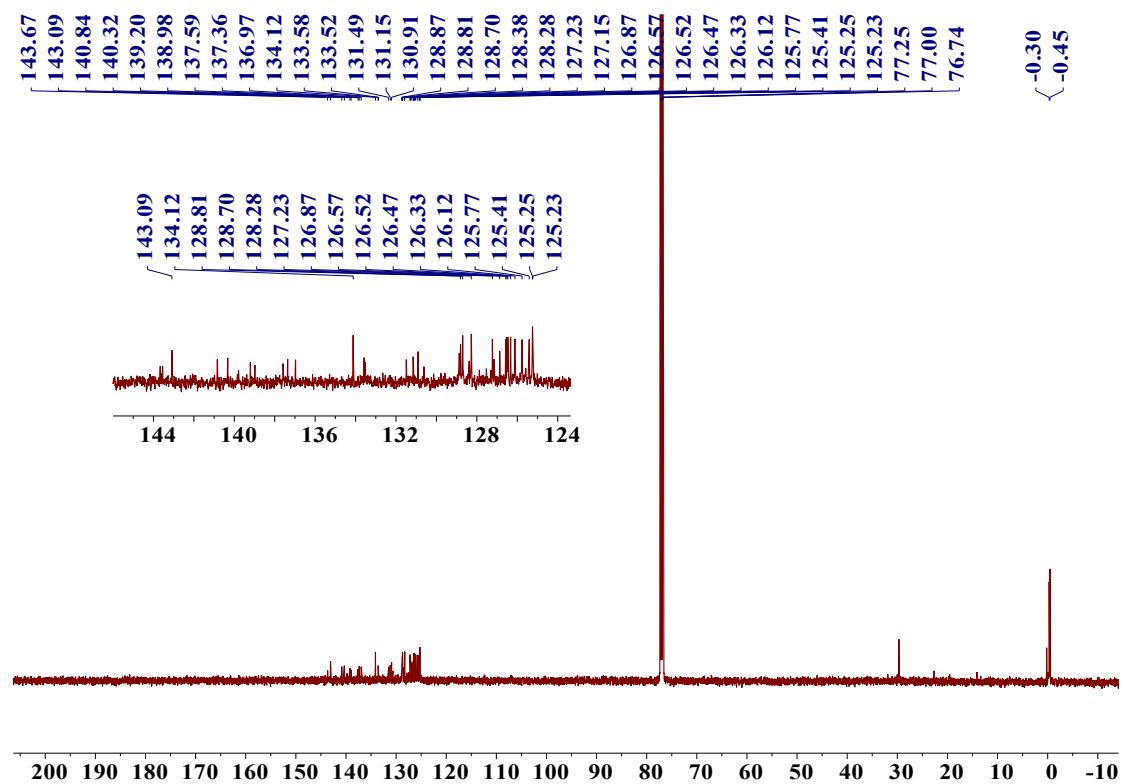


Figure S17. ^{13}C NMR (125 MHz, CDCl_3) spectra of **BDTT-9An**.

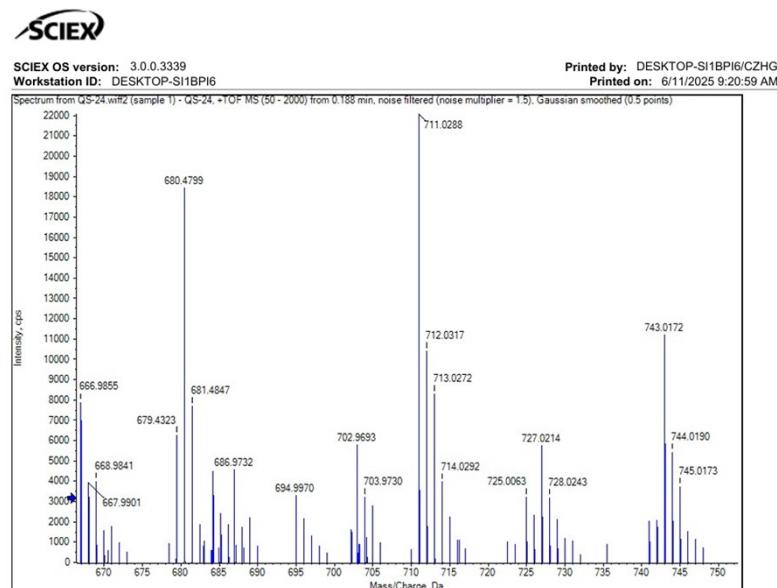


Figure S18. HRMS spectrum of **BDTT-9An**.

NMR and HRMS Spectra of BDTT-1Py

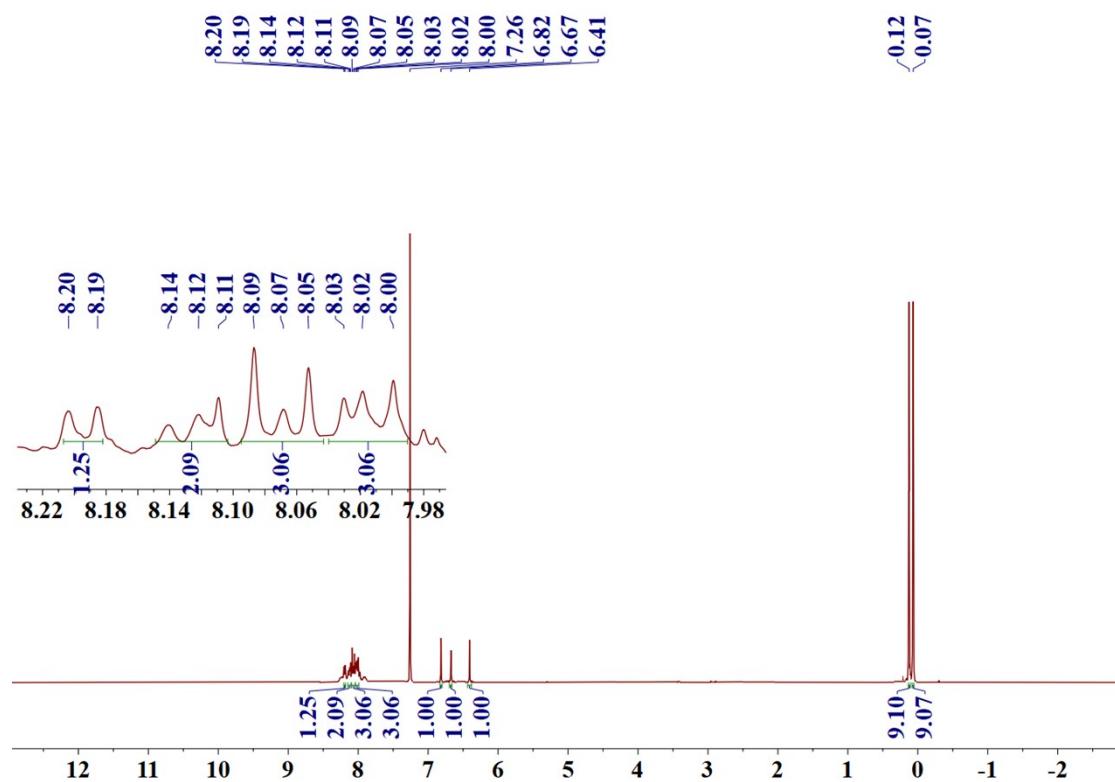


Figure S19. ^1H NMR (500 MHz, CDCl_3) spectra of **BDTT-1Py**.

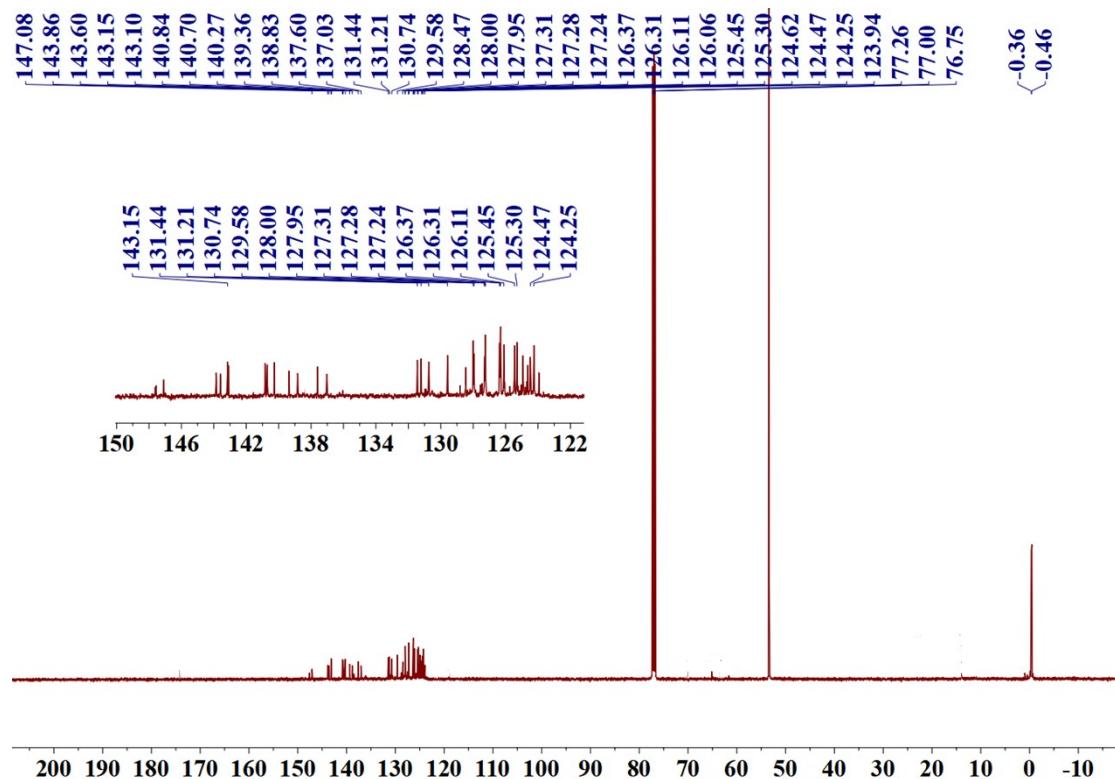


Figure S20. ^{13}C NMR (125 MHz, CDCl_3) spectra of **BDTT-1Py**.

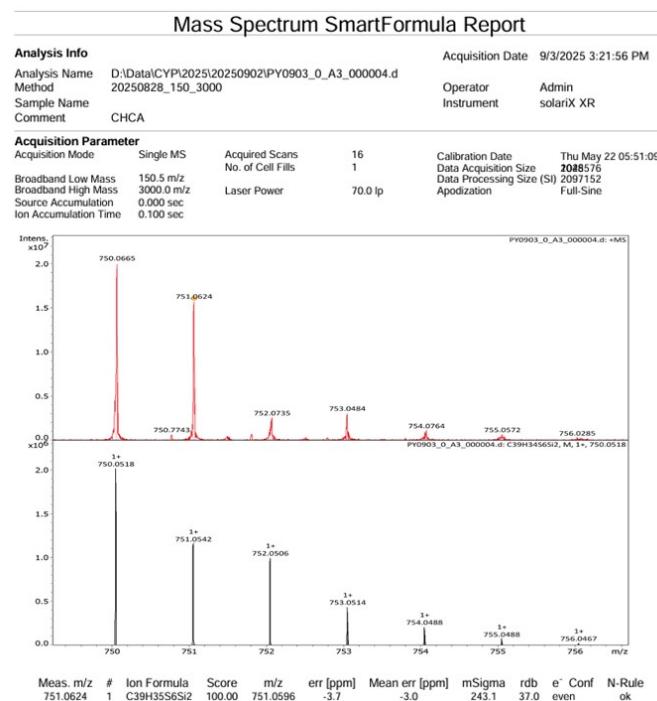


Figure S21. HRMS spectra of **BDTT-1Py**

3. Resolution, optical rotations, and racemization of BDTT-Ars

Resolution of BDTT-Me and optical rotations

The resolution of the **BDTT-Me** was carried out by chiral HPLC. The two enantiomers were obtained on a semipreparative scaled chiral column (CHIRALPAK-IB dimension: 10 mm ϕ \times 250 mmL); eluent: hexane; Injection information: concentration, 2.5 mg/mL and volume: 40 μL /injection. From the 3 mg scale of **BDTT-Me**, 1.0 mg ($ee > 99\%$) of $(-)$ -**BDTT-Me** and 1.1 mg ($ee > 99\%$) of $(+)$ -**BDTT-Me** were efficiently obtained. The optical rotations of $(-)$ -**BDTT-Me**, $[\alpha]_D^{25} = -173^\circ$ ($c = 0.33$ mg/mL in DCM) and $(+)$ -**BDTT-Me**, $[\alpha]_D^{25} = +155^\circ$ ($c = 0.37$ mg/mL in DCM) were observed.

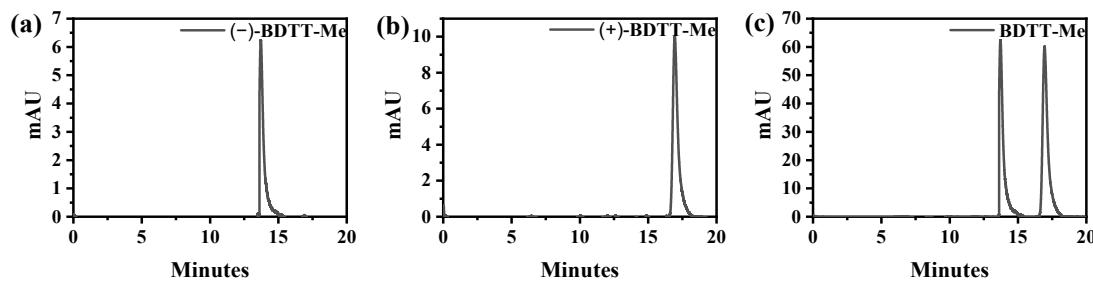


Figure S22. HPLC trace of $(-)$ -**BDTT-Me** (a, $ee > 99\%$), $(+)$ -**BDTT-Me** (b, $ee > 99\%$) and **BDTT-Me** (c, racemic).

Me (c) at room temperature. Resolution of **BDTT-Me** by chiral HPLC monitored at 254 nm was performed with a CHIRALPAK IB column. Eluent: hexane, Flow Rate: 2.5 mL/min, Column: CHIRALPAK-IB.

Racemization of (+)-BDTT-Me

Racemization of (+)-**BDTT-Me** was carried out in CH_2Cl_2 by heating at different temperatures. The process was monitored from time to time by chiral HPLC (CHIRALPAK-IB) with hexane as eluent. The half-life of racemization of (+)-**BDTT-Me** is proposed as below:

	(+)-BDTT-Me	(+)-BDTT-Me
$t = 0$	C_0	0
$t = t$	C_t	$C_0 - C_t$

The racemization of (+)-**BDTT-Me** could be taken as first-order reaction, so

$$\ln(C_0/C_t) = kt$$

Here, C_0 is the concentration of (+)-**BDTT-Me** before heating, and C_t is the concentration of (+)-**BDTT-Me** after heating for time of t .

Because

$$ee = \frac{C_t - (C_0 - C_t)}{C_t + (C_0 - C_t)} = \frac{2C_t - C_0}{C_0} = 2\frac{C_t}{C_0} - 1$$

$$\Rightarrow \frac{C_t}{C_0} = \frac{ee + 1}{2}$$

So, we can obtain the formula as below:

$$\ln \frac{C_0}{C_t} = \ln \frac{2}{ee + 1} = kt$$

$$\Rightarrow \ln \frac{ee + 1}{2} = -kt$$

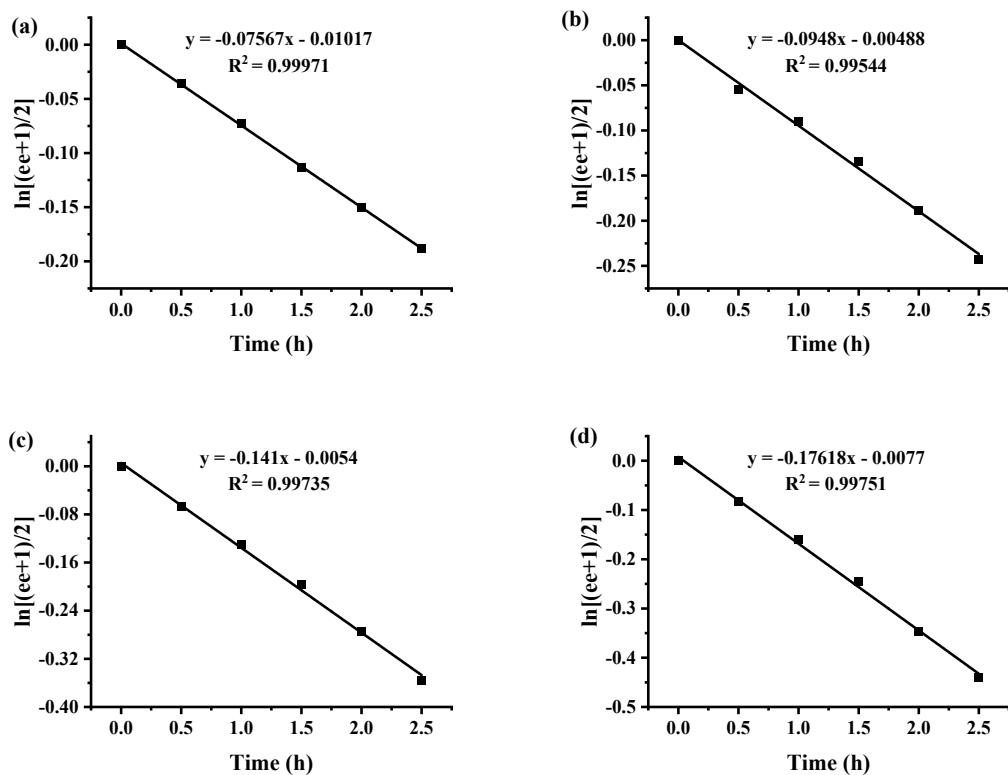


Figure S23. Time-dependent enantiomeric excess value decay profiles at (a) 40 °C, (b) 50 °C, (c) 60 °C, and (d) 70 °C, respectively.

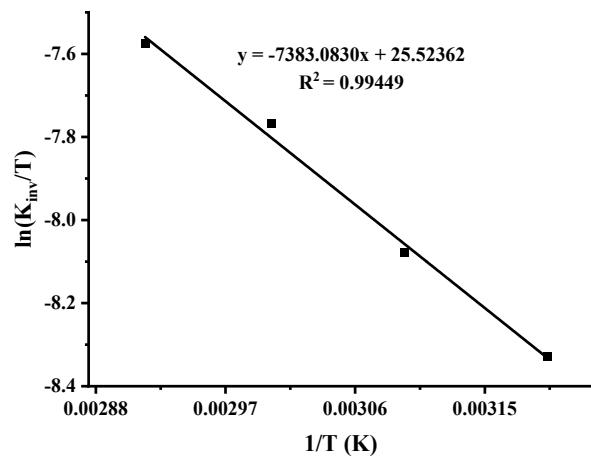


Figure S24. The half-life of (+)-BDTT-Me at different temperatures.

Table S1. The half-life of (+)-BDTT-Me at different temperatures.

T/°C	40	50	60	70
t _{1/2} /h	9.3	7.3	4.9	3.9

Table S2. The inversion barriers of (+)-**BDTT-Me** (R/S).

Compound	$\Delta H/\text{kcal/mol}$	$\Delta S/\text{J/k}$	$\Delta G/\text{kcal/mol}$
(+)- BDTT-Me	14.68	14.67	13.72

Resolution of **BDTT-Ph** and optical rotations

The resolution of the **BDTT-Ph** was carried out by chiral HPLC. The two enantiomers were obtained on a semipreparative scaled chiral column (CHIRALPAK-IB dimension: 10 mm ϕ \times 250 mmL); eluent: hexane; Injection information: concentration, 2.5 mg/mL and volume: 100 μL /injection. From the 8 mg scale of **BDTT-Ph**, 1.9 mg (*ee* > 99%) of (−)-**BDTT-Ph** and 2.1 mg (*ee* > 99%) of (+)-**BDTT-Ph** were efficiently obtained. The optical rotations of (−)-**BDTT-Ph**, $[\alpha]_D^{25} = -675^\circ$ ($c = 0.30$ mg/mL in DCM) and (+)-**BDTT-Ph**, $[\alpha]_D^{25} = +692^\circ$ ($c = 0.32$ mg/mL in DCM) were observed.

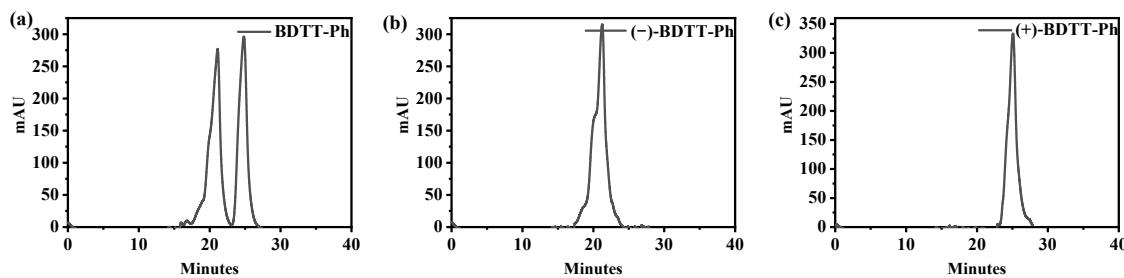


Figure S25. HPLC trace of **BDTT-Ph** (a), (−)-**BDTT-Ph** (b, *ee* > 99%) and (+)-**BDTT-Ph** (c, *ee* > 99%) at room temperature. Resolution of **BDTT-Ph** by chiral HPLC monitored at 254 nm was performed with a CHIRALPAK IB column. Eluent: hexane, Flow Rate: 2.5 mL/min, Column: CHIRALPAK-IB.

Racemization of (+)-**BDTT-Ph**

Racemization of (+)-**BDTT-Ph** was carried out in CH_2Cl_2 by heating at different temperatures. The process was monitored from time to time by chiral HPLC (CHIRALPAK-IB) with hexane as eluent. The half-life of (+)-**BDTT-Ph** was studied using the same method as for (+)-**BDTT-Me**:

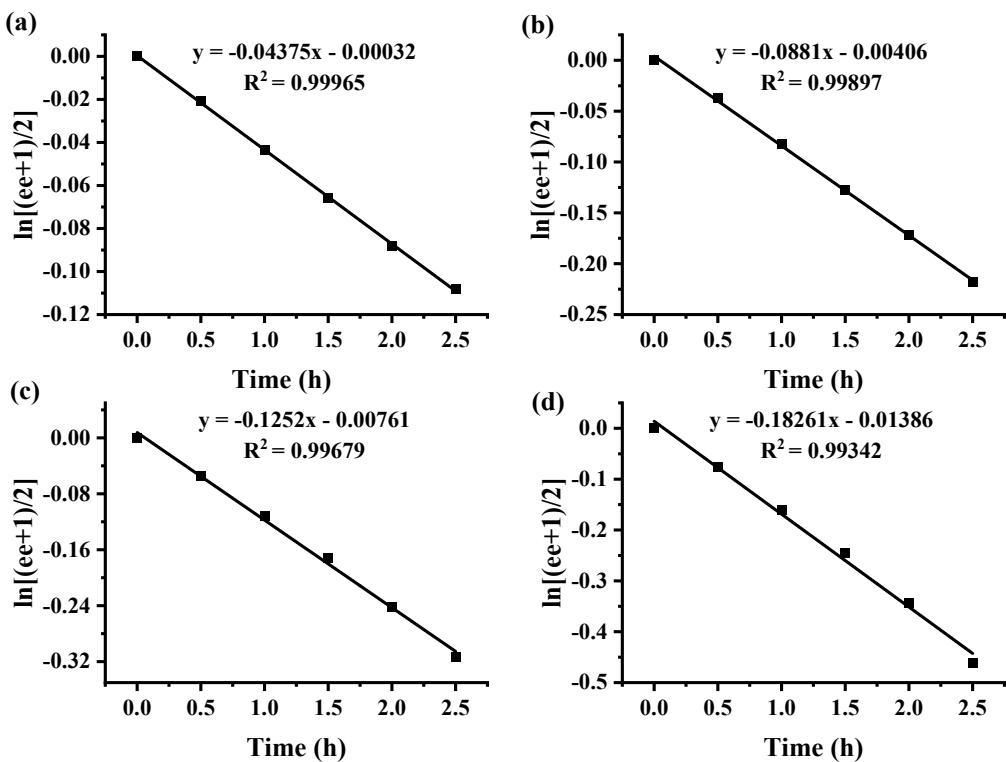


Figure S28. Time-dependent enantiomeric excess value decay profiles at (a) 50 °C, (b) 60 °C, (c) 70 °C, and (d) 80 °C, respectively.

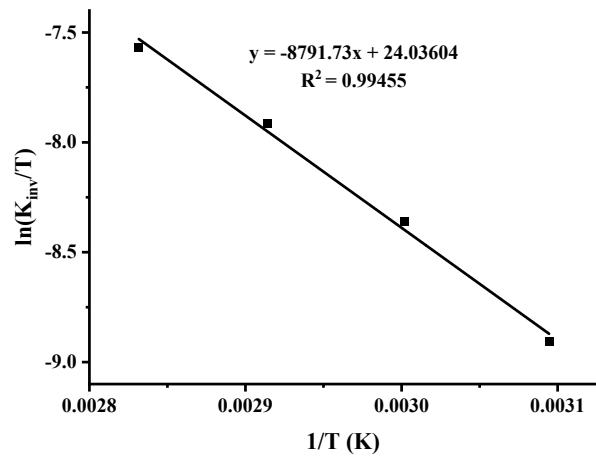


Figure S29. The half-life of (+)-BDTT-Ph at different temperatures.

Table S3. The half-life of (+)-**BDTT-Ph** at different temperatures.

T/°C	50	60	70	80
t _{1/2} /h	16.0	7.9	5.5	3.8

Table S4. The inversion barriers of (+)-**BDTT-Ph** (R/S).

Compound	ΔH/kcal/mol	ΔS/J/k	ΔG/kcal/mol
(+)- BDTT-Ph	17.47	2.31	17.32

Resolution of **BDTT-1Np** and optical rotations

The resolution of the **BDTT-1Np** was carried out by chiral HPLC. The two enantiomers were obtained on a semipreparative scaled chiral column (CHIRALPAK-IB dimension: 10 mm ϕ × 250 mmL); eluent: hexane/dichloromethane (7/1, v/v); Injection information: concentration, 1 mg/mL and volume: 100 μ L/injection. From the 4 mg scale of **BDTT-1Np**, 1.5 mg (ee > 99%) of (+)-**BDTT-1Np** and 1.7 mg (ee > 99%) of (-)-**BDTT-1Np** were efficiently obtained. The optical rotations of (-)-**BDTT-1Np**, $[\alpha]_D^{25} = -897^\circ$ (c = 0.34 mg/mL in DCM) and (+)-**BDTT-1Np**, $[\alpha]_D^{25} = +842^\circ$ (c = 0.30 mg/mL in DCM) were observed.

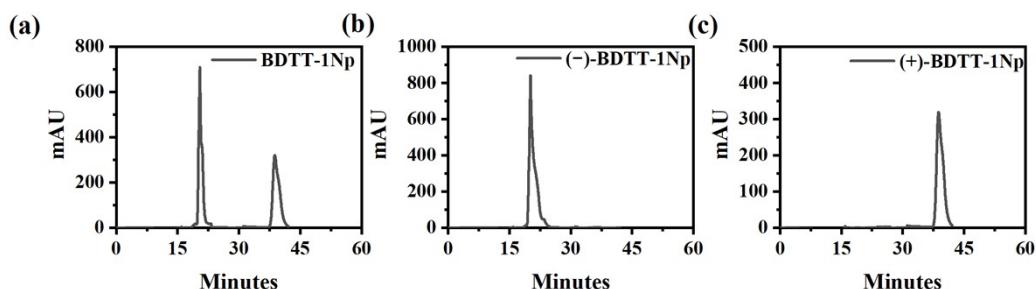


Figure S30. HPLC trace of **BDTT-1Np** (a), (-)-**BDTT-1Np** (b, ee > 99%) and (+)-**BDTT-1Np** (c, ee > 99%) at room temperature. Resolution of **BDTT-1Np** by chiral HPLC monitored at 254 nm was performed with a CHIRALPAK IB column. Eluent: hexane/dichloromethane (7/1, v/v), Flow Rate: 2.5 mL/min, Column: CHIRALPAK-IB.

Racemization of (+)-**BDTT-1Np**

Racemization of (+)-**BDTT-1Np** was carried out in CH_2Cl_2 by heating at different temperatures. The process was monitored from time to time by chiral HPLC (CHIRALPAK-IB)

with hexane /dichloromethane (7/1, *v/v*) as eluent. The half-life of (+)-**BDTT-1Np** was studied using the same method as for (+)-**BDTT-Me**:

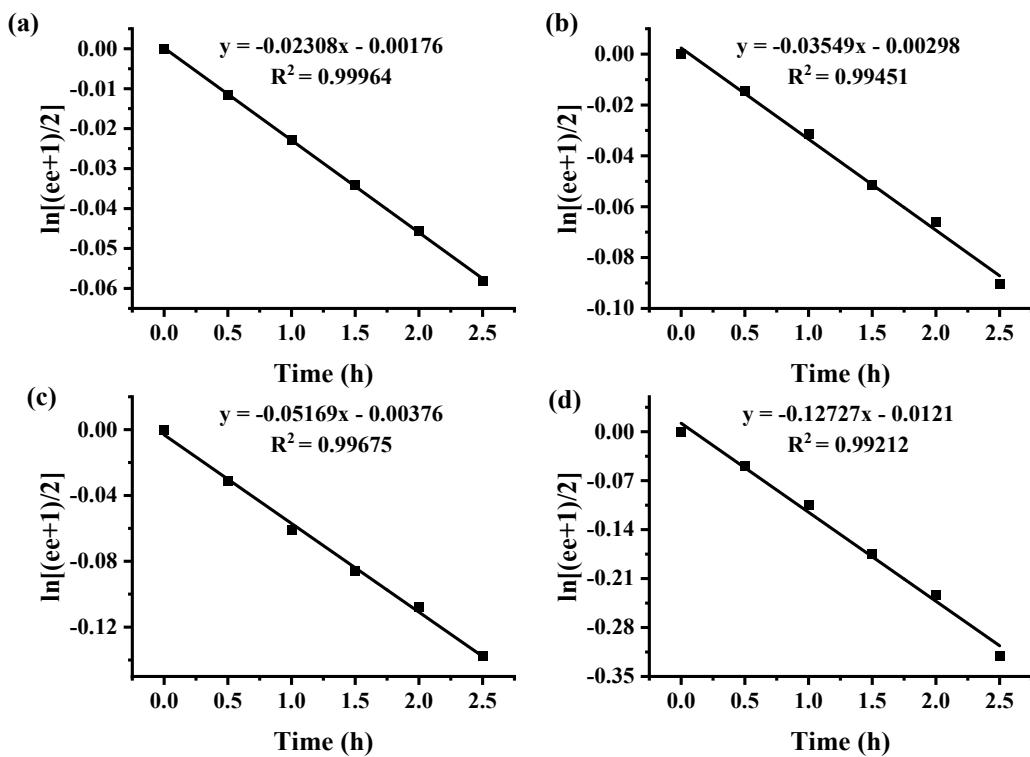


Figure S31. Time-dependent enantiomeric excess value decay profiles at (a) 60 °C, (b) 70 °C, (c) 80 °C and (d) 90 °C, respectively.

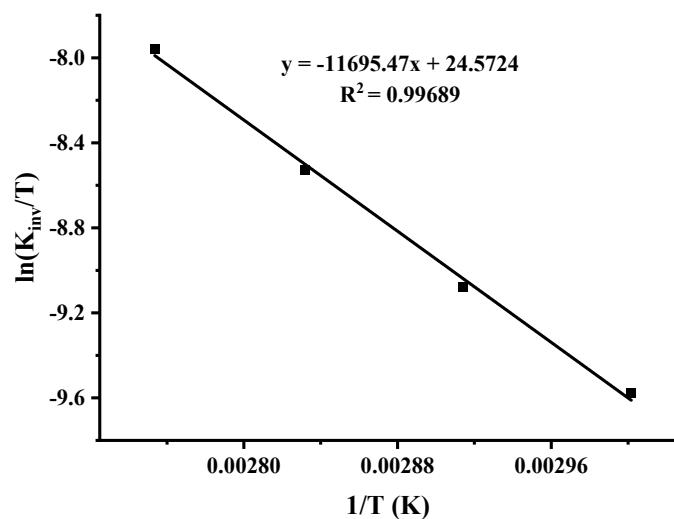


Figure S32. The half-life of (+)-**BDTT-1Np** at different temperatures.

Table S5. The half-life of (+)-**BDTT-1Np** at different temperatures.

T/°C	60	70	80	90
t _{1/2} /h	30.0	20.0	13.4	5.5

Table S6. The inversion barriers of (+)-**BDTT-1Np** (R/S).

Compound	ΔH/kcal/mol	ΔS/J/k	ΔG/kcal/mol
(+)- BDTT-1Np	23.24	6.77	22.8

Resolution of **BDTT-2Np** and optical rotations

The resolution of the **BDTT-2Np** was carried out by chiral HPLC. The two enantiomers were obtained on a semipreparative scaled chiral column (CHIRALPAK-IB dimension: 10 mm ϕ × 250 mmL); eluent: hexane/dichloromethane (6/1, v/v); Injection information: concentration, 1mg/mL and volume: 130 μ L/injection. From the 3.7 mg scale of **BDTT-2Np**, 1.0 mg (ee > 99%) of (+)-**BDTT-2Np** and 1.1 mg (ee > 99%) of (-)-**BDTT-2Np** were efficiently obtained. The optical rotations of (-)-**BDTT-2Np**, $[\alpha]_D^{25} = -770^\circ$ (c = 0.32 mg/mL in DCM) and (+)-**BDTT-2Np**, $[\alpha]_D^{25} = +743^\circ$ (c = 0.32 mg/mL in DCM) were observed.

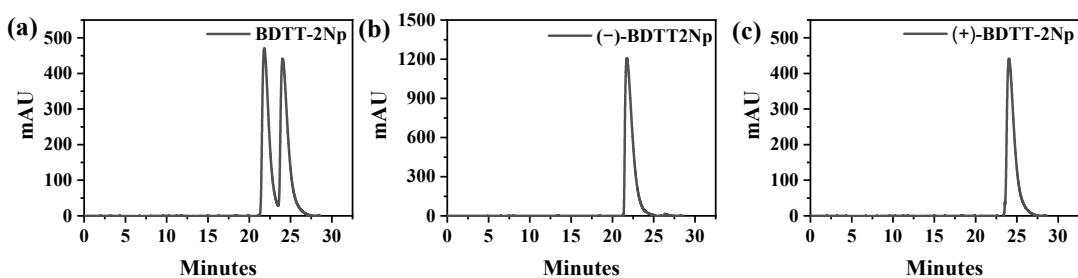


Figure S32. HPLC trace of **BDTT-2Np** (a), (-)-**BDTT-2Np** (b, ee > 99%) and (+)-**BDTT-2Np** (c, ee > 99%) at room temperature. Resolution of **BDTT-2Np** by chiral HPLC monitored at 254 nm was performed with a CHIRALPAK IB column. Eluent: hexane/dichloromethane (6/1, v/v), Flow Rate: 2.5 mL/min, Column: CHIRALPAK-IB.

Racemization of (+)-BDTT-2Np

Racemization of (+)-BDTT-2Np was carried out in CH_2Cl_2 by heating at different temperatures. The process was monitored from time to time by chiral HPLC (CHIRALPAK-IB) with hexane/dichloromethane (6/1, v/v) as eluent. The half-life of (+)-BDTT-2Np was studied using the same method as for (+)-BDTT-Me:

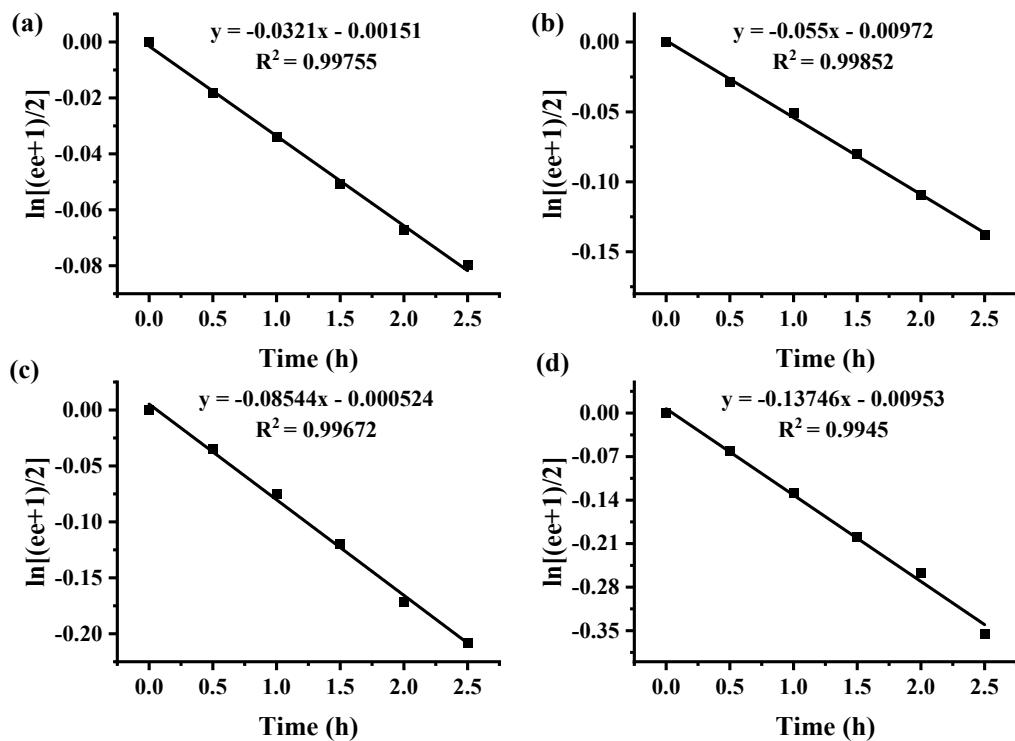


Figure S33. Time-dependent enantiomeric excess value decay profiles at (a) $60\text{ }^\circ\text{C}$, (b) $70\text{ }^\circ\text{C}$, (c) $80\text{ }^\circ\text{C}$, and (d) $90\text{ }^\circ\text{C}$, respectively.

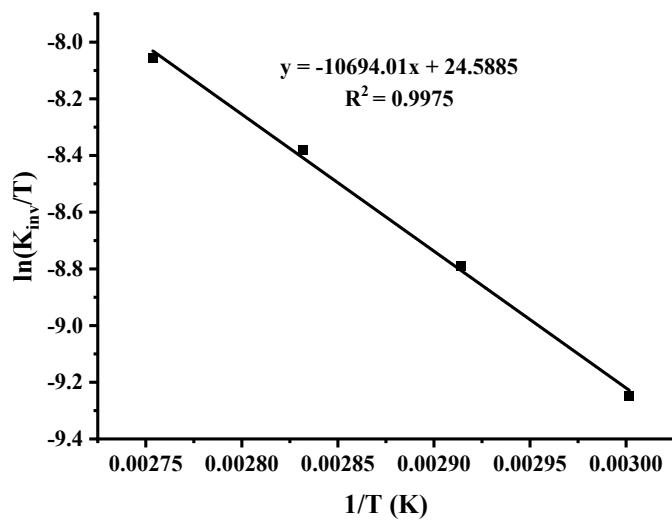


Figure S34. The half-life of (+)-**BDTT-2Np** at different temperatures.

Table S7. The half-life of (+)-**BDTT-2Np** at different temperatures.

T/°C	60	70	80	90
t _{1/2} /h	21.6	12.6	8.1	5.0

Table S8. The inversion barriers of (-)-**BDTT-2Np** (R/S).

Compound	ΔH/kcal/mol	ΔS/J/k	ΔG/kcal/mol
(-)- BDTT-2Np	21.26	6.9	20.9

Resolution of **BDTT-2An** and optical rotations

The resolution of the **BDTT-2An** was carried out by chiral HPLC. The two enantiomers were obtained on a semipreparative scaled chiral column (CHIRALPAK-IB dimension: 10 mm ϕ × 250 mm); eluent: hexane/dichloromethane (5/1, v/v); Injection information: concentration, 2 mg/mL and volume: 150 μ L/injection. From the 4.2 mg scale of **BDTT-2An**, 0.9 mg (ee > 99%) of (-)-**BDTT-2An** and 1.1 mg (ee > 99%) of (+)-**BDTT-2An** were efficiently obtained. The optical rotations of (-)-**BDTT-2An**, $[\alpha]_D^{25} = -1036^\circ$ (c = 0.350 mg/mL in DCM) and (+)-**BDTT-2An**, $[\alpha]_D^{25} = +1002^\circ$ (c = 0.37 mg/mL in DCM) were observed.

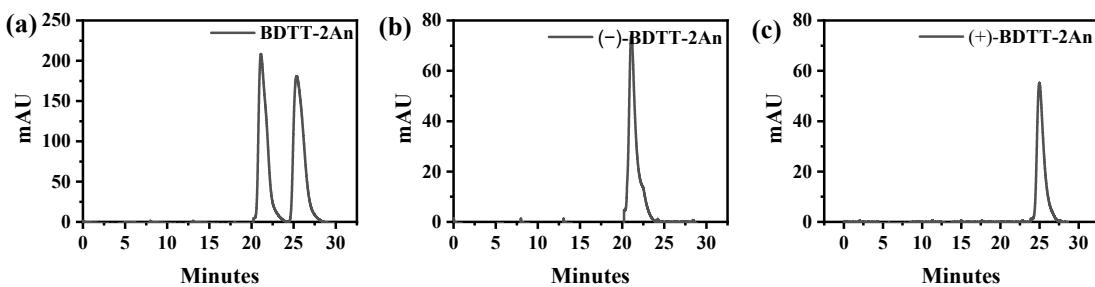


Figure S35. HPLC trace of **BDTT-2An** (a), **(-)-BDTT-2An** (b, *ee* > 99%) and **(+)-BDTT-2An** (c, *ee* > 99%) at room temperature. Resolution of **BDTT-2An** by chiral HPLC monitored at 254 nm was performed with a CHIRALPAK-IB column. Eluent: hexane/dichloromethane (5/1, *v/v*), Flow Rate: 2.5 mL/min, Column: CHIRALPAK-IB.

Racemization of **(+)-BDTT-2An**

Racemization of **(+)-BDTT-2An** was carried out in CH_2Cl_2 by heating at different temperatures. The process was monitored from time to time by chiral HPLC (CHIRALPAK-IB) with hexane/dichloromethane (5/1, *v/v*) as eluent. The half-life of **(+)-BDTT-2An** was studied using the same method as for **(+)-BDTT-Me**:

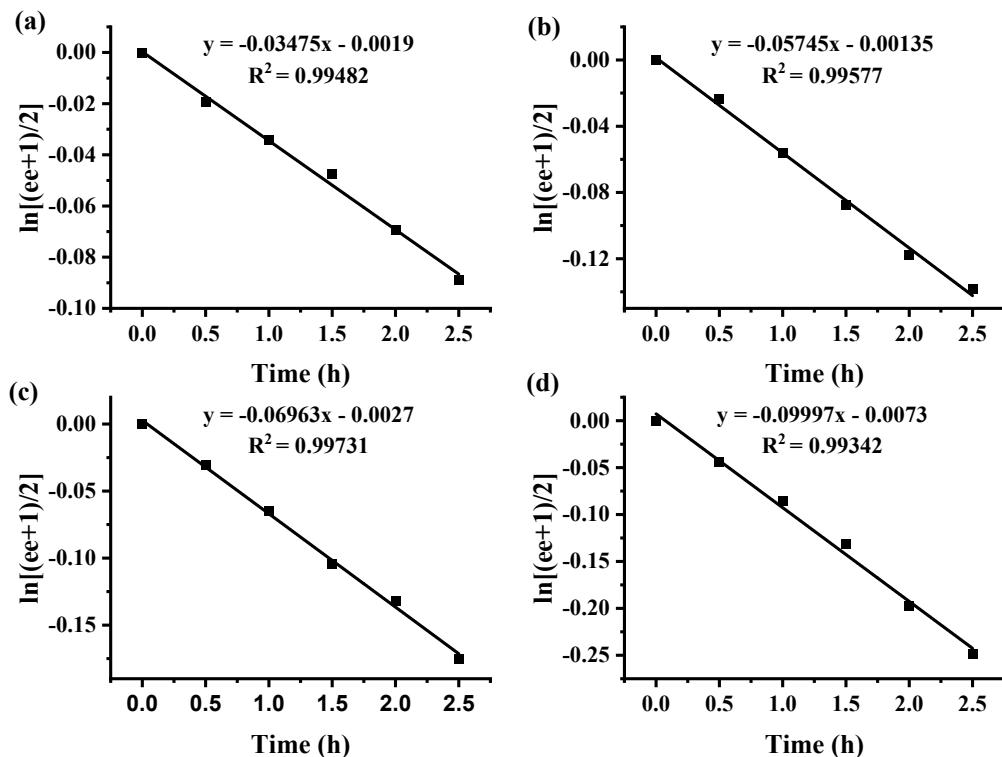


Figure S36. Time-dependent enantiomeric excess value decay profiles at (a) 100 °C, (b) 110 °C, (c) 120 °C, and (d) 130 °C, respectively.

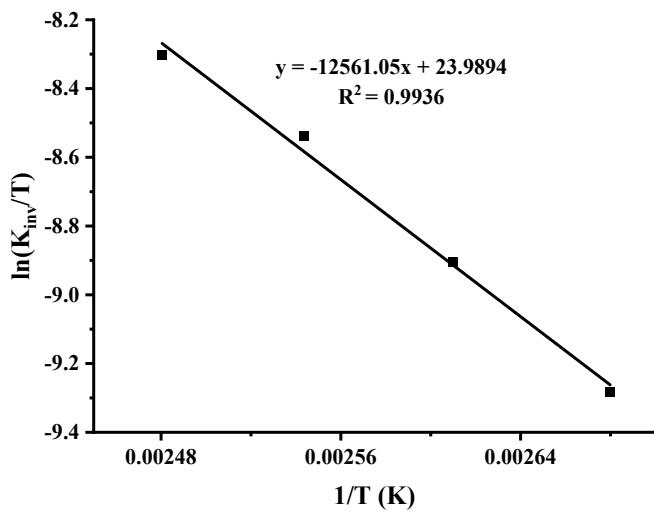


Figure S37. The half-life of (+)-**BDTT-2An** at different temperatures.

Table S9. The half-life of (+)-**BDTT-2An** at different temperatures.

T/°C	100	110e	120	130
t _{1/2} /h	20.0	12.2	9.9	7.0

Table S10. The inversion barriers of (+)-**BDTT-2An** (R/S).

Compound	ΔH/kcal/mol	ΔS/J/k	ΔG/kcal/mol
(+)- BDTT-2An	24.96	1.92	24.83

Resolution of BDTT-9An and optical rotations

The resolution of the **BDTT-9An** was carried out by chiral HPLC. The two enantiomers were obtained on a semipreparative scaled chiral column (CHIRALPAK-IB dimension: 10 mm ϕ × 250 mmL); eluent: hexane/dichloromethane (95/5, v/v); Injection information: concentration, 2.5 mg/mL and volume: 100 μ L/injection. From the 6.2 mg scale of **BDTT-9An**, 1.0 mg (ee > 99%) of (-)-**BDTT-9An** and 1.3 mg (ee > 99%) of (+)-**BDTT-9An** were efficiently obtained. The optical rotations of (-)-**BDTT-9An**, $[\alpha]_D^{25} = -1186^\circ$ (c = 0.35 mg/mL in DCM) and (+)-**BDTT-9An**, $[\alpha]_D^{25} = +1108^\circ$ (c = 0.35 mg/mL in DCM) were observed.

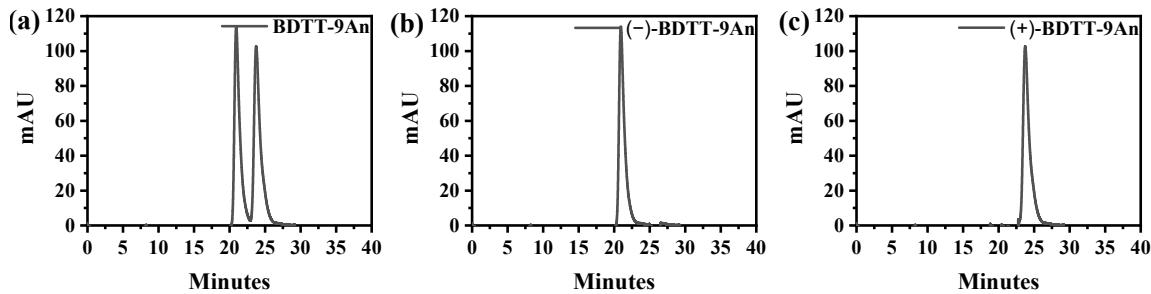


Figure S38. HPLC trace of **BDTT-9An** (a), **(-)-BDTT-9An** (b, $ee > 99\%$) and **(+)-BDTT-9An** (c, $ee > 99\%$) at room temperature. Resolution of **BDTT-9An** by chiral HPLC monitored at 254 nm was performed with a CHIRALPAK IB column. Eluent: hexane / dichloromethane (95/5, v/v), Flow Rate: 2.5 mL/min, Column: CHIRALPAK-IB.

Racemization of **(+)-BDTT-9An**

Racemization of **(+)-BDTT-9An** was carried out in CH_2Cl_2 by heating at different temperatures. The process was monitored from time to time by chiral HPLC (CHIRALPAK-IB) with hexane/dichloromethane (95/5, v/v) as eluent. The half-life of **(+)-BDTT-9An** was studied using the same method as for **(+)-BDTT-Me**:

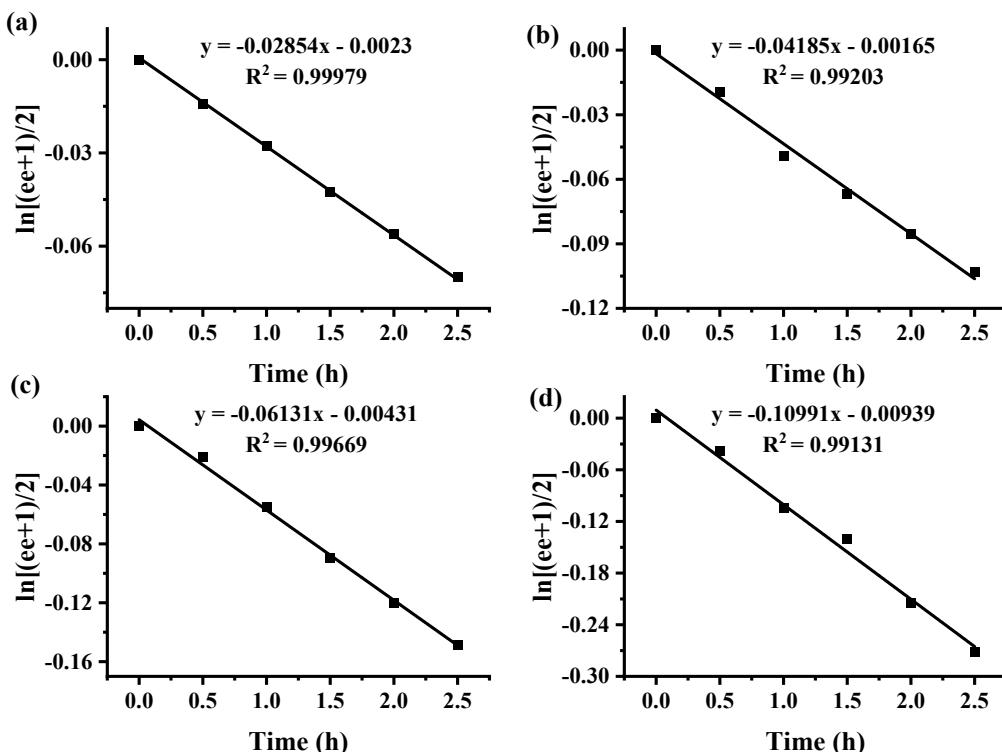


Figure S39. Time-dependent enantiomeric excess value decay profiles at (a) 120 °C, (b) 130 °C, (c) 140 °C, and (d) 150 °C, respectively.

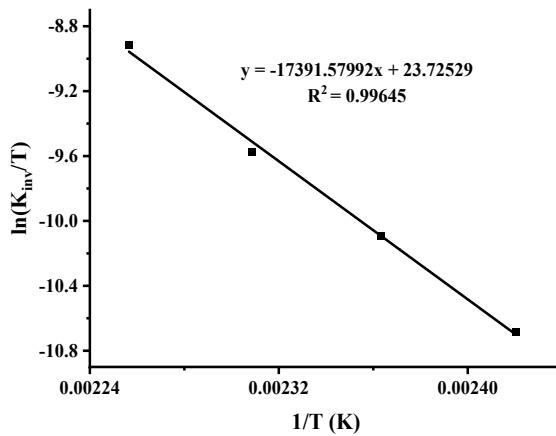


Figure S40. The half-life of (+)-**BDTT-9An** at different temperatures.

Table S11. The half-life of (+)-**BDTT-9An** at different temperatures.

T/°C	120	130	140	150
t _{1/2} /h	24.8	16.6	10.3	6.3

Table S12. The inversion barriers of (+)-**BDTT-9An** (R/S).

Compound	ΔH/kcal/mol	ΔS/J/k	ΔG/kcal/mol
(+)- BDTT-9An	30.26	8.18	29.73

Resolution of BDTT-1Py and optical rotations

The resolution of the **BDTT-1Py** was carried out by chiral HPLC. The two enantiomers were obtained on a semipreparative scaled chiral column (CHIRALPAK-IB dimension: 10 mm ϕ × 250 mmL); eluent: hexane/dichloromethane (3/1, v/v); Injection information: concentration, 2.5 mg/mL and volume: 100 μ L/injection. From the 5.0 mg scale of **BDTT-1Py**, 1.2 mg (ee > 99%) of (−)-**BDTT-1Py** and 1.5 mg (ee > 99%) of (+)-**BDTT-1Py** were efficiently obtained. The optical rotations of (−)-**BDTT-1Py**, $[\alpha]_D^{25} = -1205^\circ$ (c = 0.38 mg/mL in DCM) and (+)-**BDTT-1Py**, $[\alpha]_D^{25} = +1242^\circ$ (c = 0.38 mg/mL in DCM) were observed.

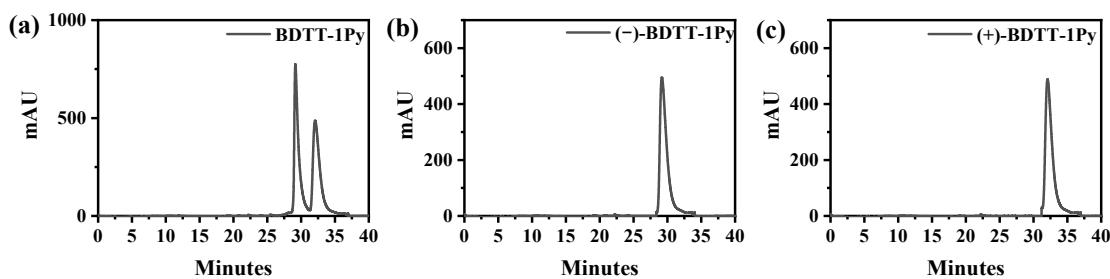


Figure S41. HPLC trace of **BDTT-1Py** (a), **(-)-BDTT-1Py** (b, $ee > 99\%$) and **(+)-BDTT-1Py** (c, $ee > 99\%$) at room temperature. Resolution of **BDTT-1Py** by chiral HPLC monitored at 254 nm was performed with a CHIRALPAK IB column. Eluent: hexane / dichloromethane (3/1, v/v), Flow Rate: 2.5 mL/min, Column: CHIRALPAK-IB.

Racemization of **(+)-BDTT-1Py**

Racemization of **(+)-BDTT-1Py** was carried out in DCM by heating at different temperatures. The process was monitored from time to time by chiral HPLC (CHIRALPAK-IB) with hexane/dichloromethane (3/1, v/v) as eluent. The half-life of **(+)-BDTT-1Py** was studied using the same method as for **(+)-BDTT-Me**:

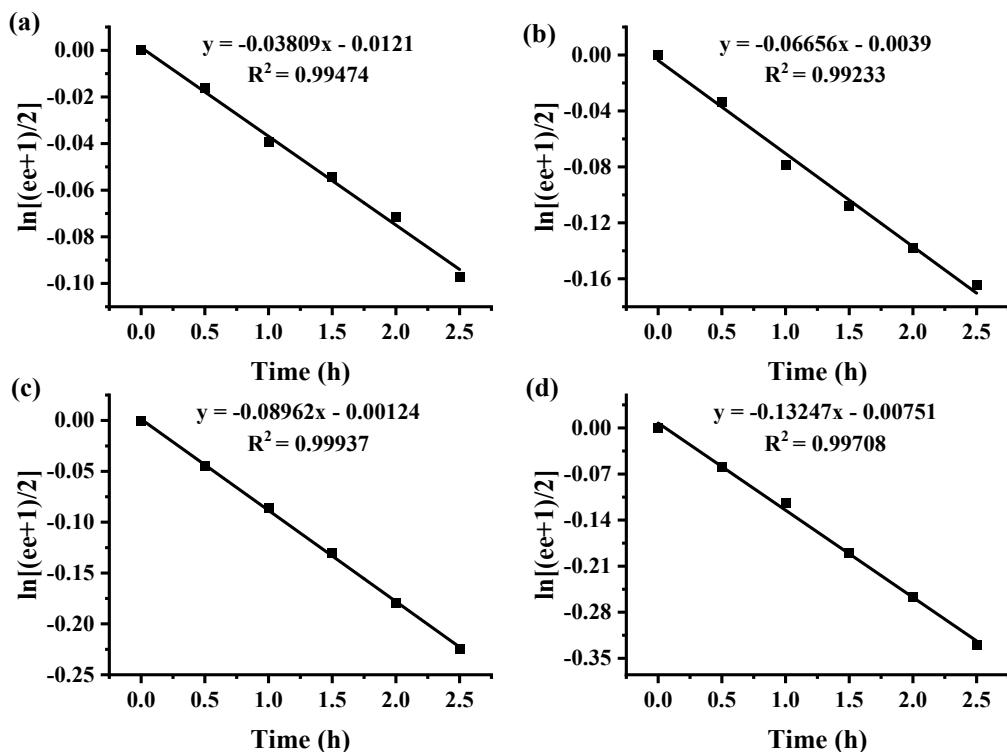


Figure S42. Time-dependent enantiomeric excess value decay profiles at (a) 100 °C, (b) 110 °C, (c) 120 °C, and (d) 130 °C, respectively.

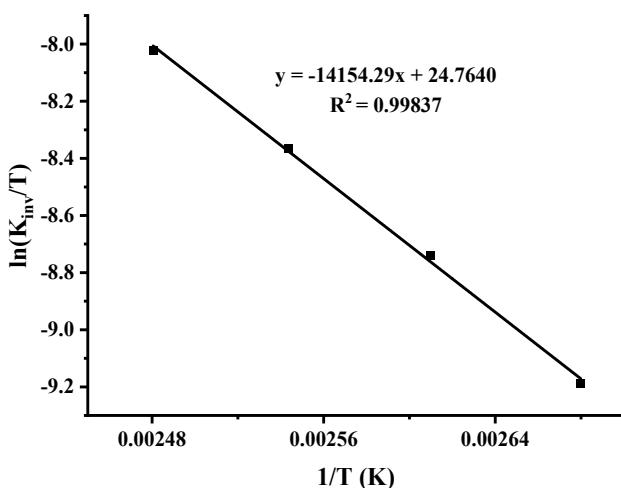


Figure S43. The half-life of (+)-BDTT-1Py at different temperatures.

Table S13. The half-life of (+)-BDTT-1Py at different temperatures.

T/°C	100	110	120	130
$t_{1/2}/\text{h}$	18.2	10.4	7.7	5.2

Table S14. The inversion barriers of (+)-BDTT-1Py (R/S).

Compound	$\Delta H/\text{kcal/mol}$	$\Delta S/\text{J/k}$	$\Delta G/\text{kcal/mol}$
(+)-BDTT-1Py	28.13	8.36	27.58

4. Optical and electrochemical data of BDTT-Ars.

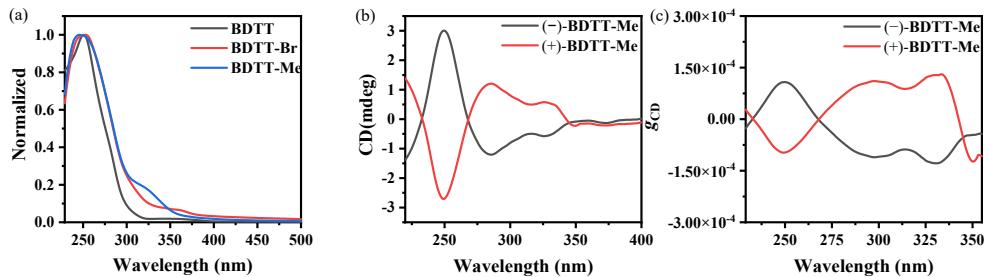


Figure S44. (a) Absorption spectra of **BDTT**, **BDTT-Br** and **BDTT-Me**; (b) CD spectra of **BDTT-Me** in DCM, $[\text{C}] = 1.0 \times 10^{-4} \text{ M}$ and (c) Absorption dissymmetry factor g_{abs} corresponded CD spectra of (-)-**BDTT-Me** and (+)-**BDTT-Me** at room temperature.

Table S15. Optical and electrochemical data of **BDTT-Ars**.

Compound	λ_{abs} (nm) ^a	λ_{FL} (nm) ^a	λ_{PL} (nm) ^b	Φ_{F} /% ^c	τ_{FL} (ns) ^a	τ_{PL} (ms) ^b	$E_{\text{g}}^{\text{opt}}$ (eV)	HOMO (eV) ^d	LUMO (eV) ^d	k_{r} (10^6 S ⁻¹) ^e	k_{nr} (10^9 S ⁻¹) ^f
BDTT-Me	246, 317	--	--	--	--	--	3.86	-5.74	-1.88	--	--
BDTT-Ph	244, 314	400	504, 534	0.03/0.05 ^f	0.87	10	3.70	-5.70	-2.00	0.34	1.15
BDTT-1Np	248, 319	403	506, 542	0.06/0.11 ^f	2.1	8	3.86	-5.68	-2.03	0.29	0.47
BDTT-2Np	244, 328	408	512, 548	0.32/0.58 ^f	2.7	4	3.70	-5.62	-2.25	1.20	0.37
BDTT-2An	259, 329	445	528, 552	0.47/2.94 ^f	6.3	110	3.65	-5.53	-2.46	0.75	0.16
BDTT-9An	258, 380	358	544	0.19/2.72 ^f	1.7	26	3.37	-5.50	-2.40	1.10	0.59
BDTT-1Py	242, 352	446	614, 672	0.59/3.16 ^f	7.2	75	3.07	-5.45	-2.39	0.82	0.14

^aIn DCM solution at RT (1×10^{-5} M); ^bIn 2-MTHF solution at 77 K (1×10^{-5} M); ^cRelative fluorescence quantum yield using quinine sulphate ($\Phi_{\text{F}} = 0.55$, 1×10^{-5} M in 0.5 M H_2SO_4) as a standard; ^dCV measured in 0.1 M TBAF/ DCM at a scan rate of 100 mV/s, $[\text{C}] = 1 \times 10^{-3}$ M, vs Fc/Fc^+ . $E_{\text{HOMO}} = -[E_{\text{ox}} - E_{(\text{FC}/\text{FC}^+)} + 4.8]$ eV. $E_{\text{LUMO}} = E_{\text{g}} + E_{\text{HOMO}}$. ^eRadiative decay rate constants calculated by $\Phi_{\text{F}} = k_{\text{r}} \times \tau_{\text{F}}$. ^fNonradiative rate constants calculated by $k_{\text{r}} + k_{\text{nr}} = \tau_{\text{F}}^{-1}$. ^fThe fluorescence quantum yields in solid states, Edinburgh FLS1000.

Cyclic voltammetries of BDTT-Ars

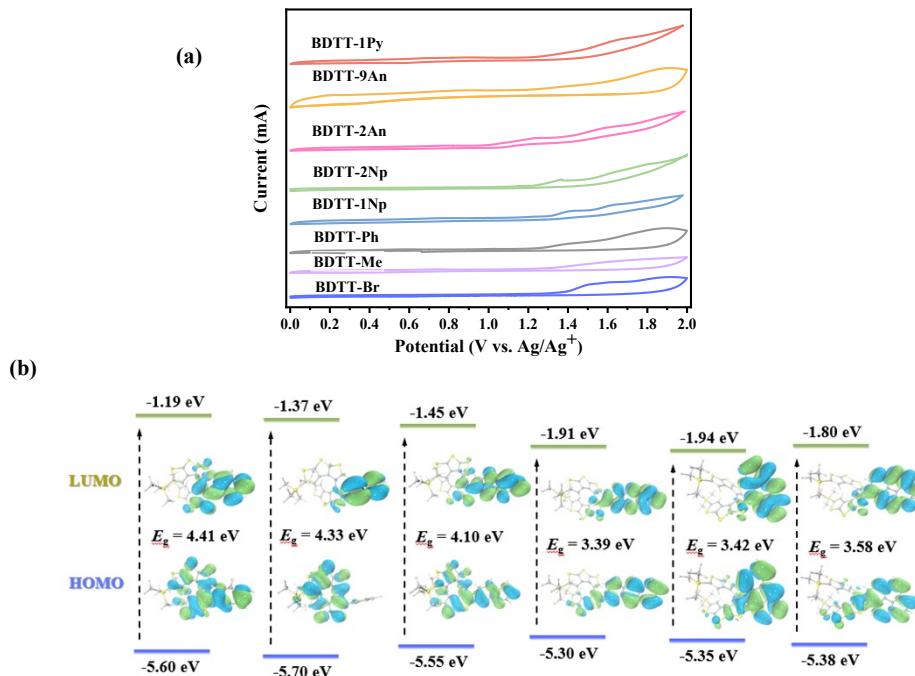


Figure S45. (a) Cyclic voltammogram (classical presentation) of **BDTT-Ars** in DCM ($[\text{C}] = 1 \times$

10^{-3} M, supporting electrolyte: $[n\text{Bu}_4\text{N}][\text{PF}_6]$ (0.1 M), scan rate: 100 mV s $^{-1}$, room temperature).

(b) Visualizations of HOMO and LUMO distributions (B3LYP/6-31G*) for **BDTT-Ars**.

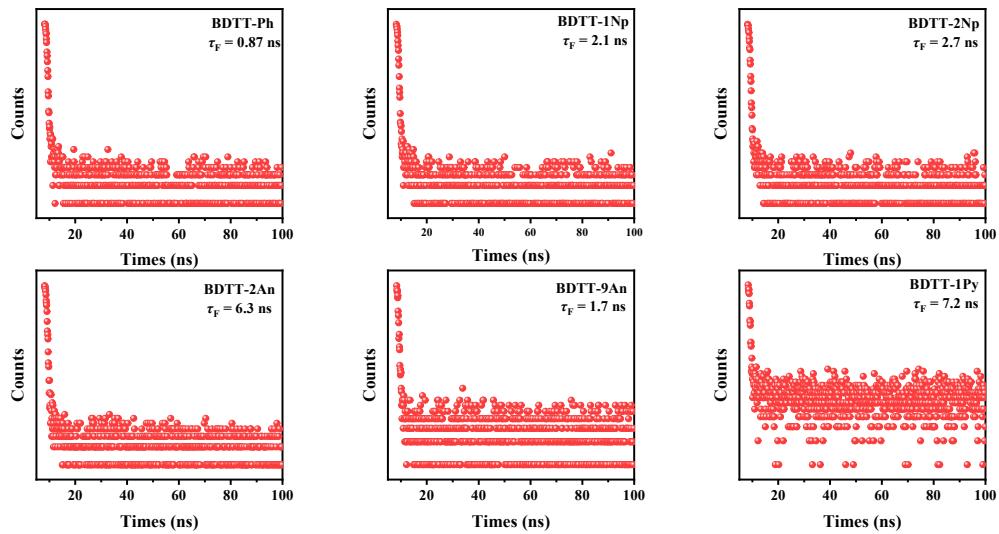


Figure S46. Time-resolved fluorescence decay of **BDTT-Ars** in DCM at room temperature.

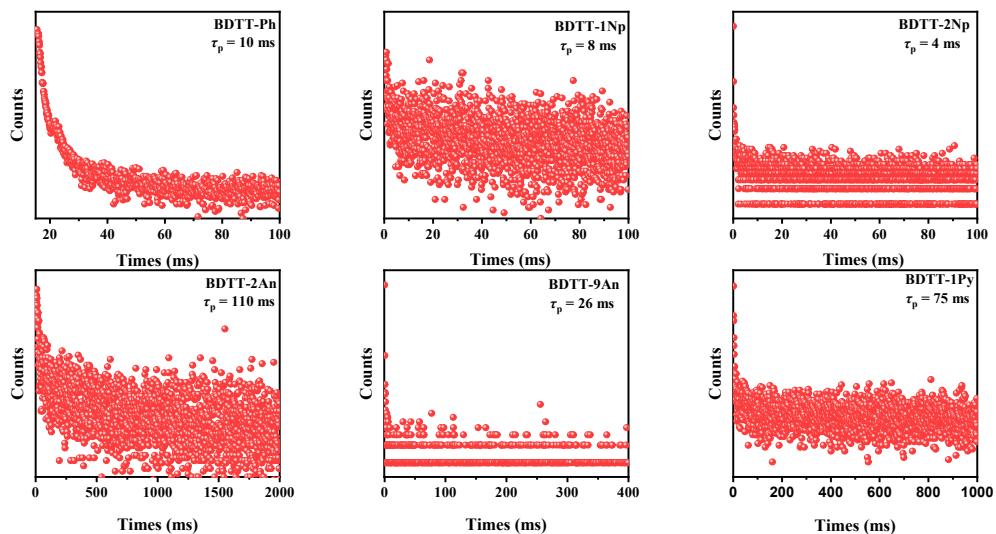


Figure S47. Phosphorescence transient decay spectra of **BDTT-Ars** in 2-MTHF at 77 K.

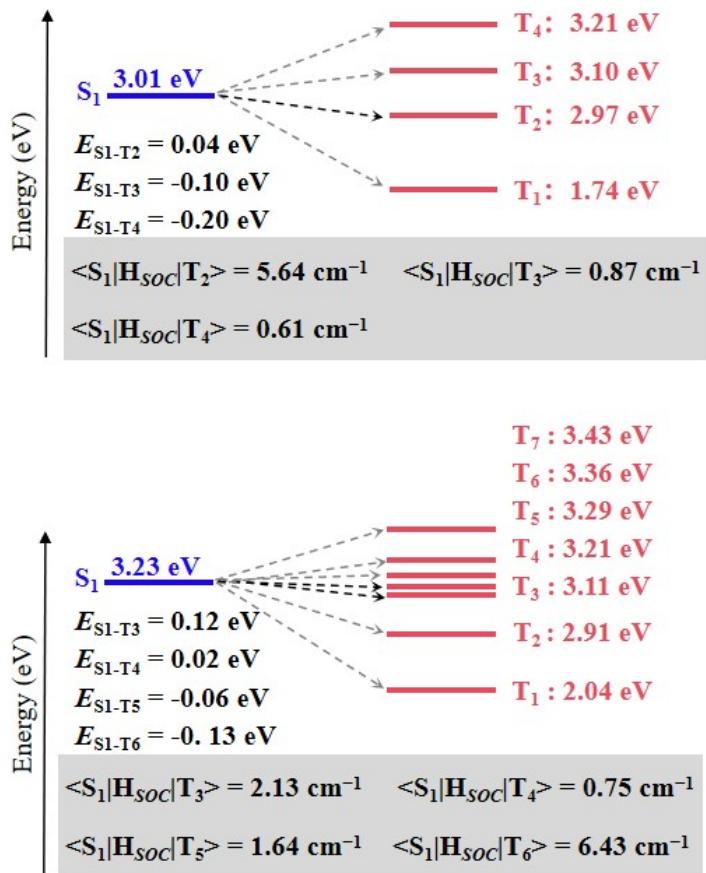


Figure S48. The fluorescence quantum Theoretical calculations of ISC channels, SOC matrix elements, and frontier molecular orbitals of **BDTT-9An** (up) and **BDTT-1Py** (down).

5. References

- S1. Suffert, J. Simple Direct Titration of Organolithium Reagents Using *N*-Pivaloyl-*o*-toluidine and/or *N*-pivaloyl-*o*-benzylaniline. *J. Org. Chem.* 1989, **54**, 509–510.
- S2. J. N. Demas, G. A. Crosby The Measurement of Photoluminescence Quantum Yields. *J. Phys. Chem.* 1971, **75**, 991–1024.