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1. Materials preparation: The synthesis of all the metal oxides used in our study have been
reported previously, with the exception for Mn,O3 and CuO. The synthesis of BiVO4 films was
reported in ref.!. Single crystal TiO2 (100) was purchased from MTI Corporation (we note a single
crystal sample was used for TiO»), reported in ref.2. The syntheses of Cr203, Fe,03, and NiO films
were reported in ref.®. The syntheses of Mn2O3; and CuO films used in this study are described

below.

Preparation of Mn2O3: Mn»Os thin films were synthesised by adapting our previously used Fe2O3
sol-gel synthesis procedure.’ MnClz-4H,0 (0.66 g, 3.33 mmol) and citric acid (0.64 g, 3.33 mmol)
were dissolved in ethanol (10 mL). The resulting solution was stirred in a closed round bottom
flask at 60 °C for 6-7 h. After this time, DMF 20 pL was added as a drying control reagent and the
solution was stirred for additional 30 min. The solution was then spin coated onto quartz glass
substrates (5000 rpm, 50 s) and the deposited films were annealed in air (20 min at 120 °C). A
second layer was then spin coated on top of the first one (5000 rpm, 50 s) and the films were
annealed again (20 min at 120 °C). Finally, the films were annealed at 550 °C (ramp: 10 min to 80
°C, 20 min at 80 °C, 1 hto 550 °C, 4 h at 550 °C) to complete the conversion to Mn>O3 (confirmed
by structural analyses in Section S2). The films were then allowed to cool to room temperature

within the oven.

Preparation of CuO: CuO was synthesis by an aerosol-assisted chemical vapour deposition method
based on literature reported pathway* °. Details on the set-up used are published elsewhere®.
Copper (II) nitrate hemipentahydrate (0.1 M) in methanol (40 mL) was aerosolised an ultrasonic
humidifier (2 MHz, Liquifog, Johnson Matthey) and carried over the heated quartz substrate held
at 350 °C using compressed air at a flow rate of 2 litres per minute (MFC, Brooks) over a period
of ~20 min until the solution was fully transferred. The sample was then annealed in air at 500 °C
for 12 hrs to ensure full conversion of any potential Cu or Cu2O impurities into the CuO (confirmed

by structural analyses in Section S2).

2. Materials structural characterisation: Apart from Mn2Os; and CuO, the structural
characterisation of all samples used in this study have been reported previously'’. The collected

X-ray diffraction (XRD) data of BiVOs4, TiO2, Mn,03, and CuO were further fitted based on Le
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Bail model with using standard parameters from the Physical Sciences Data-Science database. All
these XRD parameters were summarised in Table S1, and the XRD parameters for the rest of
TMOs (Cr203, Fe203, and NiO) used in this study can be found in ref.?. All materials are in dense
thin films with thicknesses ranging from 30 to 130 nm, except for bulk single crystal TiO2 (0.5

mm in thickness).

3. Femtosecond transition absorption spectroscopy (fs-TAS): The fs-TAS setup used in this
work is based on a regeneratively amplified Ti:sapphire laser (Solstice, Spectra-Physics) that is
pumped by an intracavity-doubled, Q-switched, diode-pumped Nd:YLF laser (Empower systems,
Spectra-Physics) and seeded by a diode-pumped, mode-locked Ti:sapphire laser (Mai Tai system,
Spectra-Physics). The output from the regenerative laser comprises 800 nm laser pulses with a
temporal width of 92 fs at a 1 kHz repetition rate. The 800 nm beam is subsequently divided into
two parts, which are used to generate pump and probe pulses. The pump portion is directed to an
optical parametric amplifier (TOPAS Prime, Light Conversion) and a frequency mixer (NirUVis,
Light Conversion), which allows generation of pulses with specific wavelengths and can be tuned
from 290 nm to the NIR region. The pump pulse is then directed through a depolarizer and is

focused on the sample as the excitation light source.

The probe portion of the 800 nm pulse is first directed to a delay stage that allows pump-probe
delay times of ~ 6 ns. After the delay stage, the probe pulse is focussed into an yttrium aluminium
garnet (YAQG) crystal in which a NIR continuum (850-1650 nm) is generated via self-phase
modulation. The continuum probe pulse is split into two parts using a semi-transparent mirror,
with one portion used to capture the signal of interest and the other to function as a reference that
mitigates the effects of beam fluctuations, thereby enhancing the signal-to-noise ratio. The ‘signal’
and ‘reference’ probe pulses are collected using separate multichannel spectrometers (Si or InGaAs

sensors) transmitted through optical fibres.

An automated femtosecond transient absorption spectrometer (Helios, Ultrafast Systems) is used
for the pump-probe measurement and data collection. Prior to data collection, temporal and spatial
overlap between the pump and ‘signal’ probe pulses is achieved. The transmitted probe pulses with

and without pump pulse are measured using an optical chopper rotating at 500 Hz. The transient
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absorption signal AA is calculated according to AA = —log(lli), where I, is the transmitted probe

pulse intensity with pump and I,,, is the one without pump. The energies of the pump pulse were
measured using an energy meter (VEGA P/N 7201560, OPHIR Photonics), and the laser fluences

of 2.1-2.9 mJ cm™ were estimated with a 500 pm diameter aperture at room temperature in air.

4. Temperature dependent fs-TAS characterization: An optical cryostat (Oxford Instruments
OptistatDN-V) was used to control the temperatures between 78-505 K. The cryostat was inserted
at the sample position in fs-TAS setup to perform temperature dependent fs-TAS. During the
measurement, the temperatures were changed randomly. After each temperature setpoint, the
system was allowed to stabilize for 20 min before data collection to ensure a uniform temperature

inside the cryostat. All the samples were found to be stable over the measured temperature range.

5. Density functional theory (DFT+U) calculations: Total energy calculations were performed
using spin-polarised density functional theory (DFT+U) as implemented in the Vienna ab-initio
Simulation Package (VASP) ® ? using the rotationally invariant DFT+U formalism proposed by

Dudarev et al'®

. We employed the projector-augmented wave (PAW) method and the Perdew,
Burke and Ernzerhof exchange-correlation functional together with the Hubbard U correction of
U=4.0 eV for Fe atoms, which was determined after a series of calculations. In all the calculations,
we employed a 2x2x1 supercell with 120 atoms (the charge of the simulation cell was set using
the NELECT tag within VASP, which includes a homogeneous background charge for charged
simulation cells), a plane wave kinetic energy cutoff of 500 eV, and 3x3x2 k-points mesh for the
Brillouin zone integration. The convergence criteria were set to 107> eV for the electronic self-

consistent iteration and 0.01 eV/A for the atomic forces on all atoms during ionic relaxations.

The polaron bonding energy E, was calculated as the total energy difference between two models
of a-Fe,Os3 containing an additional electron that could be either delocalised or localised '!. For
the delocalised state, the pristine bulk a-Fe,Os structure was used, and the total energy of the
system was calculated by adding an extra electron to the supercell. For the localised state, two
different strategies were employed to model polaron formation. The first strategy relied on the
bond distortion method '2, in which Fe-O bonds around a specific Fe atom were symmetrically

elongated and the structure was used as an initial configuration for geometry optimization

4
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calculations. For the second strategy, we applied the ShakeNBreak python package '*'* to generate
ten initial configurations that contained chemically guided bond distortions and rattling around the
same specific Fe atom. The first method is an efficient way to guide the formation of polarons
during electronic structure calculations. The second method follows a general and automatic
strategy to build distorted structures for point defects in solids, which was shown to enable the
identification of low energy defect structures for different materials. In both strategies, the

magnetic moment of a specific Fe atom was changed to accommodate the additional electron.

For the bond distortion method, the FeO¢ that contained the excess electron retained similar
characteristics to the pristine one, with three shorter and three longer Fe-O bonds. The shorter Fe-
O were elongated from 1.93 A in the pristine and delocalised solution to 2.01 A following
localization, while the longer bonds increased from 2.14 to 2.16 A, Fig. 2¢ (II). Meanwhile, upon
geometry optimization with an excess electron, all ten initial structures generated via the
ShakeNBreak method yielded a-Fe2Os structures with the same structural characteristics and
energies, Fig. 2c (III). In this case, the FeOgs with the excess electron became more asymmetric
compared to the pristine a-Fe>O3, with Fe-O ranging from 1.97 A to 2.19 A. The structure obtained
with the ShakeNBreak method is slightly favoured to the one obtained from the bond distortion
method, showing that the method can be useful to find other solutions for localized excess electrons
that can be energetically favourable, or at least comparable, to the ones found via standard

modelling approaches.

The Hubbard U correction of U=4.0 eV for Fe atoms was determined after a series of calculations
and is similar to the U=4.3 eV value used for bulk o-Fe;O; in the literature'> !°. Table Sl
summarizes the results obtained with different values of U, showing that the usage of U=4.0 eV
results in bandgap values close to the experimental bandgap of nearly 2.2 eV'7"!. For reference,
we also provide the results obtained with HSE06 functional® for pristine a-Fe>O3, the results of
magnetic moment for the Fe atom with and without the polaron formation using the bond distortion
method, the polaron binding energies with different values of U and the polaron binding energy

calculated with the HSE06 functional from the literature''.

6. Steady-state Uv-Vis-NIR absorption spectroscopy characterizations
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The steady state Uv-Vis-NIR absorption spectra were performed in Cary 7000 Universal
Measurement Spectrophotometer (UMS). Note the step at ~ 850 nm in some spectra is an

instrument artefact.

7. Small polaron absorption analysis.

2Ze%a’n,

In Equation 1, C = J2, in which ] is the electronic coupling matrix element; Z is the

number of nearest neighbours for polaron hopping; e is the elementary charge; a is the lattice
constant; n is the small polaron density; c is the speed of light in vacuum. We used C as a fitting

constant without considering the details parameters included.
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211 Table S1. XRD parameters summary. Part of TMOs parameters was summarized here, and the

212  rest can be found in ref. 3.

213
space Crystal : lattice paramster (A) -
grotp system value error value error value error
BiVO, 5.1050 0.0010 5.1050 0.0010 11.5770 0.0010
standard
BIVO 14,/a (88) Tetragonal
4 5.0871 0.0008 5.0871 0.0008 11.6189 0.0026
sample
Ti0; 4.5941 0.0001 4.5941 0.0001 2.9589 0.0001
standard  P4,/mnm
Tio (136) Tetragonal
2 4.5920 0.0002 4.5920 0.0002 2.9576 0.0012
sample
Mn203
9.4146 0.0001 9.4146 0.0001 9.4146 0.0001
standard )
Mn.O la-3 (206) Cubic
-3 9.4130 0.0010 9.4130 0.0010 9.4130 0.0010
sample
CuO
4.6837 0.0005 3.4226 0.0005 5.1288 0.0006
standard C12/c1 .
Cuo (15) Monoclinic
Y 4.6752 0.0005 3.4234 0.0004 5.1226 0.0006
214 sample
215
216
unit cell angles (°) volume (A3) Average crystal size Fit
a B v
value value error value value error change (%) LX T (nm) wRp
BiVO,
standard S0 90 - S0 301.71 - - - - -
BiVO,
S0 90 - S0 300.678 0.095 -0.34 23.3 341 0.2330
sample
TiO,
standard 90 90 - 90 62.450 - - - - -
Ti0, 90 90 - 90 62.367 0.025 -0.13 14.9 53.4 0.0934
sample
IVIn203
standard S0 90 - S0 834.460 - - - - -
Mn203
90 90 - 90 834.047 0.274 -0.05 51.8 15.3 0.5377
sample
Cuo S0 99.54 0.01 S0 81.08 - - - - -
standard
cuo 90 99.18 0.01 90 80.938 0.01 -0.18 49.7 16.0 0.3636
217 sample
218

219  Standard samples referred to BiVO4 2!, TiO2 %2, Mn203 ?*, and CuO 2*. The crystal forms of TiO2
220  and BiVOs are rutile and tetragonal scheelite, respectively.

221
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Table S2: Calculations to determine the Hubbard U correction of U=4.0 eV for Fe atoms.

The value of U=4.0 used in this work is close to the U=4.3 eV value used in the literature and can

reproduce the bandgap of nearly 2.2 eV'7"! experimentally determined for a-FeO:s.

Pristine g-Fe203

Polaron Bond Distortion Method for g-Fe203

PBE

PBE+3.5

PBE+4.0

PBE+4.3

PBE+4.5

PBE+5.0

PBE+5.5

HSEO6

Bandgap (eV)
0.62
2.00
2.17
227
2.34
2,51
2.67

3.49

Fe (us)
3.56
4.06
4.08
4,12
4.13
4.16
4.19

4.16

Fe (uB)

3.56
3.56
3.56
3.56
3.57

3.58

Ep (eV)

0.46
0.64
0.74
0.80
0.94
1.26

0.49"

10
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Fig. S21. Top: fs-TAS absorption of BiVO4 film in the first 300 fs (red dots), with an excitation

wavelength of 3.5 eV (355 nm, fluence of 2.5 mJ-cm™); Drude model fitting (blue dash line) and

the fitted scaling exponents a = 2.14 + 0.02 was inserted. Bottom: fitting residuals.
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Fig. S22. Top: fs-TAS absorption of TiO> crystal in the first 300 fs (red dots), with an excitation

wavelength of 3.5 eV (355 nm, fluence of 2.5 mJ-cm™); Drude model fitting (blue dash line) and

the fitted scaling exponents o = 1.90 + 0.03 was inserted. Bottom: fitting residuals.
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Fig. S23. Top: fs-TAS absorption of Cr2O3 film in the first 300 fs (red dots), with an excitation
wavelength of 4.1 eV (305 nm, fluence of 2.2 mJ-cm™); In Cr,03, Drude model fitting (blue dash

line) is not successful, implying no free charge absorption observed in 100-300 fs. Bottom: fitting

residuals.
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Fig. S24. Top: fs-TAS absorption of Mn;0s film in the first 300 fs (red dots), with an excitation
wavelength of 3.5 eV (355 nm, fluence of 2.3 mJ-cm™); Drude model fitting (blue dash line) and

the fitted scaling exponents o = 0.95 + 0.02 was inserted. Bottom: fitting residuals.
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394  Fig. S25. Top: fs-TAS absorption of NiO dense film in the first 300 fs (red dots), with an excitation
395  wavelength of 4.1 eV (305 nm, fluence of 2.1 mJ-cm™); Drude model fitting (blue dash line) and
396 the fitted scaling exponents a = 1.95 £ 0.03 was inserted. Bottom: fitting residuals.
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Fig. S27. Top: fs-TAS absorption of BiVOy film after free charge localization (red dots), with an
excitation wavelength of 3.5 eV (355 nm, fluence of 2.5 mJ-cm™); The absorption spectrum was

fitted with small polaron absorption model (blue dash line), and the fitted results were summarized
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Fig. S28. Top: fs-TAS absorption of TiO> crystal after free charge localization (red dots), with an
excitation wavelength of 3.5 eV (355 nm, fluence of 2.5 mJ-cm™); The absorption spectrum was

fitted with small polaron absorption model (blue dash line), and the fitted results were summarized

A A (mOD)

.
v

oS o w
Lo N ;i

6.5

[=2]
T

o
3]

[4,]
T

e

f s TiO, (40-50ps) |
- = = Fitting Line

o S ST i o

P e iy Sy .9}%’3'1‘{1@ ) ogﬁo,@%,@%%@%@vémg% - i:gzé o) (b 2

A 1.05 1 0.95 0.9 0.85 08 0.75

Energy (eV)

in Table 1. Bottom: fitting residuals.



426
427

428
429
430
431
432

433
434

435
436
437
438
439
440
441

A A (mOD)

Residuals

3.4

Energy (eV)

< O’I * oo
A .—.‘.*‘!d. ‘. .
2 - :
3 7“{ r ;"-*;';o' L
.o
. L) .:. L] L ) ? ..~.
28 ’o’ L 4 %2
. .
26 e Cr,0, (0.28-0.30ps) |
= = Fitting Line
2.4 ‘ : . : . . =
0.25 o) o O O O - 5 éﬁf 5
o Q[ g SIS e 35 o o
0.4 s : . . ‘ SR
1.2 1.15 1.1 1.05 1 0.95 0.9 0.85

0.8

Fig. S29a. Top: fs-TAS absorption of Cr20s film after free charge localization (red dots), with an

excitation wavelength of 3.8 eV (330 nm, fluence of 0.8 mJ-cm™); The absorption spectrum was

fitted with small polaron absorption model (blue dash line). Bottom: fitting residuals.
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Fig. S29b. Top: fs-TAS absorption of Cr20; film after free charge localization (red dots), with an

excitation wavelength of 4.1 eV (305 nm, fluence of 2.2 mJ-cm™); The absorption spectrum was

fitted with small polaron absorption model (blue dash line), and the fitted results were summarized

in Table 1. We use the result in Fig. S29a. to prove the peak observed in Fig. S29b. is reliable,

even if the data are a bit scattered after 1 eV. Bottom: fitting residuals.
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Fig. S30. Top: fs-TAS absorption of Mn,0s film after free charge localization (red dots), with an
excitation wavelength of 3.5 eV (355 nm, fluence of 2.3 mJ-cm™); The absorption spectrum was
fitted with small polaron absorption model (blue dash line), and the fitted results were summarized

in Table 1. Bottom: fitting residuals.
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Fig. S31a. Top: fs-TAS absorption of Fe>Os film after free charge localization (red dots), with an
excitation wavelength of 3.5 eV (355 nm, fluence of 2.5 mJ-cm™); The absorption spectrum was
fitted with small polaron absorption model (blue dash line), and the fitted results were summarized

in Table 1. Bottom: fitting residuals.
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Fig. S31b. The excitation-energy dependence of the fs-TAS spectra of Fe;O3 acquired at Sps.
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Fig. S32. Top: fs-TAS absorption of dense NiO film after free charge localization (red dots), with
an excitation wavelength of 4.1 eV (305 nm, fluence of 2.1 mJ-cm); The absorption spectrum
was fitted with small polaron absorption model (blue dash line), and the fitted results were

summarized in Table 1. Bottom: fitting residuals.
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Fig. S33. Top: fs-TAS absorption of mesoporous NiO (NiO MP) film after free charge
localization (red dots), with an excitation wavelength of 4.1 eV (305 nm, fluence of 2.1 mJ-cm™);
The absorption spectrum was fitted with small polaron absorption model (blue dash line), and the
fitted results were summarized in Table S3. Bottom: fitting residuals. The mesoporous NiO_MP

film was prepared based on previous publication?.

Table S3. Comparison of small polaron absorptions from dense NiO thin film and mesoporous

NiO film with rich defects.

E, (eV) hw, (eV) E, (eV)
dg NiO 0.52+0.001 0.084+0.002 0.26+0.001
d;  NiO_MP 0.51+0.001 0.076+0.002 0.27+0.002

Even if Austin believed the absorption spectra observed in NiO should be attributed to trapped
small hole polaron resulting from doped Li defects?, we argued, in this scenario, the optical
absorption spectra will shift while altering the defects origins. However, the abroad optical
absorption still centred at 0.95 eV, even in a well-reported mesoporous NiO film with rich Ni

vacancies® (see Fig. S31).
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Fig. S34. Top: fs-TAS absorption of CuO film after free charge localization (red dots), with an

excitation wavelength of 3.5 eV (355 nm, fluence of 2.9 mJ-cm™); The absorption spectrum was

fitted with small polaron absorption model (blue dash line), and the fitted results were summarized

in Table 1. Bottom: fitting residuals.
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Fig. S35. Top: kinetic analysis of small polaron formation of BiVO4 at 78.3 K with a single

exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S36. Top: kinetic analysis of small polaron formation of BiVO4 at 150 K with a single

exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S37. Top: kinetic analysis of small polaron formation of BiVO4 at 220 K with a single

exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.

®
< o ~.: .—-‘_._ I
< o oo o ® o0 o000,
3 ®
Hos- ’ -
© P®
E / 1 e BIVO, 295K
= + .
= ok { kformation 12.6 £2.65ps = = Fitting Line
»
< 02F O 7 ol I ]
% Og] : QO o o O ® odm :
0 0.5 1 15

Time (ps)

Fig. S38. Top: kinetic analysis of small polaron formation of BiVO4 at 295 K with a single

exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.

1 T 00— T T T T
’ ' .. [ ™Y

< .’ ) = - — -’-—-— — .—. —————————
g ’ o® e ® %0 500,00
Sosp /¢ 1
© A
E 1 L e BiVO, 420K
Sy formation ~ 112 £ 43T PS T Eitting Line |
L] 02 E T - T T T T T 3
S 01¢ &P 7 %0 1
& -0.1 e © L 1 1 o© L © * (13 O 0 0o 4 0o ]

0.2 0.4 0.6 0.8 1 1.2 14 16

Time (ps)

Fig. S39. Top: kinetic analysis of small polaron formation of BiVO4 at 420 K with a single

exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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537  Fig. S40. Top: kinetic analysis of free electron decay of BiVO4 at 78.3 K with a single exponential
538 fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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543  Fig. S41. Top: kinetic analysis of free electron decay of BiVO4 at 150 K with a single exponential
544 fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S42. Top: kinetic analysis of free electron decay of BiVO4 at 220 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S43. Top: kinetic analysis of free electron decay of BiVO4 at 295 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.

33



1 % T T T T T
\ ) ,
< | Ksoaay = 515+ 048 ps” o BIVO, 420K
< 'y = = Fitting Line
3 e ®
2 05F .\. )
£ ~
S Y LY
z e 0e
b SV
, o —000008 8P & o e~ & S Ties
% 09 o OOI Cb |O T T T
3 o ® c
% 0 ) O’JC© @ o0 QOOJOCOOOOOOCO Ocoooooo © @ OmOooo
hi] %‘ff %
m _0-2 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3
557 Time (ps)

558

559  Fig. S44. Top: kinetic analysis of free electron decay of BiVO4 at 420 K with a single exponential
560 fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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565  Fig. S45. Top: kinetic analysis of small polaron formation of TiO, at 78 K with a single
566  exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S46. Top: kinetic analysis of small polaron formation of TiO> at 150 K with a single

exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S47. Top: kinetic analysis of small polaron formation of TiO; at 220 K with a single

exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.

35



< ® ...:—..— e - - = === I - —.; v
<] g & oo o
- o L4 o
So5F- r -
T ,
£ ’ | 02 e 1.0 oc o TiO, 295K
= +
“ ob ':"' formation ~ ' < * 170 PS — — Fitting Line |
w T T T T T T
] L oo , ¢ o o o o ]
_'5 0.8] Fo g \)(‘DOQ OGJ oL o © & e = °© il
@ —8; Fo o 5 o0 o -
x -2t L I 1 9] 1 1 1 |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
579 Time (ps)

580
581  Fig. S48. Top: kinetic analysis of small polaron formation of TiO:; at 295 K with a single
582  exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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587  Fig. S49. Top: kinetic analysis of small polaron formation of TiO, at 420 K with a single
588  exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S50. Top: kinetic analysis of small polaron formation of TiO> at 505 K with a single

exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S51. Top: kinetic analysis of free charge decay of TiO> at 78 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S52. Top: kinetic analysis of free charge decay of TiO» at 220 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.

1 7_‘ T T T . T =1
< K. =13.0+163ps" e TiO, 295K
P decay L .
> = = Fitting Line
N 0.5 ' 1
T ‘e
£ e
2 L T - °

'.‘. - - =0 - - _. ._ ._ - -— - _._
w 0 R R e et S o S e S
= C T T |Ie5) T T T ]
% 01 N Oo [s] o o O o
g or © °% ~O Oo ) Do ] OO o o © o i
r -0.1= I o0 1 1 1 I = |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time (ps)

Fig. S53. Top: kinetic analysis of free charge decay of TiO; at 295 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S54. Top: kinetic analysis of free charge decay of TiOz at 420 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S55. Top: kinetic analysis of free charge decay of TiO; at 505 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S56. Top: kinetic analysis of small polaron formation of Mn2O3 at 78.4 K with a single

exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S57. Top: kinetic analysis of small polaron formation of Mn20O3 at 150 K with a single

exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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636  Fig. S58. Top: kinetic analysis of small polaron formation of Mn;O; at 220 K with a single
637  exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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642  Fig. S59. Top: kinetic analysis of small polaron formation of Mn»>O3 at 295 K with a single
643  exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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647  Fig. S60. Top: kinetic analysis of small polaron formation of Mn2O3 at 355 K with a single
648  exponential fitting. The fitted rate constant is inserted in the plot. Bottom: fitting residuals.
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653  Fig. S61. Top: kinetic analysis of small polaron formation of Mn»>O3 at 420 K with a single
654  exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S62. Top: kinetic analysis of small polaron formation of Mn2O; at 505 K with a single

exponential fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S63. Top: kinetic analysis of free charge decay of Mn,0s at 78.4 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S64. Top: kinetic analysis of free charge decay of Mn>Os at 150 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.

Residuals

Normalized A A

0.5

o

0.05

-0.05
-0.1

e Mn,0, 220K

Kyoea, = 8:20 £ 0.54 ps””
ecay - .
.\ = = Fitting Line
L 4
\.\
L P
¢ O ey T 0 T AL P —
1 1 | 1 hd 1
T - T [0=] - \_ T T .|
p o - Qe el o © o . B o 4 il
o 00 o -
0.6 0.8 1 1.2 1.4 1.6
Time (ps)

Fig. S65. Top: kinetic analysis of free charge decay of Mn2O3 at 220 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S66. Top: kinetic analysis of free charge decay of Mn20O3 at 295 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S67. Top: kinetic analysis of free charge decay of Mn2O3 at 355 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S68. Top: kinetic analysis of free charge decay of Mn2O3 at 7420 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.

45



698
699

700
701
702

703
704

705
706
707
708

Normalized A A

Residuals

\ T T
_. -
% k. =127+211ps" e Mn,0, 505K
® decay " 3
\ = = Fitting Line
)
05F N 1
N *
. S< e b . .
0 ke ‘e_'-r"-"%_e"'.'e“'e?.e'"'
01 C ()O T o) - T ‘o T T Fo) ]
02t i i ‘ : 1 J
0.4 0.6 0.8 1 1.2 14
Time (ps)

Fig. S69. Top: kinetic analysis of free charge decay of Mn2O3 at 505 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S70. Top: kinetic analysis of free charge decay of NiO at 78.4 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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711  Fig. S71. Top: kinetic analysis of free charge decay of NiO at 150 K with a single exponential
712 fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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716  Fig. S72. Top: kinetic analysis of free charge decay of NiO at 220 K with a single exponential
717  fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S73. Top: kinetic analysis of free charge decay of NiO at 295 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S74. Top: kinetic analysis of free charge decay of NiO at 355 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S75. Top: kinetic analysis of free charge decay of NiO at 420 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S76. Top: kinetic analysis of free charge decay of NiO at 505 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S77. Top: kinetic analysis of small polaron formation at 78.2 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.

: O ..._o'— -

< - ®
< -7 "
Bos »e 1
= 7/
S /
S / _ A e CuO_150K
= / kformation =21.9+6.64ps = = Fitting Line

Ok 4 | I | | | B
€ 02 T T T T T \
g 01 r o o) 7
‘m 0r 9 ) o o) i
¢ -0.1¢t ! ° L L . °© g .

0.15 0.2 0.25 0.3 0.35 0.4 0.45

Time (ps)

Fig. S78. Top: kinetic analysis of small polaron formation at 150 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.

50



753
754

755
756
757

758
759

760
761
762
763

Normalized A A

Residuals

PR —
.= o
,(
/e
05 > -
V4
/ _ A e CuO_220K
/ kformation =21.2+3.96 ps = = Fitting Line
= ‘ 1 1 =
0? T T T € T T T
o &
0r o o o o L o 4
-0.1¢t I C\' 1 I 1 | 1
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time (ps)

Fig. S79. Top: kinetic analysis of small polaron formation at 220 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S80. Top: kinetic analysis of small polaron formation at 295 K with a single exponential

fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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766  Fig. S81. Top: kinetic analysis of small polaron formation at 355 K with a single exponential
767  fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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771  Fig. S82. Top: kinetic analysis of small polaron formation at 420 K with a single exponential
772  fitting. The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S83. Top: kinetic analysis of free charge carriers at 78.2 K with a single exponential fitting.

The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S84. Top: kinetic analysis of free charge carriers at 150 K with a single exponential fitting.

The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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788  Fig. S85. Top: kinetic analysis of free charge carriers at 220 K with a single exponential fitting.
789  The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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793  Fig. S86. Top: kinetic analysis of free charge carriers at 295 K with a single exponential fitting.
794  The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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799  Fig. S87. Top: kinetic analysis of free charge carriers at 355 K with a single exponential fitting.
800  The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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804  Fig. S88. Top: kinetic analysis of free charge carriers at 420 K with a single exponential fitting.
805  The fitted rate constant was inserted in the plot. Bottom: fitting residuals.
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Fig. S89. Temperature dependence of the decay of states2 and formation state3 in Fe2Os film,
excited with 3.5 eV (355 nm, fluence of 2.5 mJ-cm™). The rate constant was fitted by using a

single-exponential model.
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