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Figure S1. Chemical structures of all compounds discussed in this work.
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1. General Experimental Procedures.

Synthesis.

All manipulations were carried out under an argon atmosphere. Irradiations were conducted under argon in Hellma quarzglas
high performance fluorescence cells (117.100-QS) with 10 mm light path, and in 5 mm diam. NMR tubes. The light sources
were monochromatic SMD3528 LED lights, using 520 nm (600 Im) green light and, and 580 nm (310 Im) yellow light,
respectively. The distance between the light source and the reaction mixture was of 3.5 cm. Column chromatographies were
conducted on silica gel Merck-60 (230-400 mesh, 60 A), and gel permeation chromatographies were performed on Biobeads
SX1. TLC was performed on aluminium sheets pre-coated with silica gel 60 F,s4 (E. Merck). Chemicals were purchased from
Aldrich Chemical Co., Alfa Aesar (Thermo Fisher Scientific), and TCI Europe N. V. and used as received without further
purification. “Synthetic grade” solvents were used for chemical reactions, column chromatography purifications, and
“anhydrous grade” for reactions under dry conditions. Additionally, some solvents were further dried by distillation with
sodium/benzophenone (THF) or with solvent purifying system by Innovative Technology Inc. MD-4-PS. Boronic acids 9a,b
were prepared following the reported procedure.!-? 2,3-bis(propylthio)maleonitrile® and 2,3-dipropylmaleonitrile,* and CuTC?
were prepared following reported procedures.?> SubPzs 5 and 6 were prepared following reported procedures. Ru(CO)Pcs 11
and 12 were prepared using reported procedures.5’

Instrumental Analyses.

'"H NMR and *C NMR were recorded on Bruker AC-300 (300 MHz) and Bruker AC-400 (400 MHz) spectrometers using
as deuterated solvent, CDCI; or toluene-dg. The temperature was actively controlled at 298 K. Chemical shifts are measured
in ppm relative to tetramethylsilane (TMS).

UV/Vis spectra were recorded with a Jasco V-660-Spectrophotometer, and a Shimadzu UV-1900i UV-vis double beam
spectrophotometer.

IR spectra were recorded with Agilent Technologies Cary 630 FTIR, or using a Bruker Alpha II spectrometer by attenuated
total reflection (ATR).

Mass spectra (MS) were acquired by MALDI-TOF technique in Sidl, using a Bruker REFLEX III with a nitrogen laser
operating at 337 nm, or using Atmospheric Pressure Chemical Ionization (APCI) as ionization method and using a Q-TOF
analyzer.

X-Ray diffraction spectra were done in Sidl with a Bruker KAPPA APEX II CCD goniometer with kappa geometry and Mo
source (A= 0.71073 A). Data were corrected with SADABS program. The intensities were calculated with SAINT program
and the structures were resolved with SHELXS and refined with SHELXL.

Fluorescence spectra were recorded using FS5 spectrofluorometer from Edinburgh Instruments. The measurements were
performed in the wavelength range of 500 — 900 nm, with a slit width of 5 nm and integration time of 0.1 s. The data were
processed in Fluoracle software. All measurements were performed in 10 x 10 mm quartz cuvettes, at room temperature.
Absolute fluorescence quantum yield measurements were recorded using the SC-30 Integrating Sphere module with the FS5
spectrofluorometer and calculated in the Fluoracle software.

Singlet oxygen phosphorescence were recorded on Horiba Jobin Yvon FluoroLog3 spectrometer with Symphony II detector
in combination with an iHR320 imaging spectrometer. The samples were purged with oxygen for 20 — 30 mins. Singlet oxygen
quantum yields were calculated using the relative method, with C60 in air-equilibrated toluene as reference (@, = 0.98 +
0.05).% ®,* was determined using the following equation:
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where A is the optical density at the excitation wavelength, E is the integrated emission of singlet oxygen signal, and “A s the
singlet oxygen lifetime in the respective solvent. The subscripts ‘ref” and ‘s’ refer to the reference and sample, respectively.

Time-correlated single photon counting (TCSPC) measurements were carried out using Horiba Jobin Yvon FluoroLog3
emission spectrometer with Hamamatsu MCP photomultiplier (R33809U-50), to determine the excited state lifetimes.
Supercontinuum white light laser from NKT-Photonics was used for excitation. The samples were measured in 10 x 10 mm
quartz cuvettes, and purged with argon for 20 mins before each measurement. Data collection and lifetime analyses were
performed on DataStation and DAS6 softwares, respectively.

Electrochemistry measurements were performed at room temperature in a potentiostat/galvanostat Autolab PGStat30.
Measurements were carried out in a home-built one-compartment cell with a three-electrode configuration, containing 0.1 M
tetrabutylammonium hexafluorophosphate (TBAPF) as supporting electrolyte. A platinum electrode was used as the working
electrode, a platinum wire as the counterelectrode, and a Ag/AgNO; (in CH;CN) electrode was used as reference. Prior to
each voltammetric measurement the cell containing dry DCM or THF was degassed under argon atmosphere for about 10
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min. The electrochemical measurements were performed by using a concentration of approximately 0.1-0.2 mmol of the
corresponding compound, and ferrocene was added as an internal reference. All the potentials were given relative to the Fc/Fc*
couple with a scan rate at 100 mV/s.

The energies of charge-separated states were calculated using the continuum model.’
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where Eox and Ereq refer to the oxidation and reduction potentials, respectively. €sand s refer to the dielectric constants of

solvent used for time-resolved and electrochemical measurements, respectively. €svalues for THF and DCM are 7.58 and
8.93, respectively. For toluene, due to its quadrupolar rather than dipolar nature, the relative permittivity cannot fully describe

the solvent-molecule interactions. Therefore, an apparent permittivity of 3.5 was used.!%!! "Dand T4 correspond to the
spherical radii of the donor and acceptor, respectively, and are determined from the DFT calculations. D was estimated to be
6.63 A, whereas A for the Ru(CO)Pc-SubPz conjugates 1, 2, 3 and 4 were calculated to be 4.65, 4.72, 7.09 and 8.38 A,
respectively. Rp, is the center-to-center donor-acceptor distance. Rp, was estimated to be 7.48, 7.48, 7.19 and 7.20 A for the

Ru(CO)Pc-SubPz conjugates 1, 2, 3 and 4, respectively. For ion pairs with Rp, at the van-der-Waals limits of ~ 3 A, the
assumption fails, resulting in considerable deviations.!?

Spectroelectrochemistry measurements were performed using AvaSpec-UV/VIS/NIR two-channel broad band spectrometer
from Avantes, containing a balanced deuterium-halogen lamp (AVALIGHT-DH-S-BAL). A three-electrode setup,
comprising a platinum gauze as working electrode, a platinum wire as counter electrode and a silver wire as reference
electrode, was used. Potentials were applied using FRA 2 pAutolab Type III potentiostat from Metrohm. The measurements
were conducted in a thin-layer cuvette with a path length of 1 mm. 0.1 M tetrabutylammonium hexafluorophosphate was used
as supporting electrolyte. The data were recorded using Avasoft and NOVA 1.10 softwares.

Femtosecond and nanosecond transient absorption spectroscopy measurements were performed using the pump/probe
systems HELIOS (0 to 7500 ps) and EOS (1 ns to 440 ps) from Ultrafast Systems. The laser source was Astrella-F-1K
Ti:Sapphire amplifier (800 nm central wavelength, 1 kHz repetition rate, 5.0 W power output, 80 fs pulse width, 5 mJ pulse
energy) from Coherent. A fraction of 1.2 mJ of the fundamental is used for pump beam generation via the TOPAS Prime from
Light Conversion with standard NirUVis extension. A depolarizer was placed in the pump beam to avoid rotational dynamics.
White light probe for femtosecond measurements was generated by focusing a fraction of the fundamental 800 nm output
onto a 2 mm sapphire crystal after passing it through a delay line. The white light for the nanosecond transient measurements
came from a supercontinuum laser source (fundamental at 1064 nm, 2 kHz repetition rate, 1 ns pulsewidth). For the
measurements, the pump energy was varied between 500 and 1000 nJ. Samples were taken in 2 x 10 mm quartz cuvettes and
purged with argon for 20 min. The magnetic-field-dependent transient absorption measurements were carried out by coupling
the EOS TAPPS detection unit to a type 3480 electromagnet from GMW associates, which is powered by a 1 kW bipolar
power supply (BOP-36-28MG; Kepco Inc.). Experiments were performed by increasing the magnetic field strengths of up to
1 T. Samples for measurements under an applied magnetic field were purged with argon and taken in a 2 x 2 mm cuvette. For
all measurements, optical densities (OD) of the samples were between 0.2 and 0.4 at the excitation wavelength. Global/target
analyses of the resulting data were performed using the GloTarAn software with the R package TIMP.!314
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2. Synthetic procedures and characterization

Scheme S1. Synthesis of boronic acid 10
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In a 250 mL round bottom flask, borane-dimethyl sulfide (1.70 mL, 18 mmol) was dissolved in anhydrous THF (5 mL) and
the mixture was cooled at 0 °C under argon. (/R)-(+)-R-pinene (9.72 mL, 61 mmol) were added dropwise and the mixture
was stirred at 0 °C for one hour, followed by stirring at room temperature for two additional hours. After cooling to -35 °C a
solution of 4-ethynylnitrobenzene (2.5 g, 17 mmol) in THF (1 mL) was added and the mixture was stirred at the same
temperature for 45 minutes, followed by stirring at room temperature for 3 hours. Acetaldehyde (20 mL, 357 mmol) and the
mixture was stirred at room temperature for 16 hours. The mixture was rotary evaporated and a (1:1 v/v) mixture of THF/water
(10 mL) was added, followed by stirring at room temperature for 16 hours. The solvent was rotary evaporated and pentane
(30 mL) was added to the residue, upon which a white solid precipitated and was washed with pentane, affording 10 (3.21 g,
80 %). 'H NMR (300 MHz, MeOD-d,, 3 ppm): 8.22 (d, J= 8.8 Hz, 2H, H>), 7.75 (d, J= 8.5 Hz, 2H, H>%), 7.39 (d, /= 17.4
Hz, 1H, =CH), 6.62 (d, J= 18.7 Hz, 1H, =CH), 3.35 (s, 2H, B(OH),). *C NMR (300 MHz, MeOD-d,, 5 ppm): 148.9, 145.3,
138.8, 135.4, 128.7,124.9. FT-IR (ATR) v (cm™): 3197 (O-H), 2939, 2919 (C=C-H), 1596, 1508, 1340 (C-NO,), 1193, 1105,
991 (B-0), 820, 743 (NO,), 548. HRMS (APCI, DCM): m/z calc. for C;cH12N,O4 [2 x M — B(OH),]: 296.0797; found
296.0809.

Scheme S2. Synthesis of pyridyloxy-SubPzs 13 and 14.
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Boron (III) 4-Pyridyloxy|2,3,7,8,12,13-hexapropylsubporphyrazinato] (13)
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To dipropylmaleonitrile (200 mg, 1.23 mmol) a 1.0 M solution of BCl; in p-xylene (1.23 mL, 1.23 mmol) was added under
Argon and the solution was heated at 135 °C for 1 hour. The solution was evaporated at reduced pressure and after in situ
addition of 4-hydroxypyridine (951 mg, 10 mmol), followed by anhydrous toluene (4 mL) the mixture was refluxed for 2
hours. After cooling to room temperature, the toluene solution was filtered through a short Celite path. Column
chromatography on silica gel using a (100:1 v/v) mixture of CHCl;/MeOH as eluent, afforded SubPz 13 (57 mg, 23 %) as an
orange solid. "H NMR (300 MHz, CDCls, 8 ppm): 7.88 (d, J= 6.3 Hz, 2H, H*"%), 5.08 (d, J = 6.3 Hz, 2H, H*%), 3.21-2.99
(m, 12H, H'"), 2.10 — 1.94 (m, 12H, H?"), 1.18 (t, J = 7.4 Hz, 18H, H?"). 3C NMR (75.5 MHz, CDCl;, & ppm): 149.02,
148.99, 145.66, 128.83, 125.00, 124.53. UV/Vis (CHCl;, Apa/nm, log &/dm® mol! cm™): 287 (4.0), 328 (3.8), 500 (4.1).
Fluorescence (CHCls;, nm) Ao = 478; Aoy = 529. FT-IR (ATR) v (cm!): 2960, 2932 (C=C-H), 2871 (CH,, CH3), 1714, 1593
(C=N), 1459, 1298 (C-0), 1161, 1088 (B-0), 1004, 726, 530. MS (MALDI-TOF*, DCTB): m/z 1086.7-1091.8 [M][M -
OPy]", 590.4-594.4 [M]"+ [M + H]", 496.4-499.4 [M — OPy]".

Boron (III) 4-Pyridyloxy|2,3,7,8,12,13-hexa-(propylthio)subporphyrazinato| (14)
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To 2,3-bis-(propylsulfanyl)maleonitrile (452 mg, 2.0 mmol) a 1.0 M solution of BCl; de (2.0 mL, 2.0 mmol) in p-xylene was
added under argon and the solution was heated at 135 °C for 1 h. After evaporation of the mixture at reduced pressure, 4-
hydroxypyridine (951 mg, 10 mmol) in anhydrous toluene (4 mL) was added in situ and the mixture was refluxed for 2
additional hours. After cooling to room temperature, the toluene solution was filtered through a short path of Celite. The
solvent was rotary evaporated and the residue chromatographed on silica gel using a (100:1 v/v) mixture of CHCl;/MeOH as
the eluent. Size exclusion chromatography on Biobeads using toluene as the eluent afforded SubPz 14 (23 mg, 4.5 %) as a red
solid. '"H NMR (300 MHz, CDCl;, & ppm): 7.97 (d, J= 3.2 Hz, 2H, H*%"), 5.22 (d, /= 6.0 Hz, 2H, H>*"), 4.16-3.59 (2m, 12H,
H'™), 2.03-1.90 (m, 12H, H?"), 1.18 (t, /= 7.3 Hz, 18H, H3"). UV/Vis (CHCl3, Apa/nm, log &/dm> mol! ecm™): 283 (4.5), 443
(4.6), 558 (4.4). Fluorescence (CHCl;, nm): Ao = 545; Aoy, = 585. FT-IR (ATR) v (cm™): 2937, 2925 (C=C-H), 2867 (CH,,
CHs;), 1668, 1594 (C=N), 1479, 1448, 1344, 1260 (C-0), 1170, 1109, 1010 (B-0), 813, 748 (C-S), 578, 541. MS (MALDI-
TOF", DCTB): m/z = 1470.3-1479.3 [M][M — OPy]*, 782.2-787.2 [M]*+ [M + H]*, 688.2-693.2 [M — OPy]".
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Boron(IIT) Phenoxy[2,3,7,8,12,13-hexa((E)-3-methoxy-3-oxoprop-1-en-1-yl)subporphyrazinato] (7a)

HsCO,C, CO,CHj

Hexa(propylthio)subporphyrazine 6 (44 mg, 52 pmol), boronic acid 9a (136 mg, 1.05 mmol), Pd(PPh;), (36 mg, 31 umol)
and CuTC (178 mg, 0.94 mmol) were added into the flask and purged with argon for 10 min, followed by the addition of
anhydrous THF (6 mL) via cannula. The reaction mixture was stirred at 30 °C for 20 h under argon atmosphere, cooled to
room temperature and passed through a short silica gel column using THF as eluent. The solvent was rotary evaporated and
the residue was purified by silica gel column chromatography (mixture of n-hexane/CH,Cl,/ethyl acetate 4:4:2) giving pure
SubPz 7a (16.6 mg, 38%) as a blue solid. 'H NMR (400 MHz, CDCl;, 8 ppm): 8.14 (d, J = 16.0 Hz, 6H, H?"), 7.98 (d, J =
16.0 Hz, 6H, H'"), 6.86 (t, J= 8.0 Hz, 2H, H3**), 6.73 (t, /= 8.0 Hz, 1H, H*), 5.41 (d, J= 8.0 Hz, 2H, H*'®"), 3.94 ppm (s,
18H; -OMe). 13C NMR (100.6 MHz, CDCl;, 6 ppm): 166.6, 155.5, 151.8, 131.6, 131.0, 129.3, 127.9, 122.2, 118.7, 52.2.
UV/Vis (CHCl3, Apa/nm, log &/dm? mol! cm™): 280 (4.7), 426 (4.3), 600 (4.6). Fluorescence (CHCl;, nm): Aey = 500; Ay, =
622. FT-IR (ATR) v (cm™): 2951, 2925, 2854, 1715, 1623, 1502, 1460, 1434, 1260, 1173, 1068, 975, 871, 733 cm*'. HRMS
(APCI, MeOH, +): m/z calc. for C4o,H35BNgO,; [M]*: 841.2391; found: 841.2285.

XRD: Single crystals suitable for X-ray diffraction analysis were obtained by vapor diffusion of isooctane into its 1,2-
dichloroethane solution. Crystallographic data and some refining details are summarized on Tables S1-S8.

Boron(III) Phenoxy[2,3,7,8,12,13-hexa((E)-3-ethoxy-3-oxoprop-1-en-1-yl)-subporphyrazinato| (7b)

H3CH,CO,C CO,CH,CHs
e

press;

HsCH,CO,C CO,CH,CHy

A solution of SubPz 6 (10 mg, 12.6 umol), boronic acid 9b (29.8 mg, 229 pmol), Pd(PPh;), (9 mg, 7.7 pmol) and CuTC (43.8
mg, 229 umol) in anhydrous THF (6 mL) under argon was stirred at 30 °C for 20 h protected from light. The mixture was
allowed to reach room temperature and then, passed through a short silica gel column using THF as eluent. The solvent was
rotary evaporated and the residue was purified by silica gel column chromatography (mixture of n-heptane/ethyl acetate 2:1).
The product was subjected to size exclusion chromatography on Biobeads using toluene as the eluent affording 8 mg of SubPz
7b (68 %) as a blue solid. 'H NMR (300 MHz, CDCls, 4 ppm): 8.14 (d, /= 16.0 Hz, 6H, H?"), 7.98 (d, J= 16.0 Hz, 6H, H'"),
6.86 (t,J = 8.0 Hz, 2H, H**), 6.73 (t, J = 8.0 Hz, 1H, H*), 5.41 (d, J = 8.0 Hz, 2H, H>*"), 4.40 (m, 12H, OCH,CH;), 1.44 (t,
J=7.2Hz, OCH,CH;). UV/Vis (CHCl3, Apa/nm, log &/dm? mol-!' cm™!): 290 (4.7), 436 (4.3), 603 (4.6). Fluorescence (CHCl;,
nm): Aex = 580; Aoy = 620. FT-IR (ATR) v (cm!): 2942, 2925, 2851, 1710, 1622, 1462, 1367, 1249, 1158, 1030, 974, 871,
727.MS (MALDI-TOF', DCTB+Nal): m/z = 948.3-951.3 [M +Na]*, 971.3-974.3 [M + 2Na]*. HRMS (MALDI-TOF*, DCTB
+ PPGNa 1000 + Nal): m/z calc. for C4sH;0BNgNaO;; [M + NaJ*: 948.3223; found 948.3185.
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Boron(IIT) Phenoxy[2,3,7,8,12,13-hexa[(E)-4-nitrostyryl]subporphyrazinato] (8)

A solution of SubPz 6 (18 mg, 17.4 umol), boronic acid 10 (62.4 mg, 322 pmol), Pd(PPhs), (11.1 mg, 10.8 umol) and CuTC
CuTC (55.6 mg, 320 umol) in anhydrous THF (6 mL) under argon was stirred at 30 °C for 2 h protected from light. The
mixture was allowed to reach room temperature and then, passed through a short Celite column. The solvent was rotary
evaporated, the residue was dissolved in CHCI3 and precipitated by addition of hexane (10:1 v/v of CHCls/hexane). The solid
was chromatographed on Biobeads using THF as the eluent affording 12 mg of SubPz 8 (43 %) as a green solid."H NMR (300
MHz, THF-dg, 8 ppm): 9.15 (d, J= 16.2 Hz, 6H, H'"), 8.39 (d, J= 8.7 Hz, 12H, H>"-7"), 8.29 (d, J= 16.2 Hz, 6H, H*"), 8.16
(d, J=8.8 Hz, 12H, H*"?"), 6.88-6.81 (m, 1H, H*), 6.60 (d, J= 7.7 Hz, 2H, H**’), 5.08 (d, J = 7.0 Hz, 2H, H*'%). UV/Vis
(CHCl3, Aya/nim, log &/dm? mol-! em™): 354 (4.0), 398 (3.9), 499 (3.7), 642 (3.7). Fluorescence (CHCl3, nm): Ay = 625; Aey
= 665. FT-IR (ATR) v (cm): 3057, 2923, 2840, 1591, 1510, 1430, 1352, 1337, 1077, 977, 967, 845, 746, 700, 523. MS
(MALDI-TOF-, DCTB): m/z 1219.3-1223 [M]~. HRMS (MALDI-TOF-), DCTB + PPGNa 1000 + Nal): m/z calc. for
CesH41BN,0y3 [M]~: 1219.3051; found 1219.3056.

Ru(CO)Pc-SubPz 1

A deaerated solution of SubPz 13 (10 mg, 16.8 pumol and Ru(CO)Pc 11 (14.5 mg, 16.8 umol) in anhydrous toluene (8 mL)
was stirred at room temperature under argon and protected from light for 16 h. After rotary evaporation of the mixture, the
residue was subjected to column chromatography on silica gel using (3:1) mixture of heptane/AcOEt. Further purification by
gel permeation chromatography on Biobeads using toluene as the eluent afforded Ru(CO)Pc-SubPz 1 (20 mg, 81 %) as a blue
solid. '"H NMR (300 MHz, CDCl;, 8 ppm): 9.4-9.1 (m, 8H, H'#), 8.10 (d, J= 8.1 Hz, 4H, H??),2.90 (d, J=7.1 Hz, 2H, H?"%"),
2.79 (t,J=7.0 Hz, 12H, H'"), 1.77 (m, 36H, #-Bu), 1.73-1.60 (m, 12H, H?"), 1.29 (d, J= 7.1 Hz, 2H, H*¥"), 0.89 (t, /= 7.3
Hz, 18H, H3”). UV/Vis (CHCl;, Aya/nim, log £/dm?® mol-!' cm™!): 292 (3.8), 306 (3.8), 333 (3.5), 350 (3.3), 503 (3.2), 591 (3.3),
652 (4.0). FT-IR (ATR) v (cm'): 3062, 2958, 2928, 2868, 1970 (C=0), 1613, 1456, 1323, 1256, 1119, 1089, 983, 828, 761,
696, 529. HRMS (ESI*, MeOH + 0.1% formic acid) m/z 1452.6953-1462.7001 [M*] + [M + H]*; calc. for Cg4HosBN50,°°Ru
[M + HJ: 1452.6070; Found: 1452.6953.

S9



Ru(CO)Pc-SubPz 2

A deaerated solution of SubPz 14 (20 mg, 25.5 umol) and Ru(CO)Pc 11 (22.1 mg, 25.5 pmol) in anhydrous toluene (8 mL)
was stirred at room temperature under argon and protected from light for 16 h. After rotary evaporation of the mixture, the
residue was subjected to column chromatography on silica gel using (3:1) mixture of heptane/AcOEt. Further purification by
gel permeation chromatography on Biobeads using toluene as the eluent afforded Ru(CO)Pc-SubPz 2 (30 mg, 72 %) as a blue
solid. '"H NMR (300 MHz, CDCl;, & ppm): 9.4 - 9.1 (m, 8H, H*), 8.10 (d, J = 8.2 Hz, 4H, H>?), 3.71-3.22 (2m, 12H, H'"),
3.02 (d, J=7.1 Hz, 2H, H*'?"), 1.78-1.76 (m, 36H, #-Bu), 1.36 (d, J = 7.1 Hz, 2H, H*->), 1.20 (t, /= 7.3 Hz, 12H, H*"), 0.96
(t,J=7.3Hz, 18H, H?"). UV/Vis (CHCl;, Ay/nm, log €/dm? mol-! cm'): 304 (4.8), 350 (4.4), 448 (4.3), 565 (4.3), 590 (4.4),
652 (5.0). FT-IR (ATR) v (cm™'): 3074, 2958, 2924, 2865, 1969 (C=0), 1612, 1487, 1316, 1257, 1123, 1053, 989, 830, 752,
670, 576, 531. HRMS (ESI*, MeOH + 0.05% formic acid) m/z 1643.5234-1657.5249 [M*] + [M + HJ"; calc. for
Cs4HoyBN50,%°RuSs [M*]: 1643.5317; Found: 1643.5234.

Ru(CO)Pc-SubPz 3

ZNB-N
N
EtO,C / N~\ =N COLE
EtO,C =
CO,Et

A deaerated solution of Ru(CO)Pc-SubPz 2 (30 mg, 18.2 pmol) the boronic acid 9b (51.8 mg, 0.36 mmol), Pd(PPh;), (12.6
mg, 10.9 umol), CuTC (62.3 mg, 0.33 mmol) in anhydrous THF (6 mL) under argon and protected from light was stirred at
30 °C for 1 h. After cooling to room temperature, the mixture was passed through a short pad of Celite. The solution was
rotary evaporated and the residue was subjected to column chromatography on silica gel using (3:2) mixture of
heptane/AcOEt, affording Ru(CO)Pc-SubPz 3 (13 mg, 40 %) as a turquoise blue solid. '"H NMR (300 MHz, CDCls, & ppm):
9.35-9.17 (m, 8H, H'*#), 8.11-8.09 (m, 4H, H??), 7.87 (d, /= 16.0 Hz, 6H, H""), 7.64 (d, /= 16.0 Hz, 6H, H?"), 4.26-4.19 (m,
12H, OCH,CH3), 3.15 (d, J = 6.0 Hz, 2H, H*'%"), 1.77-1.76 (3s, 36H, t-Bu), 1.3-1.4 (m, 18H, OCH,CHj3). UV/Vis (CHCls,
Amax/nM, log &/dm? mol! cm!): 298 (4.0), 342 (3.6), 433 (3.1), 548 (3.2), 594 (3.7), 652 (4.0). FT-IR (ATR) v (cm™): 3052),
2958, 2864, 1971 (C=0), 1713 (O-C=0), (C=N), 1439, 1434, 1281), 1183, 1095, 744, 692, 499. MS (MALDI-TOF*, DCTB):
m/z = 1787.5-1800.5 [M*], 1759.5-1769.5 [M — COJ", 927.3-929.3 [M — Ru(CO)Pc + H]". HRMS (MALDI-TOF*, DCTB)

S10



m/z 1759.6230-1769.6475 [M — COT", cale. for CosHosBN503°°Ru [M*]: 1759.6333; Found: 1759.6230; 949.3123-952.3222
[M — Ru(CO)Pc + Na]*, calc. for C4sHssBN;NaO;3 [M — Ru(CO)Pc + Na]*: 949.3175; Found: 949.3123.

Ru(CO)Pc-SubPz 4

A deaerated solution of Ru(CO)Pc-SubPz 2 (25 mg, 15.1 pmol) the boronic acid 10 (57.9 mg, 0.30 mmol), Pd(PPh;), (10.5
mg, 9.08 umol), CuTC (51.9 mg, 0.27 mmol) in anhydrous THF (6 mL) under argon and protected from light was stirred at
30 °C for 1.5 h. After cooling to room temperature, the mixture was passed through a short pad of Celite. The solution was
rotary evaporated and the residue was subjected to size exclusion chromatography on Biobeads using THF as the cluent,
affording Ru(CO)Pc-SubPz 4 (10 mg, 32 %) as a dark green solid. '"H NMR (300 MHz, CDCl;, § ppm): 9.3-9.2 (m, 14H,
H“%1"), 8.3-8.2 (m, 6H, H?"), 8.06 (d, J= 7.2 Hz, 4H, H??), 7.7-7.4 (m, 24H, H*"*"-7"%"),3.76 (d, J= 7.2 Hz, 2H, H*?"), 1.70
(broad s, 36H, #-Bu), 1.3-1.2 (m, 2H, H¥*"). UV/Vis (CHCl3, Apay/nm, log £/dm? mol-! cm!): 305 (3.9), 333 (3.7), 350 (3.7),
400 (3.4), 485 (3.3), 592 (3.5), 652 (4.0). FT-IR (ATR) v (cm!): 3055, 2959, 2926, 2867, 1955 (C=0), 1589, 1515, 1430,
1337 (C-NO,), 1098, 1025, 823, 750, 688, 524. MS (MALDI-TOF-, DCTB): 1220.3-1225.3 [M — Ru(CO)Pc]~; MS (MALDI-
TOF", DCTB): m/z = 860.3-871.4 [M — (SubPz-OPy)]".
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3. Selected Spectra

Figure S2. "H NMR spectrum of boronic acid 10 in CD;0D.
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Figure S4. HRMS spectrum (APCI") of 10.
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Figure S6. MS spectra (MALDI-TOF) of 13 showing the experimental isotopic patterns compared to the expected clusters
(Upper: found; Lower: calculated).
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Matiz ~ DCTB D:\Data|Placas MALDI\U-097\K5- ECE-387-98¢2\0_K5\1
Z8000- = Ks- ECE-387-96¢2\0_K&\1115Ref
- ~
5 2
. |
6000 ‘
| !
4000 |
] | V_
Il 2
<+ i =
2000 g [l I
= ‘i{ i ‘ f -
- - o | i. i ‘I . i
% F“ ‘ "L II \\..\M\_J‘ IL- % g
e o sienfNcmnion o) Mo B o
5 * * K5 ECE-387-36¢2\0_KS\1\C30H42B 1 NE
a, | -
u e
5
51000+ 7
= l\
4 ‘ |
800+
600
400+
=
1 2
200 f "
/' gi -
7 { I| (=1
J\ |
T T T T T T T T T
492 496 500 502 504 -
Muestra  ECE-387-96c2 Ensayo MALDI (ULTRAFLEX 111)
Matriz ~ DCTB D:\Data\Placas MALDIU-097 K5~ ECE-387-96c210_K5\1
Sx104] * K5 ECE-387-96c20_K5\1\1SRef
& a0 g2
7 3.0 ] §
E ] -
=125 J
] if
s \ ~
U o
] ” ‘ 3
] = |
157 E i! |
o 3 IN_ |
] z I | Il 8
1 ~ 1 | Il T A
0.57 r~ E I It i [l I = - =
1 I N | [\ O - B
7 =1 | ! | I 0 I\ by
— 0.0 oo M SN e sl et e AR 8
ER “ K5 ECE-387-9602\0 KS\1\CE5HEEB2N 1301
= 4 x
2 £
51000 =
= I
1 l
800 [ r~
] [l g
B
600 [ f
~ Il
1 b |
3 | | I
400 = T
| il 5 I g
| | g
i ! Il i)
2004 ~ | 11 | fA o
| | Ik = @
g § | b 11 | 3 o -
A ) Ik )4 -
T T T T T T T T T T T
1082 1084 1088 1090 1002 1094 1096 1098

mz

S15



Figure S7. '"H NMR spectrum (CDCl;) of 14.
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Figure S8. MS spectra (MALDI-TOF) of 14 showing the experimental isotopic patterns compared to the expected clusters
(Upper: found; Lower: calculated).
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Muestra ECE-387-87cibb Ensayo MALDI (ULTRAFLEX IIl)
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Figure S9. UV/Vis absorption spectrum of SubPz 14 in CHCI;.
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Figure S10. 'H NMR spectrum of SubPz 7a in CDCl;.
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Figure S11.

a) UV/Vis absorption spectrum of SubPz 7a in CHCIl;. b) Normalized UV-Vis absorption (solid line) and fluorescence
emission (dotted line) spectra of 7a in CHCl;.
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Figure S12. MS and HRMS spectra (APCI") of 7a showing the experimental isotopic patterns compared to the expected
clusters (Upper: found; Lower: calculated).
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Figure S13. '"H NMR spectrum of 7b in CDCl;.
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Figure S14. MS and HRMS spectra (MALDI-TOF) of 7b showing the experimental isotopic patterns compared to the
expected clusters (Upper: found; Lower: calculated).
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Figure S15. '"H NMR spectrum of SubPz 8 in THF-dg.
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Figure S16. MS and HRMS (MALDI-TOF) spectra of SubPz 8 showing the experimental isotopic patterns compared to the
expected clusters (Upper: found; Lower: calculated).
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Figure S17. 'H NMR spectrum of Ru(CO)Pc-SubPz 1 in CDCl;.
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Figure S19. HRMS (ESI*-TOF) spectrum of Ru(CO)Pc-SubPz 1 showing the experimental isotopic patterns compared to
the expected clusters (Upper: found; Lower: calculated).
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Figure S20. 'H NMR spectrum of Ru(CO)Pc-SubPz 2 in CDCl;.
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Figure S21. HRMS (ESI*-TOF) of Ru(CO)Pc-SubPz 2 showing the experimental isotopic patterns compared to the expected
clusters (Upper: found; Lower: calculated).
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Figure S22. '"H NMR spectrum of Ru(CO)Pc-SubPz 3 in CDCl;. *= heptane
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Figure S23. MS and HRMS (MALDI-TOF) of Ru(CO)Pc-SubPz 3 showing the experimental isotopic patterns compared to

the expected clusters (Upper: found; Lower: calculated).
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Figure S24. "H NMR spectrum of Ru(CO)Pc-SubPz 4 in CDCl;. *= chloroform
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Figure S25. MS (MALDI-TOF*) and MS (MALDI-TOF") of Ru(CO)Pc-SubPz 4 showing the experimental isotopic patterns
compared to the expected clusters (Upper: found; Lower: calculated).
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Muestra ECE-418-masasé Ensayo MALDI (ULTRAFLEX Ili)
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4. Electrochemical data

Figure S26. Cyclic voltammograms and differential pulse voltammograms of Ru(CO)Pc 11. Solvent: CH,Cl,; scan rate: 100
mVs™!; working electrode: GC; counter electrode: platinum wire; reference electrode: Ag/AgNOs; electrolyte: 0.1M
BuyNPF.
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Figure S27. Cyclic voltammograms and differential pulse voltammograms of Ru(CO)PyPc 12. Solvent: CH,Cl,; scan rate:
100 mVs™!; working electrode: GC; counter electrode: platinum wire; reference electrode: Ag/AgNOs; electrolyte: 0.1M
BU4NPF6.
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Figure S28. Cyclic voltammograms and differential pulse voltammograms of SubPz 13. Solvent: CH,Cl,; scan rate: 100
mVs™!; working electrode: GC; counter electrode: platinum wire; reference electrode: Ag/AgNOs; electrolyte: 0.1M BuyNPF.
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Figure S29. Cyclic voltammograms and differential pulse voltammograms of SubPz 6. Solvent: CH,Cl,; scan rate: 100
mVs™!; working electrode: GC; counter electrode: platinum wire; reference electrode: Ag/AgNOs; electrolyte: 0.1M
BU4NPF6.
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Figure S30. Cyclic voltammograms and differential pulse voltammograms of SubPz 7a. Solvent:CH,Cl,; scan rate:
100mVs™'; working electrode: GC; counter electrode: platinum wire; reference electrode: Ag/AgNQOs; electrolyte: 0.1M
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Figure S31. Cyclic voltammograms and differential pulse voltammograms of SubPz 7b. Solvent: CH,Cl,; scan rate: 100
mVs™!; working electrode: GC; counter electrode: platinum wire; reference electrode: Ag/AgNOs; electrolyte: 0.1M
Bll4NP Fﬁ.
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Figure S32. Cyclic voltammograms and differential pulse voltammograms of SubPz 8. Solvent: THF; scan rate: 100 mVs™;
working electrode: GC; counter electrode: platinum wire; reference electrode: Ag/AgNOs; electrolyte: 0.1M BuyNPFg.
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Figure S33. Cyclic voltammograms and differential pulse voltammograms of Ru(CO)Pc-SubPz 1. Solvent: CH,Cl,; scan
rate: 100 mVs™!; working electrode: GC; counter electrode: platinum wire; reference electrode: Ag/AgNO;; electrolyte: 0.1M
BU4NPF6.
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Figure S34. Cyclic voltammograms and differential pulse voltammograms of Ru(CO)Pc-SubPz 2. Solvent: CH,Cl,; scan
rate: 100 mVs™!; working electrode: GC; counter electrode: platinum wire; reference electrode: Ag/AgNQO;; electrolyte: 0.1M

BU4NPF6.
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Figure S35. Cyclic voltammograms and differential pulse voltammograms of Ru(CO)Pc-SubPz 3. Solvent: CH,Cl,; scan
rate: 100 mVs™; working electrode: GC; counter electrode: platinum wire; reference electrode: Ag/AgNQO;; electrolyte: 0.1M
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Figure S36. Cyclic voltammograms and differential pulse voltammograms of Ru(CO)Pc-SubPz 4. Solvent: CH,Cl,; scan
rate: 100 mVs™!; working electrode: GC; counter electrode: platinum wire; reference electrode: Ag/AgNO;; electrolyte: 0.1M
Bu4NPF6.
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5. Steady-state absorption and fluorescence data

Figure S37. (a-c) Absorption spectra of Ru(CO)Pc 12, SubPzs 13, 6, 7b, and the corresponding Ru(CO)Pc-SubPz conjugates

1, 2, and 3, measured in toluene at room temperature. (d) Normalized absorption spectra of Ru(CO)Pc 12 and Ru(CO)Pc-
SubPz 3 in toluene.
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Figure S38. (a-d) Absorption spectra of Ru(CO)Pc 12, SubPzs 13, 6, 7b, and 8 and the corresponding Ru(CO)Pc-SubPz

conjugates 1, 2, 3 and 4, measured in THF at room temperature. (¢) Normalized absorption spectra of Ru(CO)Pc 12 and
Ru(CO)Pc-SubPz 4 in THF.
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Figure S39. Fluorescence spectra of SubPz 13, Ru(CO)Pc-SubPz 1 and Ru(CO)Pc 12 samples measured in (a,b) toluene and

(c,d) THF at room temperature, by exciting at (a,c) 470 nm and (b,d) 590 nm.
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Figure S40. Fluorescence spectra of SubPz 6, Ru(CO)Pc-SubPz 2 and Ru(CO)Pc 12 samples measured in (a,b,c) toluene and

(d,e,f) THF at room temperature, by exciting at (a,d) 400 nm, (b,e) 440 nm and (c,f) 590 nm.
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Figure S41. Fluorescence spectra of SubPz 7b, Ru(CO)Pc-SubPz 3 and Ru(CO)Pc 12 samples measured in (a,b) toluene and

(c,d) THF at room temperature, by exciting at (a,c) 470 nm and (b,d) 590 nm.
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Figure S42. Fluorescence spectra of SubPz 8, Ru(CO)Pc-SubPz 4 and Ru(CO)Pc 12 samples measured in THF at room

temperature, by exciting at (a) 440 nm and (b) 590 nm.
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6. Spectroelectrochemical data

Figure S43. Absorption spectra as well as the differential absorption spectrum recorded upon oxidation of Ru(CO)Pc 12 in
toluene:acetonitrile (10:1) mixture (0.1M TBAPFg as electrolyte).
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Figure S44. Absorption spectra as well as the differential absorption spectrum recorded upon reduction of SubPz 6 in
toluene:acetonitrile (10:1) mixture (0.1M TBAPF; as electrolyte).
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Figure S45. Absorption spectra as well as the differential absorption spectrum recorded upon reduction of SubPz 7b in
toluene:acetonitrile (10:1) mixture (0.1M TBAPFg as electrolyte).
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Figure S46. Absorption spectra as well as the differential absorption spectrum recorded upon reduction of SubPz 8 in THF
(0.1M TBAPFg as electrolyte).
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7. Transient absorption studies

Figure S47. fs-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for SubPz 13,
following 480 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of fs-TAS raw data. (b)
Differential absorption spectra at time delays between O ps and 7.5 ns. (c¢) Evolution-associated spectra with their
corresponding lifetimes, obtained from the deconvolution of the fs-TAS data. (d) Relative populations of the respective

species.
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Figure S48. ns-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for SubPz 13,
following 480 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of ns-TAS raw data. (b)
Differential absorption spectra at time delays between 1 ns and 400 ps. (c¢) Evolution-associated spectrum with the
corresponding lifetime, obtained from the deconvolution of the ns-TAS data. (d) Relative population of the deconvoluted

species.
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Figure S49. fs-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for SubPz 6,
following 480 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of fs-TAS raw data. (b)
Differential absorption spectra at time delays between 0 ps and 7.5 ns. (c) Evolution-associated spectra with their
corresponding lifetimes, obtained from the deconvolution of the fs-TAS data. (d) Relative populations of the respective
species.
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Figure S50. ns-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for SubPz 6,
following 480 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of ns-TAS raw data. (b)
Differential absorption spectra at time delays between 1 ns and 400 ps. (c¢) Evolution-associated spectrum with the
corresponding lifetime, obtained from the deconvolution of the ns-TAS data. (d) Relative population of the deconvoluted

species.

Energy / eV b Energy / eV
a) 34 25 2.1 18 16 aoD/au. ) 3.4 25 2.1 18 16
: - : . 0.018 7/
0.02
100
0.011
0.01
10 0.005
5 0.00
' -0.002 &
s o 0.01
‘E -0.008 ]
= 01
0.015 -0.02 1ns
0.01 0021 0.03
400 s
0.001 T T T T T -0.028 0.04 L— 7 T T T
400 500 600 700 800 400 500 600 700 800
Wavelength/ nm Wavelength / nm
Energy / eV
c) 34 25 24 1.8 16 d)
0.02 1.0 ———T,(SubPz 6)
0.01 4
0.8 4
5 0.004 £
@ £ 0.6
a i el
g -0.01 2
= o 0.4+
-0.02 4
-0.03 4 0.2 4
——T,(SubPz 6) -6.2 us
=0.04 7 Fr r T T 0.0 or . e v - .
400 500 600 700 800 0.001 0.01 01 1 10 100
Wavelength / nm Time / us

S47



Figure S51. fs-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for SubPz 7b,
following 480 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of fs-TAS raw data. (b)
Differential absorption spectra at time delays between 0 ps and 7.5 ns. (c) Evolution-associated spectra with their
corresponding lifetimes, obtained from the deconvolution of the fs-TAS data. (d) Relative populations of the respective
species.

Energy / eV Energy / eV
a) 28 25 23 21 19 18 17 aopiam b) 28 25 23 24 1.9 1.8 1.7
. ) , L L 0010 — L . L
¥ 0.005
' 0.006
1000 A
0.002 0.000
-0.001 .
@ 100 3
s 3 & -0.005 -
e -0.005 3
F B
10 4 -0.009 0,010 4
-0.013
| -0.015 4
14 -0.016
75ns
r r r T - -0.020 -0.020 ———A—/F r : r
550 600 650 700 750 450 500 550 600 650 700 750
Wavelength / nm Wavelength / nm
Energy / eV
C) 28 25 23 241 19 1.8 1.7 d)
- ' ! ! ! T5,(SubPZ 7b] ——— T,(SubPz 7b)
0.005 1.0 {——s (subPz 7b)
M =
0.000 4 — 08
. e
3 -0.005 4 2
s 506
a 2
9 -0.010 € oa
-0.015 4
——*S, (SubPz 7b) - 9.3 ps 0.2 4
——S, (SubPz 7b) - 311 ps
-0.020 4 ——T, (SubPz 7b) - >7.5 ns
—— T r v v 0.0 T T . T -
450 500 550 600 650 700 750 0.01 0.1 1 10 100 1000
Wavelength / nm Time / ps

548



Figure S52. ns-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for SubPz 7b,
following 480 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of ns-TAS raw data. (b)
Differential absorption spectra at time delays between 1 ns and 350 ps. (¢) Evolution-associated spectrum with the
corresponding lifetime, obtained from the deconvolution of the ns-TAS data. (d) Relative population of the deconvoluted
species.
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Figure S53. fs-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for SubPz 8,
following 480 nm photoexcitation in argon-saturated THF at room temperature. (a) Heat map of fs-TAS raw data. (b)
Differential absorption spectra at time delays between O ps and 7.5 ns. (c¢) Evolution-associated spectra with their
corresponding lifetimes, obtained from the deconvolution of the fs-TAS data. (d) Relative populations of the respective

species.
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Figure S54. ns-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for SubPz 8,
following 480 nm photoexcitation in argon-saturated THF at room temperature. (a) Heat map of ns-TAS raw data. (b)
Differential absorption spectra at time delays between 1 ns and 350 ps. (¢) Evolution-associated spectra with their
corresponding lifetimes, obtained from the deconvolution of the ns-TAS data. (d) Relative population of the respective

species.
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Figure S55. fs-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for Ru(CO)Pc
12, following 660 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of fs-TAS raw data. (b)
Differential absorption spectra at time delays between O ps and 7.5 ns. (c¢) Evolution-associated spectra with their
corresponding lifetimes, obtained from the deconvolution of the fs-TAS data. (d) Relative populations of the respective

species.
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Figure S56. ns-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for Ru(CO)Pc
12, following 660 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of ns-TAS raw data. (b)
Differential absorption spectra at time delays between 1 ns and 350 ps. (¢) Evolution-associated spectrum with the
corresponding lifetime, obtained from the deconvolution of the ns-TAS data. (d) Relative population of the deconvoluted
species.
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Figure S57. fs-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for Ru(CO)Pc
12, following 660 nm photoexcitation in argon-saturated THF at room temperature. (a) Heat map of fs-TAS raw data. (b)
Differential absorption spectra at time delays between O ps and 7.5 ns. (c¢) Evolution-associated spectra with their
corresponding lifetimes, obtained from the deconvolution of the fs-TAS data. (d) Relative populations of the respective

species.
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Figure S58. ns-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for Ru(CO)Pc
12, following 660 nm photoexcitation in argon-saturated THF at room temperature. (a) Heat map of ns-TAS raw data. (b)
Differential absorption spectra at time delays between 1 ns and 350 ps. (¢) Evolution-associated spectrum with the
corresponding lifetime, obtained from the deconvolution of the ns-TAS data. (d) Relative population of the deconvoluted
species.
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Figure S59. ns-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for conjugate
Ru(CO)Pc-SubPz 1, following 480 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of ns-
TAS raw data. (b) Differential absorption spectra at time delays between 1 ns and 350 ps. (¢) Evolution-associated spectrum
with the corresponding lifetime, obtained from the deconvolution of the ns-TAS data. (d) Relative population of the
deconvoluted species.
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Figure S60. ns-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for conjugate
Ru(CO)Pc-SubPz 2, following 480 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of ns-
TAS raw data. (b) Differential absorption spectra at time delays between 1 ns and 350 ps. (c) Evolution-associated spectra
with their corresponding lifetimes, obtained from the deconvolution of the ns-TAS data. (d) Relative populations of the
respective species.
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Figure S61. ns-TAS raw data from pump-probe experiments and the corresponding global target analysis for conjugate
Ru(CO)Pc-SubPz 3, following 480 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of ns-
TAS raw data. (b) Differential absorption spectra at time delays between 1 ns and 350 ps. (c) Species-associated spectra with
their corresponding lifetimes, obtained from the deconvolution of the ns-TAS data. (d) Relative population of the respective
species.
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Figure S62. ns-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for conjugate
Ru(CO)Pc-SubPz 4, following 480 nm photoexcitation in argon-saturated THF at room temperature. (a) Heat map of ns-TAS
raw data. (b) Differential absorption spectra at time delays between 1 ns and 350 ps. (¢) Evolution-associated spectra with
their corresponding lifetimes, obtained from the deconvolution of the ns-TAS data. (d) Relative population of the respective

species.
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Figure S63. fs-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for conjugate
Ru(CO)Pc-SubPz 1, following 660 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of fs-
TAS raw data. (b) Differential absorption spectra at time delays between 0 ps and 7.5 ns. (¢) Evolution-associated spectra
with their corresponding lifetimes, obtained from the deconvolution of the fs-TAS data. (d) Relative populations of the

respective species.
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Figure S64. ns-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for conjugate
Ru(CO)Pc-SubPz 1, following 660 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of ns-
TAS raw data. (b) Differential absorption spectra at time delays between 1 ns and 350 ps. (¢) Evolution-associated spectrum
with the corresponding lifetime, obtained from the deconvolution of the ns-TAS data. (d) Relative population of the
deconvoluted species.

a) Energy / eV b) Energy / eV
341 25 21 1.8 1.6 AOD/a.u. 341 25 21 1.8 16
L A L L L 0.025 L L P N
0.02 4
100 4 0.011
-0.002
10 4
) -0.016 5
= <
s 1 -0.030 3
E 8
L <2
0.14 -0.044
1
-0.058 T
0.01 1
-0.071
350 ps
0.001 -0.085 T T — A T
600 700 800 400 500 600 700 800
Wavelength / nm Wavelength / nm
Energy / eV
C) 31 25 21 1.8 1.6 d)
0.02 4 1.0 ~——T,(Ru(CO)Pc)
0.01 /\—’\ 0.8
. c
= 0.00 ]
& 5 061
g 2
© -0.014 S 04
-0.02 4
0.24
-0.03 4 T, (RU(CO)Pc) - 5.1 ps
T T —r T 0.0 T T - - T T
400 500 600 700 800 0.001  0.01 0.1 1 10 100
Wavelength / nm Time / ps

S61



Figure S65. fs-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for conjugate
Ru(CO)Pc-SubPz 2, following 660 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of fs-
TAS raw data. (b) Differential absorption spectra at time delays between 0 ps and 7.5 ns. (c) Evolution-associated spectra
with their corresponding lifetimes, obtained from the deconvolution of the fs-TAS data. (d) Relative populations of the

respective species.
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Figure S66. ns-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for conjugate
Ru(CO)Pc-SubPz 2, following 660 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of ns-
TAS raw data. (b) Differential absorption spectra at time delays between 1 ns and 350 ps. (¢) Evolution-associated spectrum
with the corresponding lifetime, obtained from the deconvolution of the ns-TAS data. (d) Relative population of the
deconvoluted species.
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Figure S67. fs-TAS raw data from pump-probe experiments and the corresponding target analysis for conjugate Ru(CO)Pc-
SubPz 3, following 660 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of fs-TAS raw data.
(b) Differential absorption spectra at time delays between 0 ps and 7.5 ns. (¢) Evolution-associated spectra with their
corresponding lifetimes, obtained from the deconvolution of the fs-TAS data. (d) Relative populations of the respective

species.
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Figure S68. ns-TAS raw data from pump-probe experiments and the corresponding target analysis for conjugate Ru(CO)Pc-
SubPz 3, following 660 nm photoexcitation in argon-saturated toluene at room temperature. (a) Heat map of ns-TAS raw data.
(b) Differential absorption spectra at time delays between 1 ns and 350 ps. (¢) Evolution-associated spectra with their
corresponding lifetimes, obtained from the deconvolution of the ns-TAS data. (d) Relative populations of the respective

species.
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Figure S69. fs-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for conjugate
Ru(CO)Pc-SubPz 4, following 660 nm photoexcitation in argon-saturated THF at room temperature. (a) Heat map of fs-TAS
raw data. (b) Differential absorption spectra at time delays between 0 ps and 7.5 ns. (c) Evolution-associated spectra with
their corresponding lifetimes, obtained from the deconvolution of the fs-TAS data. (d) Relative populations of the respective
species.
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Figure S70. ns-TAS raw data from pump-probe experiments and the corresponding global sequential analysis for conjugate
Ru(CO)Pc-SubPz 4, following 660 nm photoexcitation in argon-saturated THF at room temperature. (a) Heat map of ns-TAS
raw data. (b) Differential absorption spectra at time delays between 1 ns and 350 ps. (c) Evolution-associated spectrum with
the corresponding lifetime, obtained from the deconvolution of the ns-TAS data. (d) Relative population of the deconvoluted

species.
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Figure S71. Species-associated spectra with the corresponding lifetimes, obtained from the deconvolution of the ns-TAS data
of conjugate Ru(CO)Pc-SubPz 3, following 480 nm photoexcitation in argon-saturated toluene at room temperature, with an

applied magnetic field of (a) 0 mT, (b) 2 mT, and (c) 5 mT.
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8. FRET parameters

According to Forster formalism, the efficiency of energy transfer is given by the following equation:!
Ro
E

= #(3)

Rg + 70
where r is the donor-acceptor distance and R, is the Forster distance, i.e., the distance between donor and acceptor at which
the FRET efficiency is 50 %.

Energy transfer efficiency can also be calculated using emission intensity and lifetime values using the following equations.

FDA
E=1-—#(4)
FD

T
DA
E=1-—#(5)
™p
where Fp, and F, are the fluorescence intensities of the donor in the presence and absence of the acceptor, respectively. 7p,
and 7, refer to the lifetime of the donor in the presence and absence of the acceptor, respectively.

In this work, Ru(CO)Pc-SubPz conjugates 1 and 3 showed more than 80% energy transfer efficiency when calculated using
equation (4). It was, however, not possible to determine the efficiency values for the conjugate 2 using the same method. Also,

the fluorescence lifetime values of the donor in the presence of the acceptor (*p4) could not be obtained from the transient
absorption measurements at 480 nm photoexcitation.

The Forster distance Ry can be calculated using the equation:
9000[In10]¢, k(1)
( D ) 1/6 # (6)

0=

1287°Nn*
where ¢p is the quantum yield of the donor, x? describes the relative orientation of the transition dipoles of the donor and
acceptor in space, n is the refractive index of the medium, N is the Avogadro constant and J(4) is the overlap integral. For
randomly arranged transition dipoles, x? value is usually taken as 2/3. The integral of spectral overlap between the donor
emission and the acceptor absorption multiplied by wavelength A to the fourth power gives the overlap integral, J,

J@) = f Fp(Ne, (M)A dA #(7)
0
where Fp(4) is the normalized donor emission spectrum and ¢4 is the molar extinction coefficient of the acceptor.

The rate of resonance energy transfer Kerer can be written as

1 (Ro
kpppr = r_(T)6 #(8)
D

An estimate of the FRET rate constants was determined using the above equation by substituting an ‘7’ value obtained from
DFT calculations.

Table S1. Parameters used to calculate i-FRET rate constants for the conjugates Ru(CO)Pc-SubPz 1, 2, and 3.

Compound Tp @D J/ 1015 R() r kFRET/ 1012
(ps) (M em! nm*) (A) A) (s
Ru(CO)Pc-SubPz 1 226 0.019 1.149 25.06 7.48 6.22
Ru(CO)Pc-SubPz 2 203 0.026 1.932 28.94 7.48 16.50

S68



Ru(CO)Pc-SubPz 3 311 0.015 7.521 33.20 7.19 31.11

9. DFT calculations

The molecular structures of the complexes were conformationally optimized using the global optimizer algorithm (GOAT,
ORCA 6.0, GFN2-xTB).!¢!7 These structures of the global minima were further optimized with density-functional theory
(DFT) at the B3LYP-GD3BJ/6-31g*/LanL.2DZ!3-2? level in Gaussian16.2> The LANL2DZ basis set was used for the
ruthenium atom and 6-31g* basis sets were used for other atoms in all complexes. The Avogadro program was used to
visualize optimized structures.?*

Figure S72. Optimized ground state geometries of the conjugates (a) Ru(CO)Pc-SubPz 1, (b) Ru(CO)Pc-SubPz 2, (c)
Ru(CO)Pc-SubPz 3, and (d) Ru(CO)Pc-SubPz 4.

(a) Ru(CO)Pc-SubPz 1 (b) Ru(CO)Pc-SubPz 2

(c) Ru(CO)Pc-SubPz 3 (d) Ru(CO)Pc-SubPz 4
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Figure S73. Orbital representations, energy levels of HOMO (bottom) and LUMO (top), and the corresponding energy gaps
AE for (a) Ru(CO)Pc-SubPz 1, (b) Ru(CO)Pc-SubPz 2, (¢) Ru(CO)Pc-SubPz 3, and (d) Ru(CO)Pc-SubPz 4.
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10. Optimized structures
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4.03139 4.72603
5.09479 3.83095
4.88575 2.46236
0.39046 -0.72304
0.694 -0.69711

0.68283 0.45303
0.65168 0.53421
0.59883 -0.63705
0.68276 -1.84164
0.73142 -1.82036
-1.08239 2.46588
0.04154 3.17438
1.0333  2.69488

1.01074 1.4431

-1.16268 1.18189
1.70479 1.40449
1.41179 0.54203
0.28472 -0.15904

-0.46274 -0.17929
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4.79994 -1.77625 -0.43211
3.99136 -2.75202 -0.02635
3.03828 -2.44856 0.84691
3.24359 0.00835 0.40083
6.69917 -0.54525 -0.72856
6.16005 -1.82579 -0.8864
1.9792 -2.4295 2.86704

2.42362 -3.27259 1.84513
4.83723 2.49899 2.60478
3.75583 2.09612 3.3905

2.34041 -5.00278 1.86741
1.36676 -3.02815 4.37162
2.08682 -5.35404 0.08504
0.63218 -5.21051 -0.34473
0.13467 -3.77035 -0.34465
0.58193 -1.55727 5.112

-0.62737 -1.09967 4.31303
-1.50584 -0.14728 5.11436
7.1019 -3.18666 -1.39588
8.36807 -0.16427 -1.01263
827799 1.6207 -1.41262
8.02238 1.8746 -2.89161
6.62642 1.4512 -3.32947
5.83771 -4.48126 -1.64199
4.94325 -4.21308 -2.84204
5.71971 -4.22317 -4.15202
3.34612 2.72545 4.95432
6.0157 3.64424 3.1495

6.88747 4.07832 1.60638
6.00217 4.85615 0.64618
6.79204 5.31864 -0.57231
1.52203 2.5777 4.86316
0.93365 3.49533 3.80204
-0.57823 3.32645 3.69914
2.37537 0.48758 -0.68683
-5.67709 0.09032 -0.75358
-6.80735 -0.09986 -0.77896
-3.45974 -1.09413 -6.40942
-2.91223 -3.37824 -7.22228
-2.49137 -5.19964 -5.64671
-2.60673 -4.81278 -3.19474
-2.74809 -5.1917 0.80157
-2.79161 -6.0379 3.13859
-3.3236 -4.54313 4.9984

-3.79379 -2.13738 4.60263
-4.56803 6.0361 -2.24611
-4.72678 6.83695 -4.59368
-4.55074 5.27242 -6.46411
-4.20878 2.84349 -6.06251
-4.09182 1.89842 4.9744

-4.29387 4.23267 5.78698
-4.43389 6.10037 4.21486
-4.38283 5.70272 1.7616

-1.65515 0.70177 1.36963
0.76096 0.66604 1.50381
0.88052 0.6919 -2.77697
-1.56635 0.79623 -2.75793
2.42281 -6.38328 -0.03837
2.74235 -4.68762 -0.47003
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0.54674 -5.61889 -1.35535
0.00297 -5.81086 0.31505
-0.86982 -3.7177 -0.7593

0.78923 -3.13674 -0.94262
0.09817 -3.37347 0.66812
0.28492 -1.89522 6.10489
1.3421 -0.78392 5.20085
-1.21642 -1.97326 4.02723
-0.29333 -0.61219 3.39478
-0.95056 0.73853 5.41408
-1.87309 -0.64016 6.01177
-2.35854 0.15476 4.50996
7.49355 2.03996 -0.78851
9.24525 2.02309 -1.11295
8.76953 1.34127 -3.48266
8.15255 2.9447 -3.07608
6.50358 0.37486 -3.2323

6.46063 1.71944 -4.36993
5.86783 1.9408 -2.72126
6.41736 -5.3932 -1.78352
5.26582 -4.54484 -0.7189
4.44524 -3.24989 -2.7128
4.1697 -4.98505 -2.86494
6.17963 -5.19538 -4.31447
6.50624 -3.47199 -4.13253
5.05832 -4.0101 -4.98795
7.7313 4.68386 1.9368

7.25013 3.15222 1.16697
5.58336 5.72195 1.16378
5.17272 4.22196 0.32574
7.20297 4.4663 -1.10781
7.61361 5.96489 -0.27211
6.1476 5.87363 -1.24937
1.29275 1.53389 4.66174
1.16912 2.84703 5.85782
1.38955 3.2668 2.8346

1.17641 4.53145 4.04633
-0.83441 2.30539 3.42678
-0.98462 3.99262 2.94206
-1.05938 3.55735 4.64647
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1.57014 1.50608 -0.42993
1.95981 2.06034 -1.57468
2.59732 1.30373 -2.46147
2.67776 -0.05053 -2.3446
1.62876 0.16141 -0.22458
3.81013 -0.53242 -2.93102
442107 -1.63311 -2.50905
4.01851 -2.18789 -1.37114
2.89707 -1.77098 -0.72724
2.95559 -2.02705 0.60687
2.32649 -1.2764 1.50354
1.76866 -0.14088 1.0944
1.9 -0.82157 -1.32262

4.73406 -3.02876 -0.43445
4.05777 -2.94279 0.79705
1.36457 2.1076 0.86503
1.51233 1.08063 1.81916
4.33085 0.53961 -3.75055
3.57805 1.68964 -3.45134
1.49653 1.2236 3.23554
1.12382 3.49163 1.10993
1.73035 0.22378 4.10225
1.63143 0.44877 5.5506
1.96078 -0.66293 6.22495
0.89616 4.39764 0.14389
0.64841 5.80797 0.47016
0.35366 6.50299 -0.63744
4.40355 -3.5598 2.03643
5.93101 -3.75823 -0.69937
6.62512 -3.70526 -1.84873
7.84481 -4.51077 -2.01535
8.43009 -4.25628 -3.19386
3.6295 -3.51161 3.13489
4.0436 -4.16372 4.38547
3.11272 -3.99229 5.33674
3.78053 3.01392 -3.94306
5.44393 0.44082 -4.63726
6.06304 -0.71207 -4.94168
7.20457 -0.73534 -5.86914
7.64686 -1.98841 -6.03904
3.01661 4.06446 -3.59855
3.28897 5.41397 -4.11461
2.37528 6.27968 -3.65193
0.72522 -1.55716 -1.81192
0.70784 6.29216 1.5759
1.29053 1.48356 6.07442
5.07698 -4.7659 4.55301
8.26522 -5.3085 -1.21089
7.67853 0.23201 -6.41616
4.19588 5.71309 -4.85402
1.84762 -0.62616 7.64491
0.45198 -1.04196 8.0905
0.06728 7.88963 -0.47622
-1.38108 8.11382 -0.06337
3.3765 -4.56631 6.61479
2.98494 -6.03726 6.65886
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9.62331 -4.97891 -3.48991
10.83705 -4.37584 -2.79533
8.77801 -2.1673 -6.8876
10.07528 -1.85408 -6.15504
2.52502 7.64839 -4.01804
3.43425 8.37997 -3.04002
-2.54818 -3.41923 3.35902
-1.74677 -2.3304 3.7576
-2.34012 -1.14513 3.16483
-3.4138 -1.52417 2.42432
-3.59775 -2.86773 2.52047
-7.12473 -3.11617 -0.45021
-6.43908 -3.95528 0.45132
-5.43211 -3.12965 1.09334
-5.53248 -1.86572 0.60299
-6.51976 -1.80181 -0.32783
-4.54037 -3.58671 1.94859
-6.01351 2.68829 -1.26819
-6.78096 1.59379 -1.71466
-6.36311 0.45043 -0.92279
-5.38969 0.85271 -0.06349
-5.15058 2.18096 -0.2162
-6.88281 -0.75262 -1.03398
-1.96968 2.5152 3.11698
-2.65083 3.35879 2.21618
-3.50969 2.4992 1.42073
-3.33089 1.21326 1.82396
-2.39856 1.16122 2.81109
-1.90599 0.07966 3.37505
-4.31124 2.92978 0.47007
-6.17696 3.94623 -1.82291
-7.11895 4.08994 -2.82795
-7.87795 3.0089 -3.26854
-7.72087 1.74701 -2.71949
-8.15836 -3.60516 -1.23068
-8.49387 -4.94186 -1.09284
-7.81609 -5.77063 -0.20248
-6.77951 -5.29104 0.58077
-1.13697 3.04172 4.0904
-0.96637 4.41741 4.11495
-1.61376 5.2478 3.20516
-2.47011 4.73105 2.24649
-2.23883 -4.71046 3.7519
-1.10993 -4.89424 4.53392
-0.31412 -3.81935 4.9212
-0.62576 -2.52312 4.5457
-4.46411 -0.32077 1.24033
-3.00983 -0.75509 -0.24765
-2.56614 -2.00595 -0.42402
-1.35018 -2.31161 -0.98828
-0.50306 -1.27548 -1.40201
-1.03556 0.02015 -1.35155
-2.2658 0.2252 -0.7698
-5.68803 0.05246 2.57269
-6.44418 0.28348 3.39964
1.27999 2.20742 3.62701
1.1006 3.82463 2.13889
1.98972 -0.76864 3.77288
0.88779 4.13564 -0.90105
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5.33426 -4.1096 2.0866

6.30318 -4.40048 0.08886
6.33194 -3.07527 -2.6719

2.6831 -2.99628 3.14842

4.59774 3.17474 -4.6338

5.7963 13507 -5.10545

5.75674 -1.65635 -4.52292
2.18967 3.96873 -2.91504
2.07177 0.38719 7.99439
2.6047 -1.3217 8.01451

0.21019 -2.02981 7.70508
-0.28301 -0.3328 7.71713

0.40426 -1.05958 9.17555
0.74255 8.30764 0.27843

0.27226 8.33778 -1.45065
-1.55857 7.67173 0.91367
-1.58614 9.17931 -0.01171
-2.05211 7.65553 -0.78597
2.78281 -3.97888 7.31907
4.44207 -4.45507 6.84139
3.1462 -6.42775 7.65954

3.59428 -6.60254 5.95807
1.93709 -6.15928 6.39406
9.49431 -6.02048 -3.1763

9.72151 -4.92794 -4.57642
10.93435 -3.32171 -3.04546
10.73183 -4.47263 -1.71774
11.73471 -4.9002 -3.11017
8.73938 -3.21529 -7.19221
8.67296 -1.5192 -7.76443

10.11347 -0.79649 -5.90606
10.13102 -2.43537 -5.23843
10.92322 -2.09846 -6.78846
2.93538 7.70427 -5.03198
1.51423 8.06245 -4.00224
3.46755 9.43666 -3.28946
3.06306 8.26233 -2.0246

4.4409 7.97285 -3.09571

-5.58754 4.77899 -1.47343
-7.27178 5.059 -3.27977

-8.60423 3.16112 -4.05328
-8.30661 0.9055 -3.05347

-8.6788 -2.95687 -1.91745
-9.29785 -5.35256 -1.68563
-8.10786 -6.80743 -0.12244
-6.25061 -5.92583 1.27385
-0.65659 2.40363 4.81523
-0.32103 4.85628 4.86076
-1.44609 6.31216 3.25932
-2.99758 5.36527 1.55128
-2.85981 -5.53839 3.44829
-0.83959 -5.89222 4.84729
0.57096 -3.99616 5.51273
-0.01812 -1.68656 4.8466

-3.20577 -2.81128 -0.08596
-1.02375 -3.33528 -1.07291
-0.48704 0.85971 -1.74724
-2.66436 1.23147 -0.71958
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-0.06691 0.37694 2.05347
0.01853 1.56457 2.63954
0.88468 2.4486 2.15484
1.54363 2.25314 0.98117
0.57243 0.09552 0.88572
2.73231 2.90849 0.95666
3.74773 2.4982 0.20406
3.66382 1.30733 -0.38102
2.51249 0.57902 -0.39622
2.78017 -0.75639 -0.40181
1.93514 -1.65446 0.10249
0.89782 -1.22196 0.80871
1.18943 1.1564 0.0228
4.73142 0.40012 -0.72725
4.17886 -0.90083 -0.72232
-0.46014 -0.89294 2.61948
0.14968 -1.89341 1.84957
2.71874 3.82419 2.07601
1.55478 3.53994 2.82241
0.07732 -3.30504 2.03144
-1.29058 -1.04072 3.78359
0.48533 -4.17859 1.08897
0.43892 -5.61767 1.18252
-2.29655 -0.20618 4.09482
-2.78551 0.85177 3.22379
4.86858 -2.13172 -0.91165
6.08907 0.76778 -0.93723
6.4929 2.05225 -1.05216
7.8416 2.51251 -1.26817
4.28764 -3.33948 -0.73955
4.91304 -4.62832 -0.89535
1.14668 4.13539 4.04955
3.74031 4.75961 2.40477
4.93102 4.81591 1.7703
6.00916 5.72752 2.06485
0.09478 3.69226 4.77103
-0.36163 4.23711 6.02606
-3.22954 2.06626 3.75447
-3.63975 3.09083 2.92801
-3.62518 2.90013 1.55088
-3.23416 1.68145 1.00636
-2.83291 0.6641 1.83753
0.52931 -6.37275 0.00335
0.46742 -7.74784 0.03446
0.32667 -8.39395 1.25846
0.25963 -7.66928 2.44453
0.31518 -6.29418 2.40362
6.19409 -4.80419 -1.43892
6.74186 -6.06059 -1.56245
6.01549 -7.17121 -1.14262
4.74012 -7.02658 -0.60468
4.19945 -5.767 -0.48705
8.04558 3.86896 -1.57081
9.30885 4.3672 -1.79501
10.40154 3.50951 -1.71503
10.2297 2.16376 -1.40434

o000 N0NN0NNNN0NNTOZOZOZOZZOZAOD
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8.96289 1.67371 -1.18306
-0.00241 5.51249 6.48456
-0.4679 5.98621 7.69042
-1.30443 5.18789 8.46485
-1.67875 3.91891 8.03259
-1.21287 3.45671 6.8236
7.28436 5.44672 1.54998
8.35196 6.27808 1.80089
8.15767 7.41937 2.57293
6.90128 7.72771 3.08598
5.8402 6.88829 2.83352
0.32818 1.70063 -1.0332
-0.64791 1.04353 -1.63454
-0.67823 -0.34487 -1.82114
-1.80905 -0.93853 -2.33267
-2.83174 1.07229 -2.63733
-1.74831 1.75615 -2.13596
-4.03811 3.95481 0.67215
-3.93803 3.76065 -0.52456
-4.45648 4.97889 1.16858
0.24642 -9.83089 1.29888
0.13679 -10.35592 2.38691
0.28611 -10.42454 0.2424
11.72452 4.01741 -1.96424
11.82881 5.18731 -2.26629
12.6519 3.24144 -1.86309
9.26852 8.29197 2.8453
10.35347 7.97413 2.40645
9.05143 9.28989 3.50082
-1.78982 5.67913 9.72541
-2.53302 4.95946 10.3606
-1.42668 6.78169 10.07842
6.5903 -8.48332 -1.26678
5.93213 -9.4245 -0.87595
7.6991 -8.56797 -1.75297
-0.37309 -3.64839 2.95131
-1.06028 -1.8674 4.4421
0.8506 -3.78026 0.15267
-2.80185 -0.31763 5.04479
5.90951 -2.0554 -1.19114
6.7978 -0.04183 -1.03374
5.73595 2.82216 -0.99973
3.25622 -3.35482 -0.41845
1.74261 4.96535 4.40177
3.52902 5.42445 3.23026
5.12194 4.0861 0.99683
-0.43515 2.82326 4.40639
-3.23479 2.21189 4.82402
-3.96882 4.0386 3.32565
-3.26058 1.55502 -0.06396
-2.58104 -0.29851 1.42169
0.62712 -5.86237 -0.94357
0.52524 -8.33768 -0.8676
0.16428 -8.20262 3.37822
0.27971 -5.73352 3.32403
6.75885 -3.95001 -1.77635
7.72631 -6.20723 -1.98006
4.19874 -7.90601 -0.29079
3.21299 -5.64631 -0.06454
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7.19181 4.52679 -1.64157
9.47235 5.40713 -2.033
11.09849 1.52616 -1.34358
8.83904 0.63254 -0.93222
0.63037 6.14221 5.8799
-0.20111 6.96803 8.05084
-2.32811 3.32335 8.65614
-1.48274 2.46821 6.48329
7.42836 4.55452 0.95923
9.33643 6.06718 1.41189
6.78242 8.62501 3.67405
4.86554 7.14111 3.21919
0.1666 -0.96082 -1.56268
-1.82197 -2.01428 -2.45631
-3.68653 1.63606 -2.98985
-1.76718 2.8321 -2.07898
-2.90755 -0.26476 -2.6888
-3.12354 -3.86164 -5.75314
-2.82176 -4.59622 -4.58908
-3.31255 -3.81025 -3.47125
-3.87397 -2.66934 -3.95629
-3.79042 -2.64925 -5.31104
-5.95739 1.38653 -5.88344
-5.34078 0.39541 -6.6724
-4.85048 -0.6153 -5.75077
-5.15719 -0.23152 -4.48369
-5.82157 0.95392 -4.5032
-4.22752 -1.71103 -6.12361
-6.28296 1.3613 0.07265
-6.60941 2.08338 -1.09183
-6.1451 1.28326 -2.21131
-5.56078 0.156 -1.72802
-5.6178 0.14883 -0.37028
-6.26948 1.63706 -3.47235
-3.42101 -3.87062 0.20495
-3.97898 -2.844 0.99398
-4.50687 -1.85793 0.06937
-4.25179 -2.27206 -1.19804
-3.60676 -3.46852 -1.17694
-3.18622 -4.16818 -2.21082
-5.13004 -0.76017 0.44501
-6.582 1.86236 1.32852
-7.20372 3.0987 1.39757
-7.51814 3.81604 0.24636
-7.22798 3.31926 -1.01395
-6.53939 2.50015 -6.46349
-6.49579 2.60289 -7.84464
-5.88793 1.6232 -8.6246
-5.30139 0.50622 -8.05137
-2.86747 -4.99632 0.7916
-2.87545 -5.07312 2.17363
-3.40838 -4.04918 2.95327
-3.96838 -2.92224 2.37663
-2.79057 -4.34648 -7.0063
-2.15239 -5.57429 -7.07358
-1.85319 -6.29941 -5.92324
-2.18248 -5.82194 -4.66534
-4.76488 -1.28237 -2.84881
-6.38526 -2.16953 -2.94061
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-7.38612
-6.32973
-7.44328
-7.99083
-7.46332
-7.00949
-6.94297
-5.87569
-4.82986
-2.46073
-2.46724
-3.39836
-4.39846
-3.02846
-1.88284
-1.35794
-1.96059

-2.71855
1.30197
3.52091
4.78144
3.87085
3.25354
3.45845
1.73794

-0.25739

-5.78832

-5.94794

-4.14653

-2.13211

-3.78076

-5.98143

-7.25442

-6.38082

-2.9964
2.21548
2.36205
0.34277
-1.90944
-5.85195
-8.32852
-9.69832
-8.6491
0.18324
2.65789
4.02915
297154
-7.89281
-8.0367
-6.01692
-3.76992
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11. Crystallographic data

Figure S74. Unit cell and crystalline packing of SubPz 7a.

Table S2. Crystallographic data for 7a

Chemical formula
Formula weight

Temperature
Wavelength
Crystal size
Crystal habit
Crystal system
Space group

Ci2.75H36.50BCly 7sN6O13
879.67 g/mol
200(2) K
0.71073 A
0.015x0.124 x 0.164 mm

Dark purple plate

Monoclinic
Cl2/c1

Unit cell dimensions

a=41.7473) A o =90°

b=7.8119(7) A B=120.236(3)°
c=30271(3) A y=90°

Volume 8529.1(13) A3

Z 8

Density (calculated) 1.370 g/cm?

Absorption coefficient 0.147 mm!

F(000) 3654

x/a y/b z/c U(eq)

Bl 0.36658(16) 0.6846(8) 0.4697(2) 0.0310(15)
Cl 0.33183(14) 0.6575(7) 0.51715(19) 0.0314(13)
C2  0.29602(13) 0.5931(7) 0.5063(2) 0.0303(13)
C4 0.30579(14) 0.5297(7) 0.4401(2) 0.0337(13)
C5 0.34272(14) 0.4347(7) 0.40895(19) 0.0321(13)
C6 0.35944(15) 0.3050(7) 0.39275(19) 0.0353(14)
C7 0.39787(14) 0.3243(7) 0.42187(19) 0.0314(13)
C8 0.40469(14) 0.4665(7) 0.45605(19) 0.0305(13)
C9 0.43123(13) 0.5950(6) 0.53526(19) 0.0280(12)
C10 0.45439(13) 0.6049(6) 0.59082(19) 0.0293(13)
Cl11 0.43197(13) 0.6674(7) 0.60923(19) 0.0301(13)

S84



Cl12
C13
Cl4
CI5
Cl6
C17
CI8
C19
C20
C21
C22
C23
C24
C25
C26
Cc27
C28
C29
C30
C31
C32
C33
C34
C35
C36
C37
C38
C39
C40
Cc41
C42
C43
NI

N2

N3

N4

N5

N6

01

02

03

04

05

06

o7

08

09

010
Ol11
012
013

x/a
0.39462(14)
0.28170(14)
0.29759(15)
0.28154(17)
0.2905(2)
0.28004(13)
0.24503(14)
0.22928(15)
0.19199(17)
0.1412(2)
0.34091(16)
0.30635(17)
0.2914(2)
0.3033(2)
0.42593(15)
0.46182(16)
0.48933(18)
0.50119(17)
0.49179(13)
0.51145(14)
0.54909(16)
0.59750(17)
0.44216(14)
0.41907(16)
0.43100(18)
0.4093(2)
0.36482(14)
0.33263(15)
0.33436(18)
0.36747(18)
0.39935(17)
0.39845(15)
0.33341(11)
0.30902(11)
0.37129(11)
0.43568(11)
0.39823(10)
0.36177(11)
0.30384(11)
0.25261(12)
0.17858(12)
0.17626(13)
0.31734(12)
0.25989(14)
0.47453(10)
0.52146(11)
0.56145(11)
0.56649(12)
0.40182(11)
0.46172(12)
0.36444(9)

y/b
0.6912(6)
0.6024(7)
0.6834(7)
0.6811(8)
0.7700(13)
0.5130(7)
0.4230(7)
0.3408(9)
0.2648(9)
0.1286(14)
0.1594(8)
0.1310(9)
0.9765(9)
0.7099(12)
0.2206(7)
0.2262(7)
0.1265(7)
0.9560(9)
0.5494(7)
0.4812(7)
0.4154(8)
0.2644(9)
0.6957(7)
0.7494(8)
0.7804(9)
0.8594(14)
0.9853(7)
0.0397(7)
0.1643(8)
0.2380(8)
0.1899(7)
0.0629(7)
0.6340(5)
0.4383(6)
0.5382(5)
0.5034(5)
0.6655(5)
0.6993(5)
0.7622(6)
0.6186(7)
0.2007(8)
0.2601(8)
0.8694(7)
0.9502(6)
0.0452(5)
0.1223(5)
0.3425(5)
0.4199(7)
0.8244(7)
0.7695(7)
0.8484(5)

z/c
0.56487(19)
0.5411(2)
0.5851(2)
0.6182(2)
0.6981(3)
0.45891(19)
0.4346(2)
0.3906(2)
0.3711(3)
0.3032(3)
0.3579(2)
0.3291(2)
0.2965(3)
0.2729(4)
0.4196(2)
0.4519(2)
0.4463(2)
0.3924(3)
0.6205(2)
0.6012(2)
0.6336(3)
0.6321(3)
0.6614(2)
0.6766(2)
0.7304(2)
0.7856(3)
0.4760(2)
0.4738(2)
0.5072(3)
0.5412(3)
0.5423(2)
0.5097(2)
0.47390(16)
0.40464(15)
0.44176(15)
0.50108(15)
0.52331(15)
0.56255(15)
0.66256(16)
0.60850(16)
0.3248(2)
0.3936(2)
0.30184(19)
0.2696(2)
0.40122(15)
0.47772(16)
0.60529(16)
0.67935(19)
0.73490(16)
0.76567(16)
0.44643(13)

U(eq)
0.0309(13)
0.0340(13)
0.0393(14)
0.0462(16)
0.101(3)
0.0325(13)
0.0392(14)
0.0527(17)
0.0599(19)
0.125(4)
0.0434(15)
0.0534(17)
0.0530(17)
0.120(4)
0.0356(14)
0.0405(15)
0.0407(15)
0.0613(19)
0.0345(13)
0.0369(14)
0.0463(16)
0.072(2)
0.0346(14)
0.0486(16)
0.0566(18)
0.111(3)
0.0349(14)
0.0426(15)
0.0524(17)
0.0516(17)
0.0463(16)
0.0389(14)
0.0320(11)
0.0350(11)
0.0303(11)
0.0311(11)
0.0272(10)
0.0291(10)
0.0645(13)
0.0704(14)
0.099(2)
0.0932(19)
0.0835(17)
0.0818(16)
0.0487(11)
0.0507(11)
0.0539(11)
0.0862(17)
0.0803(16)
0.0740(15)
0.0365(9)
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x/a

Cll  0.44907(8)

C44 0.4807(2)

0.2227(4)
0.229(2)

Table S4. Bond lengths (A) for 7a.

B1-013
B1-N5
CI-N6
Cl-C2
C2-C13
C4-N1
C5-N2
C5-Co
C6-C22
C7-C26
C8-N4
C9-N5
C10-Cl11
Cl11-C34
CI12-N6
C13-Cl14
C14-C15
C15-02
Cl16-01
Cl6-H16B
C17-C18
CI18-HI18
CI19-HI19
C20-03
C21-H21A
C21-H21C
C22-H22
C23-H23
C24-05
C25-H25A
C25-H25C
C26-H26
C27-H27
C28-07
C29-H29A
C29-H29C
C30-H30
C31-H31
C32-09
C33-H33A
C33-H33C
C34-H34
C35-H35
C36-011
C37-H37A
C37-H37C

1.442(7)
1.497(7)
1.352(6)
1.450(7)
1.450(7)
1.361(6)
1.346(6)
1.449(7)
1.478(8)
1.454(7)
1.356(6)
1.353(6)
1.397(7)
1.430(7)
1.339(6)
1.314(7)
1.461(8)
1.194(7)
1.441(7)
0.98
1.445(7)
0.95
0.95
1.320(8)
0.98
0.98
0.95
0.95
1.314(8)
0.98
0.98
0.95
0.95
1.340(7)
0.98
0.98
0.95
0.95
1.330(7)
0.98
0.98
0.95
0.95
1.338(7)
0.98
0.98

z/c U(eq)
0.67949(11) 0.1008(10)
0.7429(6) 0.190(10)

B1-N3 1.493(7)
B1-N1 1.506(7)
CI1-N1 1.356(6)
C2-C17 1.389(7)
C4-N2 1.350(6)
C4-C17 1.455(7)
C5-N3 1.367(6)
Co-C7 1.396(7)
C7-C8 1.446(7)
C8-N3 1.356(6)
C9-N4 1.346(6)
C9-C10 1.460(7)
C10-C30 1.421(7)
Cl11-C12 1.470(7)
C12-N5 1.355(6)
C13-H13 0.95

Cl4-H14 0.95

C15-01 1.345(7)
C16-H16A 0.98

Cl16-H16C 0.98

C18-C19 1.318(7)
C19-C20 1.483(8)
C20-04 1.160(7)
C21-03 1.469(8)
C21-H21B 0.98

C22-C23 1.274(7)
C23-C24 1.484(9)
C24-06 1.163(7)
C25-05 1.465(9)
C25-H25B 0.98

C26-C27 1.314(7)
C27-C28 1.466(8)
C28-08 1.192(6)
C29-07 1.448(6)
C29-H29B 0.98

C30-C31 1.334(7)
C31-C32 1.464(8)
C32-010 1.198(7)
C33-09 1.437(7)
C33-H33B 0.98

C34-C35 1.329(7)
C35-C36 1.463(8)
C36-012 1.189(7)
C37-011 1.430(7)
C37-H37B 0.98

C38-C39 1.378(7)
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C38-013
C39-C40
C40-C41
C41-C42
C42-C43
C43-H43
C44-C44
C44-H44B

1.390(6)
1.379(8)
1.368(9)
1.368(8)
1.386(8)
0.95
1.447(18)
0.99

C38-C43
C39-H39
C40-H40
C41-H41
C42-H42
Cl1-C44
C44-H44A

1.392(7)
0.95
0.95
0.95
0.95
1.696(14)
0.99
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Table S5. Bond angles (°) for 7a.

0O13-BI-N3
N3-BI-N5
N3-B1-N1
N6-C1-N1
NI1-C1-C2
C17-C2-C13
N2-C4-N1
N1-C4-C17
N2-C5-C6
C7-C6-C5
C5-Ce6-C22
C6-C7-C26
N3-C8-N4
N4-C8-C7
N4-C9-C10
C11-C10-C30
C30-C10-C9
C10-C11-C12
N6-C12-N5
N5-C12-Cl11
C14-C13-H13
C13-C14-C15
C15-C14-H14
02-C15-C14
O1-Cl6-H16A
H16A-C16-H16B
H16A-C16-H16C
C2-C17-C18
CI18-C17-C4
C19-C18-H18
C18-C19-C20
C20-C19-H19
04-C20-C19
03-C21-H21A
H21A-C21-H21B
H21A-C21-H21C
C23-C22-C6
C6-C22-H22
C22-C23-H23
06-C24-05
05-C24-C23
05-C25-H25B
05-C25-H25C
H25B-C25-H25C
C27-C26-H26
C26-C27-C28
C28-C27-H27
08-C28-C27
07-C29-H29A
H29A-C29-H29B
H29A-C29-H29C

113.3(4)
104.0(4)
103.6(4)
123.0(4)
106.3(4)
127.8(5)
121.9(5)
105.8(4)
129.8(5)
107.9(5)
127.7(5)
127.4(5)
122.7(4)
128.8(5)
130.2(5)
126.8(5)
126.2(4)
107.2(4)
123.2(5)
105.5(4)
117.4
121.3(5)
119.4
126.3(6)
109.5
109.5
109.5
125.6(5)
126.9(5)
116.0
119.0(6)
120.5
124.9(7)
109.5
109.5
109.5
128.9(6)
115.6
118.3
123.0(6)
113.0(6)
109.5
109.5
109.5
116.9
124.3(5)
117.9
123.7(6)
109.5
109.5
109.5

O13-BI-N5
O13-BI-N1
N5-B1-N1
N6-C1-C2
C17-C2-C1
C1-C2-C13
N2-C4-C17
N2-C5-N3
N3-C5-Cé
C7-C6-C22
C6-C7-C8
C8-C7-C26
N3-C8-C7
N4-C9-N5
N5-C9-C10
C11-C10-C9
C10-C11-C34
C34-C11-C12
N6-C12-C11
C14-C13-C2
C2-C13-H13
C13-C14-H14
02-C15-01
01-C15-C14
O1-Cl6-H16B
0O1-Cl6-H16C
H16B-C16-H16C
C2-C17-C4
C19-C18-C17
C17-C18-H18
C18-C19-H19
04-C20-03
03-C20-C19
03-C21-H21B
03-C21-H21C
H21B-C21-H21C
C23-C22-H22
C22-C23-C24
C24-C23-H23
06-C24-C23
05-C25-H25A
H25A-C25-H25B
H25A-C25-H25C
C27-C26-C7
C7-C26-H26
C26-C27-H27
08-C28-07
07-C28-C27
07-C29-H29B
07-C29-H29C
H29B-C29-H29C

115.0(5)
116.2(4)
103.3(4)
129.4(5)
107.1(4)
125.0(5)
130.8(5)
123.0(5)
105.5(4)
123.8(5)
106.5(4)
126.1(5)
106.8(4)
121.8(4)
106.3(4)
106.9(4)
127.5(5)
125.3(4)
129.9(4)
125.3(5)
117.3
119.4
123.0(5)
110.7(5)
109.5
109.5
109.5
107.4(4)
127.9(5)
116.0
120.5
123.3(6)
111.8(6)
109.5
109.5
109.5
115.6
123.3(6)
118.3
124.0(7)
109.5
109.5
109.5
126.2(5)
116.9
117.9
123.8(5)
112.5(5)
109.5
109.5
109.5
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C31-C30-C10
C10-C30-H30
C30-C31-H31
010-C32-09
09-C32-C31
09-C33-H33B
09-C33-H33C
H33B-C33-H33C
C35-C34-H34
C34-C35-C36
C36-C35-H35
012-C36-C35
O11-C37-H37A
H37A-C37-H37B
H37A-C37-H37C
C39-C38-013
013-C38-C43
C38-C39-H39
C41-C40-C39
C39-C40-H40
C40-C41-H41
C41-C42-C43
C43-C42-H42
C42-C43-H43
CI-N1-C4
C4-N1-B1
C8-N3-C5
C5-N3-B1
C9-N5-C12
C12-N5-Bl1
C15-01-C16
C24-05-C25
C32-09-C33
C38-013-B1
C44-C44-H44A
C44-C44-H44B
H44A-C44-H44B

124.6(5)
117.7
118.8
123.4(5)
110.7(5)
109.5
109.5
109.5
117.7
122.6(5)
118.7
126.6(6)
109.5
109.5
109.5
120.7(5)
119.1(5)
120.3
120.7(6)
119.7
119.9
120.2(6)
119.9
120.4
111.9(4)
124.1(4)
111.6(4)
123.3(4)
112.7(4)
122.8(4)
115.5(5)
114.3(5)
117.0(5)
113.0(4)
108.1
108.1
107.3

C31-C30-H30
C30-C31-C32
C32-C31-H31
010-C32-C31
09-C33-H33A
H33A-C33-H33B
H33A-C33-H33C
C35-C34-Cl11
C11-C34-H34
C34-C35-H35
012-C36-011
011-C36-C35
O11-C37-H37B
O11-C37-H37C
H37B-C37-H37C
C39-C38-C43
C38-C39-C40
C40-C39-H39
C41-C40-H40
C40-C41-C42
C42-C41-H41
C41-C42-H42
C42-C43-C38
C38-C43-H43
CI-N1-Bl
C5-N2-C4
C8-N3-Bl1
C9-N4-C8
C9-N5-B1
C12-N6-Cl
C20-03-C21
C28-07-C29
C36-011-C37
C44-C44-Cl1
Cl1-C44-H44A
CI1-C44-H44B

117.7
122.5(5)
118.8
125.8(6)
109.5
109.5
109.5
124.6(5)
117.7
118.7
123.5(6)
109.8(5)
109.5
109.5
109.5
120.1(5)
119.4(6)
120.3
119.7
120.2(6)
119.9
119.9
119.2(5)
120.4
122.6(4)
116.8(4)
122.9(4)
117.0(4)
123.7(4)
116.1(4)
113.9(6)
114.4(4)
116.2(5)
116.8(16)
108.1
108.1
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Table S6. Torsion angles (°) for 7a.

N6-C1-C2-C17
N6-C1-C2-C13
N2-C5-C6-C7
N2-C5-C6-C22
C5-C6-C7-C8
C5-C6-C7-C26
C6-C7-C8-N3
C6-C7-C8-N4
N4-C9-C10-C11
N4-C9-C10-C30
C30-C10-C11-C34
C30-C10-C11-C12
C10-C11-C12-N6
C10-C11-C12-N5
C17-C2-C13-C14
C2-C13-C14-C15
C13-C14-C15-01
C13-C2-C17-C18
C13-C2-C17-C4
N1-C4-C17-C2
N1-C4-C17-C18
C4-C17-C18-C19
C18-C19-C20-0O4
C7-C6-C22-C23
C6-C22-C23-C24
C22-C23-C24-05
C8-C7-C26-C27
C26-C27-C28-08
C11-C10-C30-C31
C10-C30-C31-C32
C30-C31-C32-09
C12-C11-C34-C35
C34-C35-C36-012
013-C38-C39-C40
C38-C39-C40-C41
C40-C41-C42-C43
C39-C38-C43-C42
N6-C1-N1-C4
N6-C1-N1-B1
N2-C4-N1-C1
N2-C4-N1-Bl
013-B1-N1-C1
N5-BI-N1-Cl1
N3-BI-N1-C4
N3-C5-N2-C4
N1-C4-N2-C5
N4-C8-N3-C5
N4-C8-N3-B1
N2-C5-N3-C8
N2-C5-N3-B1
013-B1-N3-C8

-158.8(5) NI1-C1-C2-C17 7.9(6)
173(9)  NI1-C1-C2-C13 -176.1(5)
_157.4(5) N3-C5-C6-C7 7.7(6)
13.7(9)  N3-C5-C6-C22 178.8(5)
0.0(6) C22-C6-C7-C8 -171.6(5)
178.7(5)  C22-C6-C7-C26 7.2(8)
7.8(5)  C26-C7-C8-N3 173.4(5)
157.6(5)  C26-C7-C8-N4 21.1(8)
~159.7(5) N5-C9-C10-C11 5.7(5)
16.1(8)  N5-C9-C10-C30 -178.6(5)
2.9(9) C9-C10-C11-C34 178.7(5)
-1742(5) C9-C10-C11-C12 1.6(5)
158.2(5)  C34-C11-C12-N6 -18.9(9)
82(5)  C34-C11-C12-N5 174.6(5)
_178.4(5) C1-C2-C13-C14 6.4(9)
-178.1(5) C13-C14-C15-02 -4.9(10)
175.7(5)  C1-C2-C17-C18 176.6(5)
0.7(9) C1-C2-C17-C4 -0.7(6)
-176.7(5) N2-C4-C17-C2 159.0(5)
-6.6(6)  N2-C4-C17-C18 -18.3(9)
176.1(5)  C2-C17-C18-C19 -177.7(6)
0.9(10) C17-C18-C19-C20  -176.6(6)
6.3(11)  C18-C19-C20-03 174.3(6)
-178.7(6)  C5-C6-C22-C23 11.5(10)
-178.7(6)  C22-C23-C24-06 -179.1(7)
2.4(9) C6-C7-C26-C27 -170.2(6)
8.3(9) C7-C26-C27-C28 -176.1(5)

173.9(6)  C26-C27-C28-07 8.1(8)
175.9(5)  C9-C10-C30-C31 0.9(9)
-175.8(5) C30-C31-C32-010  -2.5(10)
175.1(5)  C10-C11-C34-C35  -177.3(6)
0.7(9)  C11-C34-C35-C36  -178.5(6)
3.4(12)  C34-C35-C36-011  -176.7(6)
173.5(5)  C43-C38-C39-C40  -3.7(8)
2.19) C39-C40-C41-C42  0.6(9)
1.7(9)  C41-C42-C43-C38  0.0(8)
2.7(8) 013-C38-C43-C42  -174.6(5)

155.0(5) C2-C1-N1-C4 -12.7(6)
-12.1(8)  C2-C1-N1-Bl -179.8(4)
-155.0(5) C17-C4-N1-C1 12.2(6)
11.98)  C17-C4-N1-Bl 179.1(4)
-97.0(6)  N3-BI-N1-Cl 138.0(5)
29.8(6)  O13-B1-N1-C4 97.4(6)
27.6(6)  N5-BI-N1-C4 -135.8(5)
-10.4(7)  C6-C5-N2-C4 152.4(5)
9.5(7) C17-C4-N2-C5 -154.1(5)
-153.2(5) C7-C8-N3-C5 13.3(5)
104(7)  C7-C8-N3-Bl 176.9(4)
153.2(5)  C6-C5-N3-C8 -13.1(5)
-10.3(8)  C6-C5-N3-Bl -176.7(5)
98.1(6)  N5-B1-N3-C8 27.4(6)
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NI1-BI-N3-C8
N5-B1-N3-C5
N5-C9-N4-C8
N3-C8-N4-C9
N4-C9-N5-C12
N4-C9-N5-B1
N6-C12-N5-C9
N6-C12-N5-B1
013-B1-N5-C9
NI1-BI-N5-C9
N3-B1-N5-C12
N5-C12-N6-Cl
NI-C1-N6-C12
02-C15-01-C16
04-C20-03-C21
06-C24-05-C25
08-C28-07-C29
010-C32-09-C33

012-C36-011-C37

C39-C38-013-B1
N3-B1-013-C38
N1-B1-013-C38

-135.1(5)
134.3(5)
-7.9(7)
9.9(7)
155.3(5)
-14.6(7)
-155.1(5)
14.9(8)
-94.7(6)
137.7(5)
-139.1(5)
8.6(7)
-9.8(7)
-0.3(10)
2.3(12)
2.7(11)
-2.6(8)
0.7(9)
0.2(11)
-84.0(6)
-172.3(4)
67.9(6)

0O13-B1-N3-C5
NI-B1-N3-C5
C10-C9-N4-C8
C7-C8-N4-C9
C10-C9-N5-C12
C10-C9-N5-Bl1
C11-C12-N5-C9
C11-C12-N5-Bl
N3-BI1-N5-C9
O13-BI-N5-C12
N1-B1-N5-C12
C11-C12-N6-C1
C2-CI1-N6-C12
C14-C15-01-Cl16
C19-C20-03-C21
C23-C24-05-C25
C27-C28-07-C29
C31-C32-09-C33

C35-C36-011-C37

C43-C38-013-B1
N5-B1-013-C38

2n[h2a2 Uy +..+2hka’ b Uy ]

Uy
0.039(4)
0.037(3)
0.022(3)
0.027(3)
0.029(3)
0.041(3)
0.037(3)
0.034(3)
0.022(3)
0.031(3)
0.031(3)
0.039(3)
0.023(3)
0.033(3)
0.033(4)
0.097(6)
0.027(3)
0.030(3)
0.035(3)
0.034(4)
0.059(5)
0.041(4)
0.043(4)
0.047(4)
0.069(5)
0.043(4)

B1
Cl
C2
C4
Cs
C6
C7
C8
C9
C10
Cl1
Cl12
C13
Cl4
CI5
Cl6
C17
CI8
C19
C20
C21
C22
C23
C24
C25
C26

Uy, Us; Uy
0.027(4)  0.031(4)  0.002(3)
0.0293) 0.0303)  -0.001(3)
0.0343)  0.0353)  0.002(3)
0.039(4)  0.0303)  0.001(3)
0.0383)  0.0293)  -0.003(3)
0.038(4)  0.028(3)  -0.004(3)
0.0273)  0.0333)  -0.003(3)
0.0333) 0.0313)  0.001(3)
0.0273)  0.0383)  -0.001(3)
0.0293)  0.0333)  -0.002(2)
0.0283)  0.0333)  -0.006(3)
0.026(3)  0.0293)  0.000(2)
0.043(4)  0.0404)  0.003(3)
0.0544) 0.0394)  -0.003(3)
0.066(5  0.042(4)  0.000(3)
0.1739)  0.055(5)  -0.032(5)
0.037(4)  0.031(3)  0.0023)
0.049(4)  0.035(4)  0.000(3)
0.080(5) 0.046(4)  -0.015(4)
0.080(5)  0.063(5)  -0.016(4)
0.176(10) 0.101(7)  -0.061(7)
0.059(4)  0.0343)  -0.005(3)
0.060(5) 0.052(4)  -0.006(4)
0.056(5) 0.059(5)  -0.012(4)
0.112(8)  0.139(8)  -0.082(7)
0.036(4) 0.0383)  -0.004(3)

-100.2(6)
26.6(6)
155.5(5)
-153.4(5)
-11.6(6)
178.5(4)
12.5(6)
-177.6(5)
29.7(6)
96.4(6)
-31.1(6)
-155.8(5)
154.9(5)
179.1(6)
-178.2(7)
175.8(7)
175.4(5)
-177.1(5)
-179.8(7)
93.3(5)
-52.9(6)

Uss
0.020(3)
0.018(3)
0.015(2)
0.010(3)
0.014(3)
0.019(3)
0.020(3)
0.022(3)
0.017(3)
0.019(3)
0.017(3)
0.018(3)
0.018(3)
0.024(3)
0.021(3)
0.054(5)
0.0133)
0.014(3)
0.022(3)
0.023(4)
0.012(5)
0.022(3)
0.021(3)
0.028(4)
0.022(5)
0.028(3)
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Up,
0.003(3)
0.007(3)
0.003(2)
0.000(3)
-0.003(3)
-0.006(3)
-0.007(3)
0.001(3)
-0.005(2)
-0.006(2)
-0.005(2)
0.000(2)
0.005(3)
0.001(3)
0.006(3)
-0.025(6)
0.003(3)
0.005(3)
-0.006(3)
-0.009(4)
-0.053(6)
-0.010(3)
0.005(3)
-0.013(4)
0.002(5)
-0.004(3)



Uy Up, Uss Uz Uss Up,
C27 0.041(4) 0.040(4) 00424)  -0.0073)  0.0223)  0.0033)
C28 0.046(4) 0.039(4) 00424)  -0.0023)  0.026(3)  -0.005(3)
C29 0.0594) 00585 0.088(5)  -0.015(4)  0.052(4)  0.004(4)
C30 0.027(3) 0.044(4) 0.0333)  0.0023)  0.016(3)  0.000(3)
C31 0.0283) 0.042(4) 00423)  0.0053)  0.0193)  0.0003)
C32 0.0404) 0.055(4) 0.0484)  0.0043)  0.0243)  0.0033)
C33 0.054(4) 0.076(5) 0.105(6)  0.037(4)  0.0554)  0.032(4)
C34 0.027(3) 0.044(4) 00313)  -0.0053) 0.0143)  0.0003)
C35 0.037(3) 0.076(5 0.0283)  -0.008(3) 0.0123)  0.003(3)
C36 0.0354) 0.092(6) 0.045@4)  -0.0084) 0.0213)  -0.001(4)
C37 0.089(6) 0.206(11) 0.057(5)  -0.038(6)  0.051(5)  0.003(6)
C38 0.0353) 0.035(4) 00393)  00123)  0.0213)  0.0033)
C39 0.037(3) 0.039(4) 0047(4)  0.006(3)  0.0173)  0.004(3)
C40 0.0554) 0.042(4) 0072(5)  0.009(4)  0.040(4)  0.0153)
C41 0.059(5) 0.0304) 00705  -0.0033)  0.036(4)  0.0003)
C42 0.057(4) 0.034(4) 0.0584)  -0.0033) 0.036(3)  -0.014(3)
C43 0.0343) 0.044(4) 00494)  0.0093)  0.0283)  0.0003)
NI 0.0262) 0.0383) 0.0343)  -0.0022) 0.0172)  -0.001(2)
N2 0.0323) 0.0433) 0.031(3)  -0.0022) 0.0172)  -0.003(2)
N3 0.0272)  0.036(3) 0.0313)  -0001(2) 0.0162)  0.000(2)
N4 0.0322) 0036(3) 00293)  -0.0052) 0.0182)  -0.006(2)
N5 0.0283) 0.0263) 0.0313)  -0001(2) 00172  -0.003(2)
N6 0.026(3) 0031(3) 0.0343)  0.0002) 00172  0.002(2)
Ol 0.0543) 0.104(4) 00453)  -0.0183) 0.0322)  -0.010(3)
02 0.0473) 0.115(4) 0061(3)  -0.0073)  0.036(2)  -0.011(3)
03 0.0453) 0.160(6) 00724)  -0.059(4)  0.016(3)  -0.035(3)
04 0.0543) 0.148(5) 0084(4)  -0.041(4)  0.040(3)  -0.044(3)
05 0.0453) 0.103(4) 0.086(4)  -0.057(3) 0.0203)  -0.013(3)
06 0.057(3) 0.074(4) 00934)  -0.0233) 0.0223)  -0.009(3)
07 0.0442) 00543) 00553)  -0.0132) 0.031Q2)  -0.001(2)
08 0.0393) 00543) 00583)  -0.0022) 0.0232)  0.003(2)
09 0.0493) 0.0553) 00723)  0011Q2)  0.0412)  0.018(2)
010 0.051(3) 0.146(5) 0.0473)  0.006(3)  0.0132)  0.040(3)
011 0.0433) 0.157(5) 0.0433)  -0.027(3)  0.0232)  0.004(3)
012 0.047(3) 0.135(5 0.0383)  -0.0033) 0.02022)  0.001(3)
013 0.0422) 0.036(2) 00362)  0.0026(19) 0.0226(18) 0.0034(18)
Cll 0.107(2) 0.084(2) 0.0722(19) 0.0031(16) 0.0161(17) 0.0024(17)
C44 0.203(19) 0.206(17) 0.072(10) 0.014(11)  0.004(13)  -0.073(13)

Table S8. Hydrogen atomic coordinates and isotropic atomic displacement parameters (A2) for 7a.

x/a y/b z/c U(eq)
H13 0.2590 0.5454 0.5312 0.041
H14 0.3200 0.7447 0.5955 0.047
H16A 0.2684 0.8428 0.6840 0.152
H16B 0.3098 0.8180 0.7306 0.152
H16C 0.2841 0.6545 0.7038 0.152
H18 0.2318 0.4232 0.4524 0.047
H19 0.2416 0.3303 0.3715 0.063
H21A 0.1418 0.0319 0.3242 0.187
H21B 0.1325 0.0891 0.2682 0.187
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x/a y/b z/c U(eq)

H2IC 0.1243 0.2167 0.3028 0.187
H22 0.3570 0.0755 0.3568 0.052
H23 0.2893 0.2129 0.3285 0.064

H25A 0.2857 -0.3432 0.2812 0.18
H25B 0.3240 -0.3686 0.2821 0.18
H25C 0.2908 -0.2653 0.2362 0.18

H26 0.4175 0.1413 0.3922 0.043
H27 0.4705 0.2997 0.4807 0.049
H29A 0.5193 0.0380 0.3933 0.092

H29B 0.4883 -0.0998 0.3588 0.092
H29C 0.5140 -0.1306 0.4190 0.092

H30 0.5036 0.5617 0.6565 0.041
H31 0.5006 0.4752 0.5651 0.044
H33A 0.6163 0.3528 0.6502 0.107
H33B 0.6025 0.2061 0.6075 0.107
H33C 0.5982 0.1811 0.6568 0.107
H34 0.4672 0.6747 0.6869 0.041
H35 0.3938 0.7685 0.6516 0.058
H37A 0.4192 0.7563 0.8066 0.166
H37B 0.3863 0.8938 0.7844 0.166
H37C 0.4275 0.9521 0.8004 0.166
H39 0.3094 0.9916 0.4494 0.051
H40 0.3123 1.1994 0.5065 0.063
H41 0.3683 1.3230 0.5643 0.062
H42 0.4222 1.2436 0.5654 0.056
H43 0.4206 1.0292 0.5103 0.047
H44A 0.4759 0.3333 0.7574 0.228
H44B 0.4763 0.1293 0.7593 0.228

Table S9. Hydrogen bond distances (A) and angles (°) for 7a.
Donor-H Acceptor-H Donor-Acceptor Angle

C43-H43--08 0.95 2.55 3.483(7) 166.8
C39-H39-02 0.95 2.44 3.386(7) 174.5
C35-H35-N6 0.95 2.39 3.079(7) 129.0
C33-H33B+013 0.98 2.65 3.570(8) 156.7
C31-H31-N4 0.95 242 3.093(7) 127.5
C27-H27-N4 0.95 2.44 3.120(7) 128.8
C25-H25A-06 0.98 2.38 3.052(10) 125.6
C23-H23-N2 0.95 2.68 3.278(8) 121.6
C19-H19-N2 0.95 2.61 3.227(7) 123.3
C16-H16C-0O6 0.98 2.49 3.226(10) 132.0
C14-H14-N6 0.95 243 3.082(6) 125.2
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