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METHODS

General procedure. The bis-imidazolium salts and copper complexes were synthesized under
an argon atmosphere using standard air-sensitive techniques, including a Schlenk line and an
MBraun glovebox. Caution! Extreme care should be taken when handling liquid nitrogen and
using it in the Schlenk line trap to avoid condensation of oxygen from air. Solvents used in the
syntheses and spectroscopic studies were distilled under N, and stored over molecular sieves in
the glovebox. Potassium tert-butoxide and [Cu(CH3CN)4]PFs were obtained from Sigma-Aldrich
and crystallized from tetrahydrofuran and acetonitrile solutions, respectively. 1-(2,6-
diisopropylphenyl)imidazole and 1-(2,4,6-trimethylphenyl)imidazole were obtained from TCI
America and used without further purification. The imidazolium salts L1.2HBr, L2.2HBr, and
L5.2HBr and their corresponding Cu-CNC complexes were prepared using previously published
procedures. »2 The syntheses of L3 and L4 ligand precursors and their copper complexes have

been described in the supporting information.

Instrumentation. NMR spectra were measured on a 400 MHz Bruker Avance lll spectrometer
and a 600 MHz Bruker Neo spectrometer. Chemical shifts (8) for *H and *3C NMR spectra were
referenced to the resonance of TMS as an internal reference or the residual protio solvent.
Elemental analyses were performed by Atlantic Microlabs, Inc. (Norcross, Georgia). UV-vis
spectra were recorded on an Agilent Carry 8454 diode array spectrophotometer equipped with

a UNISOKU Scientific Instruments Cryostat USP-203-B for low-temperature experiments.

Kinetic Measurements. The spectral change in the UV-visible was recorded on an Agilent Carry
8454 diode array spectrophotometer equipped with an Unisoku thermostatic cell holder for low-
temperature experiments. In a typical experiment, the quartz cuvette is loaded with 3 mL of [Cu-
L1]BArF in a degassed tetrahydrofuran solution. Aliquots of a pre-chilled KO'Bu stock solution in
THF were then introduced into the copper solution via a needle. The reaction was monitored by
the increase in absorbance at 505 nm (g = 2.0 x 103M* cm™), corresponding to the formation of

the dearomatized species.

Room-Temperature Experiments Concerning the Formation of Cu-S and Cu-A in Solution.

Under an argon atmosphere within a glovebox, [Cu-L1]PFs (0.027g, 0.05 mmol) was combined



with NaPA (Cu-S; 0.006g, 0.05 mmol, Cu-A; 0.031 g, 0.25 mmol) in 1 mL of CD3CN, giving a yellow
(Cu-S) and red (Cu-A) suspension. The reaction mixture was stirred for 24 hours in a sealed vial,

then filtered into an NMR cell for analysis.

Room-Temperature Experiments Concerning the Conversion of Cu-S to Cu-A. Under an argon
atmosphere within a glovebox, [Cu-L3]PFs (0.034g, 0.05 mmol) was combined with NaPA (0.012g,
0.05 mmol) in 1 mL of CD3CN, giving an orange suspension. The reaction mixture was filtered
through a filter pipette to remove the insoluble NaPA. The orange solution was left in a sealed
vial overnight, after which it provided orange/red crystals that were collected and analyzed by X-

ray crystallography.

Room-Temperature Experiments Concerning the Formation of [Cu-L3°?] in Solution. Under
an argon atmosphere in a glovebox, [Cu-L3]PF6 (0.075g, 0.110 mmol) was combined with KOtBu
(0.0615g, 0.548 mmol) in 1 mL of benzene, yielding a red suspension, which was filtered into a
Schlenk flask. The flask was fully sealed with a septum, quickly removed from the glovebox, and
exposed to CO; (1 atm) after multiple freeze-pump-thaw cycles. The resulting yellow/orange
suspension was kept stirring under CO; for 30 min. After that time, the supernatant was removed
using a cannula, and the orange solid was kept under vacuum until complete dryness. The

resulting orange solid was transferred to the glovebox for NMR spectroscopy in CD3CN.

Room-Temperature Experiments Concerning the Formation of Cu-Pr in Solution. Under an
argon atmosphere within a glovebox, [Cu-L1]PFs (0.027g, 0.05 mmol) was combined with NaPA
(0.006g, 0.05 mmol) in ImL CD3CN. The reaction mixture was stirred for 1 hour at room
temperature, resulting in a dark yellow suspension, which was filtered into a J Young NMR cell
and removed from the glovebox. The solution was exposed to CO; after multiple freeze-pump-
thaw cycles and kept under this atmosphere for 30 minutes, after which the NMR and IR spectra
were collected. This setup enables the observation of reaction dynamics and the identification of

species present after carboxylation under controlled conditions.

Copper-Catalyzed Direct Carboxylation and Esterification of Terminal Alkynes. A Schlenk tube
was charged with a Teflon stir bar, copper complex (0.068 mmol), and cesium carbonate (1.39
mmol) in 2 mL CH3CN. To this suspension, phenylacetylene (0.684 mmol) and iodoethane (2.00

mmol) in 2mL CH3CN were added. The tube was connected to a Schlenk line and degassed
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through multiple freeze-pump-thaw cycles. It was then briefly placed under CO; (1 atm) while
frozen and allowed to thaw to room temperature. The reaction mixture was stirred at room
temperature for 12 hours, then heated at 80 °C for 12 hours. The crude mixture was then
suspended in water, and the organic components were extracted using ethyl acetate. The solvent
was then removed under vacuum, and the residue was purified by column chromatography to

obtain an analytically pure product.



Synthesis of ligand precursors, L3.2HBr and L4.2HBr
2,6-bis[(3-mesityl-2H-imidazol-1-yl)methyl]pyridine,  I|(Mes)"N"¢-2HBr, L3:2HBr. 2,6-
dibromomethyl-pyridine (0.416 g, 1.57 mmol) was dissolved in 6 mL of 1,4-dioxane and added to
1-mesityl-1H-imidazole (0.731 g, 3.92 mmol) in 3 mL of 1,4-dioxane at room temperature. The
reaction mixture was refluxed at 90 °C for 24 h, after which time it was filtered, and the resultant
solid was rinsed with 1,4-dioxane and diethyl ether. The white solid was then collected with a
yield of 85% (0.850 g). *H NMR (DMSO-ds, 400 MHz): § 9.57 (t, 0.5H; HCN'™, J = 1.6 Hz), 8.09-7.93
(m, 3H; p-CsH3N, m-CsHsN, HCCH'™), 7.52 (d, 1H; HCCH'™, J = 7.7 Hz), 7.16 (s, 2H; CHVes), 5.65 (s,
2H; CH2), 2.34 (s, 3H; MeMes), 2.03 (s, 6H; MeMes). 13C NMR (DMSO-ds, 101 MHz): § 153.66, 140.28,
139.20, 138.30, 134.27, 131.10, 129.24, 123.94, 123.73, 122.30, 53.19, 20.58, 17.02. Elemental
analysis (%) Calcd for C31H35BraNs: C, 58.41; H, 5.53; N, 10.99. Found: C, 58.28; H, 5.55; N, 10.91.

2,6-bis[(3-diisopropylphenyl-2H-imidazol-1-yl)methyl]pyridine, I(Dipp)-"N"-2HBr, L4-2HBr.
2,6-dibromomethyl-pyridine (0.360 g, 1.36 mmol) was dissolved in 6 mL of 1,4-dioxane and
added to a solution of 1-(2,6-diisopropylphenyl)-1H-imidazole (0.791 g, 3.47 mmol) in 2 mL of
1,4-dioxane at room temperature. The reaction mixture was refluxed at 90 °C for 24 h, after which
time it was filtered, and the resultant solid was rinsed with 1,4-dioxane and diethyl ether. The
fluffy white solid was collected at a yield of 80% (0.806 g). *H NMR (DMSO, 400 MHz): § 9.71 (t,
0.5H; HCN'™, J = 1.6 Hz), 8.21-8.05 (m, 3H; p-CsHsN, m-CsHsN, HCCH'™), 7.64 (t, 1H; p-Dipp, J = 7.8
Hz), 7.51 (d, 1H; HCCH'™, J = 7.7 Hz), 7.47 (d, 2H; m-Dipp, J = 7.8 Hz), 5.67 (s, 2H; CH2), 2.30 (sept,
2H; CHPPP, J = 6.9 Hz), 1.15 (d, 6H; MeP'*P, J = 6.8), 1.14 (d, 6H; MeP"®?, J = 6.8). 13C NMR (DMSO,
101 MHz): 6 153.70, 145.04, 139.39, 138.57, 131.53, 130.56, 125.23, 124.45, 123.85, 122.32,
53.47, 28.10, 23.74 (d, J = 5.8 Hz). Elemental analysis (%) Calcd for C37Ha47Br2Ns: C, 61.58; H, 6.57;
N, 9.71. Found: C, 61.42; H, 6.56; N, 9.57.

Synthesis of Cu-CNC complexes.

[Cu(IMes " N"C)]PFs, [Cu-L3]PFs. A portion of |(Mes)¢"N*¢-2HBr (0.280 g, 0.439 mmol) was
suspended in THF and combined with KO'Bu (0.103 g, 0.921 mmol) in THF. A solution of
[Cu(CH3CN)4]PFs (0.163 g, 0.439 mmol) in CH3CN was added to this suspension, and the reaction
mixture was allowed to stir for 24 h. The crude product was then filtered through a glass frit,

rinsed with THF and CHsCN, and kept under vacuum to complete dryness. The resulting yellow
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solid from the filtrate was triturated with THF and hexane, filtered through the frit funnel, washed
with THF, and dried under vacuum. The product was collected as yellow solid in a 92% yield (0.275
g). 1 H NMR (CDsCN, 400 MHz): § 7.96 (t, 0.5H; p-CsH3N, J = 7.8 Hz), 7.58 (d, 1H; m-CsHsN, J = 7.8
Hz), 7.39 (d, 1H; HCCH'™, J = 1.8 Hz), 6.99 (d, 1H; HCCH'™, J = 1.8 Hz), 6.84 (s, 2H; CHM®s), 5.36 (s,
2H; CH2N), 2.38 (s, 3H, MeMes), 1.67 (s, 6H, MeMes). 13C NMR (CD3CN, 101 MHz): § 154.91 (C;Me9),
140.63 (p-CsH3N), 139.28 (0-CsHsN), 137.01 (o-Mes), 135.20 (p-Mes), 129.51 (CHM®s), 124.84 (m-
CsH3N), 123.55 (HCCH'™), 122.10 (HCCH'™), 55.06 (CH2N), 21.17 (MeMes), 17.51 (MeMes). Elemental
analysis (%) Calcd for C31H33CuFeNsP: C, 54.42; H, 4.86; N, 10.24. Found: C, 54.18; H, 4.84; N,
10.17.

[Cu(IDipp®"N"€)]PFs-H20, [Cu-L4]PFs. A portion of I(Dipp)<"N"¢-2HBr (0.640 g, 1.32 mmol)
was suspended in THF and combined with KO'Bu (0.311 g, 2.77 mmol) in THF. A solution of
[Cu(CHsCN)4]PFs (0.492 g, 1.32 mmol) in CH3CN was added to this suspension, and the reaction
mixture was allowed to stir for 24 h. The dark-brown mixture was then filtered through a glass
frit, rinsed with CH3CN, and kept under vacuum to complete dryness. The resulting solid was
recrystallized from a mixture of CH3CN and Et,0 affording the product as yellow solid in 86% yield
(0.605 g). L H NMR (CD3CN, 400 MHz): & 7.98 (t, 1H; p-CsHsN, J = 7.8 Hz), 7.60 (d, 2H; m-CsHsN, J
= 7.8 Hz), 7.42 (d, 2H; HCCH'™, J = 1.8 Hz), 7.34 (t, 2H; p-Dipp, J = 7.8 Hz), 7.14 (d, 4H, m-Dipp, J =
7.8 Hz), 7.06 (d, 2H; HCCH'™, J = 1.7 Hz), 5.28 (s, 4H; CH2N), 2.12 (sept, 4H, CHPP?, J = 7.0 Hz), 1.02
(d, 12H, MeP®P, J = 6.9 Hz), 0.76 (d, 12H, MePPP, J = 6.8 Hz). 13C NMR (CD3CN, 101 MHz): & 183.28
(C2NHC), 153.76 (C1PPP), 146.50 (0-Dipp), 140.70 (p-CsHsN), 136.36 (o0-CsHsN), 130.71 (p-Dipp),
124.43 (m-Dipp), 124.27 (m-CsHsN), 123.78 (HCCH'™), 122.65 (HCCH'™), 54.49 (CH,N), 28.95
(CHPPP), 24,84 (MePPP), 23.55 (MePPP). Elemental analysis (%) Calcd for C37H47CuFgNsOP: C, 56.52;
H, 6.02; N, 8.91. Found: C, 56.45; H, 5.93; N, 9.07.

Synthesis of [Cu(IPr¢"N"¢)*]-0.05THF-1.05H,0, [Cu-L1*]. A portion of [Cu(I'Pr¢"N"C)]PFs
(0.0750 g, 0.141 mmol) was combined with a solution of KO'Bu (0.316, 2.82 mmol) in 1mL THF,
affording a dark red suspension. The reaction mixture was filtered through a filter pipette, and
hexanes was added to the filtrate. The solution was left in the freezer at -30 °C overnight, after
which the red supernatant was decanted off and the solid was dried under vacuum. The crude

solid was then recrystallized from a mixture of THF and hexanes at -30 °C affording deep red



crystals at a 55% yield (0.0330 g). * H NMR (THF-ds, 600 MHz): 6 7.10-7.07 (m, 2H, HCCH'™), 7.01
(d, 1H, HCCH'™ J = 1.7 Hz), 6.96 (d, 1H, HCCH'™, J = 1.8 Hz), 6.16 (dd, 1H, p-CsHsN, J = 9.0, 6.1 Hz),
5.83 (d, 1H, m-CsHsN, J = 9.1), 5.54 (s, 1H), 5.11 (d, 1H, m-CsHsN, J = 6.1 Hz), 5.07 (sept, 1H, CH®",
J=6.9 Hz), 4.97 (sept, 1H, CHP", J = 6.9 Hz), 4.48 (s, 2H), 1.48 (d, 6H, Me™,6.8 Hz), 1.46 (d, 6H,
Me® 6.9 Hz). 13C NMR (THF-ds, 150 MHz): & 184.49 (C,NC), 177.64 (C.NHS), 150.82 (0-CsHsN),
146.69 (0-CsH3N), 128.96 (p-CsHsN), 122.19 (HCCH'™), 119.29 (HCCH'™), 118.32 (m-CsHsN), 115.58
(HCCH'™), 113.65 (HCCH'™), 97.70 (m-CsHsN), 89.64 (=CHN), 68.53 (THF), 56.93 (CH:N), 54.03
(CH®), 53.22 (CH™), 37.11 (Me'®), 36.62 (KO'Bu), 25.83 (THF), 24.05 (Me”"). Elemental analysis
(%) Calcd for C19.2H26.5CuNsQO1.1: C, 56.45; H, 6.54; N, 17.14. Found: C, 56.30; H, 6.13; N, 16.87.

Synthesis of [Cu(IMes"N"€)*]-1.0H,0, [Cu-L3*]. A portion of [Cu(IMes*"N*C)]PF¢ (0.075 g,
0.110 mmol) was suspended in THF and combined with a solution of KO'Bu (0.019 g, 0.164 mmol)
in THF, affording a red suspension. The reaction mixture was filtered using a filter pipette, and
hexanes were added to the filtrate. The crashed solid was removed, nd the supernatant was left
in the freezer at =30 °C overnight affording bright red crystals at a 58% vyield (0.034 g). ' H NMR
(THF-ds, 400 MHz): § 7.23 (d, 1H, HCCH'™, J = 1.7 Hz, ), 7.07 (d, 1H, HCCH'™, J = 1.7 Hz), 6.84 (d,
1H, HCCH'™, J = 1.8 Hz, ), 6.78 (s, 2H, CHV®), 6.76 (d, 1H, HCCH'™, J = 1.7 Hz), 6.72 (s, 2H, CHMes),
6.24 (dd, 1H, p-CsHsN, J = 9.0, 6.2 Hz), 5.90 (dd, 1H, m-CsHsN, J = 9.0, 1.0 Hz), 5.61 (s, 1H, =CHN),
5.19 (d, 1H, m-CsHsN, J = 6.1 Hz), 4.57 (s, 2H, CH2N), 2.42 (s, 3H, MeMs), 2.39 (s, 3H, MeMes), 1.69
(s, 6H, MeMs), 1.67 (s, 6H, MeMs). 13C NMR (THF-ds, 150 MHz): § 185.28 (C2""C), 177.34 (C.NHO),
149.46 (0-CsH3N), 145.80 (0-CsH3N), 138.02 (o-Mes), 137.21 (C:Mes), 136.68 (p-Mes), 136.03 (p-
Mes), 135.19 (0-Mes), 134.53 (C;M*5), 128.48 (CHV®s), 128.09 (p-CsHsN), 128.07 (CHM®), 121.16
(HCCH'™), 119.51 (HCCH'™), 117.87 (HCCH™), 117.38 (HCCH'™), 117.02 (m-CsHsN), 96.83 (m-
CsHsN), 88.62 (=CHN), 55.96 (CH2N), 20.34 (MeMes), 20.32 (MeMes), 17.06 (MeVe), 16.83 (MeM).
Elemental analysis (%) Calcd for C31H34CuNsO: C, 66.94; H, 6.16; N, 12.59. Found: C, 66.91; H,
5.89; N, 12.39.

[Cu(I'Pr¢"™N"C)IBArF, [Cu-L1]BArF. A portion of I('Pr)¢"N*C.2HBr (0.100 g, 0.206 mmol) was
suspended in THF and combined with a portion of KO'Bu (0.049 g, 0.433 mmol) dissolved in THF.
A solution of [Cu(CH3CN)4]BArF (0.187 g, 0.206 mmol) in THF was added to this suspension, and

the reaction mixture was allowed to stir for 24 h. The crude product was then filtered through



Celite, rinsed with THF, and kept under vacuum to complete dryness. The collected solid from
the filtrate was crystallized from THF and hexane to afford the product in a 96% yield (0.212 g). !
H NMR (THF-ds, 600 MHz): 7.94 (t, 1H, p-CsH3N, J = 7.7 Hz), 7.57 (d, 2H, m-CsH3N, J = 7.7 Hz), 7.36
(s, 4H, HCCH'™), 5.33 (s, 4H, CH2N), 4.84 (sept, 2H, CH""J = 6.8 Hz), 1.52 (d, 12H, Me'™", J = 6.8 Hz).
13C NMR (THF-ds, 150 MHz): § 179.07 (C;NH€), 155.52 (0-CsHsN), 140.82 (p-CsHsN), 124.79 (m-
CsH3N), 123.68 (HCCH'™), 117.57 (HCCH'™), 55.36 (CH®"), 54.90 (CH2N), 23.95 (Me'®"). Elemental
analysis (%) Calcd for CazHasBCuF2oNs: C, 48.45; H, 2.36; N, 6.57. Found: C, 48.42; H, 2.31; N, 6.39.

[Cu(IMes"N"C)]BArF, [Cu-L3]BArF. A portion of IMes*"N"¢-2HBr (0.122 g, 0.192 mmol) was
suspended in THF and combined with a portion of KO'Bu (0.047 g, 0.422 mmol) dissolved in THF.
A solution of [Cu(CH3CN)4]BArF (0.174 g, 0.192 mmol) in THF was added to this suspension, and
the reaction mixture was allowed to stir for 24 h. The crude product was then filtered through
Celite, rinsed with THF, and kept under vacuum to complete dryness. The yellow solid collected
from the filtrate was crystallized from THF and hexane to afford the product in an 82% yield
(0.191 g). * H NMR (THF-ds, 600 MHz): & 7.97 (t, 1H, p-CsHsN, J = 7.8 Hz), 7.60 (d, 2H, m-CsHsN, J
=7.8 Hz), 7.51(d, 2H, HCCH'™, J = 1.8 Hz), 7.15 (d, 2H, HCCH'™, J = 1.8 Hz), 6.84 (s, 4H, CHM*s), 5.46
(s, 4H, CH2N), 2.40 (s, 6H, MeMe), 1.68 (s, 12H, MeMes). 13C NMR (THF-ds, 150 MHz): § 181.30
(CNHC), 155.36 (CiMes), 140.73 (p-CsHsN), 139.35 (o-Mes), 137.39 (0-CsHsN), 135.27 (p-Mes),
129.83 (CHMes), 124.85 (m-CsHsN), 123.73 (HCCH'™), 122.57 (HCCH'™), 55.20 (CH:N), 21.33
(MeMes), 17.72 (MeMe). Elemental analysis (%) Calcd for CssH33sBCuFaoNs: C, 54.23; H, 2.73; N,
5.75. Found: C, 54.15; H, 2.78; N, 5.76.



Propiolate ester products.

: oi
O—Et

Ethyl 3-phenylpropiolate
Following the general procedure, the reaction of phenylacetylene, CO;, and iodoethane provided
the desired product with an average yield of 88%. 'H NMR (400 MHz, CDCls):  7.61-7.54 (m, 2H),
7.48-7.40 (m, 1H), 7.40-7.31 (m, 2H), 4.29 (q, 2H, J = 7.1 Hz), 1.34 (t, 3H, J = 7.1 Hz). 13C NMR
(101 MHz, CDCl3): 6 154.20, 133.10, 130.72, 128.68, 119.76, 86.17, 80.83, 62.21, 14.21. GC/MS:
retention time = 16.1 min, M/Z = 174.

: Ot
O—Bu

Butyl 3-phenylpropiolate
Following the general procedure, the reaction of phenylacetylene, CO;, and iodobutane provided
the desired product with an average yield of 96%. *H NMR (400 MHz, CDCls): 7.62-7.55 (m, 2H),
7.48-7.40 (m, 1H), 7.40-7.32 (m, 2H), 4.24 (t, 2H, J = 6.7 Hz), 1.70 (ddt, 2H, J = 8.9, 7.8, 6.5 Hz),
1.50-1.35 (m, 2H), 0.96 (t, 3H, J = 7.4 Hz). 3C NMR (400 MHz, CDCls): 13C NMR (101 MHz, CDCl5)
6 154.36, 133.10, 130.71, 128.68, 119.80, 86.18, 80.84, 66.09, 30.60, 19.18, 13.79. GC/MS:
retention time = 18.6 min, M/Z = 201.

0—Et
Ethyl 3-(o-tolyl)propiolate

Following the general procedure, the reaction of 2-ethynyltoluene, CO,, and iodoethane
provided the desired product with an average yield of 68%. *H NMR (400 MHz, CDCls): 6 7.54 (dd,
1H,J=7.7, 1.4 Hz), 7.33 (td, 1H, J = 7.6, 1.5 Hz), 7.24 (d, 1H, J = 7.6 Hz), 7.21-7.14 (m, 1H), 4.30
(9, 2H,J=7.2 Hz), 2.49 (s, 3H), 1.36 (t, 3H, J = 7.1 Hz). 13C NMR (101 MHz, CDCl3): & 154.35, 142.34,
133.51, 130.69, 129.87,125.90, 119.62, 85.23, 84.55, 62.15, 20.69, 14.25. GC/MS: retention time
=16.9 min, M/Z = 188.
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(0]
Et@%{
O—Et

Ethyl 3-(4-ethylphenyl)propiolate
Following the general procedure, the reaction of 4-ethynyltoluene, CO,, and iodoethane
provided the desired product with an average yield of 67%. *H NMR (400 MHz, CDCls): § 7.54—
7.47 (m, 1H), 7.23-7.17 (m, 1H), 4.29 (q, 1H, J= 7.1 Hz), 2.67 (q, 1H, J=7.6 Hz), 1.35 (t, 2H,/=7.1
Hz), 1.23 (t, 2H, J = 7.6 Hz). 3C NMR (101 MHz, CDCls): 6 154.36, 147.58, 133.23, 128.30, 116.86,
86.77, 80.48, 62.13, 29.11, 15.26, 14.24. GC/MS: retention time = 18.9 min, M/Z = 202.

o)
Et@%{
O—Bu

Butyl 3-(4-ethylphenyl)propiolate
Following the general procedure, the reaction of 4-ethynyltoluene, CO,, and iodobutane
provided the desired product with an average yield of 99%. 'H NMR (400 MHz, CDCls): & 7.54—
7.47 (m, 2H), 7.23-7.17 (m, 2H), 4.23 (t, 2H, J = 6.7 Hz), 2.67 (q, 2H, J = 7.6 Hz), 1.70 (dq, 2H, J =
8.7, 6.8 Hz), 1.51-1.37 (m, 2H), 1.23 (t, 3H, J = 7.6 Hz), 0.96 (t, 3H, J = 7.4 Hz). 33C NMR (101 MHz,
CDCls): 6 154.52, 147.56, 133.23, 128.29, 116.89, 86.78, 80.49, 66.00, 30.63, 29.11, 19.20, 15.26,
13.80. GC/MS: retention time = 21.2 min, M/Z = 230.

(0]
tBu@%{
O—Et

Ethyl 3-(4-(tert-butyl)phenyl)propiolate
Following the general procedure, the reaction of 4-tert-butylphenylacetylene, CO;, and
iodoethane provided the desired product with an average yield of 99%. *H NMR (400 MHz, CDCls):
8 7.56-7.46 (m, 2H), 7.42-7.36 (m, 2H), 4.29 (g, 2H, J = 7.1 Hz), 1.35 (t, 3H, J = 7.1 Hz), 1.31 (s,
9H). 3C NMR (101 MHz, CDCls): 6 154.42, 154.38, 133.02, 125.76, 116.66, 86.73, 80.47, 62.13,
35.18, 31.18, 14.25. GC/MS: retention time = 20.5 min, M/Z = 230.

o)
g —
O—Et

Ethyl 3-(4-ethoxyphenyl)propiolate
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Following the general procedure, the reaction of 1-ethoxy-4-ethynylbenzene, CO,, and
iodoethane provided the desired product with an average yield of 89%. 'H NMR (400 MHz, CDCl3):
6 7.56-7.48 (m, 2H), 6.90-6.82 (m, 2H), 4.28 (q, 2H, J = 7.1 Hz), 4.05 (q, 2H, J = 7.0 Hz), 1.42 (t,
3H, J = 7.0 Hz), 1.35 (t, 3H, J = 7.1 Hz). 3C NMR (101 MHz, CDCl3): 6 161.04, 154.50, 135.05,
114.84,111.29, 87.17, 80.23, 63.80, 62.03, 14.78, 14.25. GC/MS: retention time = 20.6 min, M/Z
=218.

o
F
: O—Et

Ethyl 3-(4-fluorophenyl)propiolate
Following the general procedure, the reaction of 1-ethynyl-4-fluorobenzene, CO;, and
iodoethane provided the desired product with an average yield of 90%. *H NMR (400 MHz, CDCl3):
8 7.63-7.53 (m, 2H), 7.12-7.02 (m, 2H), 4.29 (q, 2H, J = 7.1 Hz), 1.35 (t, 3H, J = 7.1 Hz). 13C NMR
(101 MHz, CDCls): 6 165.29, 162.77, 154.10, 135.38, 116.25, 85.13, 80.75, 62.28, 14.22. GC/MS:
retention time = 15.8 min, M/Z = 192.

(0]
0|4®+<
O—Et

Ethyl 3-(4-chlorophenyl)propiolate
Following the general procedure, the reaction of 1-chloro-4-ethynylbenzene, CO,, and
iodoethane provided the desired product with an average yield of 68%. *H NMR (400 MHz, CDCls):
8 7.55-7.47 (m, 2H), 7.39-7.32 (m, 2H), 4.30 (g, 2H, J = 7.1 Hz), 1.35 (t, 3H, J = 7.1 Hz). 3C NMR
(101 MHz, CDCl3): 6 153.99, 137.16, 134.30, 129.19, 118.25, 84.85, 81.63, 62.36, 14.21. GC/MS:
retention time = 18.3 min, M/Z = 208.

Cl

O—Et
Ethyl 3-(2-chlorophenyl)propiolate

Following the general procedure, the reaction of 1-chloro-2-ethynylbenzene, CO,, and

iodoethane provided the desired product with an average yield of 89%. *H NMR (400 MHz, CDCls):

67.60(dd, 1H,J=7.7,1.7 Hz), 7.44 (dd, 1H, J = 8.1, 1.3 Hz), 7.37 (td, 1H, J = 7.8, 1.7 Hz), 7.31—
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7.22 (m, 1H), 4.31 (g, 2H, J = 7.1 Hz), 1.36 (t, 3H, J = 7.1 Hz). 3C NMR (101 MHz, CDCl3): § 153.91,
137.43, 134.79, 131.68, 129.73, 126.78, 120.12, 85.09, 82.36, 62.42, 14.22. GC/MS: retention
time = 18.3 min, M/Z = 208.

(0]
Br4©%<
O—Et

Ethyl 3-(4-bromophenyl)propiolate
Following the general procedure, the reaction of 1-bromo-4-ethynylbenzene, CO,, and
iodoethane provided the desired product with an average yield of 62%. 'H NMR (400 MHz, CDCl3):
8 7.55-7.48 (m, 2H), 7.47-7.39 (m, 2H), 4.29 (q, 2H, J = 7.1 Hz), 1.35 (t, 3H, J = 7.1 Hz). 3C NMR
(101 MHz, CDCls): 6 153.97, 134.39, 132.11, 125.53, 118.70, 84.87, 81.74, 62.35, 14.20. GC/MS:
retention time = 19.5 min, M/Z = 254,

Br

O—Et
Ethyl 3-(2-bromophenyl)propiolate

Following the general procedure, the reaction of 1-bromo-2-ethynylbenzene, CO,, and
iodoethane provided the desired product with an average yield of 83%. *H NMR (400 MHz, CDCl3):
§7.60 (dd, 1H, J = 7.7, 1.7 Hz), 7.44 (dd, 1H, J = 8.1, 1.3 Hz), 7.37 (td, 1H, J = 7.8, 1.7 Hz), 7.31-
7.22 (m, 1H), 4.31 (g, 2H, J = 7.1 Hz), 1.36 (t, 3H, J = 7.1 Hz). 13C NMR (101 MHz, CDCls): & 153.91,
137.43, 134.79, 131.67, 129.73, 126.79, 120.12, 85.10, 82.36, 62.42, 14.22. GC/MS: retention
time = 19.6 min, M/Z = 254.

NO,

O—Et
Ethyl 3-(2-nitrophenyl)propiolate
Following the general procedure, the reaction of 1-ethynyl-2-nitrobenzene, CO,, and iodoethane
provided the desired product with an average yield of 67%. *H NMR (400 MHz, CDCls): 6 8.16 (d,
1H, J = 8.1 Hz), 7.78 (dd, 1H, J = 7.6, 1.7 Hz), 7.64 (dtd, 2H, J = 23.1, 7.6, 1.5 Hz), 4.33 (q, 2H, J =
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7.1 Hz), 1.37 (t, 3H, J = 7.1 Hz). 3C NMR (101 MHz, CDCls): & 153.55, 135.89, 133.39, 131.02,
125.18, 115.71, 86.95, 80.51, 62.67, 29.84, 14.19. GC/MS: retention time = 21.2 min, M/Z = 219.

O,N

O—Et
Ethyl 3-(3-nitrophenyl)propiolate

Following the general procedure, the reaction of 1-ethynyl-3-nitrobenzene, CO», and iodoethane
provided the desired product with an average yield of 98%. *H NMR (400 MHz, CDCls): 6 8.43 (t,
1H, J = 1.9 Hz), 8.30 (ddd, 1H, J = 8.3, 2.3, 1.1 Hz), 7.92—-7.85 (m, 1H), 7.59 (t, 1H, J = 8.0 Hz), 4.32
(9, 2H, J = 7.1 Hz), 1.37 (t, 3H, J = 7.1 Hz). 13C NMR (101 MHz, CDCl3): & 153.47, 148.26, 138.43,
129.95, 127.79, 125.31, 121.72, 82.62, 82.50, 62.66, 14.17. GC/MS: retention time = 21.0 min,
M/zZ = 219.

o)
02N©T<—
O—Et

Ethyl 3-(4-nitrophenyl)propiolate
Following the general procedure, the reaction of 1-ethynyl-4-nitrobenzene, CO;, and iodoethane
provided the desired product with an average yield of 88%. 'H NMR (400 MHz, CDCl5): § 8.28-
8.20 (m, 2H), 7.78-7.70 (m, 2H), 4.32 (q, 2H, J = 7.2 Hz), 1.36 (t, 3H, J = 7.2 Hz). 3C NMR (101
MHz, CDCl3): & 153.42, 148.62, 133.80, 126.45, 123.87, 84.36, 82.83, 62.72, 14.16. GC/MS:
retention time = 21.0 min, M/Z = 219.

o]
OZN©T<
O—Bu

Butyl 3-(4-nitrophenyl)propiolate
Following the general procedure, the reaction of 1-ethynyl-4-nitrobenzene, CO,, and iodobutane
provided the desired product with an average yield of 99%. 'H NMR (400 MHz, CDCls): & 8.29—
8.20 (m, 2H), 7.79-7.68 (m, 2H), 4.27 (t, 2H, J = 6.7 Hz), 1.77 — 1.65 (m, 2H), 1.51-1.38 (m, 2H),
0.97 (t, 3H, J = 7.4 Hz). 3C NMR (101 MHz, CDCl3): & 153.58, 148.63, 133.82, 126.51, 123.88,
84.39, 82.87, 66.57, 30.54, 19.17, 13.77. GC/MS: retention time = 23.1 min, M/Z = 246.
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O—Et
Ethyl 3-(3-(trifluoromethyl)phenyl)propiolate
Following the general procedure, the reaction of 1-ethynyl-3-(trifluoromethyl)benzene, CO,, and
iodoethane provided the desired product with an average yield of 77%. *H NMR (400 MHz, CDCls):
57.84(d, 1H, J= 2.1 Hz), 7.75 (d, 1H, J = 7.7 Hz), 7.69 (ddt, 1H, J = 7.9, 1.8, 0.9 Hz), 7.52 (td, 1H, J
=7.9,1.0Hz), 4.31(q, 2H, J = 7.1 Hz), 1.36 (t, 3H, J = 7.1 Hz). 13C NMR (101 MHz, CDCl3): § 153.74,
136.04,131.49(q,J=33.3 Hz),129.85(q,/=4.0Hz), 129.37, 127.27 (g, /= 3.7 Hz), 124.84, 122.14,
83.89, 81.87, 62.50, 14.19. GC/MS: retention time = 15.4 min, M/Z = 242.

o
F3c4©T<—
O—Et

Ethyl 3-(4-(trifluoromethyl)phenyl)propiolate
Following the general procedure, the reaction of 1-ethynyl-4-(trifluoromethyl)benzene, CO;, and
iodoethane provided the desired product with an average yield of 84%. *H NMR (400 MHz, CDCl3):
67.69 (d, 2H, J=8.6 Hz), 7.64 (d, 2H, J = 8.3 Hz), 4.31 (q, 2H, J = 7.1 Hz), 1.36 (t, 3H, J = 7.1 Hz).
13C NMR (101 MHz, CDCl3): 6§ 153.73, 133.29, 132.31 (q, J = 32.9 Hz), 125.68 (q, / = 3.7 Hz), 123.63,
122.32, 83.93, 82.44, 62.53, 14.19. GC/MS: retention time = 15.4 min, M/Z = 242.

o)
N\ __
) —
H O—Et

Ethyl 3-(4-formylphenyl)propiolate
Following the general procedure, the reaction of 4-ethynylbenzaldehyde, CO;, and iodoethane
provided the desired product with an average yield of 80%. *H NMR (400 MHz, CDCls): § 10.04 (s,
1H), 7.93-7.86 (m, 2H), 7.77-7.70 (m, 2H), 4.32 (q, 2H, J = 7.2 Hz), 1.37 (d, 4H, J = 14.3 Hz). 13C
NMR (101 MHz, CDClz): 6 191.27, 153.72, 137.17, 133.52, 129.68, 125.76, 84.23, 83.47, 62.57,
14.20. GC/MS: retention time = 19.8 min, M/Z = 202.

0]
NC@%{
O—Et
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Ethyl 3-(4-cyanophenyl)propiolate
Following the general procedure, the reaction of 4-ethynylbenzonitrile, CO,, and iodoethane
provided the desired product with an average yield of 93%. 'H NMR (400 MHz, CDCls): § 7.67 (s,
4H), 4.31 (q, 2H, J = 7.1 Hz), 1.36 (t, 3H, J = 7.1 Hz). 13C NMR (101 MHz, CDCl3): & 153.49, 133.39,
132.34, 124.60, 117.97, 114.12, 83.84, 83.21, 62.64, 14.16. GC/MS: retention time = 19.6 min,
M/Z = 199.

)=

Butyl 3-(thiophen-3-yl)propiolate

O—Bu

Following the general procedure, the reaction of 3-ethynylthiophene, CO;, and iodobutane
provided the desired product with an average yield of 88%. *H NMR (400 MHz, CDCls): 6 7.75 (dd,
1H,J = 3.0, 1.1 Hz), 7.32 (dd, 1H, J = 5.1, 3.0 Hz), 7.23 (dd, 1H, J = 5.0, 1.1 Hz), 4.23 (t, 2H, J = 6.7
Hz), 1.69 (m, 2H, J = 6.9 Hz), 1.43 (m, 2H, J = 7.4 Hz), 0.96 (t, 3H, J = 7.4 Hz). 3C NMR (101 MHz,
CDCl3): 6 154.40, 133.83, 130.34, 126.18, 119.05, 81.66, 80.88, 66.07, 30.61, 19.19, 13.79.
GC/MS: retention time = 19.2 min, M/Z = 208.

O

Butyl 3-(pyridin-2-yl)propiolate
Following the general procedure, the reaction of 2-ethynylpyridine, CO,, and iodoebutane
provided the desired product with an average yield of 40%. *H NMR (400 MHz, CDCls): & 8.65
(ddd, 1H,J=4.9, 1.8, 1.0 Hz), 7.72 (td, 1H, J = 7.7, 1.8 Hz), 7.59 (dt, 1H, J = 7.8, 1.1 Hz), 7.35 (ddd,
1H,J=7.6,4.8,1.2 Hz), 4.24 (t, 2H, J = 6.7 Hz), 1.73-1.64 (m, 2H), 1.48-1.38 (m, 2H), 0.95 (t, 3H,
J=7.4 Hz). 3C NMR (101 MHz, CDCls): 6 153.75, 150.63, 140.70, 136.48, 128.67, 124.75, 83.85,
79.34, 66.30, 30.50, 19.12, 13.73. GC/MS: retention time = 20.1 min, M/Z = 203.

Butyl 3-(pyridin-3-yl)propiolate

16



Following the general procedure, the reaction of 3-ethynylpyridine, CO,, and iodobutane
provided the desired product with an average yield of 44%. 'H NMR (400 MHz, CDCls): & 8.81 (s,
1H), 8.66 (d, 1H, J = 4.6 Hz), 7.87 (dt, 1H,/=7.9, 1.8 Hz), 7.33 (dd, 1H, /= 7.9, 4.8 Hz), 4.25 (t, 2H,
J=6.7 Hz), 1.76 — 1.65 (m, 2H), 1.44 (m, 2H, J = 7.4 Hz), 0.96 (t, 3H, J = 7.4 Hz). 3C NMR (101 MHz,
CDCls): 6 153.82, 153.49,150.82, 139.97, 123.35, 117.25, 83.71, 82.45, 66.38, 30.56, 19.17, 13.78.
GC/MS: retention time = 19.2 min, M/Z = 203.

tBu%-/<

O—-Bu
Butyl 4,4-dimethylpent-2-ynoate
Following the general procedure, the reaction of 3,3-dimethyl-1-butyne, CO,, and iodoebutane
provided the desired product with an average yield of 44%. 'H NMR (400 MHz, CDCls): 6 4.14 (t,
2H, J=6.8 Hz), 1.70-1.58 (m, 2H), 1.44-1.34 (m, 2H), 1.28 (s, 9H), 0.93 (t, 4H, J = 7.4 Hz). 3C NMR
(101 MHz, CDCl3): & 154.44, 96.54, 71.96, 65.76, 37.44, 30.60, 30.12, 27.65, 22.55, 19.17, 13.79.
GC/MS: retention time = 12.5 min, M/Z = 181.

=

O—Et
Ethyl 3-cyclohexylpropiolate
Following the general procedure, the reaction of 1-ethynylcyclohexane, CO;, and iodoethane
provided the desired product with an average yield of 55%. 'H NMR (400 MHz, CDCls): § 4.20 (q,
2H,J=7.1Hz), 2.50 (tt, 1H, J = 9.3, 3.8 Hz), 1.88-1.77 (m, 2H), 1.70 (qd, 2H,/=7.3, 2.6 Hz), 1.57-
1.50 (m, 2H), 1.50— .42 (m, 1H), 1.29 (t, 6H, J= 7.1 Hz). 3C NMR (101 MHz, CDCl3): 6§ 154.18, 92.94,
73.20, 61.85, 31.56, 28.98, 25.70, 24.76, 14.17. GC/MS: retention time = 15.4 min, M/Z = 180.

Oren—=

O—Et

Ethyl 6-phenylhex-2-ynoate
Following the general procedure, the reaction of 5-phenyl-1-pentyne, CO;, and iodoethane
provided the desired product with an average yield of 89%. 'H NMR (400 MHz, CDCls): § 7.34—
7.14 (m, 5H), 4.23 (q, 2H, J = 7.1 Hz), 2.74 (t, 2H, J = 7.5 Hz), 2.34 (t, 2H, J = 7.1 Hz), 1.91 (qunitet,
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2H, J = 7.3 Hz), 1.32 (t, 3H, J = 7.1 Hz). 13C NMR (101 MHz, CDCls): & 153.95, 140.96, 128.62,
128.58, 126.25, 88.93, 73.75, 61.94, 34.78, 29.17, 18.13, 14.17. GC/MS: retention time = 19.9
min, M/Z = 216.

CO,Et

N\

4

CO,Et
Diethyl 3,3'-(1,2-phenylene)dipropiolate
Following the general procedure, the reaction of 1,2-diethynylbenzene, CO;, and iodoethane
provided the desired product with an average yield of 99%. *H NMR (400 MHz, CDCl3): 6 7.62 (dd,
1H, J = 5.8, 3.3 Hz), 7.44 (dd, 1H, J = 5.8, 3.3 Hz), 4.31 (q, 2H, J = 7.2 Hz), 1.36 (t, 3H, J = 7.1 Ha).
13C NMR (101 MHz, CDCls): 6 153.80, 133.57, 130.38, 123.78, 84.89, 82.91, 62.42, 14.20. GC/MS:

retention time = 23.9 min, M/Z = 270.

CO,Et

N
CO,Et

Diethyl 3,3'-(1,3-phenylene)dipropiolate

Following the general procedure, the reaction of 1,3-diethynylbenzene, CO;, and iodoethane
provided the desired product with an average yield of 97%. 'H NMR (400 MHz, CDCl3): 6 7.78 (t,
1H,J = 1.7 Hz), 7.63 (dd, 2H, J = 7.8, 1.7 Hz), 7.40 (t, 1H, J = 7.8 Hz), 4.30 (q, 4H, J = 7.1 Hz), 1.35
(t, 6H, J = 7.1 Hz). 3C NMR (101 MHz, CDCls): 6 153.80, 136.97, 134.71, 129.15, 120.71, 84.03,
81.68, 62.44, 14.19. GC/MS: retention time = 24.9 min, M/Z = 270.

EtO,C —-J_L: CO,Et

Diethyl 3,3'-(1,4-phenylene)dipropiolate
Following the general procedure, the reaction of 1,4-diethynylbenzene, CO;, and iodoethane

provided the desired product with an average yield of 97%. 'H NMR (400 MHz, CDCls): 6 7.58 (s,
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2H), 4.30 (q, 2H, J = 7.1 Hz), 1.36 (t, 3H, J = 7.1 Hz). 3C NMR (101 MHz, CDCl3): & 153.81, 133.01,
121.94, 84.52, 83.01, 62.46, 14.19. GC/MS: retention time = 24.8 min, M/Z = 270.
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Single-crystal X-ray crystallography. A summary of crystal data and refinement details for all

compounds is given in Table S1.

General Data Collection

Data were collected on a Bruker D8 VENTURE DUO diffractometer equipped with a IuS 3.0
microfocus source operated at 75 W (50kV, 1.5 mA) to generate Mo Ka radiation (A = 0.71073 A)
and a PHOTON Il detector. Crystals were transferred from the vial and placed on a glass slide in
type NVH immersion oil by Cargille. A Zeiss Stemi 305 microscope was used to identify a suitable
specimen for X-ray diffraction from a representative sample of the material. The crystal and a
small amount of the oil were collected on a MiTeGen 100 micron MicroLoop and transferred to
the instrument where it was placed under a cold nitrogen stream (Oxford 800 series) maintained
at 100K throughout the duration of the experiment. The sample was optically centered using a
video camera to ensure no translations were observed as the crystal was rotated through all
positions. A unit cell collection was then carried out. After it was determined that the unit cell

was not present in the CCDC database, a data collection strategy was calculated by APEX4.3

Refinement Details

(a) Refined structure of [Cu-L3]PFs. After data collection, the unit cell was re-determined using a
subset of the full data collection. Intensity data were corrected for Lorentz, polarization, and
background effects using the APEX43. A semi-empirical correction for adsorption was applied
using SADABS3. The program SHELXT* was used for the initial structure solution, and SHELXL®
was used for the refinement of the structure. Both programs were utilized within the OLEX2
software®. Hydrogen atoms bound to carbon atoms were located in the difference Fourier map
and were geometrically constrained using the appropriate AFIX commands.

(b) Refined structure of [Cu-L4]PFs.CH3CN. After data collection, the unit cell was re-determined
using a subset of the full data collection. Intensity data were corrected for Lorentz, polarization,
and background effects using the APEX43. A numerical absorption correction was applied based
on a Gaussian integration over a multifaceted crystal, followed by a semi-empirical correction
for adsorption using SADABS3. The program SHELXT* was used for the initial structure solution,

and SHELXL® for the structure refinement. Both programs were utilized within the OLEX2
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software®. A methyl moiety was positionally disordered and modeled as split sites (C33). To
help maintain reasonable ADP and bond length values for the disordered sites, SIMU, RIGU,
and free variable DFIX restraints were applied. Hydrogen atoms bound to carbon atoms were
located in the difference Fourier map and were geometrically constrained using the

appropriate AFIX commands.

(c) Refined structure of [Cu-L3*]. After data collection, the unit cell was re-determined using a
subset of the full data collection. Intensity data were corrected for Lorentz, polarization, and
background effects using the APEX63. A numerical absorption correction was applied based on
a Gaussian integration over a multifaceted crystal, followed by a semi-empirical correction for
adsorption using SADABS?. The program SHELXT? was used for the initial structure solution, and
SHELXL® for structure refinement. Both programs were utilized within the OLEX2 software®. In
this structure, there were multiple disordered sites. Due to this, a large number of atom sites
were modeled as positionally disordered over 2 sites. To help maintain reasonable ADP values,
SIMU 0.01 and RIGU 0.001 were applied to all disordered sites. Hydrogen atoms bound to
carbon atoms were located in the difference Fourier map and were geometrically constrained

using the appropriate AFIX commands.

(d) Refined structure of [Cu-L1*]. After data collection, the unit cell was re-determined using a
subset of the full data collection. Intensity data were corrected for Lorentz, polarization, and
background effects using the APEX63. A semi-empirical correction for adsorption was applied
using SADABS?. The program SHELXT* was used for the initial structure solution and SHELXL®
was used for refinement of the structure. Both programs were utilized within the OLEX2
software®. In this structure, all three crystallographically unique metal-ligand complexes were
positionally disordered and modeled as split sites. Each molecular position was allowed to
refine its split occupancies independently. To help maintain reasonable bond length and ADP
values, SADI, SIMU, and RIGU restraints were used for every atom in the model. Hydrogen
atoms bound to carbon atoms were located in the difference Fourier map and were
geometrically constrained using the appropriate AFIX commands. The Z’ value for this structure

is 3.
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(e) Refined structure of [L3Cu(PA)]..2CHsCN. After data collection, the unit cell was re-
determined using a subset of the full data collection. Intensity data were corrected for Lorentz,
polarization, and background effects using the APEX63. A numerical absorption correction was
applied based on a Gaussian integration over a multifaceted crystal and followed by a semi-
empirical correction for adsorption applied using SADABS3. The program SHELXT* was used for
the initial structure solution and SHELXL®> was used for refinement of the structure. Both
programs were utilized within the OLEX2 software®. In this structure, the interstitial acetonitrile
molecule was positionally disordered and modeled over two sites. Hydrogen atoms bound to
carbon atoms were located in the difference Fourier map and were geometrically constrained

using the appropriate AFIX commands.

CCDC numbers 2415975, 2415955, 2488390, 2494324, and 2514575 contain the
supplementary crystallographic data for this paper. These data can be obtained free of charge

from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data _request/cif
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Table S1. Summary of X-ray crystallographic data collection parameters for the new Cu-CNC complexes

complex [Cu-L3]PFs [Cu-L4]PFs.CH3CN | [Cu-L3%*] [Cu-L1*] [L3-Cu(PA)]2.2CH3CN
formula C31H33CuNsFeP | C3gHagCuFsNeP C31H32CuNs C19H24CuNs Cs2Hs2CuzN12
Mr (g mol?) 684.13 809.34 538.15 385.97 1362.67

T (K) 100 100 100 100 100

A (A) 0.71073 0.71073 0.71073 0.71073 0.71073
crystal system | triclinic monoclinic triclinic hexagonal triclinic
space group P-1 P121/n1 P-1 P31 P-1

a (A) 8.9525(5) 11.0022(4) 9.1454(8) 10.6182(2) 8.3559(4)

b (A) 12.2544(8) 15.0039(5) 11.5360(11) | 10.6182(2) 11.2732(6)
c(A) 14.4861(7) 23.1511(8) 14.1953(15) | 43.2847(14) | 19.0233(8)
a (deg) 78.930(2) 90 69.605(3) 90 90.952(2)

B (deg) 83.833(2) 93.337(2) 74.381(3) 90 94.577(2)

y (deg) 83.018(2) 90 80.865(3) 120 95.280(2)

Vv (A3) 1542.32(15) 3815.2(2) 1348.4(2) 4226.4(2) 1778.14(15)
Z 2 4 2 9 1

Pealc (g cm™3) 1.473 1.409 1.325 1.365 1.273

1 (mm) 0.827 0.681 0.839 1.174 0.652

F (000) 704.0 1688.0 564.0 1818.0 716.0

28 max (deg) 30.539 28.282 27.877 26.430 27.102

h,k,| max 12,17,20 14,20,30 12,15,18 13,13,54 10,14,24
no. of unique | 9456 9463 6386 11553 7847

reflns

final R indices | 0.0345 0.0300 0.0774 0.0527 0.0403
(1>20)

R (wF2)@ 0.0845 0.0753 0.1892 0.1140 0.0985
Goodness-of- | 1.031 1.023 1.313 1.067 1.024

fit on F2

"R(wF?) = {Z[w(Fs* = FE)’)/Z[w(Fo) 1Y% w = 1/[0°(Fo?) + (aP)* + bP], P =[2F + max(Fo,0)1/3.
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Table S2. Selected bond lengths and angles for the Cu-CNC complexes

complex bonds distance (A) bonds angle (°)
[Cu-L3]PFs Cu(1)-N(3) 2.221(1) C(1)—Cu(1)-C(11) 173.97(6)
Cu(1)-C(1) 1.891(1) C(1)—Cu(1)-N(3) 94.06(6)
Cu(1)-C(11) 1.894(1) C(11)—Cu(1)-N(3) 91.97(6)
C(4)-C(5) 1.510(2) N(2)-C(4)-C(5) 115.0(1)
C(6)-C(10) 1.512(2) N(4)-C(10)-C(6) 118.2(1)
C(2)—C(3) 1.353(3)
C(12)—C(13) 1.351(2)
C(6)-C(7) 1.393(2)
C(7)-C(8) 1.388(2)
C(8)-C(9) 1.389(2)
C(9)-C(5) 1.387(2)
N(3)-C(5) 1.348(2)
N(3)-C(6) 1.341(2)
[Cu-L4]PFs.CH3CN Cu(1)—-N(3) 2.269(1) C(1)—Cu(1)-C(11) 178.04(6)
Cu(1)-C(1) 1.904(1) C(1)-Cu(1)-N(3) 90.43(5)
Cu(1)-C(11) 1.904(1) C(11)—Cu(1)-N(3) 89.68(5)
C(2)-C(3) 1.351(2)
C(12)—C(13) 1.352(2)
[Cu-L3*] Cu(1)-N(3) 2.095(4) C(1)-Cu(1)-C(11) 168.0(2)
Cu(1)-C(1) 1.905(4) C(1)-Cu(1)-N(3) 96.4(2)
Cu(1)-C(11) 1.896(4) C(11)—Cu(1)-N(3) 95.6(2)
C(4)-C(5) 1.36(1) N(2)-C(10)-C(9) 113(1)
C(9)-C(10) 1.52(2) N(4)-C(10)-C(6) 128(1)
C(2)-C(3) 1.344(6)
C(12)—C(13) 1.350(9)
C(5)-C(6) 1.48(1)
C(6)-C(7) 1.31(2)
C(7)-C(8) 1.43(1)
C(8)-C(9) 1.42(1)
N(3)-C(5) 1.372(6)
N(3)-C(9) 1.364(6)
[Cu-L1*] Cu(2)—-N(8) 2.10(1) C(20)—Cu(2)-C(30) 164.1(7)
Cu(2)—C(20) 1.86(1) C(20)—Cu(2)—-N(8) 95.6(6)
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Cu(2)-C(30)
C(23)-C(24)
C(25)-C(29)
Cu(1)-N(3A)
Cu(1)-C(1A)
Cu(1)-C(11A)
C(5A)-C(4A)
C(6A)-C(10A)
Cu(3A)-N(13A)
Cu(3A)-C(39A)
Cu(3A)-C(49A)
C(42A)-C(43A)
C(44A)-C(48A)

1.92(1)
1.35(3)
1.55(2)
2.12(1)
2.01(2)
1.82(2)
1.43(2)
1.51(2)
2.128(7)
1.86(2)
1.93(2)
1.39(2)
1.46(2)

C(30)-Cu(2)-N(8)
N(7)-C(23)-C(24)
N(9)-C(29)-C(25)
C(1A)-Cu(1)-C(11A)
C(1A)-Cu(1)-N(3A)
C(11A)-Cu(1)-N(3A)
N(2A)-C(5A)-C(4A)
N(4A)-C(10A)-C(6A)
C(39A)-Cu(3A)-C(49A)
C(39A)-Cu(3A)-N(13A)
C(49A)-Cu(3A)-N(13A)
N(12A)-C(42A)-C(43A)
N(14A)-C(48A)-C(44A)

97.6(6)
129(2)
114(1)
170(1)
98.9(9)
95.6(8)
127(1)
111(1)
165.3(7)
96.0(6)
95.9(5)
129(2)
114(1)
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Figure S1. The isolated yields of ethyl 3-phenylpropiolate from the direct carboxylation of
phenylacetylene in CH3CN after 12 hours at room temperature and 12 hours at 80 °C. Reaction
conditions: phenylacetylene (1.37 mmol), Cs2CO3 (2.74 mmol), iodoethane (4.00 mmol), Cu-L1,

solvent (5 mL), CO;z (1 atm).
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Figure S2. 'H NMR spectrum of the copper catalyst fully recovered from the catalytic reaction

after trituration and recrystalization, in CDsCN (400 MHz).
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Figure S3. The isolated yields of ethyl 3-phenylpropiolate from the direct carboxylation-
esterification of phenylacetylene with CO, catalyzed by [Cu-L1]PF¢ after 3, 6, and 12 hours of
stirring at room temperature, followed by 12 h stirring at 80 °C. Reaction conditions: [Cu] (10

mol%), terminal alkyne (1.0 equiv.), Cs2COs3 (2.0 equiv.), Etl (2.9 equiv.), CO2 (1 atm), CH3CN (5mL).
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Figure S7. *H NMR (top) and ?H NMR (bottom) spectra for the reaction of [Cu(I'Pr¢*N"¢)]PF, [Cu-
L1]* with Cs2COs in a 1:5 molar ratio in CD3CN after 24 hours of stirring at room temperature,

yielding the original complex with deuterated methylene linkers, [Cu-L1P]*.
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Figure S8. 'H NMR (top) and 2H NMR (bottom) spectra for the reaction of [Cu(I'Pr¢*N"¢)]PFe, [Cu-
L1]* with Cs2COs in a 1:1 molar ratio in CD3CN after 24 hours of stirring at room temperature,

yielding the original complex with deuterated methylene linkers, [Cu-PL1]*.
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Figure S9. (a) Spectral titration for the formation of the dearomatized complex [Cu-L1*] upon
addition of an excess amount of KO'Bu into the solution of [Cu-L1]BArF in THF at 223 K. (b, c, d)
Plots of the absorbance at 505 nm, 475 nm, and 539 nm due to [Cu-L1*] generated from the
reaction of [Cu-L1]* and five-fold excess amount of KO'Bu vs. the concentration of [Cu-L1]* (0.0 —

0.6 mM) at 223 K to determine the extinction coefficient of [Cu-L1*] in THF.
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Figure $10. The UV-Vis spectrum of the dearomatized complex, [Cu-L1*]. The peaks represent

the Gaussian area of the calculated electronic transitions.

Note: The spectrum is calculated by the TD-DFT function of the AMS program (ADF 2023

package).” 8

33



@5 (@120 F
n Ky =4.4 x 10M"
04} 100 |
x
E = 8o}
803F %
0 ==
® w60k
w02k 3
8 0.
< e 40 -
01F -
(0NN ] 1 ! 1 1 ! ! ! 0 1 1 Il 1 1
00 05 10 15 20 25 30 35 0.0 1.0 2.0 3.0 4.0 5.0
[KO'Bu], mM 10°3{1 / ([KO'Bu], - X)}(M™)
(b) (b)
g . . 100r K, =30x10M
140
& %120 F
02} =
3 X100 |
m o
© T 8ok
) 23
<04} S 60t
40+
20 |
0.0 ! 1 1 1 1 1 L 0 1 L 1 N
00 05 10 15 20 25 30 35 0.0 1.0 2.0 3.0 4.0 5.0
[KO'Bu], mM 10731 / ([KO'Bu], - x)}(M™)
(c)
(©)250
Ly . . Ky =2.0 x 10 M
200 -
E x
c =
8 150 F
0 S
® p
%11 3 100
2 S
50
0.0 1 1 1 1 1 1 1 0 L L L L 1
00 05 10 15 20 25 30 35 0.0 1.0 20 3.0 4.0 5.0
[KO'Bu], mM 1031 / ([KO'Bu], - x)}(M")

Figure S11. Absorbance changes of [Cu-L1*] monitored at 505 nm upon addition of KO'Bu into
the solution of [Cu-L1*]BArF (0.50 mM) in THF at 213 K (a), 233 K (b), and 253 K (c) (left panels).
Right panels show the plot of ([CuL1*]o— x)/x vs 1/([KO'Bu]o — x) to determine the deprotonation
constant of [CuL1]BArF upon addition of KO'Bu (0.0 — 4.0 mM) into the solution of [CuL1]BArF
(0.50 mM) in THF.
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Figure S12. van’t Hoff plot to determine the enthalpy and entropy changes in the deprotonation
of [CuL1]BArF upon addition of KO'Bu (0.0 — 4.0 mM) into the solution of [CuL1]BArF (0.50 mM)
in THF.
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Figure S13. (a) Time profile of the absorbance at 505 nm due to [Cu-L1*] and (b) the first-order
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Figure S14. (a) *H NMR spectrum of the reaction of [Cu-L1]PFs and sodium phenylacetylide (1
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75

equiv.) in CD3CN upon mixing at RT (400 MHz). (b) Fitted spectrum after line fitting analysis and

removal of solvent peaks for clarity.
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Figure S15. (a) 'H NMR and (b) 2H NMR spectra of the reaction of [Cu-L1]PFs¢ and sodium

phenylacetylide (1 equiv.) in CDsCN after 24 hours of stirring at RT (400 MHz).
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Figure S18. (a) 'H NMR spectrum of [Cu(DacDipp)(PA)] complex in CDCls displaying the resonance

signals of the Cu-acetylide species. (b) *3*C{*H} NMR spectrum of Cu-A formed in situ from [Cu-

L1]PFs and sodium phenylacetylide (5 equiv.) reaction in CD3CN after 24 h of stirring at RT.
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Figure S21. 'H NMR spectrum of the reaction of [Cu-L3]PFs and sodium phenylacetylide (1 equiv.)

in CD3CN upon mixing at RT (400 MHz). Solvent impurity peaks are removed for clarity.

Figure S22. (a) ORTEP diagrams of L3-bound Cu-A complex. Hydrogen atoms have been omitted
for clarity. Selected distances (A) and angles (°); Cu(1)-C(1) = 1.928(2), Cu(1)-C(9) = 1.957(2),
Cu(1)-C(19) = 1.978(2), C(9)—Cu(1)-C(19) = 123.19(9), C(9)—Cu(1)-C(1) = 124.0(1), C(1)-Cu(1)-
C(19) = 111.5(1). Ellipsoids are shown at the 60% probability level.
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Figure S23. 'H NMR spectrum of the crude solid from the reaction of [Cu-L1]PFs and sodium
phenylacetylide (1 equiv.) after solvent removal and redissolving in CD3CN (top) and after THF

trituration, solvent removal, and redissolving in CD3CN (bottom) at RT (400 MHz).
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Figure S24. 'H NMR spectra of the reaction of [Cu-L1]PFs and phenylacetylene (1 equiv.) in the

presence of (a) Cs2COs3 (1 equiv.) and (b) Cs2COs (5 equiv.) in CD3CN after 24 hours of stirring at

RT (400 MHz).

46



prd
Q
O
Te) o O
[e] <
o i N
D-PA

CHN (Cu-S)

\

_ A

85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 00
ppm

Figure S25. 2H NMR spectra of the reaction of [Cu-L1]PFs and phenylacetylene (1 equiv.) in the

presence of Cs;COs (5 equiv.) in CD3CN after 24 hours of stirring at RT (400 MHz).
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Figure S26. 'H NMR spectrum of the reaction of [Cu-L1]PFs, Cs»COs; (2 equiv.), and
phenylacetylene (1 equiv.) in CDsCN after stirring for 12 h at RT and 12 h at 80 °C.
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Figure S27. (a) *H NMR spectrum of the solid collected from the reaction of [Cu-L3]PFs (1 equiv.),

and KO'Bu (5 equiv.) after stirring for 30 min at RT under CO2 (1 atm). (b) *H NMR spectrum of

the solid after removing the peaks of the starting complex and impurities.
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Figure $28. (a) 'H NMR spectrum of the reaction of [Cu-L1]PFs, sodium phenylacetylide (1 equiv.),

and CO; (1 atm) in CDsCN at RT. (b) Superimposed *H NMR spectra of Cu-Pr and the starting [Cu-

L1]PFs complex in CD3CN.
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Figure S29. (a) Superimposed *H NMR spectra of the Cu-Pr and Cu-S complexes formed in situ
from the corresponding reactions of [Cu-L1]PFs (1 equiv.) and sodium phenylacetylide in the
presence and absence of CO; (1 atm) in CD3CN, respectively. (b) Superimposed 'H NMR spectra

of the Cu-Pr and Cu-A complexes formed in situ in CD3CN, respectively.
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Figure S31. (a) *H NMR spectrum of the solid collected from the reaction of [Cu-L1]PFs (1 equiv.),

sodium phenylacetylide, and CO; (1 atm) in CDsCN after solvent removal under vacuum.
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1H NMR and 3C NMR spectroscopy data of bis-imidazolium salts and Cu-CNC complexes
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Figure $36. 13C-NMR spectrum of I(Dipp)<"V"¢-2HBr, L4.2HBr in DMSO-de (101 MHz)
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Figure $42. *H-13C HSQC spectrum of [Cu(IDipp<"N"¢)]PFs, [Cu-L4]PFe in CD3CN.
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Figure $48. 3C-NMR spectrum of [Cu(IMes¢"N"¢)*], [Cu-L3*] in THF-ds (150 MHz)
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1H NMR and 3C NMR spectroscopy data of propiolate ester products
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Figure S53. 'H-NMR spectrum of ethyl 3-phenylpropiolate in CDCl; (400 MHz)

70 65 60 55 50

7.5

8.0

Levl—

1¢'e9—

9.6 —

89'8C1~
clogl—
oLeel”

0 sl —

30 20 10

40

70

140 130 120 110

150

ppm

Figure S54. 13C-NMR spectrum of ethyl 3-phenylpropiolate in CDCl3 (101 MHz)
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Figure S55. 'H-NMR spectrum of butyl 3-phenylpropiolate in CDCls (400 MHz)
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Figure S56. 13C-NMR spectrum of butyl 3-phenylpropiolate in CDCl3 (101 MHz)
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Figure S57. 'H-NMR spectrum of ethyl 3-(o-tolyl)propiolate in CDCls (400 MHz)
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Figure S58. 13C-NMR spectrum of ethyl 3-(o-tolyl)propiolate in CDCls (101 MHz)
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Figure S60. 3C-NMR spectrum of ethyl 3-(4-ethylphenyl)propiolate in CDCl; (101 MHz)
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Figure S61. 'H-NMR spectrum of butyl 3-(4-ethylphenyl)propiolate in CDCls (400 MHz)
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Figure $62. 13C-NMR spectrum of butyl 3-(4-ethylphenyl)propiolate in CDCls (101 MHz)

78



T ONT—— OO WO N O M~ ~Ww oy —
DVVVOIOM® M HNN maho
o L o < < < < - -
™
Q
)]
o o
‘ T
AW L.l i J‘
[ | N
o™ <+ o [e) N}
3 S < NS
T 1_I A T T T T T T N T T T T T Im co T T
80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 0.0
ppm
Figure $63. 'H-NMR spectrum of ethyl 3-(4-(tert-butyl)phenyl)propiolate in CDCls (400 MHz)
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Figure S64. 3C-NMR spectrum of ethyl 3-(4-(tert-butyl)phenyl)propiolate in CDCl; (101 MHz)
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Figure S65. 'H-NMR spectrum of ethyl 3-(4-ethoxyphenyl)propiolate in CDCls (400 MHz)
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Figure S66. 3C-NMR spectrum of ethyl 3-(4-ethoxyphenyl)propiolate in CDCl3 (101 MHz)
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Figure S67. 'H-NMR spectrum of ethyl 3-(4-fluorophenyl)propiolate in CDCl3 (400 MHz)
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Figure S68. 13C-NMR spectrum of ethyl 3-(4-fluorophenyl)propiolate in CDClz (101 MHz)

81



el
mm._‘W
A"

ve'L
ve'L
ge'L
9e'L
FASYA
FAS)
05’2
05°L
192
¢S,
cs'L
€9/

ll

OzZH -|M

€10d20

——

—66C

-00¢C

-16'L
~96'L

ppm

Figure $69. 'H-NMR spectrum of ethyl 3-(4-chlorophenyl)propiolate in CDCl; (400 MHz)
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Figure $70. 33C-NMR spectrum of ethyl 3-(4-chlorophenyl)propiolate in CDClz (101 MHz)
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Figure S71. 'H-NMR spectrum of ethyl 3-(2-chlorophenyl)propiolate in CDCl3; (400 MHz)
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Figure S72. 3C-NMR spectrum of ethyl 3-(2-chlorophenyl)propiolate in CDCl3 (101 MHz)
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Figure S73. 'H-NMR spectrum of ethyl 3-(4-bromophenyl)propiolate in CDCls (400 MHz)
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Figure S74. 3C-NMR spectrum of ethyl 3-(4-bromophenyl)propiolate in CDCl; (101 MHz)
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Figure $75. 'H-NMR spectrum of ethyl 3-(2-bromophenyl)propiolate in CDClz (400 MHz)

65 60 55 50

7.0

7.5

8.0

vl —

[A A

€10d0

[ JUTT
€100’
@m.mww
01's8

(AN A

6.L°9C1~
€L'6C1~
L9'LEL—
6L V€L
eV LELS

16°€G1—

|

10

20

40

60

90

150 140 130

160

ppm

Figure $76. 13C-NMR spectrum of ethyl 3-(2-bromophenyl)propiolate in CDCls (101 MHz)
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Figure S77. 'H-NMR spectrum of ethyl 3-(2-nitrophenyl)propiolate in CDCl3 (400 MHz)
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Figure $78. 33C-NMR spectrum of ethyl 3-(2-nitrophenyl)propiolate in CDCl3 (400 MHz)
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Figure $79. 'H-NMR spectrum of ethyl 3-(3-nitrophenyl)propiolate in CDCl3 (400 MHz)
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Figure S80. 3C-NMR spectrum of ethyl 3-(3-nitrophenyl)propiolate in CDCl; (101 MHz)
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Figure S81. 'H-NMR spectrum of ethyl 3-(4-nitrophenyl)propiolate in CDCl3 (400 MHz)
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Figure $82. 3C-NMR spectrum of ethyl 3-(4-nitrophenyl)propiolate in CDCl; (101 MHz)

88



—

€10a2 9¢'L

OZH 95|~

—9l1'¢

—-16'1
-007¢

—007¢

-00¢C

—€1'c

80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 05 0.0

8.5

ppm

Figure $83. 'H-NMR spectrum of butyl 3-(4-nitrophenyl)propiolate in CDCl; (400 MHz)
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Figure S84. 13C-NMR spectrum of butyl 3-(4-nitrophenyl)propiolate in CDCl3 (101 MHz)
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Figure S88. 'H-NMR spectrum of ethyl 3-(4-(trifluoromethyl)phenyl)propiolate in CDCls (101 MHz)
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Figure S91. 'H-NMR spectrum of ethyl 3-(4-cyanophenyl)propiolate in CDCl3 (400 MHz)
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Figure $S92. 3C-NMR spectrum of ethyl 3-(4-cyanophenyl)propiolate in CDCl3 (101 MHz)
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Figure $93. 'H-NMR spectrum of butyl 3-(thiophen-3-yl)propiolate in CDCls (400 MHz)
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Figure S94. 3C-NMR spectrum of butyl 3-(thiophen-3-yl)propiolate in CDCl3 (101 MHz)
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Figure $95. 'H-NMR spectrum of butyl 3-(pyridin-2-yl)propiolate in CDCl3 (400 MHz)
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Figure $96. 13C-NMR spectrum of butyl 3-(pyridin-2-yl)propiolate in CDClz (101 MHz)
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Figure $97. 'H-NMR spectrum of butyl 3-(pyridin-3-yl)propiolate in CDClz (400 MHz)
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Figure $98. 3C-NMR spectrum of butyl 3-(pyridin-3-yl)propiolate in CDCls (101 MHz)
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Figure $101. 'H-NMR spectrum of ethyl 3-cyclohexylpropiolate in CDCls (400 MHz)
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Figure $103. 'H-NMR spectrum of ethyl 6-phenylhex-2-ynoate in CDCls (400 MHz)
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Figure S104. 3C-NMR spectrum of ethyl 6-phenylhex-2-ynoate in CDCl; (101 MHz)
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Figure $105. 'H-NMR spectrum of diethyl 3,3'-(1,2-phenylene)dipropiolate in CDCls (400 MHz)
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Figure $106. 13C-NMR spectrum of diethyl 3,3'-(1,2-phenylene)dipropiolate in CDCls (101 MHz)
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Figure $107. 'H-NMR spectrum of diethyl 3,3'-(1,3-phenylene)dipropiolate in CDCls (400 MHz)
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Figure $108. 13C-NMR spectrum of diethyl 3,3'-(1,3-phenylene)dipropiolate in CDCl3 (101MHz)
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Figure $109. 'H-NMR spectrum of diethyl 3,3'-(1,4-phenylene)dipropiolate in CDCls (400 MHz)
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Figure $110. 13C-NMR spectrum of diethyl 3,3'-(1,3-phenylene)dipropiolate in CDCl3 (101 MHz)
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Summary of DFT calculations.

Methods:

DFT calculations were performed in Gaussian-09 using the unrestricted B3LYP method with
dispersion corrections at the GD3 level with Becke-Johnson damping included. The basis set used
LANL2TZ+ with core potential on Cu and 6-311+G* on the rest of the atoms. The conductor-type
polarized continuum model (CPCM) with a dielectric constant mimicking acetonitrile was used
during geometry optimizations and frequency calculations.

DFT calculations show that in Cu-Pr, the substrate binds the copper complex through a weak
interaction of the m-cloud of the triple bond with copper. This weak interaction will cost little free
energy to break, and consequently, the stability of Cu-Pr will be limited. Furthermore, the relative

free energy of Cu-S and Cu-A supports the endergonic nature of the Cu-S to Cu-A conversion.

Table S3: Absolute energies and free energies (au) for the optimized geometries.

E ZPE G
[Cu-L*]° -1208.76081 0.405813 -1208.4099
[Cu-A]” -1516.76891 0.503402 -1516.3333
[Cu-Pr]” -1705.46713 0.518803 -1705.018
[Cu-S]° -1825.87615 0.633651 -1825.3188
![Phenylpropiolate]” -496.685728 0.111951 -496.61051
![Phenylacetylide]® -308.494975 0.109077 -308.41631

Ph_H -~ H ph 10
[l |
N ' N
EN} —<N] = P
) |

Pr Pr

liPr H

AG = 123 kcal/mol

Fig. S111. Calculated dissociation free energy for the

phenylacetylene, and a hydrogen ion.

liF’r ’ | 'Pr

AG = 0.90 kcal/mol

Cu-A

|
'Pr

iPr

[Cu-L1J*

iPr

Cu-A

+ @%H + H3O+

conversion of Cu-S into Cu-A,

—.[NN%EN =

Fig. S112. Calculated dissociation free energy for the conversion of Cu-A into the starting complex

and acetylide ion.
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Cartesian coordinates:

HCu-L*]:

29

7
7
7
7
7
6
6
6
1
1
1
6
1
6
1
1
1
6
1
6
1
6
1
6
6
1
6
1
6
1
6
6
1
1
6
1
6
1

2.878573000

1.342764000
4.016332000
5.630010000
0.428879000
1.671605000
4.273541000
1.692726000
6.589456000
7.273356000
7.038447000
5.655763000
6.326730000
5.614079000
7.594377000
7.376181000
8.027913000
8.352195000
6.206156000
7.262936000
5.200757000
5.220155000
2.769994000
2.841595000
1.537793000
0.387969000
0.534347000
-0.849822000
-1.705805000
-1.018208000
-1.988337000
0.104889000
-0.004749000
-1.036416000
0.603228000
-0.366546000
-1.397972000
0.417493000
0.188899000

4.914437000

3.473298000
2.274598000
3.722402000
6.353253000
7.516593000
3.618573000
6.425524000
5.409431000
4.705804000
6.404563000
5.426610000
5.016475000
5.722516000
5.006437000
4.703173000
6.008510000
4.330904000
2.486049000
2.344786000
1.573165000
0.499991000
1.611650000
0.561259000
2.145429000
1.262962000
0.220339000
1.731563000
1.063419000
3.098224000
3.492536000
3.896720000
5.322226000
5.542730000
5.426585000
7.376175000
7.496268000
8.110315000
8.988342000

2.810878000

3.273002000
2.523599000
2.452767000
3.171122000
1.862881000
2.610495000
2.672038000
0.934413000
0.451741000
0.887136000
0.367723000
2.387976000
2.818558000
3.237473000
4.263847000
3.261380000
2.832108000
2.256008000
2.107061000
2.305507000
2.215520000
2.595002000
2.353792000
2.925193000
2.920851000
2.656216000
3.241500000
3.229901000
3.604656000
3.881515000
3.612299000
4.120102000
4.386854000
5.022458000
2.682444000
2.969063000
1.851285000
1.272385000
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P R R OR R R ORL O

2.826152000
3.661673000
2.628011000
2.457939000
3.516585000
1.773633000
3.097155000
2.296024000
4.021224000
3.209041000

YCu-A]™:

29

P O R, OO0 F, O0OF OF OOF FPFPORFRORERREPRODOONNNNNV

3.656054000

2.185281000
3.841911000
4.887911000
0.987398000
1.294267000
4.151352000
1.950771000
5.286992000
5.803939000
5.662166000
4.222532000
5.529153000
5.032128000
7.015346000
7.150491000
7.470990000
7.550282000
5.050420000
5.602024000
4.387141000
4.245736000
3.103034000
3.154246000
2.309726000
1.562820000
1.699077000
0.682617000
0.115613000

7.935296000
7.371834000
7.515653000
6.439029000
7.762244000
8.030369000
9.428639000
10.035607000
9.688653000
9.699158000

5.638083000
4.414209000
2.640716000
3.681513000
6.802624000
6.747000000
3.901490000
6.568195000
4.636585000
3.768677000
5.522872000
4.537381000
4.770348000
5.670659000
4.860409000
4.976641000
5.719817000
3.961508000
2.331732000
1.949853000
1.675727000
0.620951000
2.254471000
1.191294000
3.049265000
2.439677000
1.380958000
3.180885000
2.710365000

1.047831000
1.466829000
-0.407224000
-0.476731000
-0.992910000
-0.855241000
1.204357000
0.774643000
0.683953000
2.256524000

3.038540000
4.387854000
2.610041000
1.031844000
3.342221000
1.223653000
2.168085000
2.403594000

-1.216059000
-1.634289000
-1.732640000
-1.434985000
0.285249000
0.651661000
0.632656000
1.710150000
0.134202000
0.313066000
0.776578000
-0.065711000
1.762162000
1.931270000
3.763946000
3.952627000
4.568818000
5.654717000
5.856462000
6.390588000
7.189626000
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R R R R R OO DR RPERLOAODRLRRRERIARLRIADRLRDODRLR DR RPODERL D

0.496454000
-0.217149000
1.291792000
1.214066000
0.412833000
2.162273000
-0.242371000
-1.126257000
-0.048894000
-0.736657000
1.923429000
2.981643000
1.402982000
1.598699000
1.894090000
0.326371000
1.746324000
0.698536000
2.309273000
2.112220000
4.872560000
5.607104000
6.443035000
6.394725000
7.350691000
7.210101000
8.163856000
8.100939000
5.705963000
7.407515000
7.149935000
8.851426000
8.735546000

YCu-Pr]:

29

NN N NN

-2.485741000
-3.376365000
-2.542989000
-1.374395000
-3.493219000
-3.435065000

4.561687000
5.167339000
5.101926000
6.579997000
7.067235000
7.057988000
7.081285000
7.286786000
7.053831000
7.236425000
6.517050000
6.399125000
5.218282000
4.374010000
5.026043000
5.272289000
7.720978000
7.872043000
7.566333000
8.633614000
6.697401000
7.394138000
8.203526000
8.115768000
9.127810000
8.910574000
9.919961000
9.818947000
7.413647000
9.214989000
8.820825000
10.621629000
10.437852000

0.904275000
-0.167988000
-1.893616000
-0.844712000

2.844776000
3.782189000

6.105532000
6.651532000
5.106695000
4.769362000
5.324520000
5.023495000
2.763035000
3.344432000
1.420808000
0.612520000
-0.084223000
0.148743000
-0.698996000
-0.034435000
-1.655493000
-0.882403000
-1.005926000
-1.279269000
-1.929141000
-0.530132000
4.160666000
4.869068000
5.689346000
7.098274000
5.126371000
7.897761000
5.930715000
7.322086000
7.555967000
4.046532000
8.977977000
5.468684000
7.947277000

0.504731000
2.151414000
-0.203706000
-1.699949000
2.357678000
0.427819000
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R O R R R OR O, OR OR R OODODRDODRL, ORL OO R OR OR OR RPRROAOAROOR R RO D

-2.069598000
-3.060230000
-1.838047000
-2.168356000
-1.424395000
-2.707969000
-0.786286000
-0.491689000
0.450521000
1.175633000
0.930694000
0.199082000
-1.424654000
-0.944507000
-2.149172000
-2.407702000
-3.343171000
-3.659055000
-3.741491000
-4.578384000
-4.853625000
-5.011702000
-5.643644000
-4.625184000
-4.942101000
-3.804246000
-3.245647000
-3.672698000
-2.167013000
-4.127075000
-4.528084000
-4.096589000
-4.477736000
-3.214098000
-2.420177000
-4.468756000
-4.765580000
-4.280281000
-5.302634000
-2.735161000
-3.524558000

-0.650822000
2.651366000
0.901026000
0.192666000
1.779175000
1.213995000
0.269698000
0.999773000

-0.177373000

-0.660710000
0.694565000

-0.865633000

-2.164080000

-2.531462000

-2.828711000

-3.871277000

-2.267399000

-3.299413000

-1.493249000

-2.111809000

-3.155103000

-1.398402000

-1.869390000

-0.037380000
0.548144000
0.501793000
1.896241000
2.330816000
1.821245000
4.068574000
4.410810000
4.660633000
5.613934000
3.975209000
3.266930000
3.598428000
2.571163000
3.678532000
4.260492000
5.392287000
6.131981000

-0.534668000
1.082961000
-3.376612000
-4.141828000
-3.878973000
-2.797011000
-2.464322000
-1.710153000
-3.235055000
-2.577762000
-3.680827000
-4.046348000
-2.097509000
-2.987599000
-1.159688000
-1.079668000
0.901020000
0.853762000
1.976701000
2.985424000
2.864626000
4.062083000
4.809489000
4.211874000
5.066359000
3.242455000
3.450241000
4.352311000
3.597864000
2.496613000
3.436104000
1.274531000
0.951884000
-1.015866000
-1.258193000
-1.801093000
-1.578968000
-2.874263000
-1.552123000
-1.316289000
-1.160427000
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-2.426392000
-1.884045000
0.316936000
0.635891000
1.017117000
0.362704000
2.044631000
0.721131000
2.406680000
1.743052000
-0.436817000
2.547703000
0.202318000
3.197106000
2.017196000
-0.080697000
-0.419724000
-0.035216000

[Cu-S]°:

29

AP OR R RPROROORRERLRODONNNNN

2.788235000
1.273533000
3.733054000
5.348864000
0.371834000
1.053551000
4.090612000
1.413041000
7.501966000
8.119096000
7.999959000
7.461168000
6.099989000
5.530100000
6.106274000
5.085771000
6.598705000
6.643704000
5.778049000
6.745082000
4.759490000

5.458404000
5.665347000
0.687402000
1.268329000
1.922100000
3.093117000
1.392328000
3.705011000
2.018412000
3.171998000
3.496965000
0.485270000
4.600729000
1.595310000
3.651145000
-0.032394000
0.685395000
-1.286561000

4.770085000
3.308758000
2.119203000
3.530687000
6.196400000
6.886952000
3.412257000
6.101220000
4.608652000
3.972040000
5.577226000
4.161638000
4.798512000
5.452964000
5.399135000
5.532801000
6.374210000
4.757188000
2.340446000
2.223243000
1.455818000

-2.361401000
-0.689209000
2.782043000
1.768352000
0.561191000
0.139777000
-0.238721000
-1.056185000
-1.426489000
-1.842987000
0.746894000
0.076271000
-1.378510000
-2.036424000
-2.776519000
4.011235000
4.985400000
3.953462000

2.469996000
3.654163000
3.131912000
3.375710000
3.088815000
1.173195000
2.878471000
2.215377000
2.815073000
3.454155000
2.736010000
1.819489000
3.387333000
2.725018000
4.791926000
5.157833000
4.781178000
5.495084000
3.941272000
4.399108000
3.791190000
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4.674945000
2.505824000
1.269206000
0.015916000
-0.019422000
-1.153376000
-2.102068000
-1.123774000
-2.032287000
0.127730000
0.333436000
1.352173000
-0.633767000
-1.549785000
-0.199865000
-0.669850000
1.875806000
2.819226000
1.231949000
1.072853000
1.880942000
0.268166000
2.135641000
1.217035000
2.827207000
2.578983000
-0.588854000
-0.579115000
2.718436000
3.778341000
-1.289400000
-1.262783000
1.879543000
0.810532000
-2.117516000
-2.801379000
-2.267144000
-3.607781000
-2.698064000
-3.072316000
-1.752541000

0.423461000
1.464527000
2.044577000
1.369508000
0.332881000
2.025939000
1.506444000
3.356384000
3.903010000
3.931000000
5.393179000
5.458805000
7.003336000
7.196260000
7.446495000
8.104398000
7.056001000
6.566753000
6.329077000
5.274768000
6.391691000
6.773231000
8.533725000
9.063585000
8.632334000
9.023783000
6.011748000
7.097926000
0.333143000
0.124985000
5.342565000
4.257063000
0.508196000
0.339082000
5.923026000
5.053789000
7.306466000
5.543178000
3.981845000
7.795882000
8.008943000

4.084667000
2.721631000
3.133752000
3.014604000
2.717976000
3.332535000
3.239516000
3.782083000
3.995665000
3.950115000
4.337820000
4.730419000
2.584772000
3.115977000
1.376566000
0.666147000
-0.040191000
0.208365000
-1.218769000
-0.982365000
-2.094926000
-1.481420000
-0.318903000
-0.583469000
-1.158108000
0.550474000
5.347838000
5.353545000
1.898587000
1.767582000
6.268845000
6.254813000
1.204752000
1.192097000
7.334173000
8.198555000
7.532267000
9.223883000
8.061619000
8.553943000
6.886448000
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-3.747214000
-4.125944000
-3.174385000
-4.373780000
2.318768000
3.652245000
1.370700000
4.007118000
4.422318000
1.727857000
0.334711000
3.052914000
5.041574000
0.966585000
3.334762000

R PR OR OR OO R R RO

![Phenylpropiolate]™:
0.306856000
0.629085000
1.006893000
0.401861000
1.991001000
0.773036000
2.357071000
1.750530000

-0.357285000
2.461501000
0.298902000
3.117129000
2.037920000

-0.082020000

-0.982941000
0.530471000

000 O L, P P P P OO OOOHOOO

[Phenylacetylide]®:
-0.546907000
-0.007398000
-1.157610000
-1.880879000
-1.820900000
-2.661718000

a oo Ok O

6.917498000

4.850863000

8.867413000

7.303599000
-1.618949000
-2.090905000
-2.303164000
-3.156824000
-1.624888000
-3.371845000
-1.976048000
-3.811419000
-3.487320000
-3.865527000
-4.645305000

0.671116000
1.229911000
1.889284000
3.103914000
1.336682000
3.745028000
1.983014000
3.187848000
3.535387000
0.400948000
4.681173000
1.546240000
3.689785000
-0.012471000
0.545563000
-1.078866000

5.426157000
6.038178000
4.733136000
3.912953000
2.512205000
4.496203000

9.405917000
9.878813000
8.689287000
10.202551000
0.380213000
0.315028000
-0.417953000
-0.503523000
0.920340000
-1.232421000
-0.392393000
-1.288552000
-0.524132000
-1.829329000
-1.922325000

2.772429000
1.746712000
0.540012000
0.169234000
-0.299646000
-1.008026000
-1.475719000
-1.833711000
0.811542000
-0.020207000
-1.282164000
-2.114371000
-2.751124000
4.027052000
4.701968000
4.284807000

5.308121000
4.622930000
6.083800000
7.001606000
6.903569000
8.014003000
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-2.527350000
-1.219962000
-3.365080000
-2.711161000
-3.300535000
-2.474287000
-3.964662000
-3.850035000

1.716733000
2.057962000
3.693222000
5.575992000
2.303331000
0.636894000
4.153470000
1.680308000

7.799600000
6.124289000
8.905997000
8.093669000
8.802221000
7.715145000
9.683604000
9.499275000
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