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1. Materials

PtClz, benzonitrile, and spectroscopic grade solvents like dichloromethane and toluene were
purchased from FUJIFILM Wako Pure Chemical Corp. NMR-solvent CDCIl3;, common reagents
for chromatographic purification such as dichloromethane, n-hexane, and silica gel 60 N (spherical,
neutral) of 40-50 um were supplied by Kanto Chemical. All chemicals and solvents were used as
received. Poly(1-trimethylsilyl-1-propyne) (PTMSP) was prepared via the polymerization of 1-
trimethylsilyl-1-propyne in the presence of TaCls as the catalyst.>! Liquid pyrene (PyL) was
prepared according to our previous report.5? Pt(Il)-tetraphenyl porphyrin (PtTPP) was prepared
according to the literature procedure.>* Standard gas containing diluted Oz in N> (0.1%, 1%, 10%)
were purchased from Suzuki Shokan Co., Ltd.

2. General methods

'"H-NMR and '*C-NMR spectra were obtained using a JINM-ECS 400 spectrometer (400 MHz,
JEOL, Japan), and NMR chemical shifts (J) are reported in ppm relative to tetramethylsilane
(TMS). High resolution electrospray ionization mass spectrometry (ESI-MS) was performed using
a Thermo Scientific Q-Exactive Plus with samples dissolved in CH>Cl,/CH3OH. Matrix-assisted
laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was performed
using a Shimadzu MALDI-8030 with dithranol as the matrix. UV-Vis absorption and emission
spectra were recorded on a JASCO V-670 spectrophotometer and a JASCO FP-8300
spectrophotometer, respectively. For typical luminescent analyses of solutions, a sample solution
(10°° M in toluene) was taken into a quartz cuvette (optical length = 1.0 cm) with a rubber septum
cap. Two thin needles were inserted into the septum from the top, acting as an inlet and outlet. The
solution was slowly bubbled with dry Ar or N for 15 minutes to degas. Although evaporation of
toluene was negligible, a few drops of excess toluene may be added beforehand to compensate for
evaporation. For luminescent analyses of films, quartz substrates (W x D x H=25 mm % 10 mm
x 1 mm) were used to mount porphyrin films, and placed into a quartz cell (W x D x H= 10 mm
% 10 mm x 45 mm) with a rubber septum cap as illustrated in Figure S1. Before mounting samples,
quartz substrates were sonicated in acetone for 5 min, and then dried with flowing N». Optical
microscopy images under polarized and cross-polarized light were obtained using an Olympus
BXS51 optical microscopy system. Fluorescence microscopy images were obtained using a Leica
TCS SPS5 confocal laser scanning microscope. Thermogravimetric analysis (TGA) and differential
scanning calorimetry (DSC) were performed with a Hitachi TG/DTA 6200 and Hitachi DSC7000X
instruments, respectively. The heating rate of TGA and the heating-cooling rate of DSC were both
set to 10 K per minute under N> gas flow. Phosphorescence lifetime spectroscopies were carried
out using a nanosecond laser at 420 nm (10 Hz, 5-8 ns duration, incident photon density = 9.0 x
10'° photons cm ™) from an optical parametric oscillator (OPO, Continuum Inc., Panther) seeded
by a Nd:YAG laser (Continuum Inc., Surelite II).3* The phosphorescence spectra through an
undercut filter (520 nm) at delayed times (1 ps gate, 1 ps step) were monitored by using an Andor
model iStar image-intensifier ICCD camera equipped with a Solar TII model MS2004
monochromator. Absolute quantum yields were determined on a Hamamatsu Photonics
Quantaurus C11347.
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Figure S1. Top-view positioning of a sample substrate in a quartz cell.

3. Characterizations of PtPL and ZnPL
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Figure S2. "H NMR spectra of the porphyrin liquid (a) before and (b) after insertion of Pt(II) into
the core. Note that the inner NH proton signal at —2.83 ppm, characteristic of the free-base
porphyrin, disappears after insertion of Pt(II).
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Figure S3. °C NMR spectrum of PtPL in CDCls.
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Figure S4. HR-ESI-MS spectrum of PtPL in CH>Clo/CH30H mixture (9:1 in volume).
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Figure SS. Experimental (up) and simulated (down) HR-ESI-MS spectrum of PtPL
([C172H2850sN4'**Pt]"). Note that the mass signals appear to contain double-charged dimers (z =
2).

Figure S6. Chemical structure of ZnPL, an analogue of PtPL.

'"H NMR (400 MHz, CDCl;3) in ppm: 9.06 (s, 8H, pyrrole g-H), 7.37 (d, J = 2.4 Hz, 8H, Ar-H),
6.88 (t,J=2.4 Hz, 4H, Ar-H), 3.98 (d, J= 6.0 Hz, 16H, OCH>), 1.84 (m, 8H, CH), 1.54-1.20 (m,
192H, CH>), 0.82 (m, 48H, CH3). '3C NMR (100 MHz, CDCls) in ppm: 158.60, 150.17, 144.58,
132.11, 121.21, 114.23, 101.17, 71.43, 38.26, 32.02, 32.00, 31.59, 30.18, 29.85, 29.72, 29.46,
27.01,22.81, 14.23. MALDI-TOF MS (m/z): calculated for [C172H2ss0sN4Zn]" = 2599.1264 m/z,
found 2599.7963 m/z.
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Figure S7. 'H NMR spectrum of ZnPL in CDCl;.
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Figure S8. '°C NMR spectrum of ZnPL in CDCl;.
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Figure S9. MALDI-TOF MS spectra of ZnPL measured over (a) a wide m/z range and (b) a
narrow m/z range.
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4. Photophysical properties of PtPL, PtTPP, and PyL
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Figure S10. (a) Photograph of a neat PtPL film on a glass plate observed under daylight in ambient
air. (b) Photographs of the same neat PtPL film observed under UV light (254 nm) with various
0; levels (0-100%). A high-flow gas (5 L min!) with predefined O, levels was blown onto the
film in ambient air. All photographs were taken individually using identical camera settings
(sensitivity, focus, and exposure time). The results are consistent with those shown in Figure 3c,
in which the emission intensity decreases exponentially with increasing O» levels. Under these
conditions, the phosphorescence at 1% O2 appears slightly weaker to the naked eye than that
observed at 0 and 0.1% O». The phosphorescence becomes hardly visible when the O level

exceeds 10%.
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under N,
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Table S1. Quantum yields of PtPL and PtTPP recorded at room temperature.

Quantum yield (%)
Atmosphere — - -
PtPL neat liquid | PtPL in toluene | PtTPP in toluene
Air 1.2 0.6 1.2
Ar 18.2 18.6 14.1
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Figure S11. Phosphorescence decay profile of PtPL and PtTPP (10°° M in toluene, Aex = 420 nm,
ns laser with Ip = 9.0 x 10'® photons/cm?) after degassing with Ar for 15 min. See Figure 2 for
corresponding absorption and emission spectra. The decay curves were fitted by exponential
function. Note that the intensity is plotted on a logarithmic scale and is approaching a plateau when
represented on a linear scale.
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Figure S12. Emission spectra of PtPL in the neat liquid state measured under Ar, N>, air, and O2
(dex =412 nm): (a) full scale and (b) magnified view.
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Figure S13. Emission spectra of PtPL in toluene (10® M) measured under Ar, air, and Oz (Aex =
405 nm): (a) full scale and (b) magnified view.
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Figure S14. Emission spectra of PtTPP in toluene (10°° M) measured under Ar, air, and O2 (Aex =
402 nm): (a) full scale and (b) magnified view.
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Figure S15. (a) Experimental setup for measuring emission spectra under reduced pressure. The
air in the quartz cell was partially evacuated without replacement by inert gases (e.g., N2 or Ar),
thereby reducing the partial pressure of Oz. The air pressure was adjusted using a needle valve,
and monitored with a digital barometer (VACUU-VIEW extended, VACUUBRAND). (b)
Emission spectra of a neat PtPL film measured under various reduced air pressures.
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Figure S16. Emission spectra of a neat PtPL film measured at various temperatures in air.
Temperature was controlled using a cryostat for spectrophotometer (CoolSpek USP-203-B,
UNISOKU). Higher temperatures generally increase molecular motion, thereby enhancing non-
radiative decay (i.e., quenching of phosphorescence).5’
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Figure S17. (a) Experimental setup for measuring emission spectra under various relative
humidities (RH) in air. Ambient air was independently withdrawn using two electrically powered
pumps (GSP-400FT, GASTEC) and separately processed to generate dry and humid air by passing
through a desiccant (zeolite, synthetic, A-4, shot, 0.50—1.18 mm, Wako Pure Chemical Industries,
Ltd.) column and a humidifier (wet paper) column, respectively. These two streams were then
mixed at controlled flow rates, with the total flow rate fixed at 300 mL min . The relative humidity
was monitored using a digital humidity sensor (HMI-41, VAISALA). (b) Emission spectra of a
neat PtPL film measured under various relative humidity conditions, showing little sensitivity to
changes in relative humidity.
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Figure S18. Emission spectra of PyL in the neat liquid state (1ex = 360 nm) under N>, air, and O,
showing little sensitivity to Oz levels.
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5. Statistical analysis of sensitivity

Table S2. Oy sensitivity (lo/l100) of neat PtPL films (n = 6).

Film 1 2 3 4 5 6 Average o
1y 218.2 262.0 196.0 224.7 219.8 285.0
VAT 2.85 3.36 2.65 3.00 2.89 3.95

To/I 100 76.5 77.9 74.1 74.9 75.9 72.2 75.3 1.8

1: Emission intensity at 655 nm under N, (4 & = 412 nm)

1190: Emission intensity at 655 nm under O, (4 = 412 nm)

o : Standard deviation

Table S3. Oy sensitivity (lo/l100) of mixed liquid films of PtPL+PyL (1:2, by weight) (n = 6).

Film

1

2

3

4

5

6 Average G
1y 206.0 175.8 223.7 166.9 278.3 197.4
Iigo 1.83 1.53 1.95 1.51 2.57 1.67
Ty/1 g9 112.8 114.8 114.6 110.3 108.3 118.4 113.2 3.3

1: Emission intensity at 656 nm under N; (4 & = 360 nm)

1 1po: Emission intensity at 656 nm under O, (4 ¢, = 360 nm)

o : Standard deviation
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6. Microscopic analysis of PtPL-PTMSP composites

(a) PTMSP only

Overlay

(b) PtPL-PTMSP (1 wt%)

Overlay
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BF : Overlay

Figure S19. Fluorescence microscopy images of PTMSP and PtPL-PTMSP composite films (1
and 80 wt%). BF and N2.1 indicate bright-field and fluorescence images obtained using the N2.1
(red-channel) filter set, respectively. Scale bar: 200 um. The obtained images show a homogeneous
appearance, and no apparent phase separation was observed within the spatial resolution of this
technique. These results indicate that the complexes are macroscopically well dispersed. Thus, it
is likely that the emergence of multiple emissive states in the Stern—Volmer analysis originates
from molecular-level heterogeneity, rather than from microscale or macroscale phase separation.
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7. Analysis of residual solvent in a liquid film
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Figure S20. (a) Experimental procedure for 'H NMR analysis of the toluene residue in a PtPL
liquid film. The PtPL neat liquid (ca. 3 mg) was dissolved in toluene (five drops), spread on a
glass plate (5.2 cm x 7.6 cm) with a spatula, and dried in air for 3 h. The resulting film was then
dissolved in CDCI; for 'H NMR analysis. (b) 'H NMR spectrum of the PtPL film in CDCls,
showing the absence of residual toluene. The asterisk (*) indicates the signal from residual acetone,
a common contaminant in chemical laboratories; its amount was estimated by integration to be
less than 0.1 mol% relative to PtPL. The amount of residual toluene was much smaller than this.
(c) '"H NMR spectrum of toluene in CDCls3, showing an intense methyl proton signal at 2.36 ppm.
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8. Coordination property of ZnPL
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Figure S21. (a) Coordination of pyridine vapor by ZnPL, an analogue of the PtPL. (b) UV-vis
absorption spectra of ZnPL neat film on quartz plate before and after exposure to pyridine vapor.
The red-shift of Soret-band and Q-bands are characteristic to the coordination of ligand molecules

on Zn(Il) core.
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