

Supplementary Information

Unraveling the Positive Effect of Twisted Helicene Structure on Narrowband Electroluminescence

Cheng-Zhuo Du,^{†a} Minqiang Mai,^{†b} Pei-Han Gao,^a Yi-Chao Zhao,^a Xiang-Yu Gao,^a Dongdong Zhang,^{*b} Lian Duan,^{*b} Chunming Cui^a and Xiao-Ye Wang^{*ac}

^aState Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Academy for Advanced Interdisciplinary Studies, College of Chemistry, Nankai University, Tianjin, 300071, China. E-mail: xiaoye.wang@nankai.edu.cn

Homepage: <http://wang.nankai.edu.cn>

^bKey Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China.

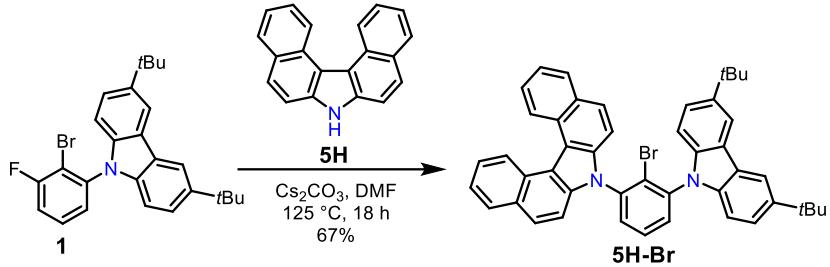
^cBeijing National Laboratory for Molecular Sciences, Beijing, 100190, China.

[†]These authors contributed equally.

Table of Contents

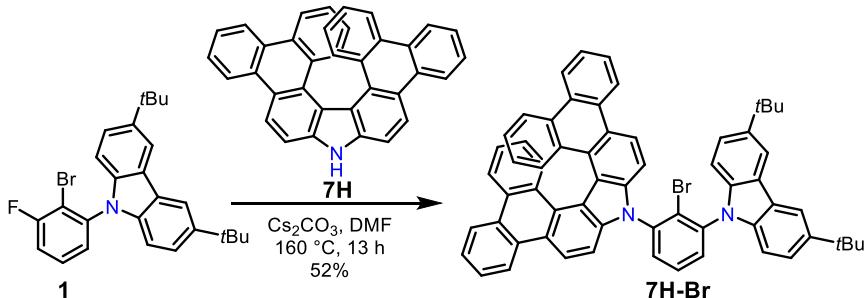
1. General Methods	3
2. Synthetic Procedures.....	4
3. Thermal Properties.....	7
4. Photophysical and Electrochemical Properties	8
5. Theoretical Calculations	12
6. Device Fabrication and Measurement	22
7. Optical Resolution and Chiroptical Properties	26
8. NMR and HRMS Spectra	31
9. References.....	36

1. General Methods

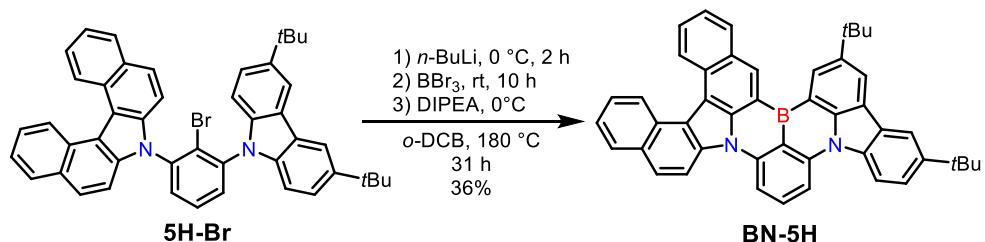

Unless otherwise noted, reagents were commercially available and used as purchased without further purification. Chemicals were purchased from J&K Chemicals, Adamas-beta, Macklin Reagent, Energy Chemicals, Aladdin, leyan or Bide Pharmatech Ltd. All oxygen- or moisture-sensitive reactions were operated under an argon atmosphere according to the standard Schlenk method. Work-up and purification procedures were carried out with reagent-grade solvents under air. Thin layer chromatography (TLC) was performed on silica gel with GF254 indicator. All yields given refer to isolated yields. Nuclear magnetic resonance (NMR) spectra were recorded on Bruker AVANCE 400 spectrometers at 400 MHz (^1H NMR) and 100 MHz (^{13}C NMR). Chemical shifts (δ) were reported in ppm. Signal splitting patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), or multiplet (m) and coupling constants (J) were reported in Hz. ^1H NMR chemical shifts were referenced to CHCl_3 (7.260 ppm), CHDCl_2 (5.320 ppm). ^{13}C NMR chemical shifts were referenced to CDCl_3 (77.16 ppm), CD_2Cl_2 (54.00 ppm). High-resolution mass spectrometry (HRMS) was performed on Bruker Solarix scimax MRMS by matrix-assisted laser desorption/ionization (MALDI).

UV-vis absorption spectra were recorded on a PerkinElmer UV-vis Lambda 365 spectrophotometer. Fluorescence spectra were recorded on an Edinburgh FS5 Spectrofluorometer and the photoluminescence quantum yields (PLQYs) were measured by an integrating sphere. The phosphorescence spectra were recorded at 77 K in dilute toluene (1×10^{-5} M) after the solution was bubbled with nitrogen for 10 min on a Hitachi F-7000 Fluorescence Spectrometer. The transient photoluminescence spectra were collected on an Edinburgh FLS1000 Spectrofluorometer equipped with a R928P photomultiplier tube. Transient decay curves for prompt fluorescence were collected with a 442 nm picosecond pulsed LED (EPL450), while the delayed parts were collected with a $\mu\text{F}2$ micro-flash lamp.

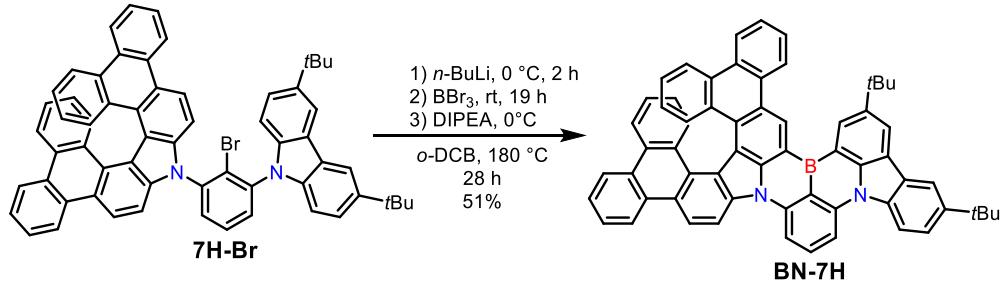
Thermogravimetric analysis (TGA) was performed using a NETZSCH TG 209 analyzer at a heating rate of $10\text{ }^\circ\text{C min}^{-1}$ under a nitrogen atmosphere. The thermal decomposition temperatures (T_d) were determined by the recorded temperature at 5% weight loss. Differential scanning calorimetry (DSC) measurements were performed on NETZSCH DSC 204 instrument at a heating rate of $10\text{ }^\circ\text{C min}^{-1}$ under a nitrogen atmosphere. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) characterizations were carried out in anhydrous tetrahydrofuran (THF) containing 0.1 M $n\text{-Bu}_4\text{NPF}_6$ as supporting electrolyte (scan rate: 100 mV s^{-1}) under an argon atmosphere on a CHI 620E electrochemical analyzer. A three-electrode system was adopted with glassy carbon as the working electrode, platinum wire as the counter electrode, and Ag/AgCl as the reference electrode. The redox potentials were calibrated with ferrocene as an external standard.


2. Synthetic Procedures

7H-diphenanthro[9,10-*c*:9',10'-*g*]carbazole¹ (**7H**) and 9-(2-bromo-3-fluorophenyl)-3,6-di-*tert*-butyl-9*H*-carbazole² (**1**) were synthesized according to the reported procedure.

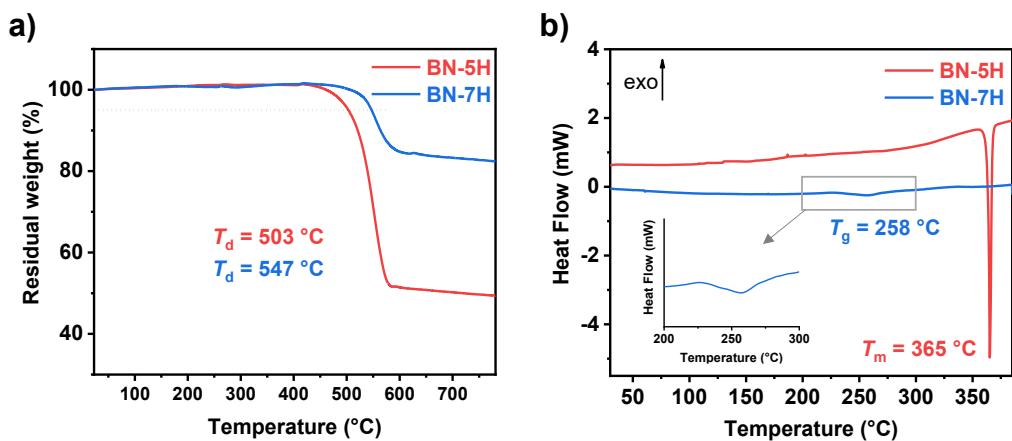

7-(2-bromo-3-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)phenyl)-7*H*-dibenzo[*c,g*]carbazole (**5H-Br**)

7H-dibenzo[*c,g*]carbazole (5H**).** To a Schlenk flask under argon was added **1** (3.64 g, 8.05 mmol), *7H*-dibenzo[*c,g*]carbazole (**5H**) (Cat No. 1149505, Leyan, Shanghai, China) (2.87 g, 10.7 mmol), Cs_2CO_3 (4.65 g, 14.3 mmol), and *N,N*-dimethylformamide (DMF) (120 mL). The reaction mixture was stirred at $125\text{ }^\circ\text{C}$ for 18 h. After cooling down to room temperature, the mixture was poured into water and the residue was purified by column chromatography over silica gel (petroleum ether/CH₂Cl₂ = 5:1) and further recrystallization from CH₂Cl₂/MeOH to afford 3.80 g (yield: 67%) of **5H-Br** as a white solid. ¹H NMR (400 MHz, CDCl₃, 297 K, ppm) δ 9.29 (d, *J* = 8.4 Hz, 2H), 8.16 (d, *J* = 1.6 Hz, 2H), 8.07 (d, *J* = 8.8 Hz, 2H), 7.93 (d, *J* = 8.8 Hz, 2H), 7.82 – 7.71 (m, 5H), 7.58 – 7.50 (m, 4H), 7.43 (d, *J* = 8.8 Hz, 2H), 7.16 (d, *J* = 8.8 Hz, 2H), 1.47 (s, 18H). ¹³C NMR (100 MHz, CDCl₃, 297 K, ppm) δ 143.39, 139.97, 139.23, 138.73, 137.89, 131.87, 131.36, 130.45, 129.57, 129.39, 129.28, 127.34, 126.41, 125.79, 125.53, 123.97, 123.75, 123.57, 118.06, 116.64, 111.66, 109.52, 34.92, 32.15. HRMS (MALDI) *m/z*: Calcd. for C₄₆H₃₉BrN₂⁺: 698.2291; Found: 698.2294 [M]⁺.

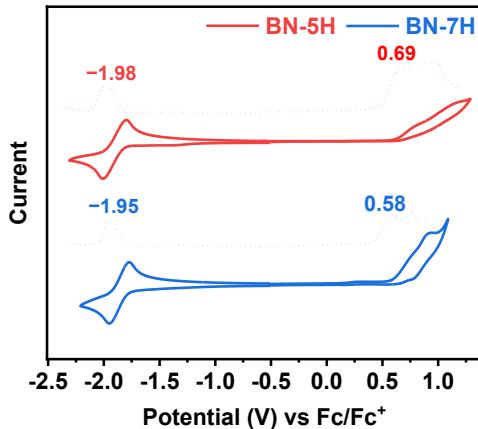


7-(2-bromo-3-(3,6-di-*tert*-butyl-9*H*-carbazol-9-yl)phenyl)-7*H*-diphenanthro[9,10-*c*:9',10'-*g*]carbazole (7H-Br**).** To a Schlenk flask under argon was added **1** (1.66 g, 3.67 mmol), *7H*-diphenanthro[9,10-*c*:9',10'-*g*]carbazole (**7H**) (2.57 g, 5.50 mmol), Cs_2CO_3 (5.97 g, 18.3 mmol), and DMF (60 mL). The reaction mixture was stirred at $160\text{ }^\circ\text{C}$ for 13 h. After cooling down to room temperature, the mixture was poured into water and the residue was purified by column chromatography over silica gel (eluent: petroleum ether/CH₂Cl₂ = 10:1) and further recrystallization from CH₂Cl₂/MeOH to afford 1.72 g (yield: 52%) of **7H-Br** as a light-yellow solid. ¹H NMR (400 MHz, CD₂Cl₂, 297 K, ppm) δ 8.90 – 8.83 (m, 2H), 8.80 – 8.70 (m, 4H), 8.48 (t, *J* = 8.0 Hz,

2H), 8.23 – 8.18 (m, 2H), 8.08 – 7.84 (m, 6H), 7.78 – 7.67 (m, 5H), 7.65 – 7.53 (m, 3H), 7.31 – 7.20 (m, 3H), 6.42 – 6.34 (m, 2H). 1.51 – 1.46 (m, 18H). ^{13}C NMR (100 MHz, CDCl_3 , 297 K, ppm) δ 143.66, 143.46, 143.44, 141.24, 140.87, 140.21, 139.34, 139.27, 138.86, 132.02, 131.64, 130.84, 130.64, 129.78, 129.55, 129.52, 128.73, 128.68, 128.44, 128.16, 127.86, 127.28, 127.25, 127.11, 127.09, 126.58, 126.18, 126.14, 124.98, 124.89, 124.67, 124.03, 124.02, 123.76, 123.69, 123.68, 123.61, 123.42, 123.38, 121.96, 121.89, 121.87, 118.98, 118.86, 118.79, 116.72, 116.67, 110.38, 110.26, 109.64, 109.56, 109.33, 34.97, 34.94, 32.20, 32.16. HRMS (MALDI) m/z : Calcd. for $\text{C}_{62}\text{H}_{47}\text{BrN}_2^+$: 898.2917; Found: 898.2936 [M] $^+$.


BN-5H. To a solution of **5H-Br** (3.80 g, 5.43 mmol) in 1,2-dichlorobenzene (*o*-DCB) (54 mL) was slowly added *n*-BuLi (10.8 mmol, 1.6 M in hexane) at 0 °C under an argon atmosphere. After stirring for 2 h at 0 °C, BBr_3 (10.8 mmol, 1.0 M in heptane) was slowly added to the mixture, which was then stirred at room temperature for 10 h. The low boiling point solvents were removed under reduced pressure and *N,N*-diisopropylethylamine (DIPEA) (1.8 mL) was added at 0 °C. The mixture was stirred at 180 °C for 31 h. After cooling down to room temperature, the solvent was removed under reduced pressure; the residue was purified by column chromatography over silica gel (eluent: petroleum ether/ CH_2Cl_2 = 5:1) and further recrystallization from CH_2Cl_2 /MeOH to afford 1.23 g (yield: 36%) of **BN-5H** as a yellow solid. ^1H NMR (400 MHz, CD_2Cl_2 , 297 K, ppm) δ 9.49 (s, 1H), 9.26 – 9.19 (m, 3H), 8.77 (d, J = 9.2 Hz, 1H), 8.59 (d, J = 2.0 Hz, 1H), 8.45 – 8.36 (m, 4H), 8.34 (d, J = 2.0 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H), 8.09 – 8.03 (m, 2H), 7.84 – 7.78 (m, 1H), 7.78 – 7.59 (m, 4H), 1.72 (s, 9H), 1.55 (s, 9H). ^{13}C NMR (100 MHz, CD_2Cl_2 , 297 K, ppm) δ 146.33, 145.66, 144.39, 142.50, 141.87, 139.89, 138.78, 137.15, 137.09, 133.98, 131.47, 131.30, 131.09, 130.77, 130.22, 129.35, 129.17, 127.73, 127.55, 127.01, 126.52, 126.07, 125.85, 125.13, 124.84, 124.49, 124.36, 122.19, 122.11, 118.03, 117.63, 115.23, 114.74, 110.30, 110.10, 35.73, 35.29, 32.53, 32.11 (The aromatic carbons *ipso* to the boron atoms were not observed due to quadrupolar relaxation). HRMS (MALDI) m/z : Calcd. for $\text{C}_{46}\text{H}_{37}\text{BN}_2^+$: 628.3044; Found: 628.3048 [M] $^+$.

BN-7H. To a solution of **7H-Br** (4.97 g, 5.52 mmol) in *o*-DCB (55 mL) was slowly


added *n*-BuLi (16.6 mmol, 2.4 M in hexane) at 0 °C under an argon atmosphere. After stirring for 2 h at 0 °C, BBr₃ (16.6 mmol, 1.0 M in heptane) was slowly added to the mixture, which was then stirred at room temperature for 19 h. The low boiling point solvents were removed under reduced pressure and DIPEA (1.8 mL) was added at 0 °C. The mixture was stirred at 180 °C for 28 h. After cooling down to room temperature, the solvent was removed under reduced pressure; the residue was purified by column chromatography over silica gel (eluent: petroleum ether/CH₂Cl₂ = 5:1) and further recrystallization from CH₂Cl₂/MeOH to afford 2.32 g (yield: 51%) of **BN-7H** as an orange solid. ¹H NMR (400 MHz, CD₂Cl₂, 297 K, ppm) δ 10.03 (s, 1H), 9.03 (d, *J* = 1.6 Hz, 1H), 8.84 (d, *J* = 8.0 Hz, 1H), 8.61 – 8.53 (m, 2H), 8.48 – 8.44 (m, 1H), 8.42 (d, *J* = 1.6 Hz, 1H), 8.37 – 8.31 (m, 4H), 8.20 (d, *J* = 2.4 Hz, 1H), 8.10 (d, *J* = 8.8 Hz, 1H), 7.98 (t, *J* = 7.6 Hz, 2H), 7.77 – 7.72 (m, 2H), 7.68 – 7.63 (m, 1H), 7.61 – 7.50 (m, 5H), 7.19 – 7.12 (m, 2H), 6.26 – 6.20 (m, 2H), 1.69 (s, 9H), 1.55 (s, 9H). ¹³C NMR (100 MHz, CD₂Cl₂, 297 K, ppm) δ 145.88, 145.16, 144.09, 143.65, 142.59, 141.90, 140.21, 138.70, 133.33, 131.41, 130.70, 130.69, 130.57, 130.52, 130.04, 129.94, 129.84, 129.36, 129.33, 129.27, 128.17, 127.96, 127.86, 127.77, 127.60, 127.56, 127.46, 126.84, 125.91, 125.75, 125.16, 125.11, 124.96, 124.34, 124.08, 124.03, 123.78, 123.50, 123.25, 122.43, 122.36, 122.27, 121.74, 121.55, 121.25, 118.94, 117.85, 114.74, 114.16, 109.64, 109.57, 35.65, 35.24, 32.51, 32.16 (The aromatic carbons *ipso* to the boron atoms were not observed due to quadrupolar relaxation). HRMS (MALDI) *m/z*: Calcd. for C₆₂H₄₅BN₂⁺: 828.3670; Found: 828.3675 [M]⁺.

3. Thermal Properties

Figure S1. (a) Thermogravimetric analysis (TGA) and (b) differential scanning calorimetry (DSC) curves of BN-5H and BN-7H at a heating rate of $10\text{ }^{\circ}\text{C min}^{-1}$ under a nitrogen atmosphere. Decomposition temperature (T_d): 5% weight loss. Glass transition temperatures: T_g . Melting temperature: T_m . The T_g of BN-7H are observed at $258\text{ }^{\circ}\text{C}$, while no T_g was observed for BN-5H before its melting temperature (T_m) of $365\text{ }^{\circ}\text{C}$.

4. Photophysical and Electrochemical Properties

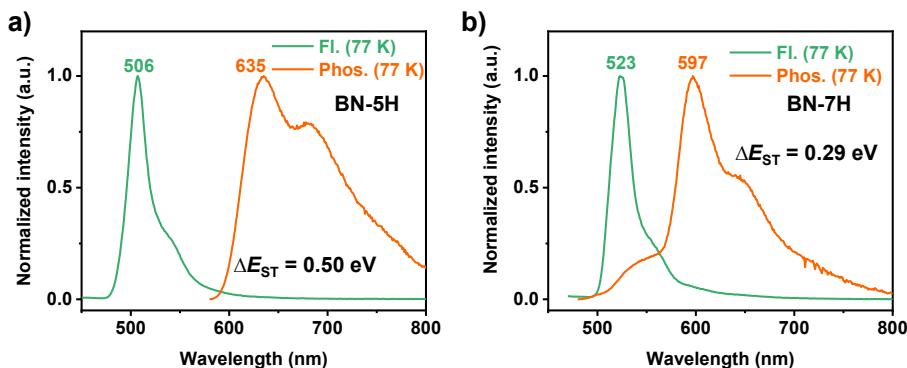
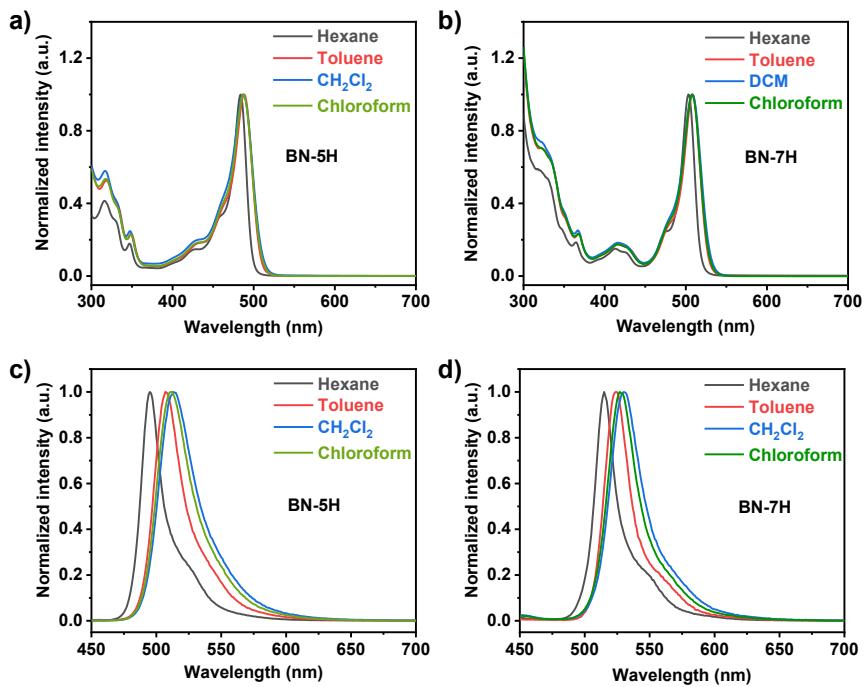
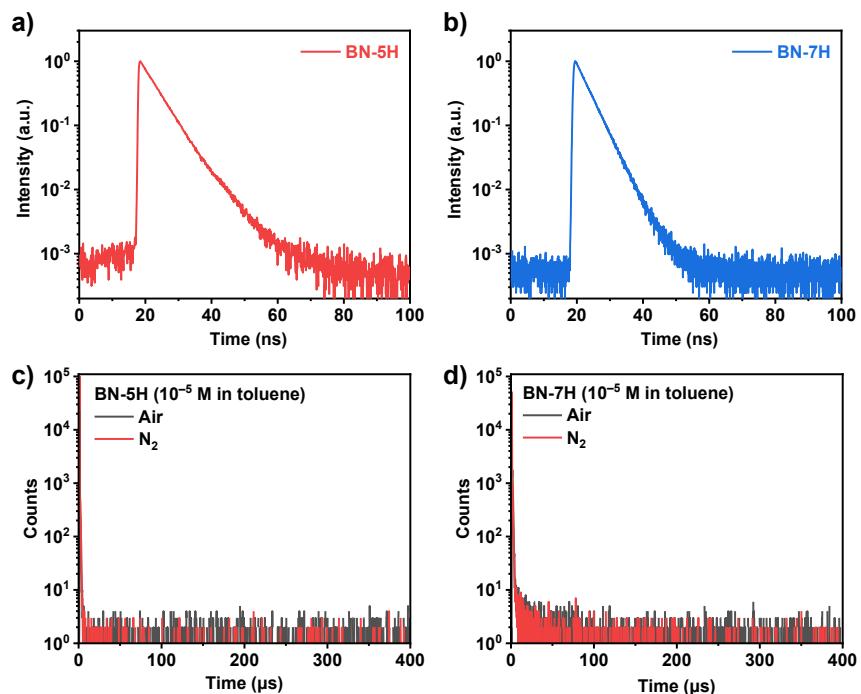
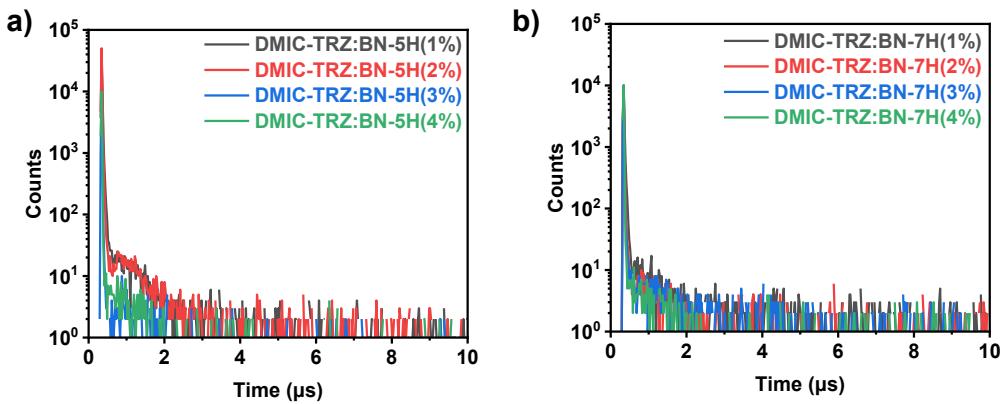


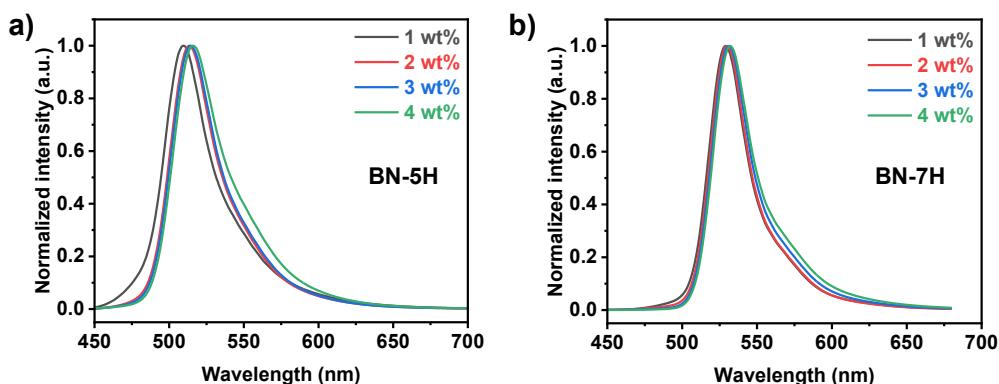
Figure S2. Cyclic voltammograms (CV) (solid lines) and differential pulse voltammograms (DPV) (dotted lines) of BN-5H and BN-7H in THF (1 mM) with 0.1 M *n*-Bu₄NPF₆ as supporting electrolyte and ferrocene as an external standard. Scan rate: 100 mV s⁻¹.

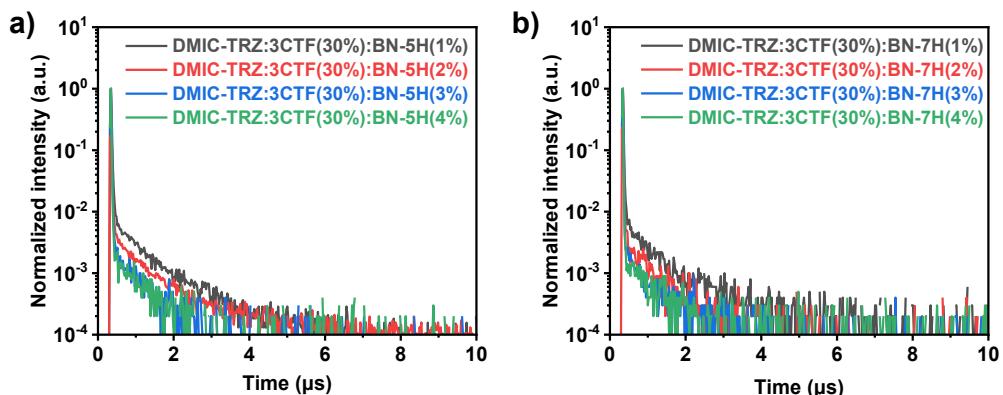

Table S1. Summary of the electrochemical properties of BN-5H and BN-7H.

Compound	HOMO ^{CV} (eV)	LUMO ^{CV} (eV)	E _g ^{CV} (eV)	HOMO ^{DPV} (eV)	LUMO ^{DPV} (eV)	E _g ^{DPV} (eV)
BN-5H	-5.42	-2.97	2.45	-5.49	-2.82	2.67
BN-7H	-5.40	-3.01	2.39	-5.38	-2.85	2.53


The HOMO^{CV} and LUMO^{CV} energy levels are calculated according to the equations HOMO = $-(4.80 + E_{\text{ox}}^{\text{onset}})$ and LUMO = $-(4.80 + E_{\text{red}}^{\text{onset}})$, where $E_{\text{ox}}^{\text{onset}}$ and $E_{\text{red}}^{\text{onset}}$ are the onset potentials of the first oxidative and reductive waves on CV curves, respectively. E_g^{CV} is calculated according to the equation $E_g^{\text{CV}} = \text{LUMO}^{\text{CV}} - \text{HOMO}^{\text{CV}}$. The HOMO^{DPV} and LUMO^{DPV} energy levels are calculated according to the first oxidative and reductive peak potentials on DPV curves, respectively. E_g^{DPV} is calculated according to the equation $E_g^{\text{DPV}} = \text{LUMO}^{\text{DPV}} - \text{HOMO}^{\text{DPV}}$.


Figure S3. Normalized fluorescence (Fl.) and phosphorescence (Phos.) spectra of (a) BN-5H and (b) BN-7H in 1×10^{-5} M toluene solutions at 77 K. Excited-state energy levels were estimated using the fluorescence and phosphorescence peak maxima.


Figure S4. (a,b) Normalized absorption spectra and (c,d) fluorescence spectra of BN-5H and BN-7H in different solvents (1×10^{-5} M).


Figure S5. Transient photoluminescence decay curves of BN-5H and BN-7H in the toluene solutions (1×10^{-5} M) at 298 K.

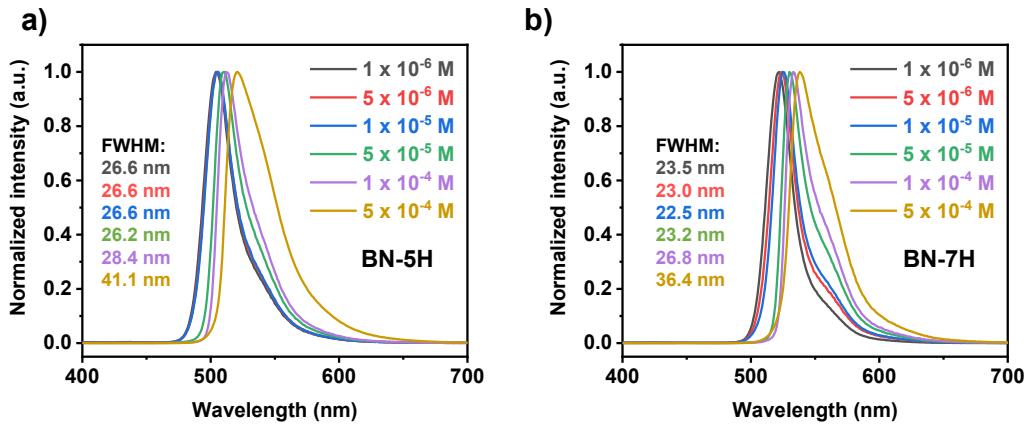

Figure S6. Transient photoluminescence decay curves of (a) BN-5H and (b) BN-7H doped in DMIC-TRZ films with different dopant concentrations. DMIC-TRZ: 1,3-dihydro-1,1-dimethyl-3-(3-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)indeno[2,1-*b*]carbazole.

Figure S7. Normalized photoluminescence (PL) spectra of (a) BN-5H and (b) BN-7H in DMIC-TRZ: 30 wt% 3CTF films with different dopant concentrations. 3CTF: 2,4,6-tris(2-(3,6-di-*tert*-butyl-9H-carbazol-9-yl)-5-(trifluoromethyl)phenyl)-1,3,5-triazine.

Figure S8. Transient photoluminescence decay curves of (a) BN-5H and (b) BN-7H in DMIC-TRZ: 30 wt% 3CTF films with different dopant concentrations.

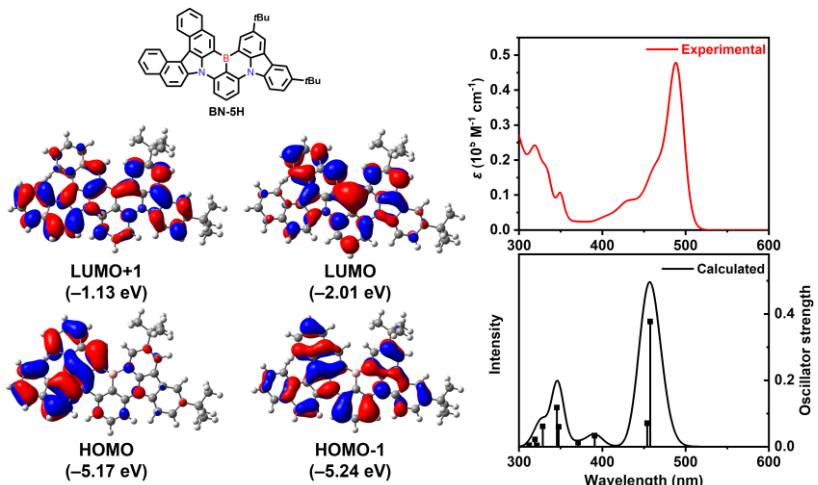
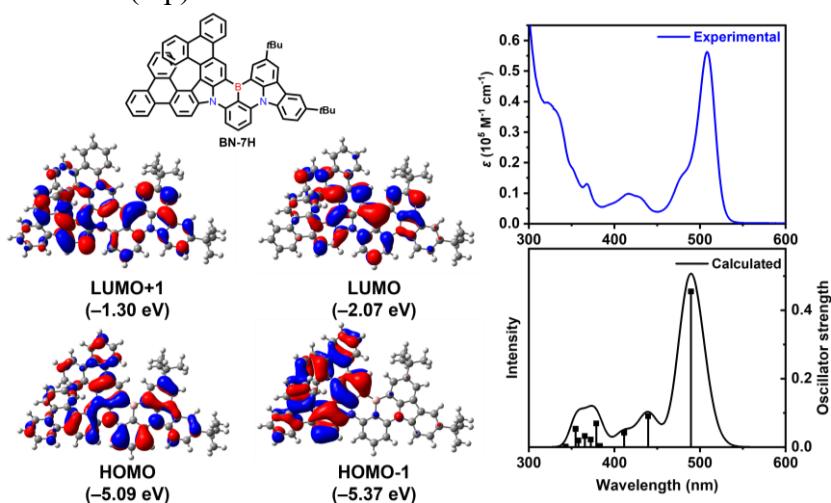

Figure S9. Normalized photoluminescence spectra of BN-5H and BN-7H in toluene solutions at different concentrations. At the concentration below 5×10^{-5} M, the emission spectra of both compounds exhibit a gradual redshift of emission maximum with minor fluctuations of the FWHM. Upon further increasing the concentration, the emission spectra of BN-5H are significantly broadened with FWHM increasing from 26.2 nm to 41.1 nm. In contrast, BN-7H displays smaller changes in FWHMs over the same high-concentration range. These results are consistent with the trends in solid-state films and thus indicate the positive effect of twisted structure on suppressing spectral broadening.

Table S2. PLQYs of the doped films for BN-5H and BN-7H with different dopant concentrations.


Doped film	PLQY (%)	Doped film	PLQY (%)
DMIC-TRZ:1 wt% BN-5H	93	DMIC-TRZ:1 wt% BN-7H	94
DMIC-TRZ:2 wt% BN-5H	91	DMIC-TRZ:2 wt% BN-7H	93
DMIC-TRZ:3 wt% BN-5H	89	DMIC-TRZ:3 wt% BN-7H	91
DMIC-TRZ:4 wt% BN-5H	85	DMIC-TRZ:4 wt% BN-7H	90
DMIC-TRZ:30 wt% 3CTF:1 wt% BN-5H	95	DMIC-TRZ:30 wt% 3CTF:1 wt% BN-7H	96
DMIC-TRZ:30 wt% 3CTF:2 wt% BN-5H	93	DMIC-TRZ:30 wt% 3CTF:2 wt% BN-7H	95
DMIC-TRZ:30 wt% 3CTF:3 wt% BN-5H	90	DMIC-TRZ:30 wt% 3CTF:3 wt% BN-7H	93
DMIC-TRZ:30 wt% 3CTF:4 wt% BN-5H	86	DMIC-TRZ:30 wt% 3CTF:4 wt% BN-7H	92

5. Theoretical Calculations

Theoretical calculations were performed using the Gaussian 09 software package.³ All calculations were carried out using the density functional theory (DFT) method. The geometries were optimized at the B3LYP/6-31G(d,p) level, and the energies were calculated at the same level of theory. Time-dependent DFT (TD-DFT) calculations were performed at the B3LYP/6-311G(d,p) level. The electron excitation analysis of major molecular orbital transitions in all excited states were carried out by Multiwfn.⁴ The hole-electron analysis were completed with Multiwfn program.⁵ The root-mean-square deviation (RMSD) values were calculated by VMD 1.9.3.⁶ The Huang-Rhys (HR) factors and reorganization energies (λ) for $S_1 \rightarrow S_0$ transition were conducted with the DUSHIN module in the Molecular Materials Property Prediction Package (MOMAP 2021A) software.⁷⁻¹² The molecular vibration vector diagrams and reduced density gradient (RDG) isosurfaces were rendered with VMD 1.9.3.

Figure S10. Theoretical absorption spectrum of BN-5H simulated at the B3LYP/6-311G(d,p) level (bottom) and the corresponding experimental absorption spectrum measured in toluene (top).

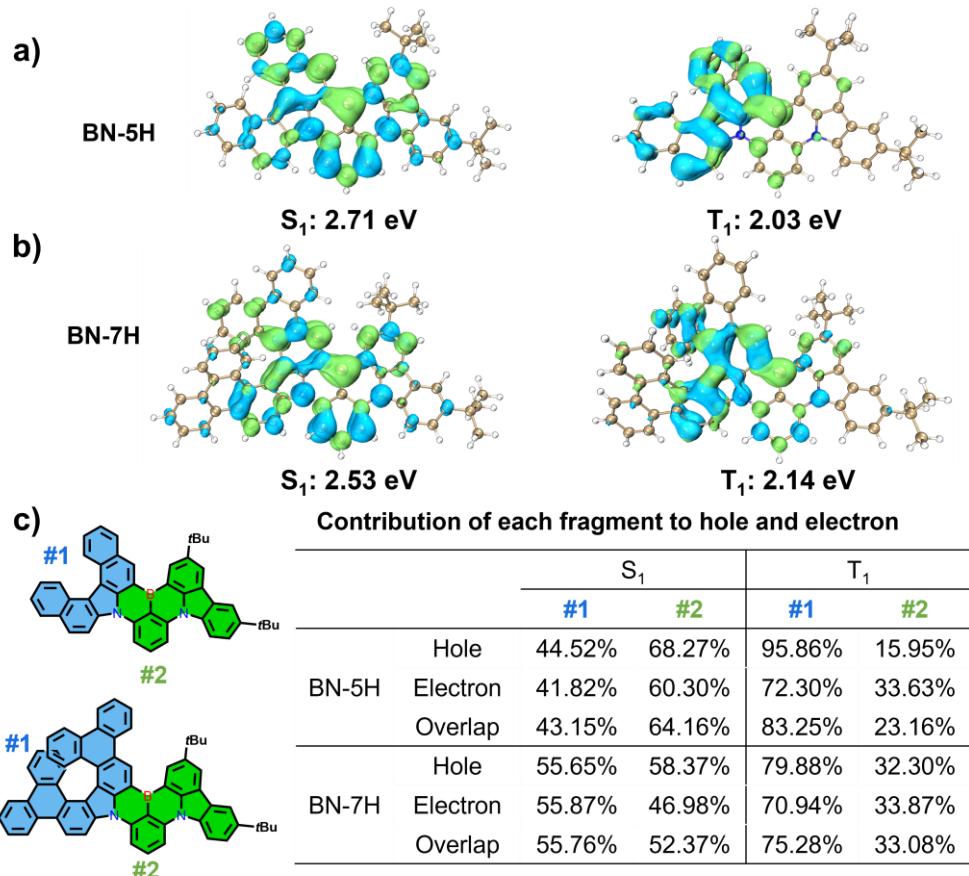
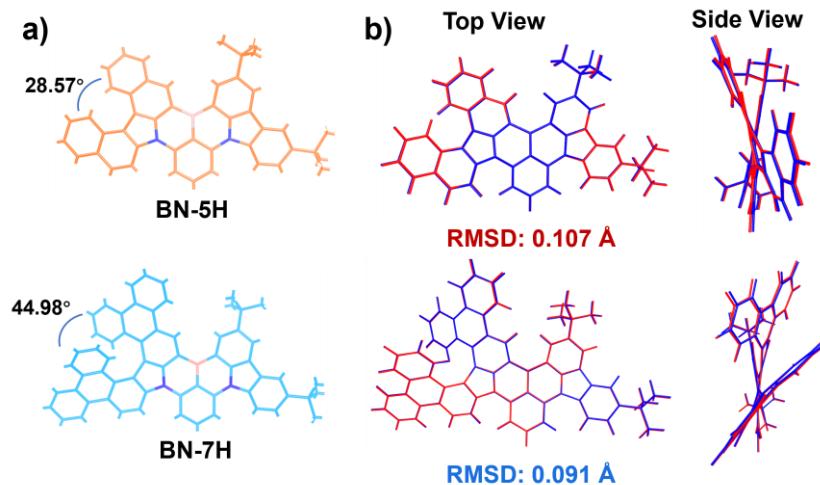

Figure S11. Theoretical absorption spectrum of BN-7H simulated at the B3LYP/6-311G(d,p) (bottom) and the corresponding experimental absorption spectrum measured in toluene (top).

Table S3. Summary of the TD-DFT calculation results of BN-5H at the optimized S₀ geometry.

Excited States	Energy (eV)	Wavelength (nm)	Oscillator Strength	Major Contributions
S ₁	2.7103	457.46	0.3773	HOMO-1→LUMO (97%)
S ₂	2.7318	453.86	0.0706	HOMO→LUMO (97%)
S ₃	3.1730	390.75	0.0333	HOMO-2→LUMO (94%)
S ₄	3.3422	370.97	0.0123	HOMO-3→LUMO (97%)
S ₅	3.5665	347.64	0.0598	HOMO-1→LUMO+1 (56%) HOMO→LUMO+1 (34%)
S ₆	3.5899	345.37	0.1179	HOMO→LUMO+1 (58%) HOMO-1→LUMO+1 (32%)
S ₇	3.7744	328.49	0.0614	HOMO-4→LUMO (89%)
S ₈	3.8564	321.50	0.0038	HOMO-1→LUMO+2 (46%) HOMO-2→LUMO+1 (23%) HOMO→LUMO+3 (16%)
S ₉	3.8860	319.05	0.0220	HOMO-5→LUMO (35%) HOMO→LUMO+2 (35%)
S ₁₀	3.9709	312.23	0.0042	HOMO→LUMO+2 (42%) HOMO-5→LUMO (31%) HOMO-1→LUMO+2 (7%)


Table S4. Summary of the TD-DFT calculation results of BN-7H at the optimized S₀ geometry.

Excited States	Energy (eV)	Wavelength (nm)	Oscillator Strength	Major Contributions
S ₁	2.5332	489.44	0.4551	HOMO→LUMO (97%)
S ₂	2.8221	439.33	0.0904	HOMO-1→LUMO (97%)
S ₃	3.0147	411.27	0.0420	HOMO-2→LUMO (92%)
S ₄	3.2364	383.09	0.0031	HOMO-3→LUMO (89%)
S ₅	3.2740	378.69	0.0688	HOMO→LUMO+1 (89%)
S ₆	3.3309	372.22	0.0221	HOMO-4→LUMO (90%)
S ₇	3.3932	365.39	0.0322	HOMO-5→LUMO (69%) HOMO-6→LUMO (22%)
S ₈	3.4649	357.83	0.0192	HOMO-6→LUMO (55%) HOMO-5→LUMO (21%) HOMO-1→LUMO+1 (15%)
S ₉	3.4959	354.66	0.0532	HOMO-1→LUMO+1 (67%) HOMO-6→LUMO (17%) HOMO→LUMO+2 (6%)
S ₁₀	3.6149	342.98	0.0013	HOMO-7→LUMO (69%) HOMO-2→LUMO+1 (10%) HOMO-1→LUMO+2 (6%)

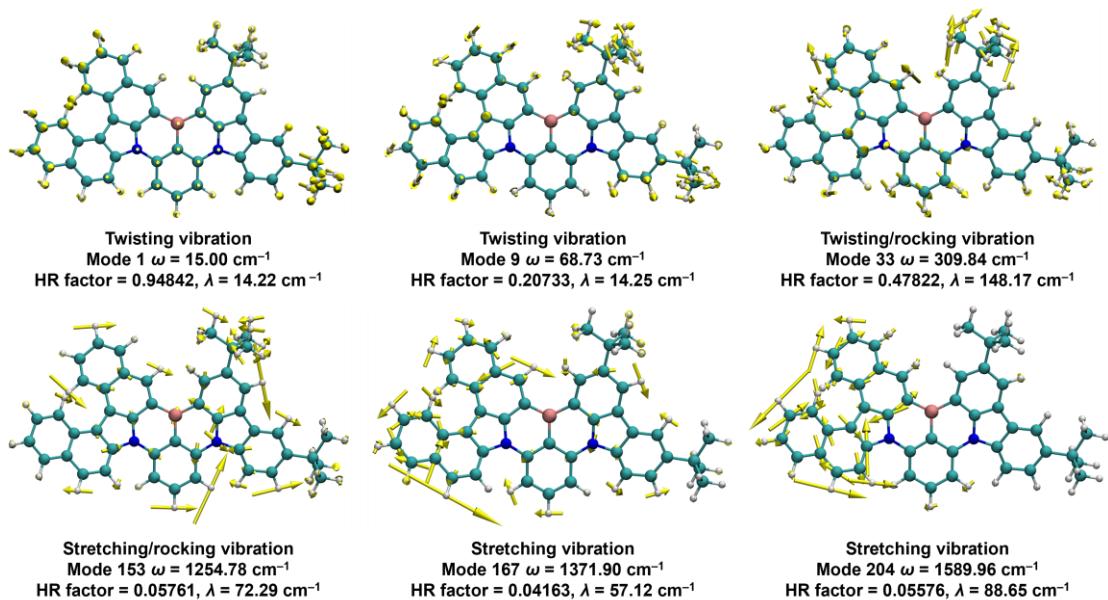
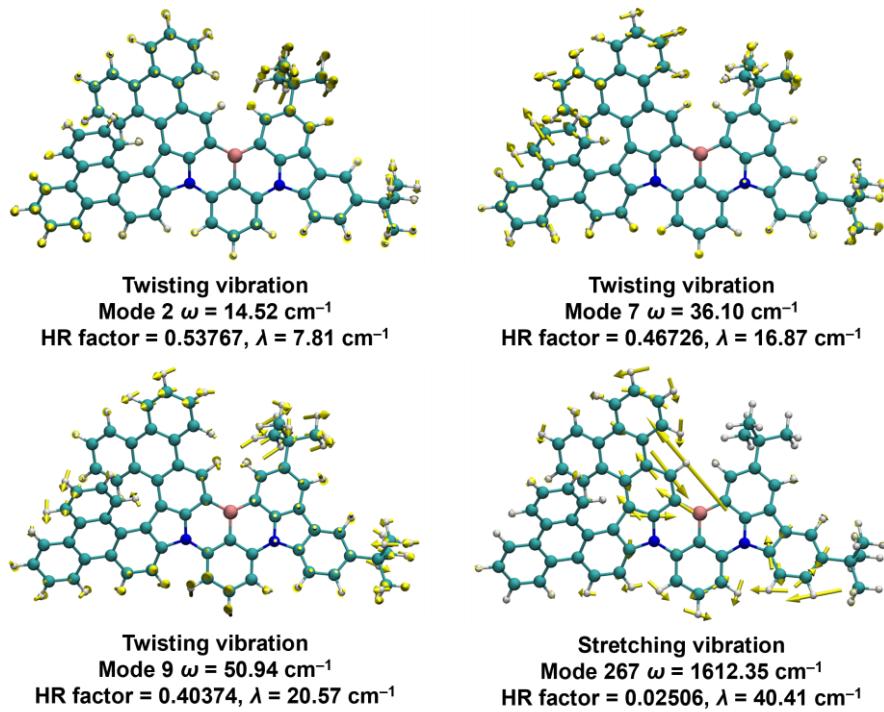


Figure S12. Hole (blue) and electron (green) distributions of (a) BN-5H and (b) BN-7H at S₀ and T₁ states (Isovalue: 0.001). (c) The contribution of each fragment to the hole and electron. The S₁ state of both two molecules exhibits well-separated hole and electron distributions, which is consistent with their frontier molecular orbital (FMO) distribution. However, an obvious difference emerges in their T₁ states. The hole and electron are mainly localized at the 5H fragment in BN-5H. In contrast, for BN-7H with the extended [7]helicene skeleton, the T₁ state shows a more dispersed distribution, with significant density on the benzene rings connected to the B/N unit. The different orbital distribution characteristics endow BN-5H with a lower T₁ energy.


To quantitatively analyze the contribution of each fragment to the hole and electron, the molecular structures of these two compounds are divided into two fragments. The hole contribution from fragment #1 at the S₁ state shows an evident increase from 44.52% for BN-5H to 55.65% for BN-7H, and similar results are obtained for the electron distribution. The higher overlap of hole and electron in BN-7H at the S₁ state enables a larger oscillator strength (f),¹³ which has been proved in the TD-DFT calculation results. On the other hand, the contribution of hole and electron from the fragment #2 of BN-5H and BN-7H cannot be ignored. The reduced spatial overlap between hole and electron at S₁ state in BN-7H is observed. This will lead to a smaller exchange integral and achieve smaller ΔE_{ST} .¹⁴ According to the above results, the reduction of ΔE_{ST} of BN-7H is attributed to the different orbital distribution characteristics.

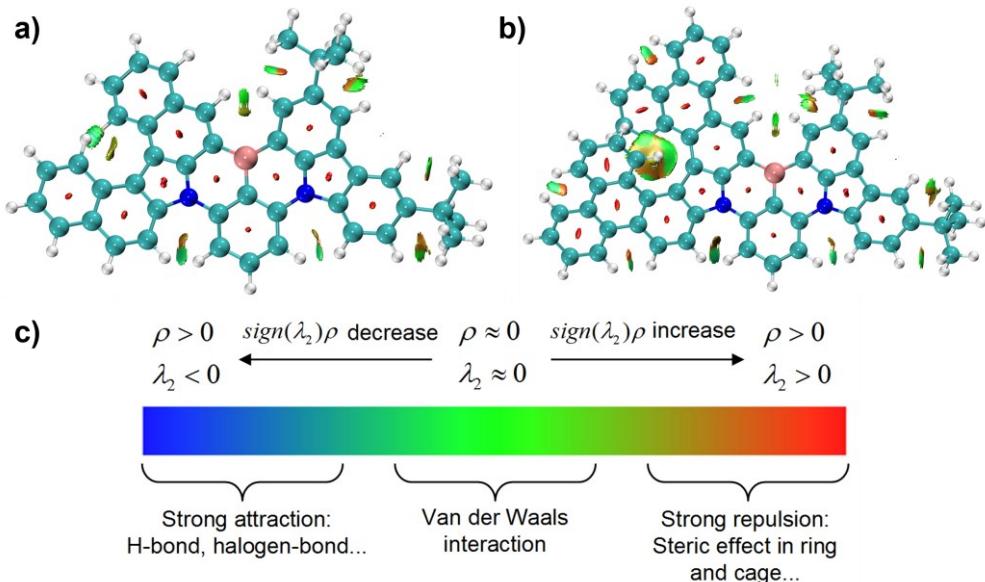

Figure S13. (a) Optimized ground-state geometries of BN-5H and BN-7H. (b) Comparison of the optimized S_0 (blue) and S_1 (red) geometries of BN-5H and BN-7H.

Figure S14. The major vibrational modes of BN-5H for the $S_1 \rightarrow S_0$ transition. ω , HR factor and λ represent vibration frequency, Huang-Rhys factor and reorganization energy of selected vibrational mode, respectively.

Figure S15. The major vibrational modes of BN-7H for $S_1 \rightarrow S_0$ transition.

Figure S16. Calculated reduced density gradient (RDG) isosurfaces based on the optimized S_0 geometries of (a) BN-5H and (b) BN-7H. (c) Standard coloring method and chemical explanation of $\text{sign}(\lambda_2)\rho$ on RDG isosurface.

Cartesian coordinates obtained in gas-phase DFT calculations

BN-5H (S_0)

$E(\text{B3LYP/6-31G(d,p)}) = -1909.735625$ Hartree

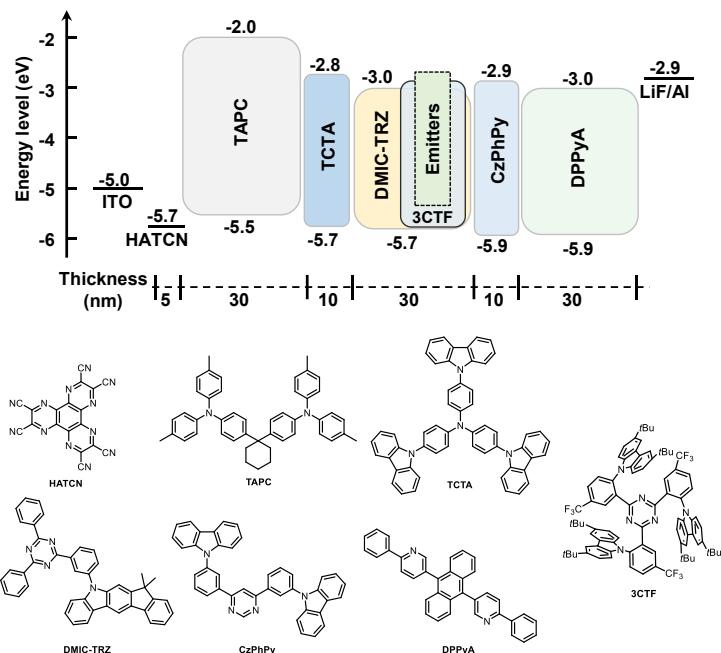
Tag	Symbol	X	Y	Z
1	C	-4.49692172	-0.30264584	-0.07995647

2	C	-5.89234782	-0.36024059	-0.05208176
3	C	-6.54851639	-1.54754987	0.28338200
4	C	-5.74694467	-2.65818333	0.61636392
5	C	-4.35382595	-2.63073731	0.59216594
6	C	-3.71427523	-1.44881102	0.20715177
7	C	-1.32770773	2.41592624	-0.53100112
8	C	-2.59461684	2.98022896	-0.73305693
9	C	-3.72635593	2.14656214	-0.60365490
10	C	-3.57866597	0.79637587	-0.31138323
11	C	-1.12075805	1.05170457	-0.22012233
12	C	-2.27989102	0.27173092	-0.15541938
13	N	-2.34087976	-1.09784639	0.10469611
14	C	0.08325163	-1.23531420	0.09773503
15	C	-1.18439942	-1.89381454	0.12796571
16	C	-1.26128152	-3.29437124	0.16089197
17	C	-0.09343443	-4.03436266	0.28378756
18	C	1.16182157	-3.43210952	0.30348334
19	C	1.25693696	-2.04678382	0.13513268
20	N	2.51165941	-1.40586119	0.03515168
21	C	3.79299467	-1.94070570	-0.19114542
22	C	4.75744721	-0.91850828	-0.02441914
23	C	4.03098403	0.27841561	0.37602936
24	C	2.66836246	-0.04638808	0.28520743
25	C	4.14477249	-3.24056911	-0.62128447
26	C	5.46925314	-3.52852994	-0.83582836
27	C	6.47881967	-2.53198049	-0.73710723
28	C	6.12108024	-1.18280607	-0.39681783
29	C	4.35852410	1.57973705	0.88636824
30	C	3.28700099	2.53867266	1.00551573
31	C	1.94930238	2.17113212	0.70133780
32	C	1.59242495	0.87265671	0.36900164
33	C	5.63193805	1.96098789	1.38788568
34	C	5.86596097	3.23020927	1.87467229
35	C	4.83789870	4.19863616	1.89512859
36	C	3.57434331	3.84705846	1.48149007
37	C	7.82500886	-2.83939474	-1.06466171
38	C	8.78663685	-1.85672264	-1.12857299
39	C	8.41821830	-0.51410818	-0.89795082
40	C	7.12376158	-0.18820850	-0.54908464
41	B	0.18948868	0.30190127	0.07045405
42	C	-2.79698039	4.46843254	-1.08204559
43	C	-1.46544236	5.23636832	-1.18146666
44	C	-3.65809436	5.14388504	0.01177675
45	C	-3.51881720	4.58453694	-2.44578705

46	C	−8.08268939	−1.67356410	0.32186582
47	C	−8.78517452	−0.36071279	−0.07228050
48	C	−8.53684312	−2.05185836	1.75170110
49	C	−8.53327572	−2.77529347	−0.66657268
50	H	−6.45442650	0.53716492	−0.28340406
51	H	−6.22259987	−3.58609117	0.91825003
52	H	−3.81242460	−3.50810661	0.91392874
53	H	−0.45157138	3.04332718	−0.63292635
54	H	−4.72263039	2.55828900	−0.73609530
55	H	−2.20485339	−3.80754495	0.07366811
56	H	−0.16009349	−5.11534414	0.36589924
57	H	2.03722541	−4.03828525	0.47557243
58	H	3.39666982	−3.99194839	−0.82433210
59	H	5.75642689	−4.52700364	−1.15316960
60	H	1.18259111	2.93418459	0.79613124
61	H	6.42329696	1.22540221	1.43638869
62	H	6.84948568	3.48063284	2.26189768
63	H	5.03856057	5.19930360	2.26545197
64	H	2.75852214	4.56334328	1.53680709
65	H	8.07715811	−3.87196106	−1.29253486
66	H	9.81137197	−2.10487975	−1.38802275
67	H	9.15596970	0.27503485	−1.01123318
68	H	6.85997424	0.85313377	−0.43156249
69	H	−0.81475218	4.82733264	−1.96098809
70	H	−1.66301566	6.28333048	−1.43293852
71	H	−0.91569877	5.22393197	−0.23462183
72	H	−4.64288280	4.67631881	0.10428064
73	H	−3.81503244	6.20226703	−0.22503439
74	H	−3.16757892	5.08317013	0.98871342
75	H	−3.67688278	5.63716849	−2.70640211
76	H	−2.92649075	4.12245280	−3.24215137
77	H	−4.49760660	4.09583158	−2.43248763
78	H	−8.52266069	−0.04757193	−1.08812090
79	H	−9.87053372	−0.49922421	−0.04004662
80	H	−8.53766938	0.45622026	0.61349498
81	H	−8.10692820	−3.00333746	2.07804383
82	H	−9.62760824	−2.14896529	1.79254794
83	H	−8.23641819	−1.28531047	2.47331882
84	H	−8.23311723	−2.52918633	−1.69028589
85	H	−8.09983976	−3.74827675	−0.41719953
86	H	−9.62373752	−2.88225488	−0.64807723

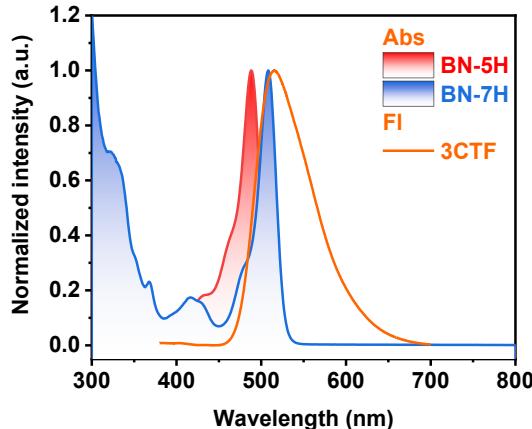
BN-7H (S₀)

$E(\text{B3LYP/6-31G(d,p)}) = -2524.309571$ Hartree


Tag	Symbol	X	Y	Z
1	C	5.36612629	0.45514961	-0.32754366
2	C	5.53281019	1.80103239	-0.64847952
3	C	4.41152628	2.62411338	-0.85857932
4	C	3.13274750	2.05915314	-0.70605054
5	C	2.90730596	0.70918438	-0.36779150
6	C	4.06465510	-0.06708344	-0.22393480
7	C	7.48838450	-2.98088829	0.78229541
8	C	8.30206305	-1.87894551	0.46866139
9	C	7.66086358	-0.69621783	0.07530112
10	C	6.27288309	-0.63623967	-0.02550942
11	C	6.09411331	-2.95103521	0.68642903
12	C	5.47591919	-1.78042839	0.24717665
13	N	4.11057404	-1.43122308	0.06919702
14	C	1.68772130	-1.56994188	-0.03787430
15	C	2.95407742	-2.22717925	0.05353212
16	C	3.03069587	-3.62620392	0.10454487
17	C	1.85901247	-4.36764237	0.18485569
18	C	0.60404274	-3.76782717	0.15399085
19	C	0.51422946	-2.38177185	-0.02210561
20	B	1.58209440	-0.03577085	-0.12442450
21	N	-0.73784911	-1.74347058	-0.15120852
22	C	-2.02236441	-2.30378371	-0.27999834
23	C	-2.99825192	-1.30233304	-0.04144077
24	C	-2.27061566	-0.02868686	0.00717768
25	C	-0.89875404	-0.37173944	-0.00906119
26	C	-2.39072845	-3.58878325	-0.70299681
27	C	-3.73490191	-3.88205926	-0.80816742
28	C	-4.73984770	-2.98314859	-0.38272350
29	C	-4.36125181	-1.71220069	0.12904749
30	C	-2.59342111	1.36236458	-0.04110204
31	C	-1.55578383	2.28884357	0.29005941
32	C	-0.21362494	1.86525307	0.29197227
33	C	0.16640571	0.54262861	0.05448054
34	C	-3.85860524	1.91372871	-0.53086347
35	C	-4.17020590	3.28657694	-0.32526070
36	C	-3.22704117	4.14724654	0.38980877
37	C	-1.91059339	3.67398620	0.62533191
38	C	-6.16149731	-3.32332782	-0.50429645
39	C	-7.14649440	-2.46091475	0.04584891
40	C	-6.72135896	-1.32588974	0.86435372
41	C	-5.34842721	-0.95703802	0.90305176
42	C	-3.57122691	5.44722445	0.81609703
43	C	-2.64870882	6.27629607	1.43137067

44	C	-1.34308863	5.81735700	1.64873220
45	C	-0.98911213	4.53655333	1.25852386
46	C	-6.59287234	-4.46218650	-1.22114791
47	C	-7.93571142	-4.73843548	-1.41029243
48	C	-8.90543153	-3.86967738	-0.89215913
49	C	-8.50935908	-2.75169228	-0.17962832
50	C	-7.63548985	-0.61916336	1.67487072
51	C	-7.22455281	0.39862143	2.51768277
52	C	-5.86467116	0.72521261	2.59711273
53	C	-4.95009070	0.05204866	1.80744902
54	C	-5.87873886	1.67548161	-1.88301177
55	C	-6.21393507	3.01139787	-1.63066656
56	C	-5.36228150	3.80053295	-0.87605543
57	C	-4.71938988	1.14556621	-1.34463911
58	C	9.83904932	-1.92317588	0.56359478
59	C	10.44851186	-1.60195146	-0.82170508
60	C	10.32443069	-0.87346299	1.59132670
61	C	10.35999135	-3.30333959	1.00679577
62	C	4.54364024	4.11142766	-1.24558393
63	C	3.87590372	4.34623362	-2.62143251
64	C	6.01327932	4.56290183	-1.34486116
65	C	3.84542721	4.99118906	-0.18141019
66	H	6.53508185	2.20376764	-0.73892629
67	H	2.26587216	2.68922460	-0.87431984
68	H	7.94086587	-3.90358812	1.12505009
69	H	8.24118502	0.19525816	-0.14370594
70	H	5.53684739	-3.82235129	0.99771143
71	H	3.97817382	-4.13802784	0.06107200
72	H	1.92401677	-5.44792381	0.27700243
73	H	-0.27595497	-4.37506018	0.29547799
74	H	-1.65800526	-4.31651716	-1.01954558
75	H	-4.00919448	-4.85777964	-1.18816460
76	H	0.56524525	2.60044122	0.44759602
77	H	-4.58505542	5.80556783	0.67902130
78	H	-2.94235172	7.27055689	1.75438847
79	H	-0.61405343	6.45207224	2.14365354
80	H	0.00960846	4.18348388	1.48757772
81	H	-5.86471767	-5.12887788	-1.66706691
82	H	-8.23217286	-5.61713839	-1.97534788
83	H	-9.96123587	-4.06554377	-1.05347129
84	H	-9.27036243	-2.07852676	0.19756037
85	H	-8.68190563	-0.90059158	1.67341917
86	H	-7.95146931	0.91729125	3.13571985
87	H	-5.52254785	1.49212049	3.28528874

88	H	−3.89897612	0.28591438	1.90644600
89	H	−6.51431645	1.05760250	−2.50982166
90	H	−7.11965268	3.43938919	−2.05012131
91	H	−5.60377439	4.84890290	−0.74539783
92	H	−4.44928325	0.12576523	−1.58084235
93	H	10.12939967	−2.33531441	−1.56937397
94	H	10.14944559	−0.61180919	−1.17807135
95	H	11.54308203	−1.62112220	−0.77166941
96	H	9.91277625	−1.07894805	2.58476386
97	H	11.41765734	−0.88877225	1.66599319
98	H	10.02527674	0.14057350	1.31021384
99	H	10.06893154	−4.09302622	0.30644315
100	H	11.45372198	−3.28755265	1.04975172
101	H	9.99608833	−3.57679464	2.00258564
102	H	3.95520162	5.40054519	−2.90990689
103	H	4.35869386	3.74410994	−3.39802834
104	H	2.81412132	4.08394916	−2.60888803
105	H	6.05523201	5.62146653	−1.62035615
106	H	6.54077256	4.45007427	−0.39180532
107	H	6.56175841	4.00284689	−2.10940337
108	H	3.93595429	6.05136838	−0.44353097
109	H	2.77896589	4.76213035	−0.09862675
110	H	4.29718779	4.84508959	0.80524074


6. Device Fabrication and Measurement

All compounds were purified by temperature-gradient sublimation under a high vacuum before use. Organic light-emitting diodes (OLEDs) were fabricated on ITO-coated glass substrates with multiple organic layers sandwiched between the transparent bottom ITO anode and the top metal cathode. The ITO glass substrates were first cleaned carefully. Then different layers of organic materials were deposited by thermal evaporation in a vacuum chamber with a base pressure of 10^{-6} torr. The deposition system permits the fabrication of the complete device in a single vacuum pump-down without breaking vacuum. The deposition rate of organic layers was kept at $0.1\text{--}0.2\text{ nm s}^{-1}$. The doping layer was obtained by co-evaporation from separate sources with different evaporation rates. The current density, voltage, luminance, current efficiency (CE), power efficiency (PE), external quantum efficiency (EQE), electroluminescence (EL) spectra and other device characteristics were measured at the same time with a Keithley 2400 source meter and a Hamamatsu C9920-12 instrument, which is equipped with Hamamatsu PMA-12 Photonic multichannel analyzer C10027-02.

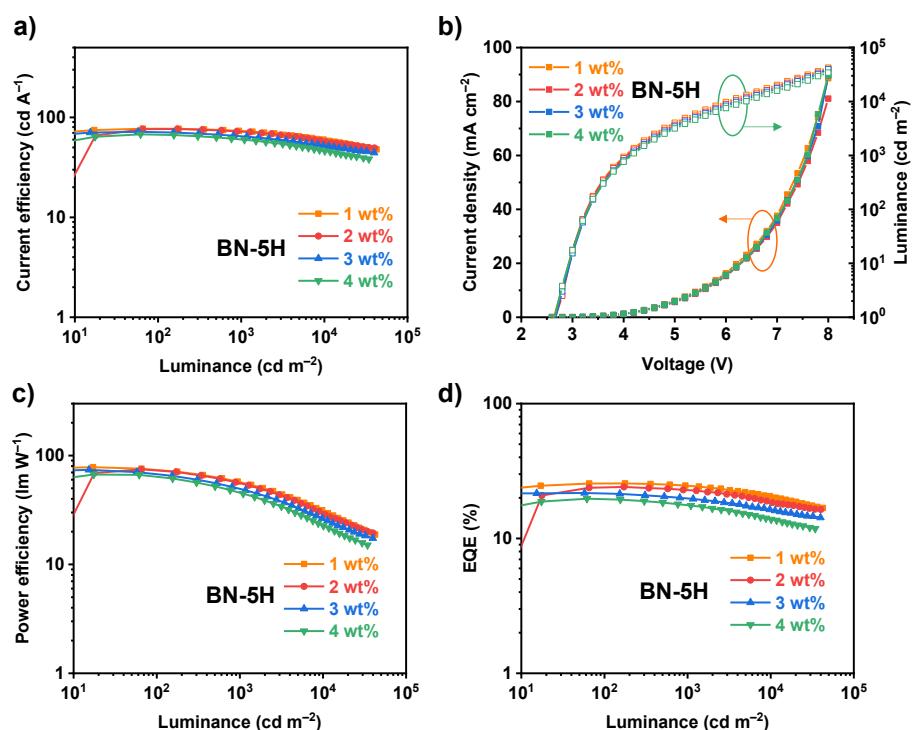
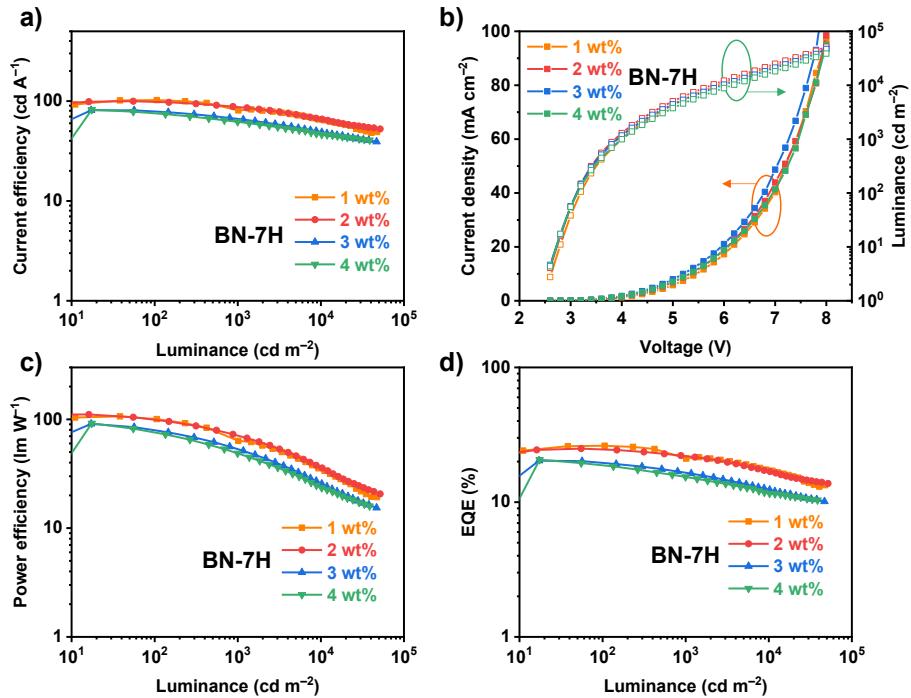


Figure S17. Device structure, the energy level diagram, and chemical structures of the materials utilized in the thermally activated delayed fluorescence (TADF)-sensitized OLED device. The sensitized OLEDs were fabricated with the following device structure: indium tin oxide (ITO) (5 nm)/1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) (30 nm)/tri(4-carbazoly-9-ylphenyl)amine (TCTA) (10 nm)/emitting layer (EML, 30 nm)/4,6-bis(3-(9H-carbazol-9-yl)phenyl)pyrimidine (CzPhPy) (10 nm)/9,10-bis(6-phenylpyridin-3-yl)anthracene (DPPyA) (30 nm)/LiF (0.5 nm)/Al (150 nm). Among the materials used, HATCN and TAPC were employed as the hole injection and transporting materials while LiF and DPPyA as the electron injection and


transporting materials, respectively. Meanwhile, TCTA and CzPhPy were used as the electron- and hole-blocking layers. DMIC-TRZ was adopted as the host material. 3CTF was chosen as the TADF sensitizer because of its small molecular dipole moment, significant spectral overlap with these emitters, and high reverse intersystem crossing rate of $2.57 \times 10^6 \text{ s}^{-1}$.¹⁵

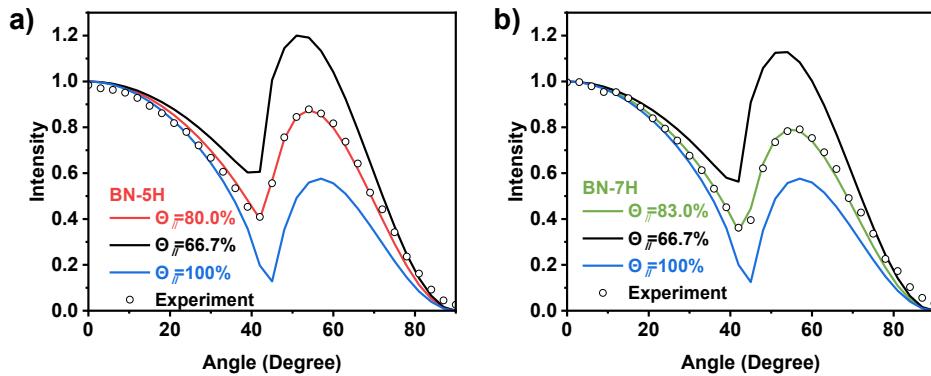
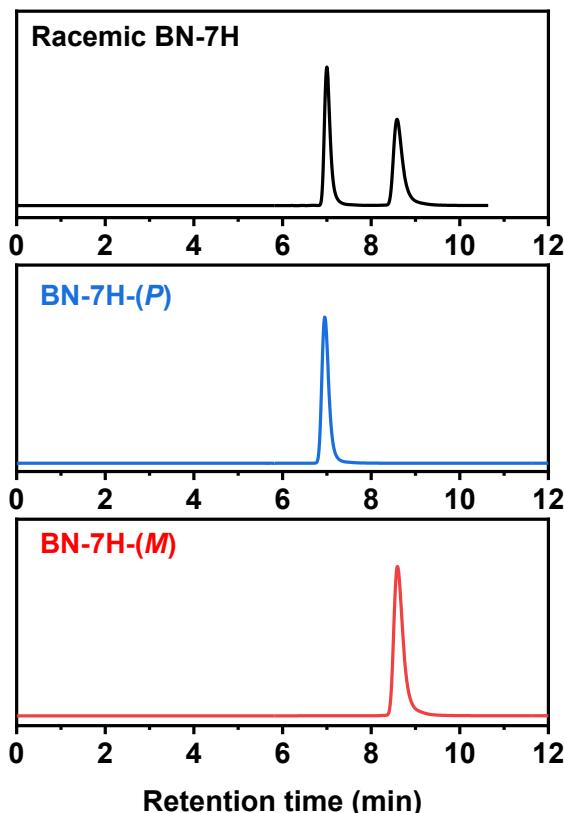

Figure S18. UV-vis absorption spectra of the MR emitters and the fluorescence spectrum of the sensitizer 3CTF in toluene solution. Significant absorption-emission spectral overlap between the emitter and the TADF sensitizer is observed, suggesting the possibility of efficient energy transfer from 3CTF to BN-5H and BN-7H.

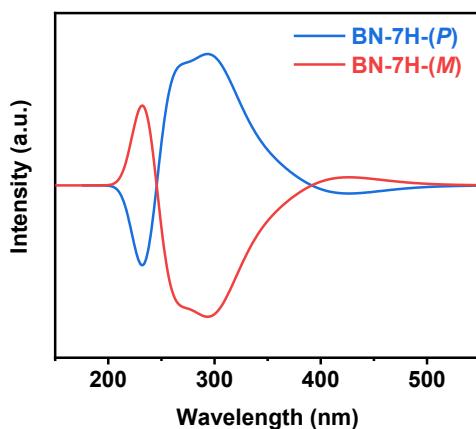
Figure S19. (a) Current efficiency versus luminance, (b) current density and luminance versus voltage, (c) power efficiency versus luminance, and (d) external quantum efficiency (EQE) versus luminance curves of the sensitized OLED devices based on BN-5H.

Figure S20. (a) Current efficiency versus luminance, (b) current density and luminance versus voltage, (c) power efficiency versus luminance, and (d) external quantum efficiency (EQE) versus luminance curves of the sensitized OLED devices based on BN-7H.

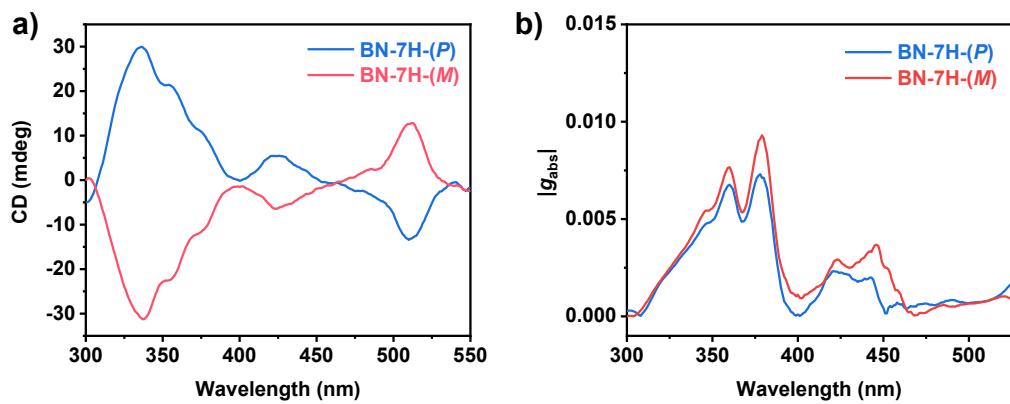
Figure S21. Angle-dependent PL spectra of the *p*-polarized light of the emitting layers ($\Theta_{//} = 66.7\%$ denotes isotropic emitting dipole orientation, $\Theta_{//} = 100\%$ denotes completely horizontal emitting dipole orientation).

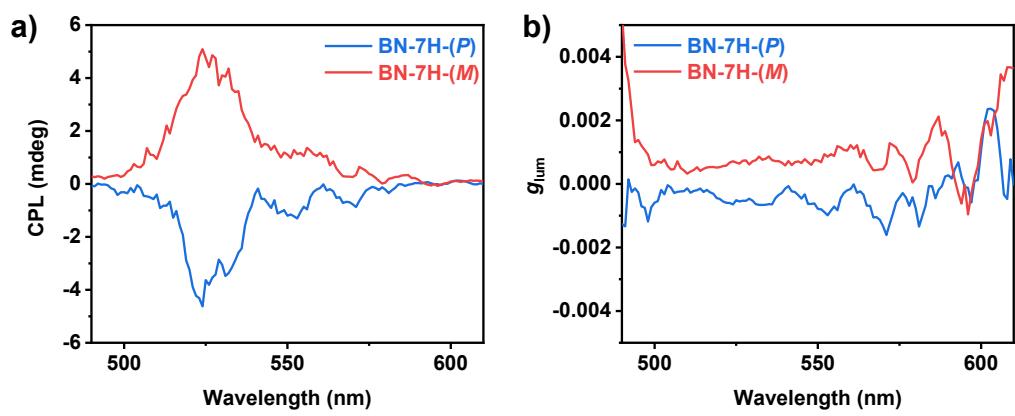

Table S5. Summary of sensitized green OLEDs device data of the reported MR emitters with FWHM < 30 nm.

Emitter	$\lambda_{EL}^{[a]}$ [nm]	FWHM _{EL} [b] [nm]	CIE(x,y)	Reference
BN-5H	507	34	(0.19,0.62)	
BN-7H	527	28	(0.24,0.69)	This work
tCzphB-F1	535	26	(0.26,0.72)	<i>Nat. Commun.</i> 2022 , <i>13</i> , 4876.
tCzphB-Ph	527	24	(0.21,0.75)	
BN-ICz-1	523	23	(0.22,0.74)	<i>Angew. Chem. Int. Ed.</i> 2022 , <i>61</i> , e202202380.
BN-ICz-2	523	23	(0.21,0.73)	
IDID2BN	534	29	(0.31,0.65)	<i>Angew. Chem. Int. Ed.</i> 2023 , <i>62</i> , e202313254.
BpIC-DPA	536	29	(0.30,0.67)	<i>Chem. Eng. J.</i> 2024 , <i>481</i> , 148781.
DBSe-BN	518	25	(0.22,0.71)	<i>Adv. Mater.</i> 2025 , DOI: 10.1002/adma.202513987.
ω -DABNA-PH	522	29	(0.21,0.69)	<i>Nat. Commun.</i> 2024 , <i>15</i> , 3174.
ω -DABNA-M	517	23	(0.17,0.70)	
TPABO-DICz	522	22	(0.24,0.74)	<i>Angew. Chem. Int. Ed.</i> 2024 , <i>63</i> , e202318742.
DBNO	504	27	(0.14,0.53)	<i>Angew. Chem. Int. Ed.</i> 2022 , <i>61</i> , e202200337.
$\beta\beta$ ICZ	508	19	(0.22,0.64)	
$\beta\beta$ CNICZ	509	19	(0.21,0.65)	<i>Adv. Mater.</i> 2023 , <i>35</i> , 2211316.
DBN-NaMe	514	20	(0.18,0.70)	
DBN-NaPh	526	20	(0.23,0.72)	<i>Adv. Mater.</i> 2025 , <i>37</i> , 2411610.
DBN-NaPh-d	526	19	(0.21,0.74)	
BN-ANAP	524	29	(0.26,0.67)	<i>Sci. China Mater.</i> 2024 , <i>67</i> , 1581.
ω' -DABNA	518	26	(0.21,0.72)	<i>Angew. Chem. Int. Ed.</i> 2025 , <i>64</i> , e202512162.
ω' -DABNA-D	519	26	(0.20,0.72)	
DBNDS-TPh	523	20.3	(0.20, 0.73)	
DBNDS-DFPh	523	20.2	(0.19,0.75)	<i>Adv. Mater.</i> 2025 , <i>37</i> , 2416224.
DBNDS-CNPh	521.5	21.8	(0.21,0.71)	


[a] EL peak wavelength. [b] Full-width at half-maximum of the EL spectra.

7. Optical Resolution and Chiroptical Properties


Chiral high-performance liquid chromatography (HPLC) was implemented on a Daicel Chiralpak IE column. Circular dichroism (CD) spectra were collected on BioLogic MOS-450 circular dichroism spectrometer at 297 K. Circularly polarized luminescence (CPL) measurements were performed using JASCO CPL-300 at 297 K.


Figure S22. Chiral HPLC analysis of racemic BN-7H, BN-7H-(P), and BN-7H-(M) eluted by CH_2Cl_2 using Daicel Chiralpak IE column. Elution rate: 0.5 mL min^{-1} . The integration areas of the (P) and (M)- enantiomers are 50.0% and 49.7%, respectively.

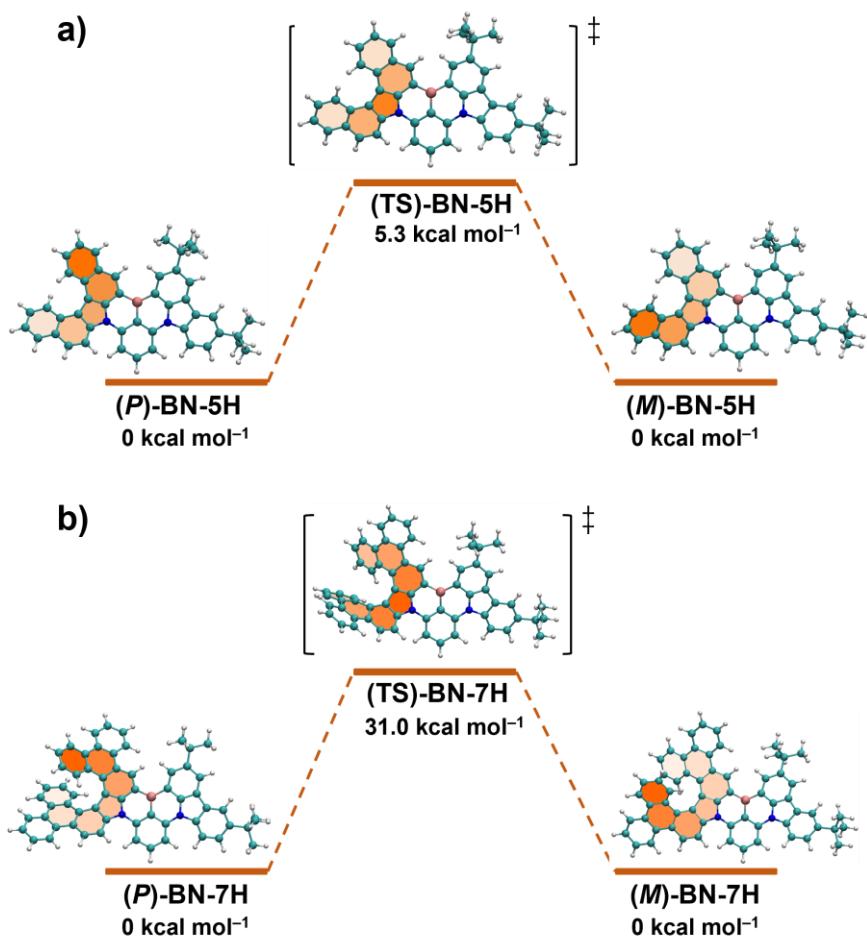
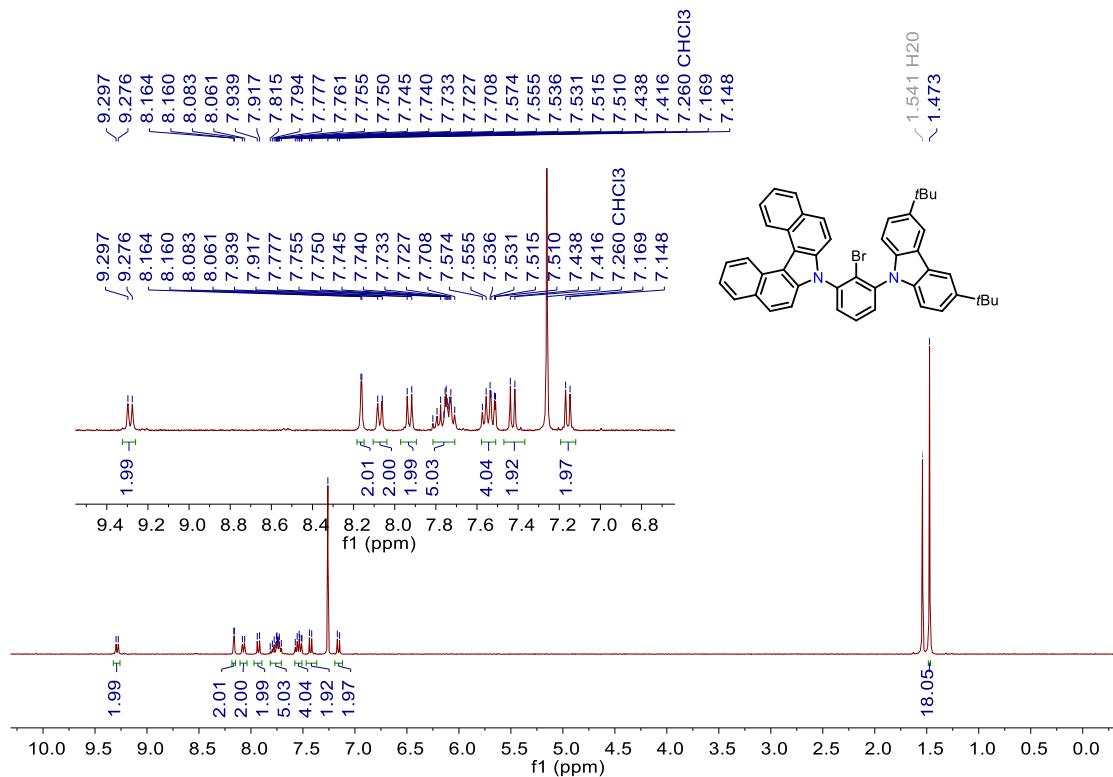

Figure S23. Simulated CD spectra of BN-7H (FWHM = 726 cm^{-1}). The simulated CD spectra were obtained by TD-DFT calculations at the M062X/6-311G(d) level.

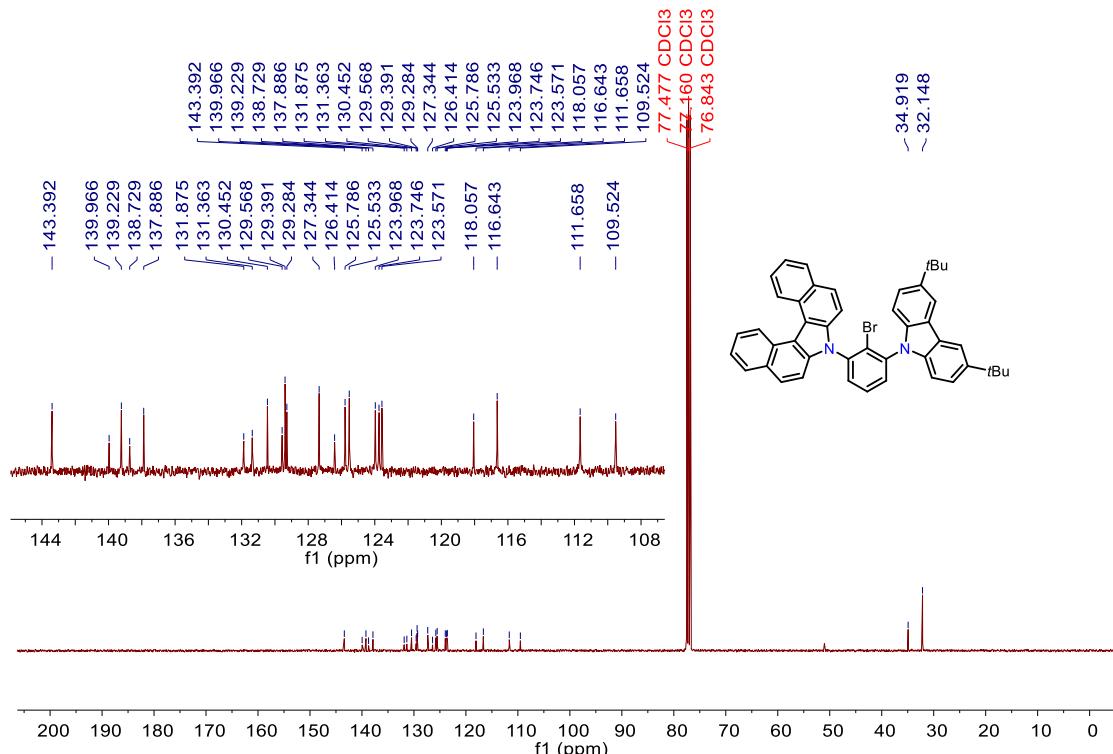
Figure S24. (a) CD spectra of BN-7H in toluene solution ($c = 9.0 \times 10^{-6}$ M), and (b) the corresponding absolute absorption dissymmetry factors ($|g_{\text{abs}}|$).

Figure S25. (a) CPL spectra of BN-7H in toluene solution ($c = 9.0 \times 10^{-6}$ M), and (b) the corresponding luminescence dissymmetry factors (g_{lum}).

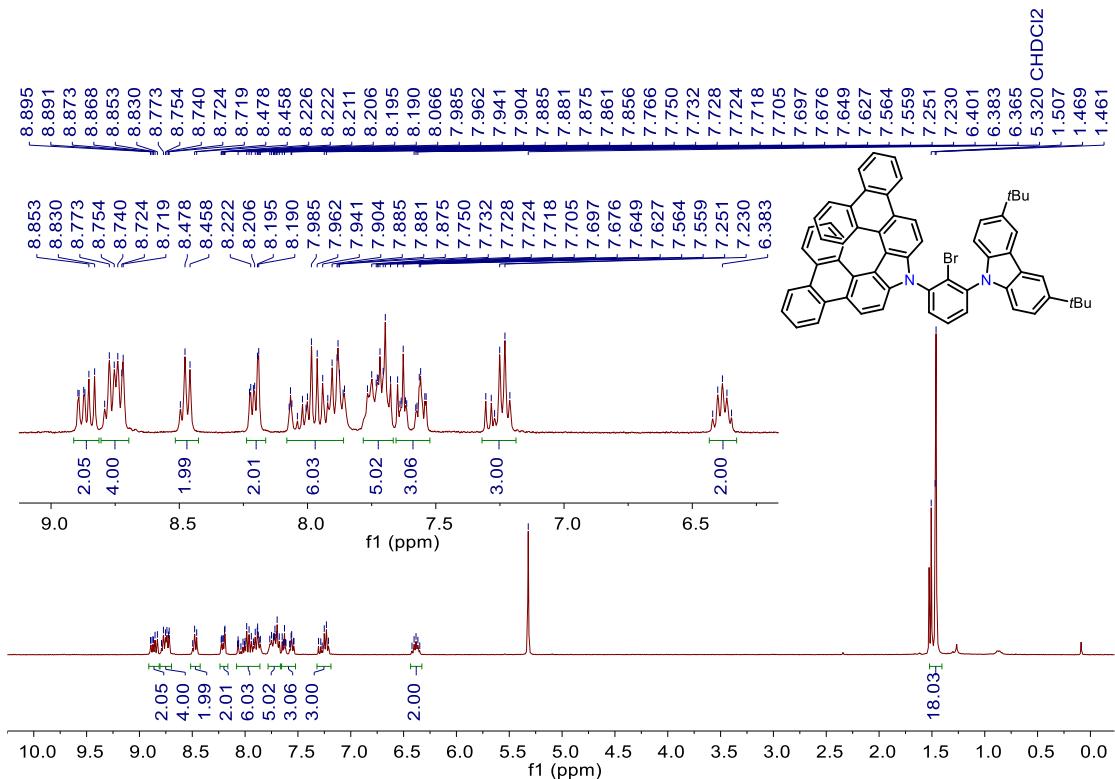
Figure S26. Isomerization process from (*P*)- to (*M*)- configuration of (a) BN-5H and (b) BN-7H. The geometries were optimized at the M062X/6-31G(d) level and the relative Gibbs free energy (kcal mol⁻¹) were calculated at the M062X/def2TZVP level. BN-7H exhibits higher configurational stability with a racemization barrier of 31.0 kcal mol⁻¹, enabling the chiral separation for chiroptical characterizations. By contrast, BN-5H shows a low racemization barrier of only 5.3 kcal mol⁻¹, precluding the possibility of chiral separation at room temperature.

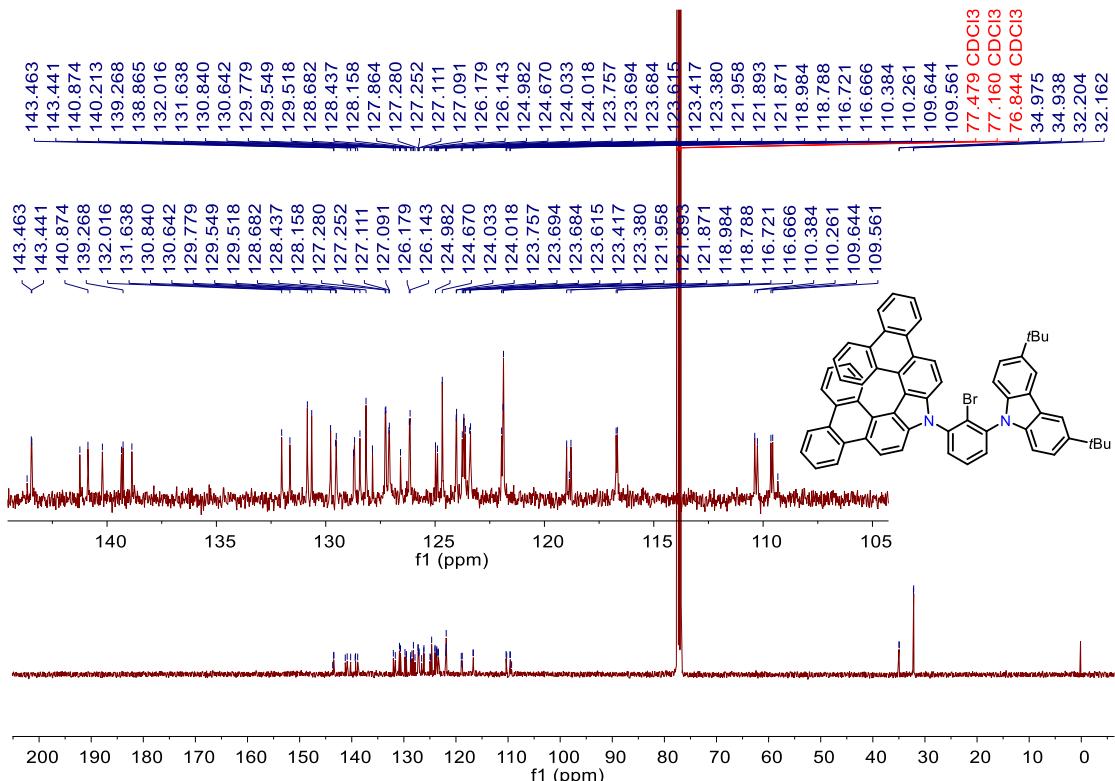

Table S6. Summary of the chiroptical properties of the representative chiral MR materials.

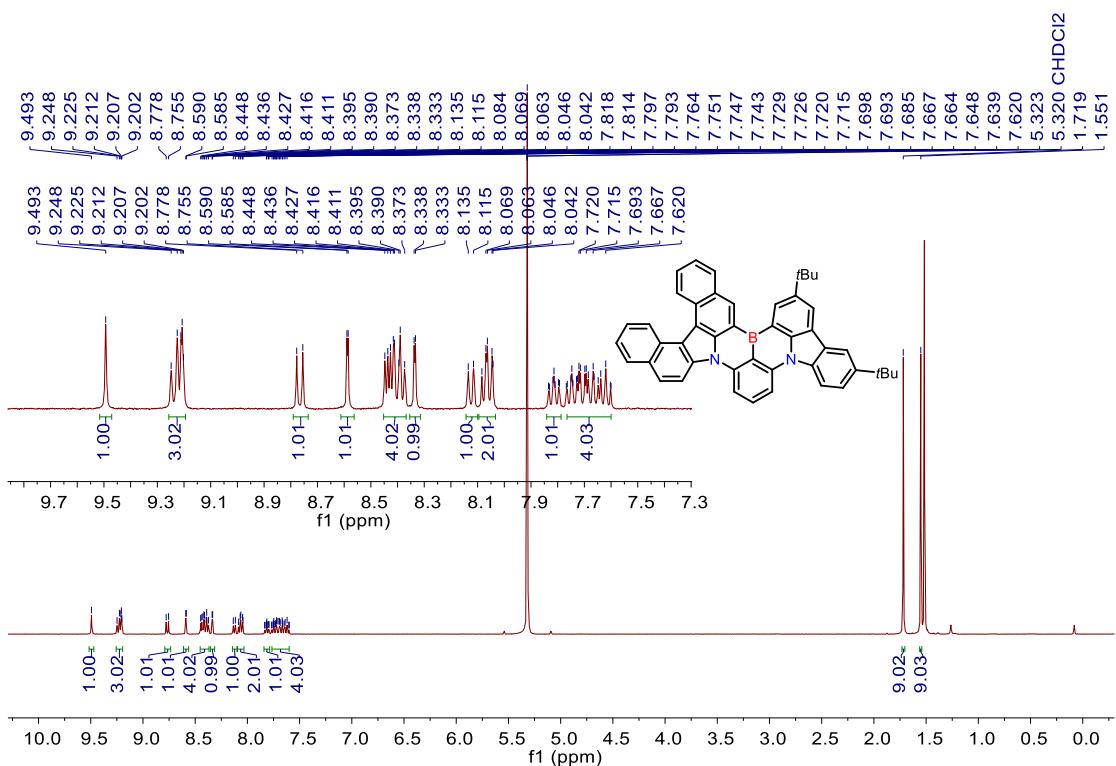
Compound	Helical chirality			Reference
	λ_{CPL} (nm)	$ g_{\text{lum}} \times 10^{-3}$	B_{CPL} (M ⁻¹ cm ⁻¹)	
BN-7H	524	0.7	19.0	This work
1a	~660	~1.5	28.5	
1b	~684	~2.0	37.1	<i>J. Am. Chem. Soc.</i> 2021 , <i>143</i> , 17958.
1c	~696	~1.5	40.0	
helicene-BN	~520	2.1	–	<i>CCS Chem.</i> 2022 , <i>4</i> , 3463.
BN4	~520	~1.5	–	<i>Adv. Mater.</i> 2022 , <i>34</i> , 2105080.
BN5	~500	~1.5	–	<i>Adv. Mater.</i> 2022 , <i>34</i> , 2105080.
3-C2	~543	1.5	65	<i>Angew. Chem. Int. Ed.</i> 2023 , <i>62</i> , e202218965.
4-C1	~520	1.1	36	

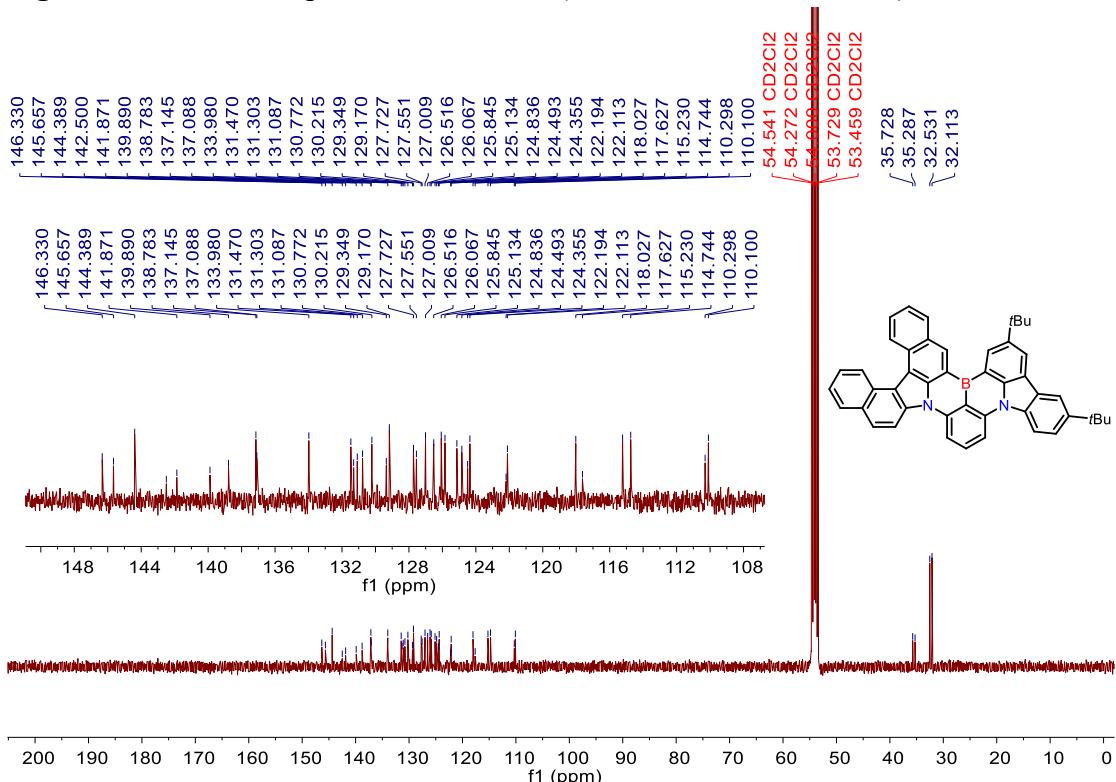

BN-Py	~530	0.52	—	<i>Adv. Mater.</i> 2023 , <i>35</i> , 2305125.
o[B-N] ₂ N ₂	~550	1.0	21.3	<i>Sci. China Chem.</i> 2023 , <i>66</i> , 2612.
RBNN	~600	1.41	20.8	<i>Adv. Mater.</i> 2024 , <i>36</i> , 2307420.
DB-O	~450	1.4	23.5	<i>Adv. Mater.</i> 2024 , <i>36</i> , 2308314.
DB-S	~450	1.5	22.4	<i>Adv. Mater.</i> 2024 , <i>36</i> , 2308314.
BN[9]H	~560	5.8	220.75	<i>Angew. Chem. Int. Ed.</i> 2024 , <i>63</i> , e202401835.
3b	~580	5.0	—	<i>Angew. Chem. Int. Ed.</i> 2024 , <i>63</i> , e202406497.
4	~590	5.0	—	<i>Angew. Chem. Int. Ed.</i> 2024 , <i>63</i> , e202406497.
6	660	3.0	—	
2a	~600	2.7	41.5	
1a	~700	2.9	2.0	<i>Angew. Chem. Int. Ed.</i> 2024 , <i>63</i> , e202414383.
2b	~600	2.5	45.8	
2c	~590	2.7	58.7	
1c	695	5.0	4.0	
BN-TP-ICz	~530	0.58	8.6	<i>Chem. Sci.</i> 2024 , <i>15</i> , 15170.
H[6]BN1	~470	0.51	5.30	<i>Chem. Eur. J.</i> 2024 , <i>30</i> , e202402257.
H[6]BN2	~470	0.48	3.35	
tBuPh-BN	~490	1.5	19.3	
DPA-tBuPh- BN	~477	0.9	8.4	<i>Chem. Sci.</i> 2024 , <i>15</i> , 16917.
BN8H	~520	0.75	—	<i>Adv. Funct. Mater.</i> 2025 , e17999.
Spiro-3TCzBN	550	0.41	—	<i>Chem. Sci.</i> 2025 , <i>16</i> , 11539.
BN[8]H-ICz	525	0.24	1.2	<i>InfoMat</i> 2025 , <i>7</i> , e12652.
BN[8]H-BO	550	2.75	13.7	
IBN9H	~530	2.29	114.08	<i>Adv. Opt. Mater.</i> 2025 , e02776.
DBN- <i>m</i> ICz	512	2.6	—	<i>Adv. Mater.</i> 2025 , DOI: 10.1002/adma.202511560
2-C2	509	1.7	—	
2-C1	500	0.75	—	<i>J. Am. Chem. Soc.</i> 2024 , <i>146</i> , 29782.
3-C2	485	2.3	—	
QAO-PhCz	~460	1.1	—	<i>Chem. Commun.</i> 2021 , <i>57</i> , 11041.
QPO-PhCz	~550	1.6	—	<i>J. Mater. Chem. C</i> 2022 , <i>10</i> , 4393.
Hel-DiDiKTa	465	0.4	—	<i>J. Mater. Chem. C</i> 2022 , <i>10</i> , 4861.
Planar chirality				
Compound	λ_{CPL} (nm)	$ g_{\text{lum}} \times 10^{-3}$	B_{CPL} ($\text{M}^{-1} \text{cm}^{-1}$)	Reference
Czp-tBuCzB	~480	0.54	—	<i>Angew. Chem. Int. Ed.</i> 2023 , <i>62</i> , e202217045.
Czp-POAB	~520	0.48	—	
Czp-DiKTa	507	0.4	—	<i>Adv. Funct. Mater.</i> 2024 , <i>34</i> , 2402036.
m-ICz-N-BN	~500	1.0	—	<i>Adv. Funct. Mater.</i> 2025 , <i>35</i> , 2504525.
m-prCz-N-BN	~500	1.1	—	
PCP-DBNO	526	1.2	35	<i>Adv. Mater.</i> 2025 , DOI: 10.1002/adma.202511230.
DpCp-Cz-BN	~510	0.62	—	<i>Adv. Optical Mater.</i> 2025 , DOI: 10.1002/adom.202502729.
DpCp-PXZ-BN	~500	0.42	—	

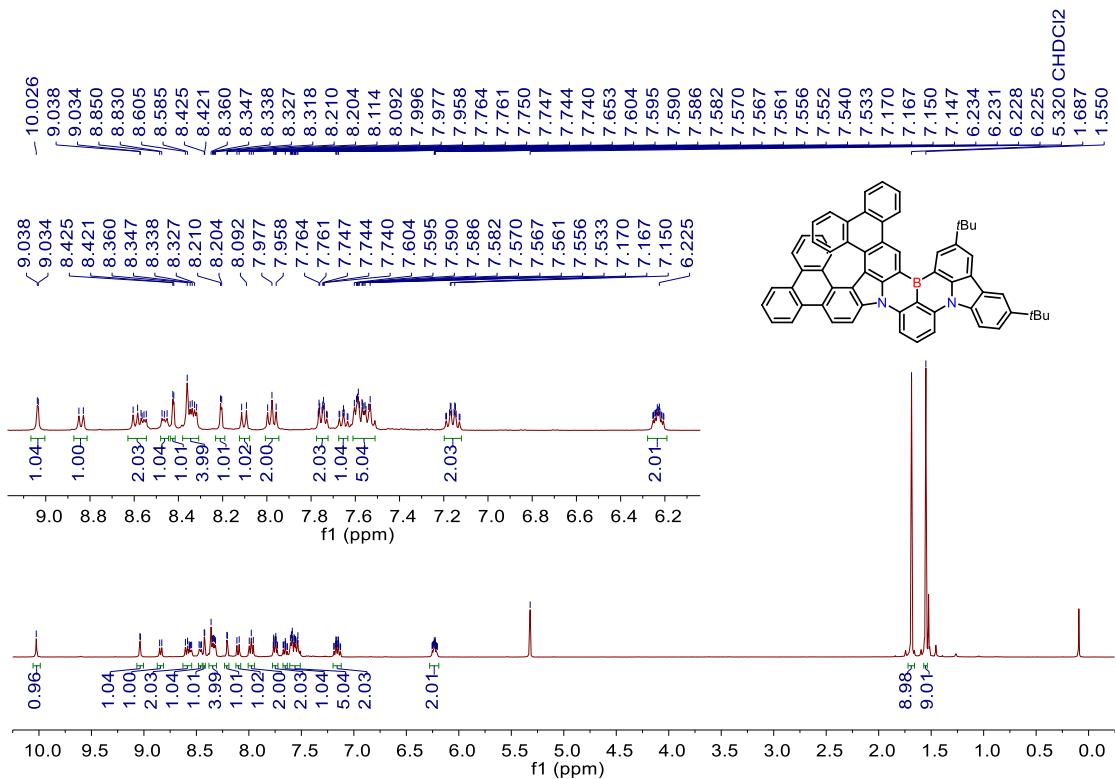
DpCp-PTZ-BN	~500	0.41	—	
DpCp-PSeZ-BN	~500	0.40	—	
Axial chirality				
Compound	λ_{CPL} (nm)	$ g_{\text{lum}} \times 10^{-3}$	B_{CPL} ($\text{M}^{-1} \text{cm}^{-1}$)	Reference
OBN-2CN-BN	~500	0.91	—	<i>Adv. Mater.</i> 2021 , <i>33</i> , 2100652.
OBN-4CN-BN	~510	1.04	—	
DOB _N	455	1.0	—	<i>Adv. Mater.</i> 2022 , <i>34</i> , 2204253.
DOBNT	458	0.9	—	
BACzBO	~500	0.73	—	<i>Mater. Horiz.</i> 2024 , <i>11</i> , 1752.
BA23CzBN	~510	0.35	—	<i>Adv. Funct. Mater.</i> 2024 , <i>34</i> , 2403191.
BA34CzBN	~530	0.77	—	
BDBF-BOH	~460	0.68	—	<i>Angew. Chem. Int. Ed.</i> 2024 , <i>63</i> , e202407277.
BDBT-BOH	~460	0.85	—	
BDBF-BNO	460	1.7	34.7	<i>Adv. Funct. Mater.</i> 2024 , <i>34</i> , 2403803.
BDBT-BNO	460	1.8	69.1	
DtCzB-OBN	~500	0.386	15.76	<i>Adv. Opt. Mater.</i> 2024 , <i>12</i> , 2400685.
DtCzB-BN	~500	0.774	20.40	
S-AX-BN	~500	2.2	—	<i>Adv. Funct. Mater.</i> 2025 , <i>35</i> , 2412044.
SO ₂ -AX-BN	~500	1.4	—	
BBCz-BN	~480	5.8	—	<i>Adv. Funct. Mater.</i> 2025 , <i>35</i> , 2421020.
OBBCz-BN	~490	2.5	—	
BIPNX-BN	~490	1.2	—	
8H-BIPNX-BN	~500	1.8	—	<i>Chem. Eng. J.</i> 2025 , <i>505</i> , 159719.
8H-BIPTZ-BN	~500	0.8	—	
Central chirality				
Compound	λ_{CPL} (nm)	$ g_{\text{lum}} \times 10^{-3}$	B_{CPL} ($\text{M}^{-1} \text{cm}^{-1}$)	Reference
Spiro-BNCz	528	1.3	—	<i>Aggregate</i> , 2024 , <i>5</i> , e445.
p-Spiro-DtBuCzB	491	0.326	—	<i>Sci. China Chem.</i> 2024 , <i>67</i> , 2257.
m-Spiro-DtBuCzB	502	0.655	—	
NBOPO	~460	1.18	—	
NBNPO	~500	4.30	—	<i>Mater. Horiz.</i> 2024 , <i>11</i> , 4722.
2PSFIBN	~525	2.9	—	
3PSFIBN	~540	4.7	—	
4PSFIBN	~530	1.9	—	<i>Sci. China Chem.</i> 2025 , <i>68</i> , 4224.
2SSFIBN	~540	1.7	—	
3SSFIBN	~540	5.4	—	
4SSFIBN	~520	0.7	—	
4-PotBuCzB	493	0.40	—	<i>CCS Chem.</i> 2025 , <i>7</i> , 2419.
DWBN	~450	0.5	—	<i>Sci. China Chem.</i> 2025 , <i>68</i> , 5795.

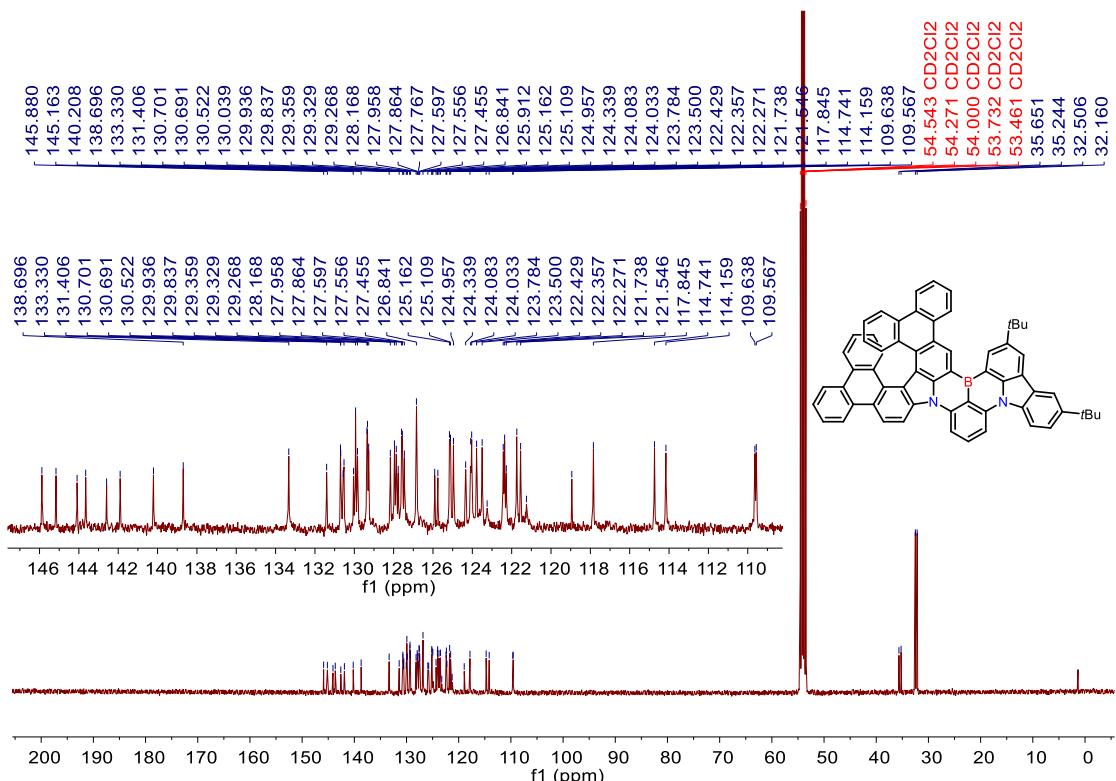

8. NMR and HRMS Spectra

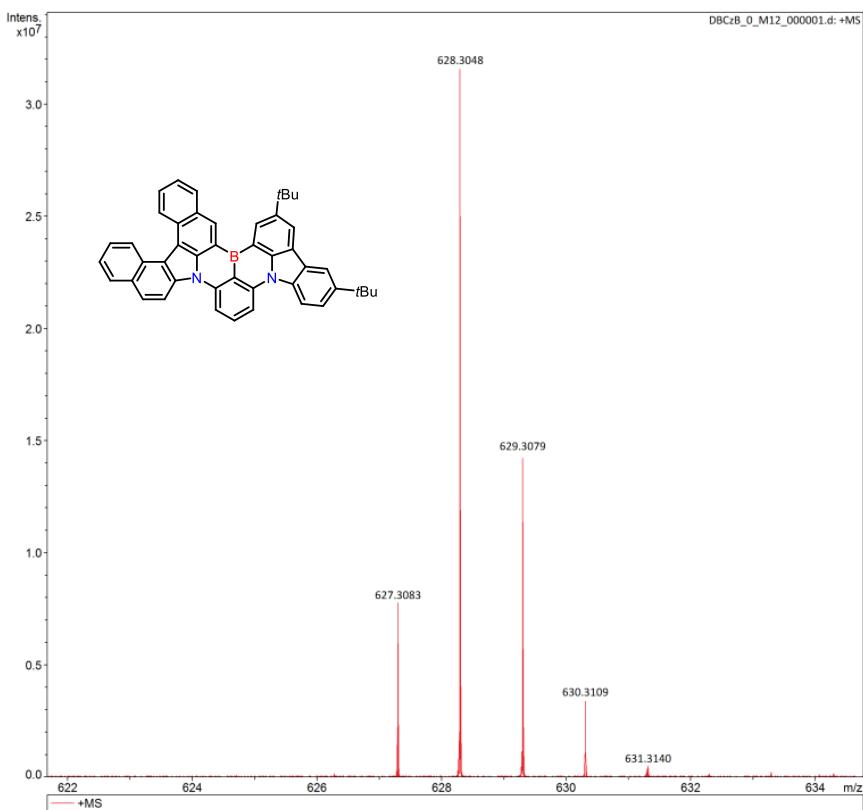

Figure S27. ^1H NMR spectrum of **5H-Br** (400 MHz, CDCl_3 , 297 K).


Figure S28. ^{13}C NMR spectrum of **5H-Br** (100 MHz, CDCl_3 , 297 K).


Figure S29. ^1H NMR spectrum of **7H-Br** (400 MHz, CD_2Cl_2 , 297 K).


Figure S30. ^{13}C NMR spectrum of **7H-Br** (100 MHz, CDCl_3 , 297 K).


Figure S31. ^1H NMR spectrum of **BN-5H** (400 MHz, CD_2Cl_2 , 297 K).


Figure S32. ^{13}C NMR spectrum of **BN-5H** (100 MHz, CD_2Cl_2 , 297 K).

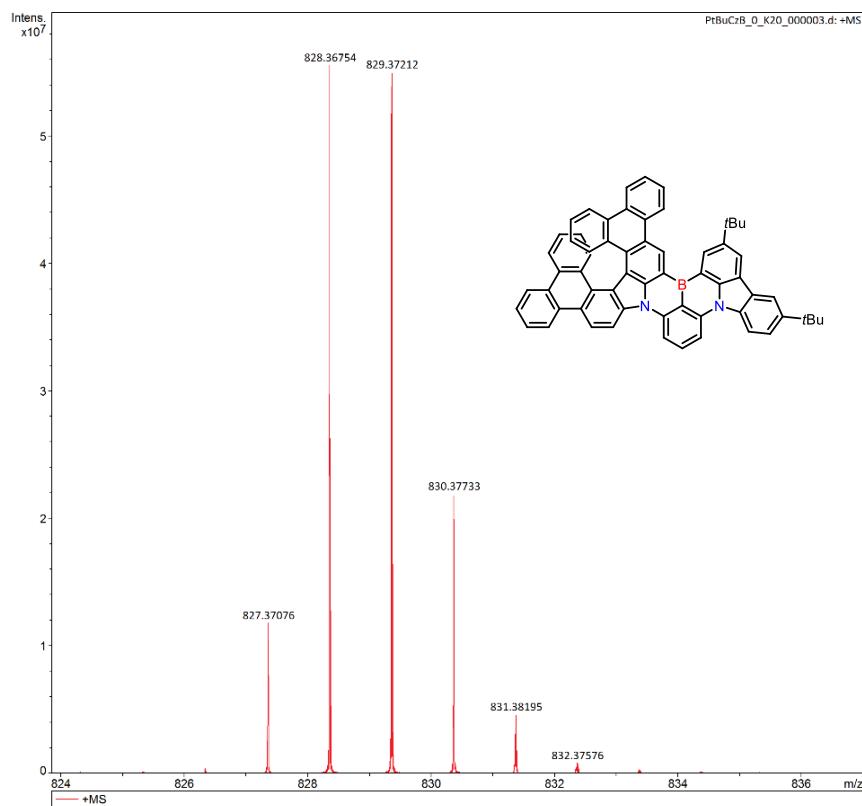

Figure S33. ^1H NMR spectrum of **BN-7H** (400 MHz, CD_2Cl_2 , 297 K).

Figure S34. ^{13}C NMR spectrum of **BN-7H** (100 MHz, CD_2Cl_2 , 297 K).

Figure S35. High-resolution MALDI-MS spectrum of BN-5H.

Figure S36. High-resolution MALDI-MS spectrum of BN-7H.

9. References

- 1 C. Maeda, K. Nagahata, T. Shirakawa and T. Ema, *Angew. Chem. Int. Ed.*, 2020, **59**, 7813–7817.
- 2 X. Cai, J. Xue, C. Li, B. Liang, A. Ying, Y. Tan, S. Gong and Y. Wang, *Angew. Chem. Int. Ed.*, 2022, **61**, e202200337.
- 3 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov and G. Z. J. Bloino, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox.
- 4 T. Lu and F. Chen, *J. Comput. Chem.*, 2012, **33**, 580–592.
- 5 Z. Liu, T. Lu and Q. Chen, *Carbon*, 2020, **165**, 461–467.
- 6 W. Humphrey, A. Dalke and K. Schulten, *J. Molec. Graphics.*, 1996, **14**, 33–38.
- 7 Y. Niu, W. Li, Q. Peng, H. Geng, Y. Yi, L. Wang, G. Nan, D. Wang and Z. Shuai, *Mol. Phys.*, 2018, **116**, 1078–1090.
- 8 Q. Peng, Y. Yi, Z. Shuai and J. Shao, *J. Am. Chem. Soc.*, 2007, **129**, 9333–9339.
- 9 Y. Niu, Q. Peng and Z. Shuai, *Sci. China Ser. B-Chem.*, 2008, **51**, 1153–1158.
- 10 Z. Shuai, *Chin. J. Chem.*, 2020, **38**, 1223–1232.
- 11 Z. Shuai and Q. Peng, *Phys. Rep.*, 2014, **537**, 123–156.
- 12 Z. Shuai and Q. Peng, *Nat. Sci. Rev.*, 2017, **4**, 224–239.
- 13 G. Meng, H. Dai, Q. Wang, J. Zhou, T. Fan, X. Zeng, X. Wang, Y. Zhang, D. Yang, D. Ma, D. Zhang and L. Duan, *Nat. Commun.*, 2023, **14**, 2394.
- 14 Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi and M. P. Aldred, *Chem. Soc. Rev.*, 2017, **46**, 915–1016.
- 15 T. Huang, Q. Wang, S. Xiao, D. Zhang, Y. Zhang, C. Yin, D. Yang, D. Ma, Z. Wang and L. Duan, *Angew. Chem. Int. Ed.*, 2021, **60**, 23771–23776.