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S1. Experimental section

Materials and methods

All the reagents and solvents were commercially available and used without further
purification. Tetrahydrofuran (THF) was dried over sodium benzophenone ketyl anion
radical and distilled under a dry nitrogen atmosphere immediately prior to use. Other
solvents were distilled under a dry nitrogen atmosphere immediately prior to use. The
emitter phenoxazine—triphenyltriazine (PXZ-TRZ) was synthesized according to the
literature procedure.!') The (DOHSBF) was synthesized according to our previous
work.[?! The 'H and '*C NMR spectra were recorded on a Bruker Avance spectrometer
(400 MHz) in CDCI3 with tetramethylsilane (TMS) as the internal standard at 298 K.
MALDI-TOF mass spectra were performed on a Bruker BIFLEX III ultrahigh-
resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer.

UV/Vis absorption spectra were measured by a shimadzu UV-3600 spectrometer at
298 K. The absorption spectra was performed on some solution (10°M).
Photoluminescence spectra were recorded on a shimadzu RF-5301(PC) luminescence
spectrometer. Phosphorescence spectra was characterized to obtain Triplet energy
values of the TADF materials at 77 K. Photoluminescence quantum yield (PLQY) was
obtained using an integrating sphere (C992002, Hamamatsu Photonics Co., Japan) with
a Xe lamp as the excitation source and a multichannel spectrometer (Hamamatsu PMA -
11) as the optical detector. The PL transient decay curves of the films were measured
using a transient spectrometer (Edinburg FLS920) with a picosecond pulsed UV-
LASTER (A = 379 nm, pulse width = 89 ps) as the excitation source. The dipole
orientation of the doped film was determined by R1-OLED Angular Resolution
spectrometer. A doped film with a thickness of 50 nm was deposited onto a fused-silica-
based half-cylindrical lens. A continuous-wave He:Cd laser (375 nm) with a fixed angle
of 45° to the substrate was employed as the excitation source. The p-polarized emission
light was detected at the PL peak wavelength of the dopants.

Cyclic voltammetric studies were measured by using an CHI660C Electrochemical

Workstation in a typical three-electrode consisting of a platinum sheet working
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electrode, a silver/silver nitrate (Ag/Ag") reference electrode and a platinum wire
counter electrode. Ferrocene was used as the internal standard reference for each
measurement. All electrochemical experiments were carried out under a nitrogen
atmosphere at room temperature in an electrolyte solution of 0.1 M
tetrabutylammonium hexafluorophosphate (n-BusNPFs) in anhydrous CH>Cl, with a
scan rate of 100 mV s'. The HOMO energy levels were calculated according to the
equation Enomo = -(Eonset™ + 4.8) ev, where Eonset”™ was the onset of the oxidation
potential. The LUMO energy levels were determined from Enomo and Energy level
gaps (Eg), where E; was derived from the onset of the absorption spectra.

TGA were conducted by a Shimadzu DTG-60H under a heating rate of 10 °C min’!
and a nitrogen flow rate of 50 cm® min'!. DSC measurement result was obtained by
using a Shimadzu Instruments DSC60A. DSC data were collected from 30 to 300 °C at
arate of 10 °C min™! for both of the baseline and sample.

All computational analyses were conducted utilizing the Gaussian 09. The ground
state geometries were refined through Density Functional Theory (DFT) calculations
employing the M062X functional with a 6-31G* basis set. Subsequently, Time-
Dependent Density Functional Theory (TD-DFT) calculations were executed for the
excited state utilizing the M062X functional too. These calculations were based on the
optimized geometries of the lowest singlet and triplet states. Furthermore, the root mean
square displacement (RMSD) between the ground and excited state geometries and the
analysis of the natural transition orbitals (NTOs) were performed using Multiwfn
version 3.8.

Devices were fabricated by vacuum deposition onto pre-coated ITO glass substrates
with sheet resistance of 15 Q/square at a pressure lower than 1x10™* mbar for organic
and metal deposition. Before the fabrication of devices, the ITO glass substrates were
cleaned with Decon 90, rinsed in ultrapure water and ethanol, dried in an oven at 120 °C,
by plasma cleaning process. Then 30 nm PEDOT:PSS was spin-coated onto the ITO
substrate and dried at 200 °C for 10 min. The substrates were then taken into a nitrogen
glove box, where the 40 nm emission layer was spin coated onto the PEDOT:PSS layer

from chlorobenzene and annealed at 100 °C for 30 min. After that, 40 nm TPBI was
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vacuum-deposited as the electron transporting layer. Cs2COs and Al were subsquently
deposited as the cathode at a deposition rate of 0.1 A s and 5 A s, respectively. EL
spectra and CIE color coordinates were measured with a Spectrascan PR650
photometer, and the current-voltage characteristics were measured with a computer-

controlled Keithley 2400 Source Meter under ambient atmosphere.

Analysis of Rate Constants!*)
The lifetime 7, and 7q represent the prompt and decay fluorescence lifetime, which

determined from transient PL spectra following below two equations:

R(®) = AT ) + a,e2) + a,eTTs) Eq. (1)
rgy = 220 Eq. (2)

Where R(t) is the fited function of the measured transient PL decay spectra, A; is the
pre-exponential for lifetime 1i, the average lifetime tay is calculated from Eq.(2). The
rate constants of radiative decay (&, s) and nonradiative decay (kur, s) from S; to So states,

the reverse intersystem crossing (krisc) were calculated from the following five

equations:
1
1
kys = @ppkp + Oprka = Dprky Eq. (5)
1-PLQY
knr,s = Wkr,s Eq. (6)
kykgPLQY
krisc = % Eq. (7)

Where the k&, and kq represent the decay rate constants for prompt and delayed
fluorescence, respectively. ®pr and ®pr indicate prompt and delayed fluorescence
components and can be distinguished from the total PLQY by comparing the integrated
intensities of prompt and delayed components in the transient PL spectra.

For further simplifying the calculations, the Eq. (7) can be simplified as following:

PLQY
krisc = % Eq. (8)



Scheme S1. Straightforward synthetic route to AG-EtPXZ.
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In a 500 mL two-necked round-bottomed flask charged with EtPXZ (0.17 g, 0.82
mmol) and DOHSBF (0.88 g, 0.82 mmol) in 250 mL of dry dichloromethane, a solution
of BF3-Et20 (0.20 g, 0.2 mL) in 50 mL dry dichloromethane was added dropwise. The
reaction mixture was stirred at room temperature for 12 h. Water (100 mL) was added
to quench the reaction. The mixture was separated and the aqueous phase was extracted
with dichloromethane. The combined organic layers were washed with brine and dried
over MgSO4. After removal of the solvent, the crude product was purified by flash

column chromatography using an eluent of petroleum ether: dichloromethane (4:1) to
give a light yellow solid product AG-EtPXZ (0.10 g, 10%). 1H NMR (400 MHz, CDCI5)
0 7.83 (t, J=7.6 Hz, 1H), 7.77-7.52 (m, 8H), 7.47-7.31 (m, 4H), 7.24-7.06 (m, 9H),
7.05-6.79 (m, 11H), 6.71-6.46 (m, 9H), 4.00-3.47 (m, 6H), 1.24-1.05 (m, 23H), 0.77

(dg, J = 11.9, 7.7, 7.1 Hz, 10H). MALDI-TOF-MS: m/z caled for CosHgiNOs
[M]":1259.62, found: 1259.33.

Scheme S2. Straightforward synthetic route to AG-PXZ-TRZ.
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In a 500 mL two-necked round-bottomed flask charged with PXZ-TRZ (0.40 g, 0.82
mmol), DOHSBF (0.88 g, 0.82 mmol) and 250 mL of dry dichloromethane, a solution
of BF3-Et20 (0.20 g, 0.2 mL) in 50 mL dry dichloromethane was added dropwise. The
reaction mixture was stirred at room temperature for 12 h. Water (100 mL) was added
to quench the reaction. The mixture was separated and the aqueous phase was extracted
with dichloromethane. The combined organic layers were washed with brine and dried
over MgS0O4. After removal of the solvent, the crude product was purified by flash
column chromatography using an eluent of petroleum ether: dichloromethane (4:1) to
give a light yellow solid product AG-PXZ-TRZ (1.06 g, 84%). '"H NMR (400 MHz,
CDClI3) 6 8.93-8.72 (m, 7H), 8.05-7.84 (m, 4H), 7.81-7.62 (m, 4H), 7.60 (ddd, J= 14.3,
7.3, 3.6 Hz, 9H), 7.44 (t, J = 8.2 Hz, 3H), 7.35 (td, J = 13.4, 11.1, 6.2 Hz, 4H), 7.29-
7.17 (m, 4H), 7.17 (dt,J=9.4, 4.8 Hz, 4H), 7.10-6.94 (m, 5H), 6.93-6.61 (m, 9H), 6.59
(s, 10H), 3.92 (ddt, J=31.1, 27.3, 6.4 Hz, 4H), 1.77 (s, 3H), 1.49-1.27 (m, 42H), 1.11
(s, 22H), 0.94 (ddd, J = 14.1, 6.6, 3.4 Hz, 9H), 0.92-0.85 (m, 9H), 0.11 (s, 8H), 0.06 (s,
6H). 3°C NMR (101 MHz, CDCls) § 171.75, 170.07, 152.74, 150.83, 149.82, 139.76,
136.04, 132.65, 130.55, 129.92, 129.00, 128.71, 127.85, 127.07, 126.74, 123.66,
120.68, 120.37, 120.09, 119.94, 118.58, 115.62, 114.06, 113.35, 85.36, 81.58, 74.45,
67.93, 64.29,45.47,37.41, 31.96, 31.83, 29.73, 29.30, 26.10, 22.72, 14.16, 1.05, 0.03.
MALDI-TOF-MS: m/z calcd for C112HooN4O3 [M]":1539.705, found: 1539.274.

Scheme S3. Straightforward synthetic route to DSFPXZ-TRZ.
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In a 500 mL two-necked round-bottomed flask charged with PXZ-TRZ (0.40 g, 0.82
mmol), OHSBF (1.15 g, 1.64 mmol) and 250 mL of dry dichloromethane, a solution of



BF3-Et;0 (0.20 g, 0.2 mL) in 50 mL dry dichloromethane was added dropwise. The
reaction mixture was stirred at room temperature for 12 h. Water (100 mL) was added
to quench the reaction. The mixture was separated and the aqueous phase was extracted
with dichloromethane. The combined organic layers were washed with brine and dried
over MgS0O4. After removal of the solvent, the crude product was purified by flash
column chromatography using an eluent of petroleum ether: dichloromethane (4:1) to
give a light yellow solid product DSFPXZ-TRZ (1.22 g, 80%). |H NMR (400 MHz,
CDCI) 6 8.99 — 8.72 (m, 5H), 7.83 (td, /=9.7, 8.7, 4.3 Hz, 7H), 7.61 (ddd, J = 13.6,
11.1, 6.9 Hz, 8H), 7.52 (dt, J = 8.0, 1.6 Hz, 2H), 7.48 — 7.39 (m, 3H), 7.40-7.28 (m,
9H), 7.21 (t,J = 7.4 Hz, 2H), 7.12-7.04 (m, 8H), 6.89 (d, J= 1.7 Hz, 2H), 6.78-6.65 (m,
8H), 6.47 (dd, J= 6.8, 2.0 Hz, 1H), 6.38 (ddd, J = 8.5, 3.6, 2.2 Hz, 1H), 5.82 (dd, J =
8.4, 1.4 Hz, 2H), 3.84 (t, J = 6.5 Hz, 3H), 1.71 (t, /= 7.3 Hz, 4H), 1.56 (s, 7H), 1.40
(dd, J = 14.1, 6.5 Hz, 4H), 1.34-1.21 (m, 21H), 0.92 — 0.82 (m, 9H). *C NMR (101
MHz, CDCl3) 6 171.79, 157.83, 151.86, 149.25, 149.18, 148.65, 141.74, 141.34, 141.08,
140.92, 140.51, 139.43, 139.06, 136.94, 136.02, 132.69, 132.27, 131.47, 130.87,
129.05, 128.98, 128.70, 127.83, 127.74, 127.70, 127.60, 127.34, 127.12, 126.62,
125.87,124.36, 124.14, 123.95, 122.60, 120.15, 120.09, 119.99, 115.53, 114.05, 112.72,
67.82,65.98, 63.95,31.80,29.34,29.27, 29.23,26.05, 22.65, 14.12. MALDI-TOF-MS:
m/z calcd for Ci37H106N4O3 [M]7:1856.83, found: 1856.42.



S2. NMR spectra and mass spectra
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Figure S1. "H NMR spectrum of AG-EtPXZ.
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Figure S2. MALDI-TOF-MS spectrum of AG-EtPXZ.
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Figure S3. (a) 'H NMR spectrum and (b) '*C NMR spectrum of DSFPXZ-TRZ.
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Figure S4. MALDI-TOF-MS spectrum of DSFPXZ-TRZ.
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Figure S5. (a) 'H NMR spectrum and (b) '*C NMR spectrum of AG-PXZ- TRZ.
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Figure S6. 'H-'"H NMR NOESY spectrum of AG-PXZ- TRZ.
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S3. Thermal properties and electrochemical properties
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Figure S8. TGA and DSC curves of DSFPXZ-TRZ and AG-PXZ-TRZ.
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Figure S9. Cyclic Voltammetry (CV) curves of DSFPXZ-TRZ and AG-PXZ-TRZ in

Potential vs.Fc/Fc* (V)

Potential vs.FelFc* (V)

dichloromethane solution.
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S4. Morphological properties

PXZ-TRZ DSF-PXZ-TRZ AG-PXZ-TRZ
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Figure S10. AFM topographic images of PXZ-TRZ, DSFPXZ-TRZ and AG-PXZ-TRZ.

S5. Photophysical properties
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Figure S11. (a) Normalized UV—vis absorption and room temperature fluorescence
(298 K) spectra in toluene (10—5 M). (b) AG-PXZ-TRZ in N; and air at 298 K in

toluene solution.
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Figure S12. Normalized fluorescence spectra of (a) PXZ-TRZ, (b) DSFPXZ-TRZ,
and (c) AG-PXZ-TRZ (10 M) in toluene, dichloromethane, ethyl acetate and

tetrahydrofuran.
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Figure S13. The PL intensity of DSFPXZ-TRZ and AG-PXZ-TRZ in Acetone/H20

mixture (10> M) with different water fraction (fi).
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Figure S14. (a) PL spectra of the DSFPXZ-TRZ pristine films after various periods of
ozone aging. The CIE 1931 color coordinates of (b) PXZ-TRZ, (c) DSFPXZ-TRZ,

and (d) AG-PXZ-TRZ after various periods of ozone aging.
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S6. Theoretical calculations
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Figure S15. Molecular structure of PXZ-TRZ, DSFPXZ-TRZ and AG-PXZ-TRZ in

hexane and electrostatic potential.
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Figure S16. Natural transition orbitals (NTOs) of the S;-S3 and T:-T3 state for PXZ-

TRZ molecule in n-hexane.
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Figure S17. Natural transition orbitals (NTOs) of the S-Sz and T;-T3 state for

DSFPXZ-TRZ molecule in n-hexane.
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Figure S18. Natural transition orbitals (NTOs) of the Si-S3 and T;-T3 state for AG-

PXZ-TRZ molecule in n-hexane.
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Figure S19.
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and AG-PXZ-TRZ in solvent and film, respectively.
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Figure S20. Geometry changes between So, S1 and T in n-hexane for PXZ-TRZ,

DSFPXZ-TRZ and AG-PXZ-TRZ, respectively.
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S7. Device performance
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Figure S21. EL characteristic plots of devices employing DSFPXZ-TRZ and PXZ-
TRZ at various doping concentrations. (a) and (d) current density and luminance vs
driving voltage of DSFPXZ-TRZ and PXZ-TRZ, (b) and (e) external quantum
efficiency vs luminance of DSFPXZ-TRZ and PXZ-TRZ, (c¢) and (f) EL spectra and
of DSFPXZ-TRZ and PXZ-TRZ at various doping concentrations.
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Table S1. EL performances of PXZ-TRZ, DSFPXZ-TRZ and PXZ-AG-TRZ based

devices with different doping concentration.

EML Vor(V)  Lmex(cd/m?)  CEmax(cd/A)  EQEmax(%)  A(nm) CIE

PXZ-TRZ 35 9032 1.84 0.65 555 (0.45, 0.54)
DSFPXZ-TRZ 35 4940 20.8 6.92 556 (0.45, 0.53)
PXZ-AG-TRZ 3 5897 32.1 10.4 552 (0.41, 0.56)
20% PXZ-TRZ 4 14600 8.78 2.69 536 (0.37,0.58)
30% PXZ-TRZ 35 13365 7.20 2.97 544 (0.39, 0.56)
40% PXZ-TRZ 35 14371 6.70 2.05 549 (0.41, 0.56)
20% DSFPXZ-TRZ 45 6958 332 106 550 (0.42, 0.55)
30% DSFPXZ-TRZ 4 8758 46.7 15.4 542 (0.40, 0.56)
40% DSFPXZ-TRZ 4 7372 17.6 5.6 543 (0.40, 0.57)
20% AG-PXZ-TRZ 4 7352 575 18.1 550 (0.42, 0.54)
30% AG-PXZ-TRZ 4 12536 87.2 28.9 550 (0.41, 0.55)
40%AG-PXZ-TRZ 3 10433 22.4 6.92 550 (0.42, 0.55)
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