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Fig. S1 The nanoparticles’ size distribution of (a) PbCrO4-Ryc; and (b) PbCrOy4-Fyc,
films.



Fig. S2 The photographs of the Pb?*/Cr3* precursor solution during thermal treating at
different temperatures for the preparation of (a) PbCrO4-Ryc, and (b) PbCrOy-Fyc,

films.
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Fig. S3 Survey XPS spectrum of PbCrO4-Ry ¢, and PbCrOy4-Fy; films.
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Fig. S4 Under AM 1.5G illumination, LSV curves of PbCrO4-Ryc; and PbCrO4-Fy,
film photoanodes in 0.5 M PBS.



Table S1 The activity comparison of our PbCrOy-Fy, film photoanodes to previously
reported PbCrO4 film photoanodes.

Electrolyte (pH) J (mA/cm?) Ref.

0.5 M phosphate buffer
1.14 (at 1.23V vs. RHE) this work

(PH7)
0.1 M Na,SO4 and 0.1
0.03 (at 0.4 V vs. Ag/AgCl) [1]
M NaZSO3(pH 7)
0.1 M phosphate buffer
0.30 (at 1.23V vs. RHE) [2]
(pH 6.8)
0.1 M borate buffer (pH
9) ~0.10 (at 1.23V vs. RHE) [3]
0.2 M phosphate buffer
0.57 (at 1.23V vs. RHE) [4]
(PH7)
0.5 M phosphate buffer
2.70 (at 1.23V vs. RHE) [5]
(PH7)
0.1 M phosphate buffer
0.06 (at 0.95V vs. RHE) [6]
(PH7)
0.5 M phosphate buffer
3.43 (at 1.23V vs. RHE) [7]
(PH7)
0.5 M phosphate buffer
~0.55 (at 1.23V vs. RHE) [8]

(pPH 7)
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Fig. S5 Under AM 1.5G illumination, LSV curves of PbCrO4-Ryc; and PbCrO4-Fy,
film photoanodes in 0.5 M PBS/0.2 vol.% H,0,.
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Fig. S6 CV curves of (a) FTO, (b) PbCrO4-Ryc;, (¢) PbCrO4-Fy, at different scan rates

(10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 mV/s).
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Fig. S7 In dark condition, (a) LSV curves and (b) Tafel plots for PbCrO,-Ryc,; and
PbCrOy4-Fyc; film electrodes in 0.5 M PBS.
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Fig. S8 j-t curves of PbCrO4-Ryc, and PbCrOy-Fy, film photoanodes in 0.5 M PBS
under AM 1.5 G irradiation at 1.23 V vs. RHE.
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Fig. S9 XRD patterns of PbCrO4-Fy, films before and after stability testing in

KHP/Na,SOj; (shown in Fig. 5d) and PBS (shown in Fig. S8) electrolyte.
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Fig. S10 Raman spectra of PbCrOy4-Fy, films before and after stability testing in

KHP/Na,SOj; (shown in Fig. 5d) and PBS (shown in Fig. S8) electrolyte.
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Fig. S11 SEM images of PbCrO4-Fyc; films (a, b) before and after stability testing in

(c, d) KHP/Na,SOj3 (shown in Fig. 5d) and (e, f) PBS (shown in Fig. S8) electrolyte.

13



Table S2 The simulated ion activity product (IAP) and saturation index (Sat. index)
of PbCrQ, film in PBS solution.

Compound log IAP Sat. index Saturation
CrOs(s) -22.232 -19.022 Undersaturation
Pbs(PO4);(OH) -61.949 0.841 Oversaturation
PbO (Massicot) 2.14 -10.55 Undersaturation
PbO (Litharge) 2.14 -10.75 Undersaturation
Pb(OH),(s) 2.077 -6.073 Undersaturation
Pb,O(OH),(s) 4.217 -21.973 Undersaturation
Pb;3(POy),(s) -41.991 1.539 Oversaturation
PbCrOy(s) -20.092 -7.492 Undersaturation
PbHPO4(s) -22.097 1.708 Oversaturation
Pb0:0.3H,0(s) 2.119 -10.861 Undersaturation
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Results and discussion for Fig. S9 to S11, and Table S2.

To understand the PEC stability feature of PbCrOy4-Fy, films, we have detected the
XRD patterns, Raman spectrum and SEM images for the PbCrOy4-Fyc, films after
stability testing in KHP/Na,SO; (shown in Fig. 5d) and PBS (shown in Fig. S8)
electrolyte, respectively. As shown in Fig. S9, the XRD patterns of PbCrO4-Fy; film
after stability testing in KHP/Na,SOj are very close to those of it before stability testing.
Meanwhile, the PbCrO4-Fy, film after stability testing in KHP/Na,SO3 had no obvious
color change, relative to it before stability testing (insert of Fig. S9). But for the
PbCrOy4-Fy; film after stability testing in PBS, its XRD patterns partially changed, the
diffraction peaks of monoclinic PbCrO,4 (PDF#: 08-0209) at 25.58°, 27.16° and 29.45°
disappeared. In addition, the color of PbCrO4-Fy, film after stability testing in PBS
was turned to faint yellow, suggesting the presence of composition changes. Further
Raman spectrum detections indicated that two new peaks (322.52 cm! and 855.56 cm™!)
be formed in the Raman spectrum of the PbCrOy4-Fy, film after stability testing in PBS,
compared with it before testing and testing in KHP/Na,SO; (Fig. S10). SEM
observations showed that the PbCrO4-Fy, film after stability testing in KHP/Na,SO;
has no obvious change in morphology (Fig. S11¢ and S11d), in comparison with it
before testing (Fig. S11a and S11b). But after the stability testing in PBS, significant
gaps were observed on the PbCrO4-Fyc, film (Fig. S113e and S11f), indicating
dissolution characteristics.

To understand the morphology change of PbCrO4-Fyc, film photoanodes after
stability testing in PBS, the ion activity product (/4P) and saturation index of
compounds that could be potentially formed through the dissolution and transformation
of PbCrO,4 in PBS solution were simulated using Visual MINTEQ software. The

saturation index of compounds (Sat. index=log(IAP/K,)) in aqueous solution above 0
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uausally means potential dissolution tendency. As shown in Table S2, the saturation
index of Pbs(POy);(OH), Pb3(POy),(s) and PbHPO4(s) could be formed through the
transformation of PbCrO,4 in PBS solution, and their Sat. index are below 0, having
dissolution tendency. Additionally, the semiconductors with variable valence state
elements are easy to suffer from photocorrosion, since the electrons/holes of
semiconductors cannot be transferred and consumed by reactions quickly, the
cumulative electrons/holes in/on semiconductors could initiate photocorrosion through
reacting with the variable valence elements of semiconductors [9]. Pb has two common
valence states of +2 and +4, while Cr has +6 and +3. For PbCrQ,, its Pb is +2 and Cr is
+6. During the PEC reaction on PbCrO,4 photoelectrodes, the Pb(II) could be oxided
into Pb(IV) by the electrons of PbCrO,, while the Cr(VI) could be oxided into Cr(III)
by the holes of PbCrO, [8]. From above results and analyses, it can be known that
PbCrOy4-Fy; film photoanodes encounter photocorrosion and dissolution issue in PBS

during stability testing.
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Fig. S12 Surface photovoltage spectra of PbCrO4-Ryc; and PbCrO4-Fy, films in air.
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Fig. S13 (a) XRD pattern and (b) crystallinity of PbCrO, films which were prepared

using precursor solution with different Pb/Cr atomic ratios.
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Table S3 The crystallinities of PbCrO, films which were prepared using precursor

solution with different Pb/Cr atomic ratios.

Sample hkl 20  FWHM Crystallinity (%)

(200) 25.560 0.152
Pb/Cr=100.0/98.6 81.04
(120) 27.149  0.120

(200) 25.566  0.165
Pb/Cr=100.0/99.3 84.74
(120) 27.150  0.148

(200) 25.624  0.118
Pb/Cr=100.0/100.0 80.41
(120) 27218 0.107

(200) 25.557 0.154
Pb/Cr=100.0/100.7 86.11
(120) 27.143  0.138

(200) 25.552  0.176
Pb/Cr=100.0/101.4 84.93
(120) 27.146  0.146
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