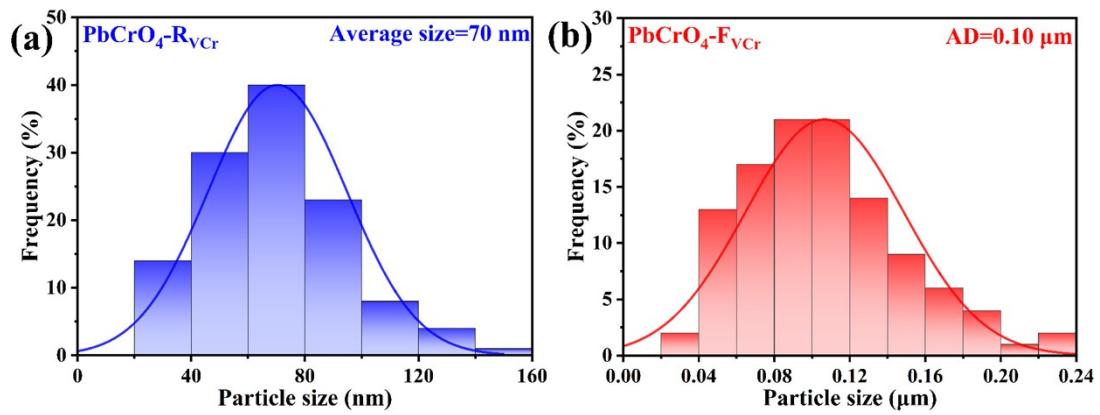


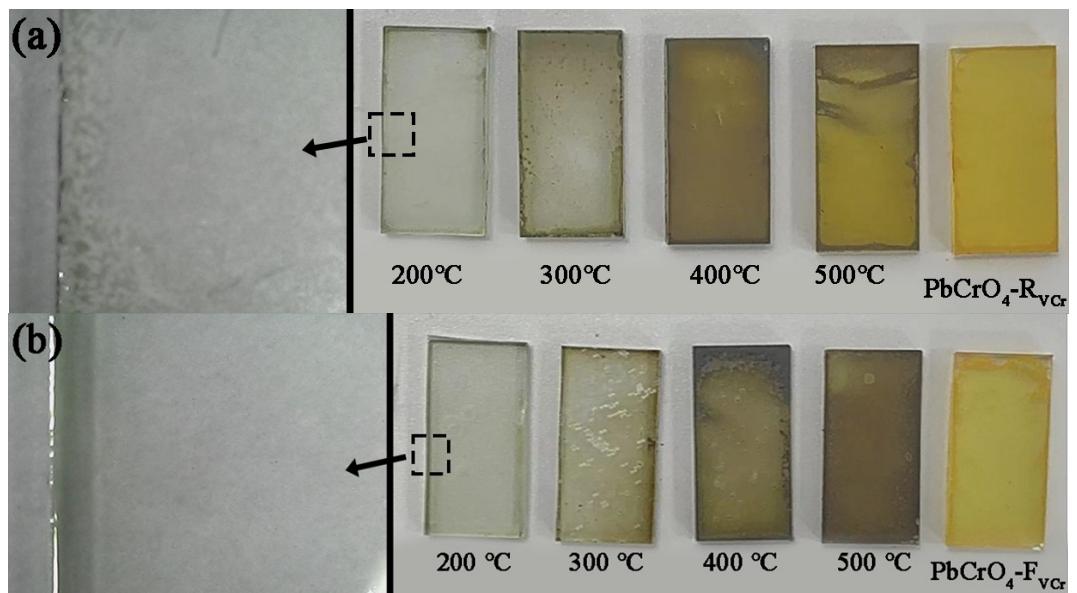
Supplementary Information

The relevance of Cr defects and photoelectrochemical water oxidation activity of monoclinic PbCrO_4 films

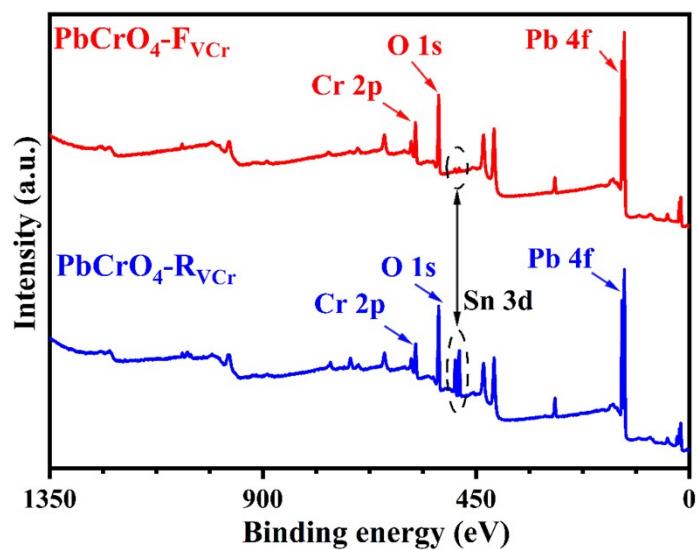
Jiahe Li,^a Gaili Ke,^a Minji Yang,^b Guoliang Lv,^a Lanyi Cao,^a Wenjun Li,^a Tao Han,^a Wenrong Wang,^a Yong Zhou^c and Huichao He^{a*}


^aCollege of Materials and New Energy, Chongqing University of Science and Technology, Chongqing 401331, China.

^bSynthetic Lubricant Oil and Grease Branch, Sinopec Lubricant *Co., Ltd.*, Chongqing, 400039, China.


^cEcomaterials and Renewable Energy Research Center, School of Physics, University Nanjing, Nanjing 211102, China

*Corresponding Author


Email: hehuichao@cqu.edu.cn

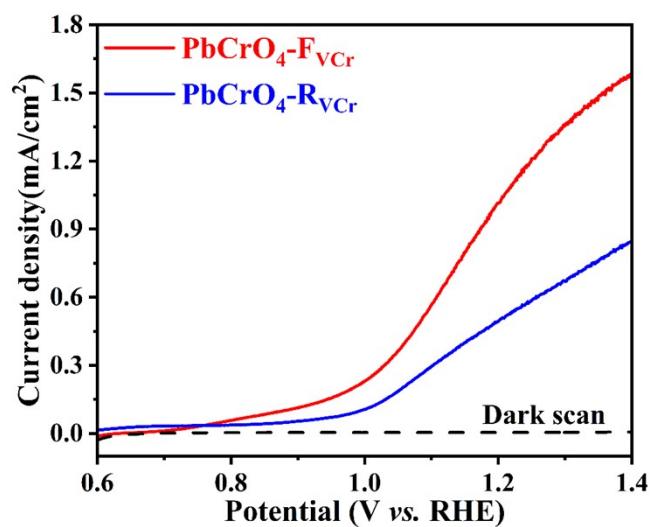
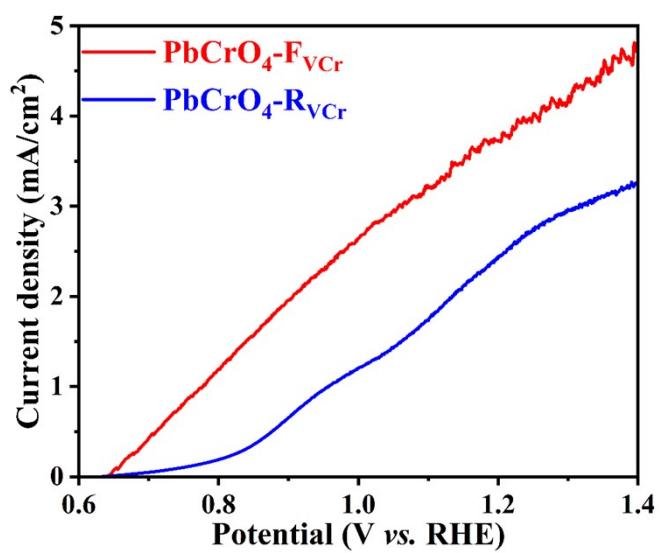

Fig. S1 The nanoparticles' size distribution of (a) PbCrO₄-R_{VCr} and (b) PbCrO₄-F_{VCr} films.

Fig. S2 The photographs of the $\text{Pb}^{2+}/\text{Cr}^{3+}$ precursor solution during thermal treating at different temperatures for the preparation of (a) $\text{PbCrO}_4\text{-R}_{\text{VCr}}$ and (b) $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ films.


Fig. S3 Survey XPS spectrum of $\text{PbCrO}_4\text{-R}_{\text{VCr}}$ and $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ films.

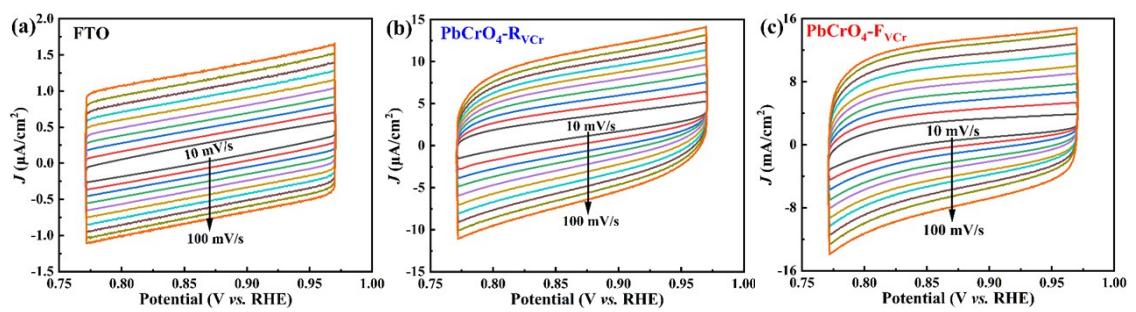
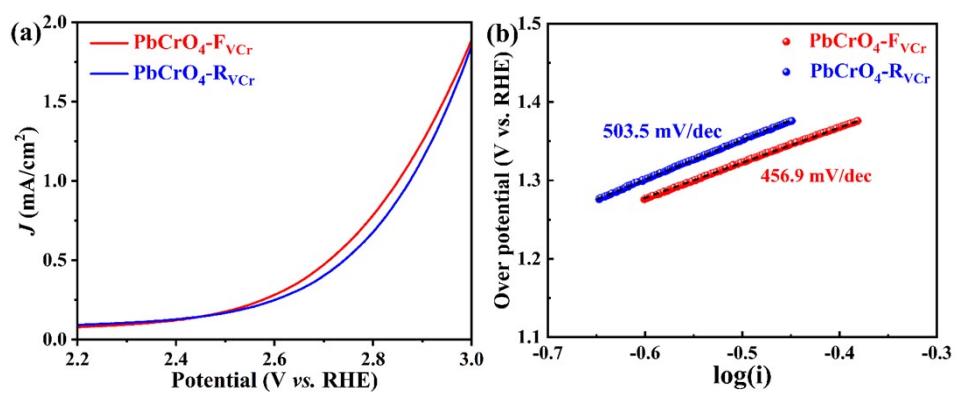
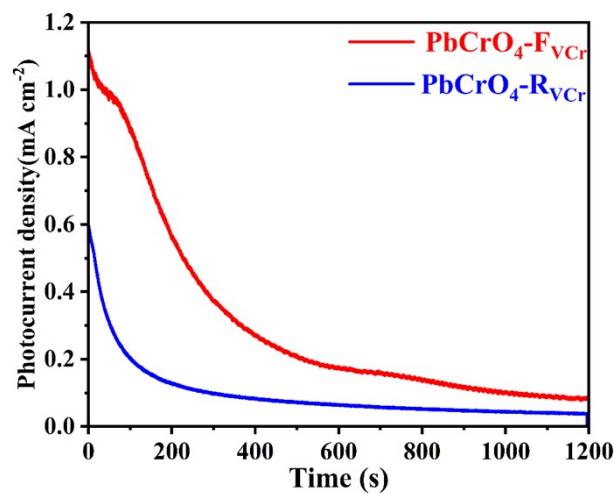
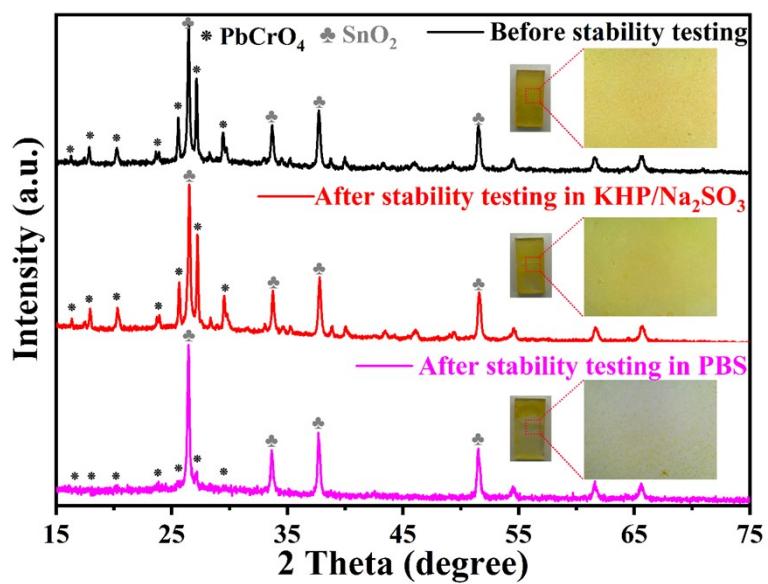
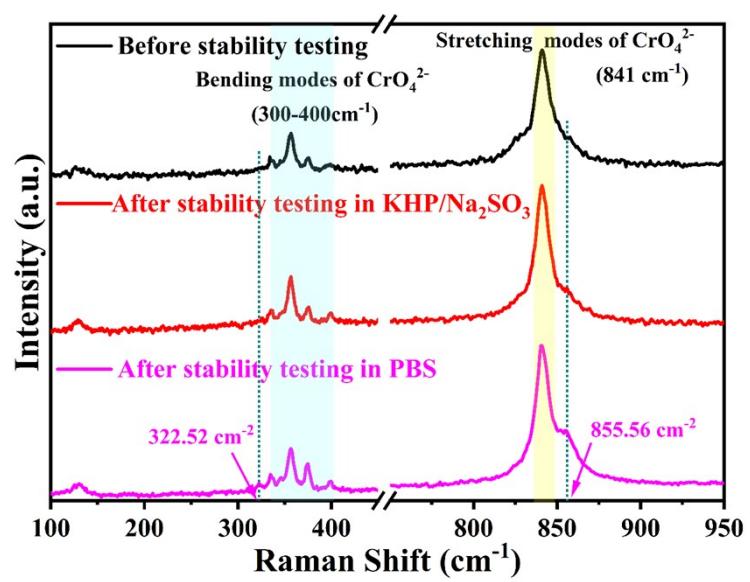

Fig. S4 Under AM 1.5G illumination, LSV curves of $\text{PbCrO}_4\text{-R}_{\text{VCr}}$ and $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film photoanodes in 0.5 M PBS.

Table S1 The activity comparison of our $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film photoanodes to previously reported PbCrO_4 film photoanodes.


Electrolyte (pH)	J (mA/cm ²)	Ref.
0.5 M phosphate buffer (pH 7)	1.14 (at 1.23V <i>vs.</i> RHE)	this work
0.1 M Na_2SO_4 and 0.1 M Na_2SO_3 (pH 7)	0.03 (at 0.4 V <i>vs.</i> Ag/AgCl)	[1]
0.1 M phosphate buffer (pH 6.8)	0.30 (at 1.23V <i>vs.</i> RHE)	[2]
0.1 M borate buffer (pH 9)	~0.10 (at 1.23V <i>vs.</i> RHE)	[3]
0.2 M phosphate buffer (pH 7)	0.57 (at 1.23V <i>vs.</i> RHE)	[4]
0.5 M phosphate buffer (pH 7)	2.70 (at 1.23V <i>vs.</i> RHE)	[5]
0.1 M phosphate buffer (pH 7)	0.06 (at 0.95V <i>vs.</i> RHE)	[6]
0.5 M phosphate buffer (pH 7)	3.43 (at 1.23V <i>vs.</i> RHE)	[7]
0.5 M phosphate buffer (pH 7)	~0.55 (at 1.23V <i>vs.</i> RHE)	[8]


Fig. S5 Under AM 1.5G illumination, LSV curves of $\text{PbCrO}_4\text{-R}_{\text{VCr}}$ and $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film photoanodes in 0.5 M PBS/0.2 vol.% H_2O_2 .


Fig. S6 CV curves of (a) FTO, (b) $\text{PbCrO}_4\text{-R}_{\text{VCr}}$, (c) $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ at different scan rates (10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 mV/s).


Fig. S7 In dark condition, (a) LSV curves and (b) Tafel plots for $\text{PbCrO}_4\text{-R}_{\text{VCr}}$ and $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film electrodes in 0.5 M PBS.

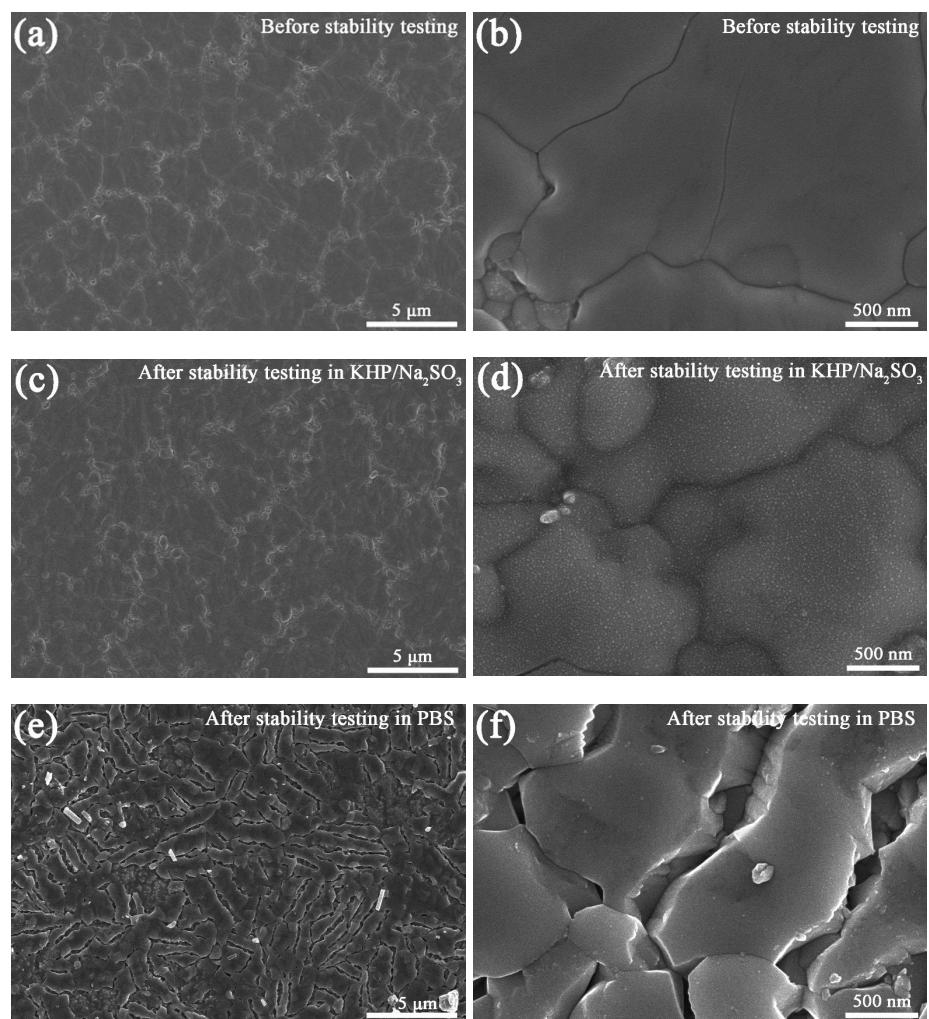
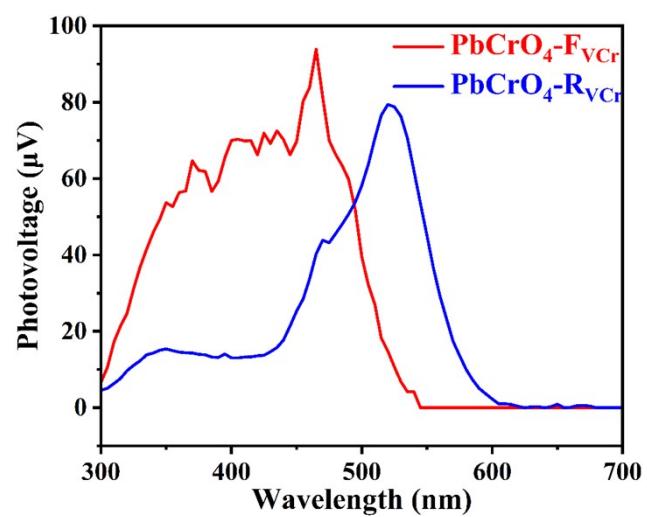

Fig. S8 j - t curves of $\text{PbCrO}_4\text{-R}_{\text{VCr}}$ and $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film photoanodes in 0.5 M PBS under AM 1.5 G irradiation at 1.23 V vs. RHE.

Fig. S9 XRD patterns of PbCrO_4 - F_{VCr} films before and after stability testing in KHP/Na₂SO₃ (shown in **Fig. 5d**) and PBS (shown in **Fig. S8**) electrolyte.

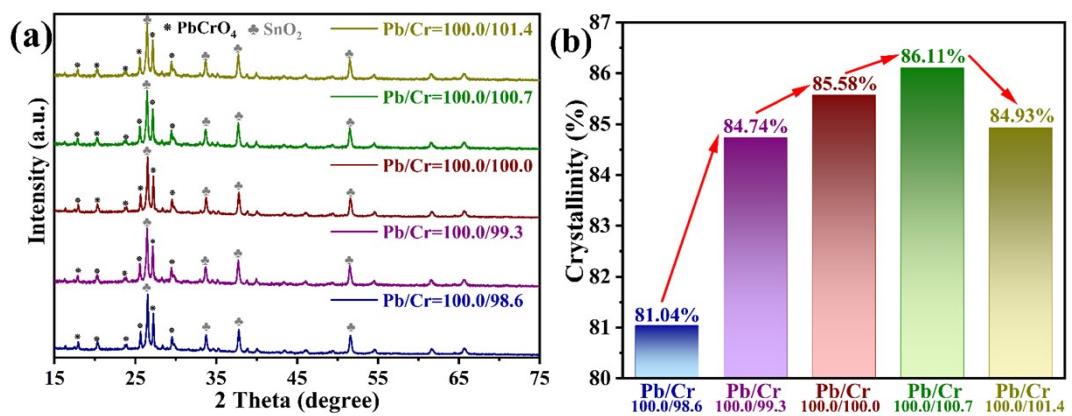
Fig. S10 Raman spectra of PbCrO₄-F_{VCr} films before and after stability testing in KHP/Na₂SO₃ (shown in **Fig. 5d**) and PBS (shown in **Fig. S8**) electrolyte.

Fig. S11 SEM images of $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ films (a, b) before and after stability testing in (c, d) KHP/Na₂SO₃ (shown in **Fig. 5d**) and (e, f) PBS (shown in **Fig. S8**) electrolyte.

Table S2 The simulated ion activity product (IAP) and saturation index (*Sat. index*) of PbCrO_4 film in PBS solution.


Compound	<i>log IAP</i>	<i>Sat. index</i>	Saturation
$\text{CrO}_3(\text{s})$	-22.232	-19.022	Undersaturation
$\text{Pb}_5(\text{PO}_4)_3(\text{OH})$	-61.949	0.841	Oversaturation
PbO (Massicot)	2.14	-10.55	Undersaturation
PbO (Litharge)	2.14	-10.75	Undersaturation
$\text{Pb}(\text{OH})_2(\text{s})$	2.077	-6.073	Undersaturation
$\text{Pb}_2\text{O}(\text{OH})_2(\text{s})$	4.217	-21.973	Undersaturation
$\text{Pb}_3(\text{PO}_4)_2(\text{s})$	-41.991	1.539	Oversaturation
$\text{PbCrO}_4(\text{s})$	-20.092	-7.492	Undersaturation
$\text{PbHPO}_4(\text{s})$	-22.097	1.708	Oversaturation
$\text{PbO}:0.3\text{H}_2\text{O}(\text{s})$	2.119	-10.861	Undersaturation

Results and discussion for Fig. S9 to S11, and Table S2.


To understand the PEC stability feature of $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ films, we have detected the XRD patterns, Raman spectrum and SEM images for the $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ films after stability testing in KHP/ Na_2SO_3 (shown in **Fig. 5d**) and PBS (shown in **Fig. S8**) electrolyte, respectively. As shown in **Fig. S9**, the XRD patterns of $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film after stability testing in KHP/ Na_2SO_3 are very close to those of it before stability testing. Meanwhile, the $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film after stability testing in KHP/ Na_2SO_3 had no obvious color change, relative to it before stability testing (insert of **Fig. S9**). But for the $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film after stability testing in PBS, its XRD patterns partially changed, the diffraction peaks of monoclinic PbCrO_4 (PDF#: 08-0209) at 25.58° , 27.16° and 29.45° disappeared. In addition, the color of $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film after stability testing in PBS was turned to faint yellow, suggesting the presence of composition changes. Further Raman spectrum detections indicated that two new peaks (322.52 cm^{-1} and 855.56 cm^{-1}) be formed in the Raman spectrum of the $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film after stability testing in PBS, compared with it before testing and testing in KHP/ Na_2SO_3 (**Fig. S10**). SEM observations showed that the $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film after stability testing in KHP/ Na_2SO_3 has no obvious change in morphology (**Fig. S11c** and **S11d**), in comparison with it before testing (**Fig. S11a** and **S11b**). But after the stability testing in PBS, significant gaps were observed on the $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film (**Fig. S11e** and **S11f**), indicating dissolution characteristics.

To understand the morphology change of $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film photoanodes after stability testing in PBS, the ion activity product (*IAP*) and saturation index of compounds that could be potentially formed through the dissolution and transformation of PbCrO_4 in PBS solution were simulated using Visual MINTEQ software. The saturation index of compounds (*Sat. index*= $\log(IAP/K_{sp})$) in aqueous solution above 0

uausally means potential dissolution tendency. As shown in **Table S2**, the saturation index of $\text{Pb}_5(\text{PO}_4)_3(\text{OH})$, $\text{Pb}_3(\text{PO}_4)_2(\text{s})$ and $\text{PbHPO}_4(\text{s})$ could be formed through the transformation of PbCrO_4 in PBS solution, and their *Sat.* index are below 0, having dissolution tendency. Additionally, the semiconductors with variable valence state elements are easy to suffer from photocorrosion, since the electrons/holes of semiconductors cannot be transferred and consumed by reactions quickly, the cumulative electrons/holes in/on semiconductors could initiate photocorrosion through reacting with the variable valence elements of semiconductors [9]. Pb has two common valence states of +2 and +4, while Cr has +6 and +3. For PbCrO_4 , its Pb is +2 and Cr is +6. During the PEC reaction on PbCrO_4 photoelectrodes, the Pb(II) could be oxidized into Pb(IV) by the electrons of PbCrO_4 , while the Cr(VI) could be oxidized into Cr(III) by the holes of PbCrO_4 [8]. From above results and analyses, it can be known that $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ film photoanodes encounter photocorrosion and dissolution issue in PBS during stability testing.

Fig. S12 Surface photovoltage spectra of $\text{PbCrO}_4\text{-R}_{\text{VCr}}$ and $\text{PbCrO}_4\text{-F}_{\text{VCr}}$ films in air.

Fig. S13 (a) XRD pattern and (b) crystallinity of PbCrO₄ films which were prepared using precursor solution with different Pb/Cr atomic ratios.

Table S3 The crystallinities of PbCrO_4 films which were prepared using precursor solution with different Pb/Cr atomic ratios.

Sample	<i>hkl</i>	2θ	<i>FWHM</i>	Crystallinity (%)
Pb/Cr=100.0/98.6	(200)	25.560	0.152	
	(120)	27.149	0.120	81.04
Pb/Cr=100.0/99.3	(200)	25.566	0.165	
	(120)	27.150	0.148	84.74
Pb/Cr=100.0/100.0	(200)	25.624	0.118	
	(120)	27.218	0.107	80.41
Pb/Cr=100.0/100.7	(200)	25.557	0.154	
	(120)	27.143	0.138	86.11
Pb/Cr=100.0/101.4	(200)	25.552	0.176	
	(120)	27.146	0.146	84.93

Reference

1. H. C. Lee, S. K. Cho, H. S. Park, K. M. Nam and A. J. Bard, *J. Phys. Chem. C*, 2017, **121**, 17561- 17568.
2. S. K. Cho, R. Akbar, J. Kang, W. Lee and H. S. Park, *J. Mater. Chem. A*, 2018, **6**, 13312- 13320.
3. A. E. Lindberg, W. Wang, S. Zhang, G. Galli and K. S. Choi, *ACS Appl. Energy Mater.*, 2020, **3**, 8658- 8666.
4. J. Kang, Y. R. Gwon and S. K. Cho, *J. Electroanal. Chem.*, 2020, **878**, 114601.
5. H. Zhou, D. Zhang, X. Gong, Z. Feng, M. Shi, Y. Liu, C. Zhang, P. Luan, P. Zhang, F. Fan, R. Li and C. Li, *Adv. Mater.*, 2022, **34**, 2110610.
6. W. Jiang, C. Ni, L. Zhang, M. Shi, J. Qu, H. Zhao, C. Zhao, R. Chen, X. Wang, C. Li, and R. Li, *Angew. Chem. Int. Ed.* 2022, **61**, e202207161.
7. H. Zhou, D. Zhang, H. Xie, Y. Liu, C. Meng, P. Zhang, F. Fan, R. Li and C. Li, *Adv. Mater.*, 2023, **35**, 2300914.
8. J. Li, Y. Huang, H. Wang, M. Yang, T. Han, G. Ke, W. Wang, H. Jiang and H. He, *Langmuir*, 2025, **41**, 20096–20104.
9. S. Chen, D. Huang, P. Xu, W. Xue, L. Lei, M. Cheng, R. Wang, X. Liu and R. Deng, *J. Mater. Chem. A*, 2020, **8**, 2286-2322.