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Experimental Section:
Materials:

SnCls-5H:20 (AR, 99 %, Aladdin and Macklin reagent), HBr (AR, Kermel Chemical Reagent
Factory, Tianjin, China), HCI (AR, Kermel Chemical Reagent Factory, Tianjin, China), SnBr4 (AR,
99 %, Aladdin), SnBr2 (AR, 99 %, Aladdin), SnCl2-2H20 (AR, 98 %, Aladdin), NiCl2-6H.0 (AR,
98 %, Kermel), choline chloride (ChCI, AR, Macklin, 98%), carbon felt (thickness was 5 mm,
purchased from LIAOYANGJINGU), Nafion 115 (membrane) was obtained from Dupont.
Preparation of CNF/CNT-CF Electrode:

Firstly, pristine CFs (5 mm in thickness, 3 x 3 cm? in area) were pretreated via heat treatment
at 550 °C in air for 5 h in a muffle furnace to increase the oxygen content. Subsequently, 2 g of
nickel (1) chloride hexahydrate (NiCl.-6H-0) was dissolved in 100 mL of ethanol. Eight pieces of
the pretreated CFs were immersed into the NiClz-6H2O/ethanol solution, then stirring for 3 h and
ultrasonic treatment for 30 min. Afterward, the soaked fibers were dried at 100 °C to obtain NiCl.-
loaded carbon fibers (denoted as NiCL@CFs).

Next, the as-prepared NiCl.@CFs were calcined in an argon (Ar) atmosphere during a
temperature-ramping stage until to 700 °C, then using a 10% Hz/Ar mixed gas (with a flow rate of
20 mL/min for Hz2 and 200 mL/min for Ar) to reduce NiCl. to metallic nickel (Ni) for 2 h. Turned
off the reducing gas, introducing a 10% acetylene (C:H:)/balanced Ar gas mixture (total flow rate:
380 mL/min) for 15 min. Finally, the sample was naturally cooled in an Ar atmosphere,

To remove the metallic Ni component, the above-synthesized sample was subjected to acid
etching in 3 M sulfuric acid (H2SO.) for 24 h. After etching, the felt was rinsed with excess deionized
water repeatedly until the pH of the rinse solution reached 7. The wet felt was then dried at 50 °C
for 24 h, this sample was donated as CC-700.

For the preparation of CC-600 and CC-800, the same procedure as that for CC-700 were
followed, except the temperature was raised to 600 °C (for CC-600) and 800 °C (for CC-800),
respectively, then introducing the 10% C.Hx/balanced Ar gas mixture for 15 min.

Electrochemical measurement:

The electrochemical performance of the different electrodes was evaluated using a typical
three-electrode system, with all measurements were conducted on a Gamry Multichannel System
(Model: Gamry Interface 1000). Reference electrode was Hg2Clx/Hg (0.242 V vs. SHE), counter
electrode was graphite plate (3 x 3 cm?), the working electrode was round felt with 6 mm (diameter)
and 2 mm (thickness). The cyclic voltammetry (CV) of anolyte was conducted in 20 mL solution
that containing 20 mM SnCls and 2 M HBr. CV tests at different scan rates (5~13 mV st) were
conducted in the electrolyte of 2 M HBr with 5 mM SnBrzand 5 mM SnBr». The EIS measurements
were carried out in galvanostatic mode at a constant current of 5 mA, with a frequency range
spanning from 100 kHz to 0.1 Hz
Materials characterization:

Scanning electron microscopy with EDS (SEM, JSM-7800F, JEOL) and transmission electron
microscope (TEM, JEM-2100, JEOL) were used to characterize electrode morphology and the
deposited tin layer. X-Ray Diffraction (XRD, D8 ADVANCE ECO; RIGAKU, Japan) was applied
to characterize electrodes. Raman spectroscopy (Nano Wizard, manufacturer: Renishaw) was
employed to characterize the coordination structures of stannic ions (Sn*"), stannous ions (Sn?*) and
the structural characteristics of CC-T. Additionally, in-situ Raman spectroscopy was used to
investigate the structural transformations during the valence state changes of tin. The specific
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surface areas (SSAs) of the electrodes were tested via N2 adsorption-desorption measurements,
which were performed using a gas adsorption analyzer (ASAP-2010/ASAP 2010M), the data were
calculated from the adsorption branches of the isotherms using the Brunauer-Emmett-Teller (BET)
method. X-ray photoelectron spectroscopy (XPS, Thermofisher Escalab 250 Xi+) was employed to
characterize the surface chemical composition, chemical bonding states of C and O elements, and
surface oxygen content of the electrode material. Inductively Coupled Plasma Optical Emission
Spectroscopy (ICP-OES, PerkinElmer, Avio 550 Max) was employed to determine the
concentration of tin ions.

Density functional theory (DFT) calculations:

All structural optimizations and energy calculations in this work were conducted using the
Vienna ab initio simulation package (VASP6.4.2) based on the spin-polarized density functional
theory (DFT)®. For the generation of pseudopotential, the projected augmented wave method with
a cutoff energy of 450 eV and Perdew—Burke—Erzenh functional in the generalized gradient
approximation (GGA) was employed®. The empirical revision of Grimme's scheme take into
account using the van der Waals interaction (DFT—D3) 57 %8, The carbon nanotube (CNT) model
was built using Material Studio software. The carbon nanotube had a diameter of 4.07 angstroms
and a length of five structural units. For CNT@OH/COOH, we connected two pairs of OH and
COOH groups on the C ends of CNT. The Gamma point was used for the catalysts. All the structural
models were optimized to the ground state until the convergence of energy and the residual forces
less than 1075 eV and 0.02 eV A™!, respectively. The VASPKIT code was used for postprocessing
computational data obtained from VASP%,

Sn-Br battery test:

A Sn-Br flow battery was assembled by sandwiching a Nafion 115 membrane (DuPont, USA)
between a positive electrode (PCF) and a negative electrode (CC-T or PCF). The assembly was
maintained at a compression ratio of approximately 0.8, with an effective electrode area of 3 x 3
cm?, and two polar plates were used to clamp the electrode-membrane assembly.

Battery performance tests were conducted using a Neware battery test system (5 V, 12 A;
Neware Corp., Shenzhen, China). For 1 M electrolytes, the state-of-charge (SOC) was
approximately 70%, the current densities of charge-discharge tests were 40 mA cm™2, and the
discharge cutoff voltage was set at 0.4 V, the common electrolyte was composed of 1 M SnCls-5H-0,
2 M HBr, and 0.16 M choline chloride (ChCI; used as a complexant to inhibit bromine diffusion).
The negative electrolyte (8 mL) was delivered via a peristaltic pump at a set flow rate of 60 mL
min~', while the positive electrolyte (50 mL) was circulated using a magnetic pump. For 2 M
electrolytes, anolyte: 2 M SnCls + 0.16 M ChCI + 2 M HBr, 8 ml; catholyte: 1 M SnCls + 0.16 M
ChCI + 2 M HBr, 100ml, the battery was charged to 1.5 V and subsequently discharged to 0.4 V.
For 4 M electrolytes, anolyte: 4 M SnCls + 0.16 M ChCI + 2 M HBr, 8 ml; catholyte: 1 M SnCl. +
0.16 M ChCI + 2 M HBr, 100ml, the battery was charged to 1.5 V and subsequently discharged to
0.4 V. The battery was tested at current densities ranging from 40 to 120 mA c¢m-?, charging to 70%
SOC and discharging to 0.4 V, the electrolyte was same as the above 1 M electrolytes. The battery
of high specific capacity was assembled same as the above 1 M electrolytes, except the battery was
charged to 1.5 V. The high areal capacity Sn-based battery: adopted the aforementioned 1 M
common electrolyte, with 60 mL for the anode and 300 mL for the cathode, the battery was charged
to 1.5 V and subsequently discharged to 0.4 V. All electrolytes in the experiments were prepared
using ultra-pure water.
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In-Situ Raman Spectroscopy

The in-situ evaluation system enabled simultaneous flow battery charge-discharge operation
and Raman detection. A transparent quartz tube was installed in the pipeline on the anode side of
the flow battery, positioned beneath the Raman detector for signal collection. The electrolyte
configurations used as follows: 1 M SnCls + 0.16 M ChCI + 2 M HBr (12 ml for the anolyte, 50 ml
for the catholyte). Test was conducted under constant current conditions of 80 mA cm?, with
charging to 1.7 V and discharging to 0.4 V. The exposure time was set to 60 seconds, with laser
intensity at 5% and integration times was 1.



A WDNPR

Figure S1. (a) SEM image of the NiClz-treated CF: (b) EDS mapping of C and (c) Ni. The insets in
(b) and (c) correspond to the SEM images of the respective regions.
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Figure S2. SEM images of (a) CC-600, (b) CC-700 and (c) CC-800. In-situ grown carbon
nanotubes (CNTSs) are uniformly deposited on the surface of CF.
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Figure S3. Adsorption and desorption isotherms of (a) CC-600, (b) CC-700, (c) CC-800, and (d)
pristine CF. () Comparison of the specific surface area across different electrode materials.
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Figure S4. (a) XRD comparison patterns of CC-700 before and after acid etch. (b) TEM images of
CC-700 before and after acid etch (inset). (c) SEM images of CC-700 after acid etch. The results
indicate that the morphology of the CC-700 remains unchanged after etching.
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Figure S5. FT-IR spectra of CC-700 and CC-700+Sn ions electrodes.
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Fig S6. Comparison curve of the remaining Sn ion after adsorption test using pristine CF vs. pre-
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Figure S7. TEM images of (a, b) CC-600. (c, d) CC-700. and (e, f) CC-800.
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Figure S8. CV curves of the electrodes at different scan rates. (a) CC-700. (b) CC-600. (c) CC-
800. (d) The current and sweep rate exhibit a linear relationship, the current at this stage was
capacitive current stem from the potential at 0.2 V, the slope value is Cdl, the double layer
capacitance. The tests were conducted at the voltage near to open-circuit voltage (OCV).

12



A WNPF

o o
o IS

Desorption energy (eV)

<
2

CNTs CNTs@OH/COOH

s
&

T T
CNTs CNTs@OH/COOH
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Desorption energy simulation of Sn atom on CNTs and CNTs@OH/COOH, respectively.
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Figure S10. The equivalent circuit and associated resistances, including Rohm (ohmic resistance)
and Rct (charge transfer resistance). The electrolyte is composed of 1 M SnCls+2 M HBr+0.16 M
ChCl. Before testing, the batteries were charged to a state of charge (SOC) of 25%.
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Figure S16. (a-c) SEM images of Sn deposition. (d) EDS mapping of Sn, with the inset in (d)
corresponding to the SEM image.
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Figure S18. Morphological characterization of Sn deposits after long-term cycling. (a-c)
Photographs of CC-700 after Sn deposition. (d-€) SEM images of the cross-sectional micrograph of
Sn deposits.
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Figure S19. SEM images of CC-700 after cycling test, derived from Figure 4d.
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Figure S20. Raman spectra of the CC-700 before and after long-cycling test.
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Figure S28. SEM images of tin deposition at varying areal capacities. (a-b) Areal capacity of 285
mAh cm™2, (c-d) 428 mAh cm2, and (e-h) 464 mAh cm2. The tin deposition morphology remains
uniformly smooth, with no dendrite formation observed across all tested areal capacities.
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Table S1. The intrinsic rate constant ko in various electrodes

Sn**—Sn2* Sn?*—Sn*
Electrolyte ~ ECSA (cm?)
Interceptd ko (cms?)x 102  Interceptd ko (cms) x 1072
CC-600 1.93 0.17 0.14 2.58 1.56
CC-700 2.05 0.63 0.20 2.68 157
CC-800 0.68 -0.11 0.30 240 3.70

anF
I = 0.227nFACk%xp [— (E —E9]
P RT P
Ep: anode peak potential (V); E° =-0.0915 V (vs SCE); F : faraday constant, 96485 C/mol;
C: concentration of SnCl, (10*10°° mol/L);
a: charge transfer coefficient (0.5); A: the surface of electrode (ECSA is for calculating ko; the
geometric area (0.28274 cm?) is for Kapp)
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Table S2. The diffusion coefficient Dapp in various electrodes

Sn**—Sn?* Sn?*—Sn**
Electrode
2 -1 -6 2 -1 6
Slope k D (cm s )x10 Slope k D (cm s )x10
app app

CC-600 -5.76 7.17 7.50 12.15

CC-700 -6.58 9.36 7.96 13.69

CC-800 -3.50 2.65 6.15 8.17

PCF -3.82 3.15 5.31 6.09

IP:2.69 X 105n3/2ADZ/2171/ZC
IP : peak current (mA); n: number of electron transfer (n=2);
C: concentration of Sn (10*10-3 mol/L); Dapp: diffusion coefficient;
A: the surface of electrode, 0.28274 cm?; v: scan rate
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