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1. General information

Materials.

Solvents and commercially available chemicals were obtained from were purchased from
companies such as Alfa Aesar, Sigma-Aldrich, Aladdin, Macklin, etc., and employed without
without further purification.

Methods.

Characterization. NMR spectra were recorded with a BrukerAvance 111 HD600 spectrometer
at 600 MHz (*H NMR), 151 MHz (*C NMR). All *C, and *H NMR spectra were recorded
using CDCls as solvent. Solid-state cross-polarization along with magic angle spinning spectra
(*3C CP/MAS) were recorded with an NMR spectrometer of Bruker Avance Neo 400WB. The
Fourier transform infrared (FTIR) experiment was executed by a Thermo Fisher Scientific
Nicolet iS20 (400-4000 cm™). Elemental analysis was carried out using elemental analyzer on
a Vario-EL Cube. The scanning electron microscopic (SEM) investigation was recorded by
ZEISS Sigma 300. Transmission electron microscopy (TEM), high-resolution TEM (HRTEM)
images and element mapping were measured on a JEOL JEM-F200 microscope operated at 200
kV. Powder X-ray diffraction (PXRD) measurement was marched adopting a DX-2700A
diffractometer with a filtered Cu Ka line, and the spectrum was gathered from 5° to 50° in 2°
/min at room temperature. Inductively coupled plasma-mass spectrometry (ICP-MS) was
executed by PerkinElmer ICP 2100. The solid-state UV—vis diffuse reflectance spectra were
recorded with a Shimadzu UV-2600 UV—vis/NIR Spectrometer at ambient temperature. The
N, adsorption/desorption isotherms and specific surface area were determined at 77 K using a
Micromeritics ASAP 2460 Version 3.01 automated system with the Brunauer-Emmet-Teller
(BET) method, while the pore size of the samples was determined using nonlocal density
functional theory (NLDFT). The thermogravimetric analysis (TGA) curve was recorded on a
RIGAKU, TG-DTA8122, thermo plus EVO2 thermogravimeter from 30 to 800 <C at a rate of
15 <C/min under an N, atmosphere. The transient luminescent spectra were performed on the
FLS1000 laser flash photolysis instrument (Edinburgh, UK). Electron paramagnetic resonance
(EPR) spectra were recorded with Bruker EMXplus-6/1 EPR spectrometer at room temperature.

Information about the photochemical reactions: The light-promoted reactions were performed
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by blue LEDs (25 W 400-410 nm, purchased from Xuzhou Aijia Electronic Technology Co.,
Ltd, Jiangsu, China) approximately 4 cm away from the reaction tube with no filter, and with a
fan to keep room temperature. The material of the irradiation vessel is borosilicate glass.
Photoelectrochemical measurement. To study the photoelectrochemical characteristics of the
photocatalysts, we used a standard workstation with a three-electrode system (CHI 760E),
which was prepared by adding 10 mg catalyst, Nafion (50 pL) in 1 mL of ethanol and sonicated
for 30 min. Moreover, the mixture (100 L) was dripped on an FTO glass (1x<1 cm?) and then
dry at room temperature for photoelectric test. The Mott—Schottky analysis was executed by
using a classical sample electrode with FTO conductive glass as an electrode, an electrode with
platinum wire was used as a counter electrode while the Ag/AgCI was used as the reference
electrode, measured at different frequencies. The photocurrent responses of the samples were
recorded in 0.2 mol/L Na,SO4 under the radiation of a Xe lamp via 30 s light on-off cycles.
Computational details. All the calculations were performed using the Gaussian 16 software
package. Geometry optimization of the compounds was conducted at the B3LYP2-D3(BJ)3density
functional theory level using the basis set 6-311g(d,p)* for all atoms. In addition, Hessian
calculations for obtaining the vibrational frequencies were performed at the same level of theory as
that for the geometry optimization to check whether the optimized geometrical structure is an energy
minimum (with no imaginary frequency). The single-point energies calculations were performed by
the M06-2X(D3)° density functional with the def2-TZVPP® for all atoms. For the Time-Dependent
density functional theory (TD-DFT), CAM-B3LYP-D3(BJ)" is used for the corresponding excited
state calculations. The electrostatic potential (ESP), three-dimensional parameters of substrate
molecules, and holes-electrons maps were analyzed using the Multiwfn 3.8 programé. Viewing of
optimized structures and rendering of molecular orbitals and spin densities were performed using

the program VMD?®.

2. Synthetic procedures

Synthesis of 1,3,6,8-tetrakis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene (Py-
(Bpin)a) *°
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Bis(pinacolato)diboron (35.2g, 138.8 mmol) was added to a stirred solution of 1,3,6,8-
tetrabromopyrene (12.0g, 23.0 mmol), Pd(dppf)Cl2 (1.28 g, 2.0 mmol) and potassium acetate
(14.0 g, 142.8 mmol) in anhydrous DMSO (240 mL) under nitrogen atmosphere. The reaction
solution was heated to 80 €€ and stirred for 48 h. The reaction mixture was cooled to room
temperature, and poured into water (1 L) and filtered. The product was purified by column
chromatography on silica gel using dichloromethane and petroleum ether as the eluent to afford
the product as a pale white solid (8.0 g, 48%). *H NMR (500 MHz, Chloroform-d) & 9.16 (s,
4H), 8.99 (d, J = 2.0 Hz, 2H), 1.50 (s, 48H).3C NMR (151 MHz, Chloroform-d) & 141.34,

137.98, 129.43, 124.65, 123.99, 83.84, 25.09.
Synthesis of 2,7-dibromo-9,9-difluoro-9H-fluorene (2Br-FF) 1
R F

Br O'O Br

NFSI (N-fluorobis(benzenesulfon)imide, 3.8 g, 12.0 mmol) and 2,7-dibromo-9H-fluorene
(972.0 mg, 3.0 mmol) were dissolved in THF (15 mL) and stirred for 10 min at -70 °C. KHMDS
(potassium hexamethylsilazane, 1.0 M in THF, 12 mL, 12.0 mmol) was added dropwise into
the reaction over 20 min. Then the reaction mixture was stirred at this temperature for over 3
hours until the reaction was finished (detected by TLC, petroleum ether/ethyl acetate, 200:1).
The excess of base (KHMDS) was quenched with 30 drops of CH;OH, followed by addition of
20 mL of hexane. The suspension was filtered through a pad of silica gel and the filtrate was
concentrated. Finally, the solid residue was recrystallized by petroleum ether/ethyl acetate (80:1)
to provide 2,7-dibromo-9,9-difluoro-9H-fluorene as a pale yellow solid (860.0 mg, 79% yield).
IH NMR (600 MHz, Chloroform-d) & 7.74 (q, J = 1.7 Hz, 2H), 7.59 (dd, J = 8.1, 1.8 Hz, 2H),

7.39 (d, J = 8.1 Hz, 2H). **C NMR (151 MHz, Chloroform-d) & 139.28 (t, J = 25.3 Hz), 137.39
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(t, J = 4.8 Hz), 135.30, 127.47, 123.36, 122.83, 121.83, 121.73, 120.11. **F NMR (565 MHz,
Chloroform-d) ¢ -111.02.

Synthesis of 2,7-dibromo-9,9-dimethyl-9H-fluorene (2Br-MF)

Br Q.O Br

2,7-dibromo-9H-fluorene (3.2 g, 10.0 mmol) and K1 (166.0 mg, 1.0 mmol) were dispersed in
dimethyl sulfoxide (DMSO, 20 mL) at room temperature. KOH pellets (2.2 g, 40.0 mmol) was
added over 10 min. After addition, the mixture was stirred for 1 hour until the solution intense
red. CHsl (1.56 mL, 25.0 mmol) was added dropwise over 20 min, and the stirring was
continued for 16 hours at room temperature. The reaction was quenched with CH,Cl, (40 mL).
The suspension was filtered through a pad of silica gel, and the filtrate was poured into water
(200 mL). The mixture was then extracted with CH,Cl, (20 mL x 3). The combined organic
layers were dried by anhydrous Na.SOs, then concentrated by vacuum evaporator. The product
was purified by column chromatography on silica gel using petroleum ether and ethyl acetate
(100:1) as the eluent to afford the 2,7-dibromo-9,9-dimethyl-9H-fluorene as a white solid (2.9
g, 83% yield). *H NMR (600 MHz, Chloroform-d) & 7.55 (dd, J = 4.1, 2.2 Hz, 3H), 7.53 (s,
1H), 7.46 (dd, J = 8.1, 1.8 Hz, 2H), 1.47 (s, 6H). 3C NMR (151 MHz, Chloroform-d) & 155.28,

137.19, 130.37, 126.23, 121.51 (d, J = 5.9 Hz), 47.34, 26.88.
Synthesis of the FF-Py-CPP and MF-Py-CPP

K»CO3, Pd(PPh3),

DMF, 150 °C, 2d

D Py-(BPin),
avten

KoCO3, Pd(PPhs),

2Br-MF DMF, 150 °C, 2 d

MF-Py-CPP
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FF-Py-CPP was synthesized according to a literature procedure with modifications.’® A
mixture of 1,3,6,8-tetrakis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene (Py-(Bpin)s, 353 mg,
0.5 mmol), 2,7-dibromo-9,9-difluoro-9H-fluorene (2Br-FF, 358 mg, 1.0 mmol), K,COs; (2.0 M
aqueous solution, 2 mL), Pd(PPhs)s (10 mg, 0.63 mol%), and DMF (20 mL) was charged into a
Schlenk tube. The reaction mixture was degassed via N2 bubbling for 15 min, heated to 150 <C and
stirred for 48 h. After cooling to ambient temperature, the precipitate was obtained by filtration. The
crude polymer was sequentially washed with ethanol, deionized water, tetrahydrofuran and
dichloromethane. Following vacuum drying at 70 <C for 24 h, FF-Py-CPP was obtained as a yellow
solid powder in 80% yield. Elemental analysis (%) calcd. for (CsHisF4)n (%): C 84.3; H 3.0.
Found: C 71.5; H 4.2. Pd 0.00189 wt% was obtained from inductively coupled plasma atomic
emission spectroscopy (ICP-MS).

The same procedure was applied to MF-Py-CPP, wherein 2,7-dibromo-9,9-dimethyl-9H-
fluorene (2Br-MF, 350 mg, 1.00 mmol) instead of 2Br-FF. MF-Py-CPP was obtained as yellow solid
powder in 75% yield. Elemental analysis (%) calcd. for (CasHso)n (%): C 94.8; H 5.2. Found: C
80.1; H 5.8. Pd 0.00336 wt% was obtained from inductively coupled plasma atomic emission

spectroscopy (ICP-MS).
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3. Overview of Substrates
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Fig. S1. Pore size distribution of (a) FF-Py-CPP and (b) MF-Py-CPP.
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Fig. S2. (a) High-resolution TEM images and EDS mapping of FF-Py-CPP. (b) High-resolution
TEM images and EDS mapping of MF-Py-CPP.
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Fig. S3. (a) Wide-scan XPS spectrum of FF-Py-CPP. (b) Wide-scan XPS spectrum of MF-Py-
CPP. (c) XPS C1s spectra of FF-Py-CPP (d) XPS F1s spectra of FF-Py-CPP (e) XPS C1s
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Fig. S4. Photoluminescence decay spectra of (a) FF-Py-CPP and (b) MF-Py-CPP.

4. Photocatalytic cycloaddition reactions

4.1 [4+2] Cycloaddition reaction
General procedure of [4+2] cycloaddition reaction.

A 10 mL oven-dried reaction vessel with a stir bar was charged with FF-Py-CPP (3 mol%) and
2,2,2-trifluoroethanol (TFE, 1 mL). Subsequently, phenols 1 (0.20 mmol), olefins 2 (0.40 mmol),
NaHPO4 (0.40 mmol), and (NH4).S20g (0.24 mmol) were added. The reaction mixture was stirred
under the irradiation of a 25 W blue LED (400-410 nm) with fan cooling to maintain ambient
temperature for 24 h. The FF-Py-CPP catalyst was recovered by centrifugation and washed with
EtOAC three times. The residue was further purified by rapid column chromatography (SiO.) using

the suitable eluent (PE/EtOAC) to afford the desired products.

Table S1. Optimization of [4+2] cycloaddition reaction conditions.

FF-Py-CPP (3 mol%)
© o
O OHH MeO TFE, rt., 24 h

1a 2a
Entry Variation from the standard conditions Yield (%)°
1 Standard condition? 74
2 No FF-Py-CPP NR
3 No light (dark) NR
4 No (NH4)28208 NR
5 No Na;HPO4 65
6 NasPO. instead of Na;HPO4 32
7 'BUOOH instead of (NH4)2S,0s NR
8 BPO instead of (NH.),S,0s trace
9 TBHP instead of (NH4)2S.0s 24
10 MeOH instead of TFE 31
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11 DCE instead of TFE 25

12 CH3CN instead of TFE trace
13 Under 360-370 nm 25 W LEDs 50
14 Under 460-470 nm 25 W LEDs 48
15 Under 520-530 nm 25 W LEDs 23
16 Under 400-410 nm 5 W LEDs 65
17 Under 400-410 nm 45 W LEDs 72
18 1 mol% of FF-Py-CPP instead of 3 mol% 34
19 1.5 mol% of FF-Py-CPP instead of 3 mol% 43
20 2 mol% of FF-Py-CPP instead of 3 mol% 50
21 2.5 mol% of FF-Py-CPP instead of 3 mol% 61
22 3.5 mol% of FF-Py-CPP instead of 3 mol% 74
23 4 mol% of FF-Py-CPP instead of 3 mol% 73
24 5 mol% of FF-Py-CPP instead of 3 mol% 73
25 10 mol% of FF-Py-CPP instead of 3 mol% 74
26 MF-Py-CPP instead of FF-Py-CPP 32
27 FF-2Br instead of FF-Py-CPP NR
28 Py-BPiny instead of FF-Py-CPP NR

aStandard conditions: 1a (0.20 mmol), 2a (0.40 mmol), FF-Py-CPP (3 mol%),
(NH4)2S20s (0.24 mmol), Na,HPO4 (0.40 mmol), TFE (1 mL), 400-410 nm 25 W
LEDs, room temperature, 24 h. Isolated yields.

4.2 [3+2] Cycloaddition reaction
General procedure of [3+2] cycloaddition reaction.

A 10 mL oven-dried reaction vessel with a stir bar was charged with FF-Py-CPP (3 mol%) and
CH3CN (1 mL). Subsequently, phenols 4 (0.20 mmol), olefins 2 (0.40 mmol), and ammonium
persulfate (0.24 mmol) were added. The reaction mixture was stirred under the irradiation of a 25
W blue LED (400-410 nm) with fan cooling to maintain ambient temperature for 24 h. The FF-Py-
CPP catalyst was recovered by centrifugation and washed with EtOAc three times. The residue was
further purified by rapid column chromatography (SiO2) using the suitable eluent (PE/EtOAC) to
afford the desired products.

Table S2. Optimization of [3+2] cycloaddition reaction conditions.

MeQ,
FF-Py-CPP (3 mol%)

OH . Meo\©\/ (NH4);S,05(1.2eq.) O
/E j bule LEDs (400-410 nm)
= O
MeO CH4CN, rt., 24 h O

4a 2a 5a oMe
Entry Variation from the standard conditions? Yield (%)P

1 TFE N.R.

2 CHsCN 70
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3 MeOH N.R.

4 BPO instead of (NH4)2S20s 45

5 TBHP instead of (NH.).S,0s N.R.
4Reaction conditions: 4 (0.20 mmol), 2 (0.40 mmol), FF-Py-CPP (3 mol%),
(NH4)25208 (0.24 mmol), CH:CN (2.0 mL), 400-410 nm 25 W blue LEDs, room
temperature, 24 h. Isolated yields.

5. Light on/off experiment

This experiment was performed according to the general procedure using 1a (0.20 mmol), 2a
(0.40 mmol), NazHPO4 (0.40 mmol), (NH4)2S20s (0.24 mmol), and FF-Py-CPP (3 mol%) in TFE
(1 mL). The light was switched on and off every 3 hours, and the samples taken after each time

interval with light on and light off were analyzed by *H NMR analysis (Fig. S5).
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Fig. S5. Light-on/off experiment over time.

7. Substrate adsorption experiments

In order to investigate the adsorption performance of FF-Py-CPP in equimolar 1a/2a solutions. 5
mg of FF-Py-CPP was added to 1 mL of 1a/2a equimolar solution (0.1-1.0 mmol mL™), and the
mixture was shaken in a thermostatic water bath at 150 rpm and 25 <C for 4 h. Afterward, take the
supernatant and calculate the concentration by the internal standard method of nuclear magnetic
resonance. The equilibrium adsorption capacity ge (mmol - g*) was calculated by the following Egs.
ge =V %x(Co — Ce)/m

where Co (mmol L) is the initial solute concentration of 1a or 2a, V (L) is the total volume of the

solution, Ce (mmol L) the equilibrium solute concentration, and m (g) is the mass of adsorbent.
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Fig. S6. Adsorption of 1a and 2a on FF-Py-CPP in equimolar solution.

8. Apparent quantum yield (AQY) measurement

The AQY was calculated by the following equation:

AOY KXMXNy,XhXc 100%
= X
Q AXPXtxA °

Where, K is number of transferred electrons in the reaction, M is the amount of product molecules
(mol), Na is Avogadro constant (6.022>10% mol™?), h is the Planck constant (6.626><10-3* J s), ¢ is
the speed of light (3<108 m s?), A is the irradiation area (1 cm), P is the intensity of irradiation
light (0.0025 W cm™), t is the photoreaction time (24 h), A is the wavelength of the monochromatic

light (410 nm).

The calculated apparent quantum yield (AQY = 19.8%) of the reaction underscores the good
catalytic performance of the FF-Py-CPP.

9. Photocatalyst recyclability studies

The photocatalytic reaction was performed according to the general procedure using 1a (0.20
mmol), 2a (0.40 mmol), NazHPO. (0.40 mmol), (NH4)2S20s (0.24 mmol), and FF-Py-CPP (0.06
mmol) in TFE (1 mL). After the reaction was complete, FF-Py-CPP was recovered by centrifugation
and washed with EA (10 mL), water (10 mL), THF (10 mL), and acetone (10 mL), dried under
vacuum at room temperature overnight, and used for the next cycle. FF-Py-CPP was recycled over
six consecutive catalytic runs. After each cycle, 3a was isolated via rapid column chromatography

(SiOy) with a suitable eluent (PE/EtOAC) to afford the desired product.
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Fig. S7. Plot of number of cycles vs yield.

Fig. S8. Comparison of SEM images of FF-Py-CCP (a) before and (b) after catalysis.
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Fig. S9. Comparison of PXRD patterns of FF-Py-CCP before and after catalysis.
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Fig. S10. FTIR analysis of FF-Py-CPP before and after six catalytic cycles.
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Fig. S11. Hole electron analysis based on electron excitation characteristics. (a) 1a, and (b) FF-
Py-CPP. Contribution maps of electron, hole, and “electron + hole” during the “So — S:”
excitation of these two model molecules, as well as the contribution heat maps of non-hydrogen
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atoms to holes, electrons, and the overlap between holes and electrons, are presented
respectively. The isosurface 0.01 a.u. is plotted.

Table S3. Contribution of each non-hydrogen atom/ the key molecular orbital (MO) to hole and
electron in 1a (a), and (b) FF-Py-CPP.

Note: contributions <= 0.50 % will not be printed
(@) la

Qs @ Cw @
Cs 5 L
© ¢ ¢
W
Catom:

1(C) Hole:14.68% Electron: 9.62% Overlap: 11.88 % Diff.: -5.05%

2(C) Hole:12.70 % Electron: 14.78 % Overlap: 13.70 % Diff.. 2.08%

3(C) Hole:10.35% Electron: 16.86 % Overlap: 13.21 % Diff.. 6.52 %

4(C) Hole: 18.54 % Electron: 10.15% Overlap: 13.72 % Diff.: -8.39%

5(C) Hole:10.88% Electron: 16.76 % Overlap: 13.51 % Diff.. 5.88%

6(C) Hole:12.98% Electron: 16.23 % Overlap: 14.52 % Diff.. 3.25%
11(O) Hole: 11.24% Electron: 1.86% Overlap: 4.57 % Diff.: -9.39%
13(C) Hole: 1.55% Electron: 2.27% Overlap: 1.87% Diff.. 0.72%
16(C) Hole: 0.18% Electron: 0.33% Overlap: 0.24% Diff.. 0.14%
17(C) Hole: 0.09% Electron: 0.20% Overlap: 0.14% Diff.. 0.11%
18(C) Hole: 0.09% Electron: 0.20% Overlap: 0.14% Diff.. 0.11%
19(C) Hole: 0.07% Electron: 0.12% Owverlap: 0.09% Diff.. 0.05%
21(C) Hole: 0.08% Electron: 0.12% Overlap: 0.10% Diff.. 0.05%
23(C) Hole: 0.06% Electron: 0.07% Overlap: 0.07% Diff.. 0.01%

Sum of hole shown above: 93.51%  Sum of electron shown above: 89.58%

Cwmo:

MO  48,0cc:  2.00000 Hole: 22.783 % Electron: 0.000 % (HOMO-1)
MO  49,0cc: 2.00000 Hole: 74.472% Electron: 0.000 % (HOMO)
MO  50,0Occ: 0.00000 Hole: 0.000 % Electron: 5.629 % (LUMO)
MO  52,0cc: 0.00000 Hole: 0.000 % Electron:  74.163 % (LUMO+1)
MO  53,0cc: 0.00000 Hole: 0.000 % Electron:  19.490 % (LUMO+2)

(b) FF-Py-CPP
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Catom:
1(C)
2(C)
3(C)
4(C)
5(C)
6(C)
7(C)
8(C)
9(C)

10(C)
11(C)
12(C)
13(C)
14(C)
15(C)
16(C)
17(C)
18(C)
19(C)
20(C)
21(C)
22(C)
23(C)
24(C)
25(C)
26(C)
27(C)
28(C)
29(F)
30(F)
31(C)
32(C)
33(C)

Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:

7.30 %
3.80 %
0.79%
3.80 %
7.30 %
1.98 %
0.79%
3.80 %
5.45%
5.45%
5.45%
5.45%
3.80 %
7.30 %
1.98 %
1.40 %
0.98 %
0.40 %
0.97 %
0.32%
0.86 %
0.28 %
0.25%
0.05%
0.23%
0.11 %
0.31%
0.08 %
0.01 %
0.01 %
0.31%
0.11 %
0.23%

Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:

6.51 %
3.74 %
0.92 %
3.74%
6.51 %
2.18%
0.92 %
3.74%
4.79%
4.79%
4.79 %
4.79%
3.74 %
6.51 %
218 %
1.54%
121%
0.43 %
121%
0.57 %
0.76 %
0.38 %
0.26 %
0.13%
0.30 %
011%
0.31%
0.09 %
0.06 %
0.06 %
0.31%
011%
0.30 %

Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
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6.89 %
3.77%
0.85 %
3.77%
6.89 %
2.07 %
0.85 %
3.77%
511%
511%
511%
511%
3.77 %
6.89 %
207 %
1.47 %
1.09 %
0.42 %
1.08 %
0.43 %
0.81 %
0.32 %
0.26 %
0.08 %
0.27 %
0.11 %
0.31%
0.09 %
0.02 %
0.03 %
0.31%
0.11 %
0.27 %

Diff..
Diff..
Diff..
Diff..
Diff..
Diff..
Diff..
Diff.
Diff..
Diff..
Diff.
Diff.
Diff..
Diff..
Diff..
Diff..
Diff..
Diff..
Diff..
Diff..
Diff.
Diff..
Diff..
Diff.
Diff..
Diff.
Diff.
Diff..
Diff.
Diff.
Diff..
Diff.
Diff.

-0.79%
-0.07 %
0.13%
-0.07 %
-0.79 %
0.20 %
0.13%
-0.07 %
-0.65 %
-0.65 %
-0.65 %
-0.65 %
-0.07 %
-0.79 %
0.20 %
0.14%
0.23 %
0.03 %
0.25%
0.26 %
-0.10 %
0.10 %
0.01 %
0.08 %
0.06 %
0.01 %
0.00 %
0.01 %
0.05%
0.04 %
0.00 %
0.01 %
0.06 %



34(C)
35(C)
36(C)
37(C)
38(C)
39(C)
40(C)
41(C)
42(C)
43(C)
44(F )
45(F)
46(C)
47(C)
48(C)
49(C)
50(C)
51(C)
52(C)
53(C)
54(C)
55(C)
56(C)
57(C)
58(C)
59(F)
60(F)
88(C)
89(C)
90(C)
91(C)
92(C)
94(C)
96(C)
98(C)
99(C)
100(C)
101(F)
102(F)
103(C)
104(C)
105(C)
107(C)

Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:
Hole:

0.28 %
0.25%
0.08 %
0.97 %
0.32%
0.05%
0.40 %
0.98 %
1.40 %
0.86 %
0.01%
0.01%
0.31%
0.11 %
0.23%
0.28 %
0.25%
0.08 %
0.97 %
0.32%
0.05%
0.40 %
0.98 %
1.40 %
0.86 %
0.01 %
0.01 %
7.30 %
1.40 %
0.98 %
0.86 %
0.40 %
0.32%
0.97 %
0.05%
0.28 %
0.25%
0.01 %
0.01 %
0.23%
0.08 %
0.11%
0.31%

Sum of hole shown above:

Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:
Electron:

96.76%

0.38%
0.26 %
0.09 %
1.21%
0.57 %
0.13%
0.43 %
1.21%
1.54 %
0.76 %
0.06 %
0.06 %
0.31%
0.11 %
0.30 %
0.38%
0.26 %
0.09 %
1.21%
0.57 %
0.13%
0.43%
1.21%
1.54%
0.76 %
0.06 %
0.06 %
6.51 %
1.54%
1.21%
0.76 %
0.43 %
0.57 %
1.21%
0.13%
0.38 %
0.26 %
0.06 %
0.06 %
0.30 %
0.09 %
011%
0.31%

S18

Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Overlap:
Sum of electron shown above:

0.32%
0.26 %
0.09 %
1.08 %
0.43%
0.08 %
0.42 %
1.09 %
1.47 %
0.81 %
0.02 %
0.03 %
0.31%
0.11%
0.27%
0.32%
0.26 %
0.09 %
1.08 %
0.43%
0.08 %
0.42%
1.09 %
1.47 %
0.81 %
0.03 %
0.02 %
6.89 %
1.47 %
1.09 %
0.81 %
0.42 %
0.43 %
1.08 %
0.08 %
0.32 %
0.26 %
0.02 %
0.03 %
0.27 %
0.09 %
0.11 %
0.31%

Diff.. 0.10%
Diff.. 0.01%
Diff.. 0.01%
Diff.. 0.25%
Diff.. 0.26%
Diff.. 0.08 %
Diff..  0.03%
Diff.. 0.23%
Diff.. 0.14%
Diff.. -0.10%
Diff..  0.05%
Diff..  0.04 %
Diff..  0.00 %
Diff..  0.01%
Diff..  0.06 %
Diff.. 0.10%
Diff.. 0.01%
Diff.. 0.01%
Diff.. 0.25%
Diff..  0.26 %
Diff..  0.08 %
Diff..  0.03%
Diff.. 0.23%
Diff.. 0.14%
Diff.. -0.10%
Diff..  0.04 %
Diff..  0.05%
Diff.. -0.79%
Diff.. 0.14%
Diff.. 0.23%
Diff.. -0.10%
Diff..  0.03%
Diff..  0.26 %
Diff.. 0.25%
Diff..  0.08 %
Diff..  0.10%
Diff.. 0.01%
Diff..  0.05%
Diff..  0.04 %
Diff..  0.06 %
Diff.. 0.01%
Diff..  0.01%
Diff..  0.00 %
96.12%



Cwo:
MO 257,0cc:  2.00000 Hole: 92516 % Electron: 0.000 % (HOMO)
MO 258, Occ:  0.00000 Hole: 0.000 % Electron:  91.495 % (LUMO)

10. Radical capturing experiments

The photocatalytic reaction was performed according to the general procedure using 1a (0.20
mmol), 2a (0.40 mmol), Na,HPO4 (0.40 mmol), (NH.)2S20s (0.24 mmol), and FF-Py-CPP (0.06
mmol) in TFE (1 mL). Afterward, 2,2,6,6- tetramethylpiperidin-1-yl)oxidanyl (TEMPO, 3.0 equiv)
was added to the mixture. The mixture was stirred under blue LED (400-410 nm) irradiation at room
temperature for 24 h. (As shown in Scheme S1-A).

The photocatalytic reaction was performed according to the general procedure using 1a (0.20
mmol), 2a (0.40 mmol), NaHPO, (0.40 mmol), (NH.)2S20s (0.24 mmol), and FF-Py-CPP (0.06
mmol) in TFE (1 mL). Afterward, 2,6-di-tert-butyl-4-methylphenol (BHT, 3.0 equiv) was added to
the mixture. The mixture was stirred under blue LED (400-410 nm) irradiation at room temperature
for 24 h. (As shown in Scheme S1-B).

A
O FF-Py-CPP (3 mol% )
X-Me (NH,);S205 (1.2 eq.)
+ Na,HPO, (2.0 eq.)
O H MeO TEMPO (3.0eq)
OH

Me

bule LEDs (400-410 nm)
TFE, rt., 24 h
1a, 1 equiv. 2a, 2 equiv.
OMe
3a, no reaction
B
O FF-Py-CPP (3 mol% )
X-Me (NH4),8,04 (1.2 6q.)
+ NayHPO, (2.0 eq.)
O H MeO BHT (3.0 eq.) Me + O
OH o

bule LEDs (400-410 nm)
TFE, rt, 24 h ©\
1a, 1 equiv. 2a, 2 equiv.
g g OMe OH

3a, 20 %

Scheme S1 Radical trapping experiments used TEMPO and BHT as radical scavengers.
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11. HRMS of the intermediates

O FF-Py-CPP (3 mol% )
(NH4),8,05 (1.2 eq.)

- Me
+ /©/\/ Na,HPO, (2.0 eq.)
MeO BHT (3.0 eq.)

H
O OH bule LEDs (400-410 nm)

TFE, rt, 24 h
1a, 1 equiv. 2a, 2 equiv.

2.8% 107

2.6% 107
2.4% 107 ‘

L

2.0% 10|

8% 10

L6 10

L4x 10
403.2632

iR EE

L2x107]

L0x107]

L0x 10

o

L0x 104

-

0x 10

2.0x 10"

402.8098 403.1337
0. 04 .

~2.0% 10]

®

Me
L. =
OMe

3a, 20 %

H+

Detected by HRMS

C
¢

OH

CogH350, [M+H]*

calcd for 40

3.2632,fo

und: 403.2632.

OH

403.7414
1

T T T T T T T T T T T T T
402.70 402. 80 102. 90 403. 00 403. 10 403. 20 4103. 30

m/z (Da)

Fig. S12. HRMS spectra of intermediate I1.
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1.0x10%]

H+

9.0X 10

8.0 10

Cy3H110 [M+H]*

T4
O o und: 183.0805.

7.0X 10
6.0x 10
5.0X 10
= 183.0805
4.0x 10
3.0X 10

2.0% 10

1.0x 10

181.9872 182.1244 182.9851
0.0 . |

calcd for 183.0804,fo

T T T T T T T T T T T T T T T T
182. 0 182. 1 182.2 182.3 182. 4 182.5 182. 6 182.7 182.8 182.9 183.0 183. 1 183. 2 183.3 183.4 183.5

m/z (Da)

Fig. S13. HRMS spectra of ortho-quinone methide intermediate.

12. Procedure of EPR experiments

Ph DMPO o

Ph " . '\ H H
Standard conditions H (2.0 equiv) N o Ph
i:\/\H - —_— Xj
2a (2.0 equiv) .
oH ©
1a
(1.0 equiv) I 6

The photocatalytic reaction was performed according to the general procedure using 1a (0.20
mmol), 2a (0.40 mmol), Na;HPO, (0.40 mmol), (NH4).S20s (0.24 mmol), and FF-Py-CPP (0.06
mmol) in TFE (1 mL). Afterward, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) (2.0 equiv) was
added to the mixture, and then the solution was excited under 300W xenon lamp of full
spectrum at r.t. for 5 min. After reaction, drawing 30 pL resulting mixture was analyzed directly
by EPR spectroscopy at room temperature, an obvious signal is detected. The EPR spectrum

showed an e.p.r. quartet spectrum of 6 (gFactor = 2.00742, aN = 13.469 G), suggesting that

radical intermediate Il is generated in the reaction process.
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— Sim.
Exp.

3460 3480 3500 3520 3540 3560
Field

Fig. S14. EPR spectrum of 6.

13. Stern—volmer analysis

Stern-VVolmer fluorescence quenching experiments were conducted with freshly
prepared solutions of 10° M FF-Py-CPP in TFE at room temperature. Solutions were
irradiated at 340 nm, and fluorescence emission was measured from 450 nm to 650 nm.

Control experiments showed that 1a primarily quenched the excited state of FF-Py-

CPP.
(@) (b)
s00r 0.000 M 500 0.000 M
400 400}
2 2
= p=]
S 300t § 300
- = 2
= = 7~
200 200 /
;//
T = 100 -
450 500 550 600 650 450 500 550 600 650
Wavelength (nm) Wavelength (nm)

Fig. S15. Steady-state emission quenching of FF-Py-CPP with substrate (a) 1a and (b) 2a
(Stern—Volmer analysis).

14. Cyclic voltammetry (CV) measurements of FF-Py-CPP and 1a.
Cyclic voltammetry (CV) measurement of FF-Py-CPP. Cyclic voltammetry (CV)
measurement was performed using Chenhua CHI 760E potentiostat/galvanostat in a three-

electrode system: as-prepared electrode film drop-casted with the polymers as the working
S22



electrode, Pt wire as the counter electrode, Ag/AgCI electrode as the reference electrode,
BusNPFs (0.1 M in TFE) was used as electrolyte. For preparation of electrode film, 10 mg of
catalyst were mixed with 1.0 mL of ethanol and 30 uL of Nafion solution to get a slurry. Then,
30 uL of'this slurry was evenly dropped onto the FTO substrate and the solvent evaporate. The
measurement was carried out in a 0.1 M of BusNPFg solution as supporting electrolyte in TFE
with a scan rate of 100 mV s

Cyclic voltammetry curves of 1a: Cyclic voltammograms of 1a were performed in a 5.0
mL three-electrode system. A steady glassy carbon disk electrode was used as the working
electrode, while a platinum wire as the counter electrode. The reference was an SCE electrode.
BusNPFs was employed as the electrolyte. A mixed solvent of la (0.5 mmol) containing
BusNPFs (0.1 M) in TFE was poured into the electrochemical cell in cyclic voltammetry

experiments and the scan rate was 0.10 V/s, ranging from -2.5 V to 2.5 V.
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16. Characterization data for compounds

Me
Al
3a OMe

3a (2R,3R,4R)-2-(4-methoxyphenyl)-3-methyl-4-phenylchromane 'H NMR (600 MHz,
Chloroform-d) 6 7.31-7.26 (m, 2H), 7.25 — 7.20 (m, 3H), 7.18 — 7.14 (m, 1H), 7.14 — 7.10 (m,
2H), 6.98 — 6.94 (m, 2H), 6.89 — 6.85 (m, 2H), 6.85 — 6.80 (m, 1H), 4.82 (d, J = 10.3 Hz, 1H),
4.09 (d, J=5.2 Hz, 1H), 3.79 (s, 3H), 2.50 — 2.42 (m, 1H), 0.55 (d, J = 7.0 Hz, 3H). **C NMR
(151 MHz, Chloroform-d) 6 159.49, 154.92, 142.18, 132.41, 130.39, 128.53, 127.95 (d, J = 2.3
Hz), 126.53, 124.95, 120.40, 116.62, 113.87, 78.75, 55.31, 46.85, 37.05, 15.46. HRMS (ESI)
Calcd.for C23sH2KO, [M+K]* 369.1251, Found: 369.1265.

ge!
OMe

3b

3b (2R,3R,4R)-2-(4-methoxyphenyl)-3,6-dimethyl-4-phenylchromane *H NMR (500 MHz,
Chloroform-d) 6 7.37 — 7.27 (m, 2H), 7.25 — 7.19 (m, 3H), 7.16 — 7.11 (m, 2H), 6.96 (dd, J =
8.4, 2.2 Hz, 1H), 6.90 — 6.84 (m, 3H), 6.76 (d, J = 2.2 Hz, 1H), 4.79 (d, J = 10.2 Hz, 1H), 4.04
(d, J =5.3 Hz, 1H), 3.78 (s, 3H), 2.48 — 2.39 (m, 1H), 2.19 (s, 3H), 0.53 (d, J = 7.0 Hz, 3H).
3C NMR (151 MHz, Chloroform-d) & 159.47, 152.76, 142.32, 132.57, 130.60, 130.41, 129.49,
128.72, 128.54, 127.93, 126.52, 124.55, 116.34, 113.85, 78.66, 55.30, 46.94, 37.14, 20.50,
15.51. HRMS (ESI) Calcd.for C2sH2sNaO. [M+Na]* 367.1669, Found: 367.1672.
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®

MeO Me
= OL
3c OMe

3¢ (2R,3R,4R)-6-methoxy-2-(4-methoxyphenyl)-3-methyl-4-phenylchromane *H NMR
(600 MHz, Chloroform-d) 6 7.34 — 7.29 (m, 2H), 7.28 — 7.21 (m, 3H), 7.18 — 7.13 (m, 2H),
6.92 (d, J = 8.9 Hz, 1H), 6.90 — 6.86 (m, 2H), 6.78 (dd, J = 8.9, 3.0 Hz, 1H), 6.50 (d, J = 3.0
Hz, 1H), 4.80 (d, J = 10.2 Hz, 1H), 4.07 (d, J = 5.3 Hz, 1H), 3.81 (s, 3H), 3.68 (s, 3H), 2.50 —
2.43 (m, 1H), 0.55 (d, J = 7.0 Hz, 3H). 3C NMR (151 MHz, Chloroform-d) § 159.44, 153.38,
149.08, 142.01, 132.56, 130.37, 128.49, 127.93, 126.55, 125.26, 117.22, 114.51, 114.46,
113.84, 78.61, 55.70, 55.29, 47.18, 37.10, 15.44. HRMS (ESI) Calcd.for C24H2403 [M+H]*
361.1798, Found: 361.1788.

3d (2R,3R,4R)-2-(4-methoxyphenyl)-3-methyl-4-(p-tolyl)chromane *H NMR (600 MHz,
Chloroform-d) 6 7.31 —7.28 (m, 2H), 7.23 -7.18 (m, 1H), 7.18 — 7.15 (m, 2H), 7.08 — 7.05 (m,
2H), 7.05 - 7.01 (m, 2H), 6.95 — 6.92 (m, 2H), 6.91 — 6.87 (m, 1H), 4.88 (d, J = 10.3 Hz, 1H),
4.12 (d, J = 5.2 Hz, 1H), 3.84 (s, 3H), 2.54 — 2.47 (m, 1H), 2.39 (s, 3H), 0.61 (d, J = 7.0 Hz,
3H). 3C NMR (151 MHz, Chloroform-d) & 159.52, 154.95, 139.23, 136.10, 132.52, 130.43,
130.32, 128.71, 128.59, 127.90, 125.24, 120.43, 116.63, 113.89, 78.82, 55.32, 46.52, 37.13,
21.09, 15.52. HRMS (ESI) Calcd.for CzsH24NaO, [M+Na]* 367.1669, Found:367.1670.

OMe

®

Me
= ™
OMe

3e (2R,3R,4R)-2,4-bis(4-methoxyphenyl)-3-methylchromane H NMR (600 MHz,
Chloroform-d) 6 7.30 — 7.27 (m, 2H), 7.23 - 7.19 (m, 1H), 7.11 - 7.07 (m, 2H), 7.05 - 7.00 (m,
2H), 6.96 — 6.90 (m, 2H), 6.90 — 6.87 (m, 3H), 4.85 (d, J = 10.3 Hz, 1H), 4.10 (d, J = 5.1 Hz,
1H), 3.83 (d, J = 3.0 Hz, 6H), 2.52 — 2.44 (m, 1H), 0.61 (d, J = 7.0 Hz, 3H). ®C NMR (151

3e

S25



MHz, Chloroform-d) 6 159.46, 158.23, 154.84, 134.31, 132.44, 131.25, 130.35, 128.54, 127.84,
125.29, 120.37, 116.59, 113.84, 113.31, 78.75, 55.27 (d, J = 9.5 Hz), 46.03, 37.17, 15.46.
HRMS (ESI) Calcd.for C23H2.ClO2 [M+H]* 361.1798, Found: 361.1782.

®
(.

3f

C

3f (2R,4R)-2,4-diphenylchromane *H NMR (600 MHz, Chloroform-d) § 7.53 — 7.49 (m, 2H),
7.41 (dd, J = 8.4, 6.9 Hz, 2H), 7.37 — 7.32 (m, 3H), 7.30 — 7.22 (m, 3H), 7.18 — 7.14 (m, 1H),
6.98 (dd, J=8.2, 1.2 Hz, 1H), 6.84 — 6.78 (m, 2H), 5.24 (dd, J = 11.5, 1.9 Hz, 1H), 4.38 (dd, J
=12.2,5.8 Hz, 1H), 2.46 — 2.41 (m, 1H), 2.30 (dt, J = 13.7, 11.9 Hz, 1H). *C NMR (151 MHz,
Chloroform-d) 8 155.53, 144.53, 141.22, 129.82, 128.69, 128.60 (d, J = 2.5 Hz), 128.08, 127.80,
126.81, 126.11, 125.72, 120.60, 117.03, 78.12, 43.52, 40.65. HRMS (ESI) Calcd.for
C21H1sNaO [M+Na]* 309.1250, Found: 309.1250.

O o II,I©\
OMe
3g

39 (2R,4R)-2-(4-methoxyphenyl)-4-phenylchromane *H NMR (600 MHz, Chloroform-d) &
7.50—7.44 (m, 2H), 7.41 —7.35 (m, 2H), 7.34 - 7.27 (m, 3H), 7.21 - 7.16 (m, 1H), 7.04 — 6.96
(m, 3H), 6.89 — 6.82 (m, 2H), 5.24 — 5.19 (m, 1H), 4.43 — 4.37 (m, 1H), 3.87 — 3.85 (m, 3H),
2.47-2.41 (m, 1H), 2.40 - 2.31 (m, 1H). *C NMR (126 MHz, Chloroform-d) 5 159.55, 155.73,
144,71, 133.41, 129.89, 128.75, 128.68, 127.82, 127.61, 126.84, 125.77, 120.60, 117.08,
114.05, 77.87, 55.39, 43.64, 40.48. HRMS (ESI) Calcd.for 317.1536 C2,H,:0, [M+H]*, Found:
317.1522.

3h

3h (2R,4R)-4-phenyl-2-(p-tolyl)chromane *H NMR (600 MHz, Chloroform-d) § 7.38 — 7.34
(m, 2H), 7.33 — 7.27 (m, 2H), 7.26 — 7.16 (m, 5H), 7.15 — 7.10 (m, 1H), 6.95 — 6.92 (m, 1H),
6.80 — 6.74 (m, 2H), 5.16 (dd, J = 11.5, 2.1 Hz, 1H), 4.33 (dd, J = 12.2, 5.9 Hz, 1H), 2.40 -
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2.35 (m, 1H), 2.35 (d, J = 1.6 Hz, 3H), 2.33 — 2.23 (m, 1H). **C NMR (151 MHz, Chloroform-
d) 8 155.67, 144.66, 138.27, 137.85, 129.84, 129.30, 128.71, 128.65, 127.79, 126.81, 126.17,
125.77, 120.56, 117.07, 78.06, 43.60, 40.52, 21.25. HRMS (ESI) Calcd.for CxHxNaO
[M+Na]* 323.1406, Found: 323.1412.

3i (2R,4R)-2-(4-chlorophenyl)-4-phenylchromane 'H NMR (600 MHz, Chloroform-d) §
7.46 —7.42 (m, 2H), 7.40 — 7.31 (m, 4H), 7.30 — 7.25 (m, 1H), 7.25 - 7.22 (m, 2H), 7.18 — 7.14
(m, 1H), 6.96 (dd, J = 8.2, 1.2 Hz, 1H), 6.85 — 6.77 (m, 2H), 5.20 (dd, J = 11.5, 1.9 Hz, 1H),
4.37 (dd, J=12.2,5.8 Hz, 1H), 2.43 - 2.38 (m, 1H), 2.28 — 2.20 (m, 1H). 3C NMR (151 MHz,
Chloroform-d) & 155.27, 144.33, 139.77, 133.76, 129.84, 128.74 (d, J = 2.1 Hz), 128.59, 127.88,
127.49, 126.90, 125.60, 120.80, 116.98, 77.36, 43.40, 40.62. HRMS (ESI) Calcd.for
Co1H17CINaO [M+Na]* 343.0860, Found: 343.0842.

®

oL
4o
3j

3j (2R,4R)-2-methyl-2 4-diphenylchromane *H NMR (600 MHz, Chloroform-d) & 7.69 —
7.66 (m, 2H) (mixture), 7.53 — 7.49 (m, 1H) (mixture), 7.48 — 7.31 (m, 10H) (mixture), 7.30 —
7.27 (m, 3H) (mixture), 7.28 — 7.22 (m, 1H) (mixture), 7.20 — 7.15 (m, 2H) (mixture), 6.95 —
6.90 (m, 2H) (mixture), 6.83 — 6.79 (m, 1H) (mixture), 6.71 — 6.68 (m, 1H) (mixture), 4.36 (dd,
J=12.1,59Hz, 1H) (major), 3.72 (dd, J =12.8, 5.3 Hz, 1H) (minor), 2.81 (dd, J = 13.8, 5.3
Hz, 1H) (minor), 2.50 (dd, J = 13.8, 6.0 Hz, 1H) (major), 2.43 (dd, J = 13.8, 12.8 Hz, 1H)
(minor), 2.34 (dd, J = 13.7, 12.1 Hz, 1H) (major), 1.84 — 1.82 (m, 3H) (major), 1.80 (s, 2H)
(minor).3C NMR (151 MHz, Chloroform-d) § 154.45, 154.05, 147.04, 145.41, 144.65, 144.60,
129.95, 129.77, 128.93, 128.74, 128.71, 128.42, 128.08, 127.98, 127.12, 126.94, 126.84,
126.78, 125.60, 125.08, 124.76, 124.55, 120.37, 120.29, 117.78, 116.89, 79.12, 77.78, 44.59,
42.87, 40.24, 39.95, 32.36, 25.01. HRMS (ESI) Calcd.for Cz;HzNaO [M+Na]* 323.14086,
Found: 323.1418.
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3k ((2S,4R)-2-(4-(((1S,2R,5S)-2-isopropyl-5-methylcyclohexyl)oxy)phenyl)-4-
phenylchromane *H NMR (600 MHz, Chloroform-d) § 7.47 — 7.42 (m, 2H), 7.40 — 7.35 (m,
2H), 7.33 — 7.27 (m, 3H), 7.22 — 7.16 (m, 1H), 7.03 — 6.97 (m, 2H), 6.84 (q, J = 3.3, 2.9 Hz,
1H),5.21 (d, J=11.4 Hz, 1H), 4.40 (dd, J =12.2, 5.9 Hz, 1H), 4.15—-4.07 (m, 1H), 2.49 - 2.18
(m, 3H), 1.83 — 1.74 (m, 2H), 1.63 — 1.48 (m, 2H), 1.22 — 1.05 (m, 2H), 1.04 — 0.96 (m, 6H),
0.87 — 0.82 (m, 3H). *C NMR (151 MHz, Chloroform-d) & 158.38, 155.77, 144.73, 133.05,
129.88, 128.73, 128.66, 127.80, 127.67, 126.81, 125.77,120.57, 117.09, 115.89 (d, J = 2.5 Hz),
77.95(d,J=3.6 Hz), 77.61, 48.15, 43.66, 40.44, 40.36, 34.61, 31.50, 26.20, 23.85, 22.26, 20.86,
16.73. HRMS (ESI) Calcd.for C31H3sKO2 [M+K]* 479.2347, Found: 479.2359.

31 4-((2S,4R)-4-phenylchroman-2-yl)phenyl (S)-2-(4-isobutylphenyl)propanoate *H NMR
(600 MHz, Chloroform-d) 6 7.50 — 7.45 (m, 2H), 7.36 — 7.30 (m, 4H), 7.30 — 7.24 (m, 1H),
7.25-7.22 (m, 2H), 7.19 — 7.12 (m, 3H), 7.07 — 7.03 (m, 2H), 6.95 (dd, J = 8.3, 1.2 Hz, 1H),
6.83 -6.77 (m, 2H), 5.21 (dd, J = 11.5, 1.9 Hz, 1H), 4.36 (dd, J = 12.2, 5.8 Hz, 1H), 3.96 (q, J
=7.2 Hz, 1H), 2.50 (d, J = 7.2 Hz, 2H), 2.43 — 2.38 (m, 1H), 2.29 — 2.21 (m, 1H), 1.94 — 1.85
(m, 1H), 1.63 (d, J = 7.2 Hz, 3H), 0.94 (d, J = 6.6 Hz, 6H). *C NMR (151 MHz, Chloroform-
d) & 173.20, 155.38, 150.59, 144.41, 140.87, 138.69, 137.25, 129.81, 129.56, 128.71, 128.60,
127.82, 127.26, 127.13, 126.85, 125.67, 121.53, 120.68, 116.98, 77.53, 45.30, 45.09, 43.45,
40.55, 30.23, 22.44, 18.59. HRMS (ESI) Calcd.for CssH3sNaOs [M+Na]* 513.2400, Found:
513.2417.
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3m (8R,9S,13S,14S)-13-methyl-3-((2R,4R)-4-phenylchroman-2-yl)-
6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one *H NMR (600
MHz, Chloroform-d) 6 7.39 — 7.35 (m, 3H) (mixture), 7.34 — 7.27 (m, 6H) (mixture), 7.21 —
7.13 (m, 2H) (mixture), 7.09 — 7.04 (m, 1H) (mixture), 7.01 (dd, J = 8.0, 1.1 Hz, 1H) (mixture),
6.86 — 6.81 (m, 2H) (mixture), 5.23 — 5.18 (m, 1H) (major), 4.39 (dd, J = 12.1, 5.9 Hz, 1H)
(major), 3.04 —2.98 (m, 2H) (major), 2.97 — 2.93 (m, 1H) (minor), 2.60 —2.42 (m, 3H) (mixture),
2.40 — 2.27 (m, 3H) (mixture), 2.24 — 2.14 (m, 1H) (mixture), 2.14 — 1.99 (m, 4H) (mixture),
1.74 — 1.45 (m, 8H) (mixture), 0.96 (s, 3H) (major), 0.95 (s, 1H) (minor).*C NMR (151 MHz,
Chloroform-d) & 155.68, 144.67, 139.78, 138.67 (d, J = 2.3 Hz), 136.83, 130.91, 129.89, 128.89
—128.41 (m), 127.83, 126.87 (d, J = 7.5 Hz), 125.79 — 125.62 (m), 123.81 (d, J = 1.9 Hz),
120.62, 117.19, 117.09, 77.98 (d, J = 5.1 Hz), 73.06 (d, J = 8.7 Hz), 50.57, 48.04, 44.47 (d, J =
4.4 Hz), 43.58, 40.40 (d, J= 2.7 Hz), 38.22 — 38.10 (m), 35.94, 31.70, 29.62 — 29.48 (m), 26.59
(d, J=2.7 Hz), 25.83 (d, J = 4.3 Hz), 21.69, 13.95. HRMS (ESI) Calcd.for C33H350, [M+H]*
463.2632, Found: 463.2623.

OO

3n

3n 2-phenylchromane *H NMR (600 MHz, Chloroform-d) § 7.47 — 7.38 (m, 4H), 7.36 — 7.31
(m, 1H), 7.17 — 7.09 (m, 2H), 6.96 — 6.87 (m, 2H), 5.09 (dd, J = 10.2, 2.4 Hz, 1H), 3.07 — 2.96
(m, 1H), 2.86 — 2.77 (m, 1H), 2.26 — 2.20 (m, 1H), 2.16 — 2.07 (m, 1H). 3C NMR (151 MHz,
Chloroform-d) & 155.15, 141.77, 129.56, 128.55, 127.86, 127.37, 126.02, 121.86, 120.34,
116.96, 77.78, 29.99, 25.12. HRMS (ESI) Calcd.for CisH1sO [M+H]* 211.1117, Found:
211.1116.

MeO

Q
’ O OMe

5a
5a'H NMR (600 MHz, Chloroform-d) § 7.36 — 7.33 (m, 2H), 6.92 — 6.89 (m, 2H), 6.79 (dq, J
=3.4,2.3,1.7 Hz, 1H), 6.75 (s, 1H), 6.72 — 6.69 (m, 1H), 5.69 (t, J = 8.8 Hz, 1H), 3.81 (s, 3H),
3.77 (s, 3H), 3.55 (dd, J = 15.7, 9.2 Hz, 1H), 3.20 (ddt, J = 15.7, 8.4, 1.1 Hz, 1H). ®*C NMR
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(151 MHz, Chloroform-d) 6 159.48, 154.25, 153.75, 133.95, 127.75, 127.33, 114.03, 112.99,
111.21,109.19, 84.21, 56.06, 55.33, 38.73. HRMS (ESI) Calcd.for C16H1705 [M+H]* 257.1172,
Found: 257.1180.

MeQO

Q

5b
5b*H NMR (600 MHz, Chloroform-d) § 7.38 — 7.34 (m, 2H), 7.25 - 7.22 (m, 2H), 6.85 — 6.82
(m, 2H), 6.78 — 6.75 (m, 1H), 5.75 (t, J = 8.8 Hz, 1H), 3.82 (s, 3H), 3.64 — 3.57 (m, 1H), 3.27
—3.21 (m, 1H), 2.41 (s, 3H). *C NMR (151 MHz, Chloroform-d) § 154.35, 153.91, 139.08,
137.80, 129.37, 127.76, 125.91, 113.05, 111.29, 109.25, 84.34, 56.06, 38.90, 21.25. HRMS
(ESI) Calcd.for C16H1NaO, [M+Na]* 263.1043, Found: 263.1042.
MeQO

Me

"L
OMe

5¢c

5¢ (2R,3R)-5-methoxy-2-(4-methoxyphenyl)-3-methyl-2,3-dihydrobenzofuran *H NMR
(600 MHz, Chloroform-d) 4 7.38 — 7.34 (m, 2H), 6.93 — 6.89 (m, 2H), 6.75 (d, J = 8.5 Hz, 1H),
6.73 — 6.69 (m, 2H), 5.08 (d, J = 9.1 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 3.44 — 3.38 (m, 1H),
1.38 (d, J = 6.8 Hz, 3H).3C NMR (151 MHz, Chloroform-d) & 159.65, 154.42, 153.28, 133.13,
132.71,127.66, 114.01, 112.88, 110.10, 109.35, 92.61, 56.07, 55.33, 45.68, 17.59. HRMS (ESI)
Calcd.for C17H1903 [M+H]* 271.1329, Found: 271.1323.

BnO

Q

5d

5d 5-(benzyloxy)-2-(4-methoxyphenyl)-2,3-dihydrobenzofuran *H NMR (600 MHz,
Chloroform-d) & 7.48 — 7.45 (m, 2H), 7.44 — 7.40 (m, 2H), 7.38 — 7.34 (m, 3H), 6.95 - 6.92 (m,
2H), 6.89 (dd, J = 2.7, 1.3 Hz, 1H), 6.82 — 6.77 (m, 2H), 5.71 (t, J = 8.8 Hz, 1H), 5.04 (s, 2H),
3.83 (s, 3H), 3.56 (dd, J = 15.7, 9.2 Hz, 1H), 3.22 (ddt, J = 15.7, 8.5, 1.0 Hz, 1H). 3C NMR
(151 MHz, Chloroform-d) 8 159.52, 154.02, 153.48, 137.48, 133.95, 128.61, 127.92, 127.80,
127.54, 127.37, 114.32, 114.06, 112.40, 109.25, 84.28, 71.10, 55.35, 38.74. HRMS (ESI)
Calcd.for CxH20sNa [M+Na]* 355.1305, Found: 355.1323.
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BnO

e

5e Me
5e 5-(benzyloxy)-2-(p-tolyl)-2,3-dihydrobenzofuran *H NMR (600 MHz, Chloroform-d) &
7.49 — 7.45 (m, 2H), 7.42 (dd, J = 8.5, 6.8 Hz, 2H), 7.38 — 7.32 (m, 3H), 7.22 (d, J = 7.9 Hz,
2H), 6.91 — 6.88 (m, 1H), 6.83 — 6.79 (m, 2H), 5.73 (t, J = 8.8 Hz, 1H), 5.05 (s, 2H), 3.59 (dd,
J=15.7,9.3 Hz, 1H), 3.25 - 3.18 (m, 1H), 2.39 (s, 3H). 3C NMR (151 MHz, Chloroform-d) &
154.10, 153.50, 138.99, 137.82, 137.49, 129.35, 128.61, 127.92, 127.74, 127.54, 125.89,
114.33, 112.42, 109.27, 84.36, 71.11, 38.85, 21.23. HRMS (ESI) Calcd.for CzH20,Na
[M+Na]* 339.1356, Found: 339.1369.

MeO

OMe

5f 5-methoxy-2-(4-methoxyphenyl)-2,3-dihydronaphtho[1,2-b]furan *H NMR (600 MHz,
Chloroform-d) 6 8.23 —8.19 (m, 1H), 7.98 — 7.94 (m, 1H), 7.51 - 7.42 (m, 2H), 7.42 — 7.37 (m,
2H), 6.93-6.89 (m, 2H), 6.74 (s, 1H), 5.88 (dd, J = 9.6, 8.0 Hz, 1H), 3.97 (s, 3H), 3.81 (s, 3H),
3.76 (dd, J = 15.3, 9.6 Hz, 1H), 3.36 (dd, J = 15.3, 8.0 Hz, 1H). °C NMR (151 MHz,
Chloroform-d) & 159.43, 150.16, 148.46, 134.58, 127.31, 126.04, 125.42, 124.98, 122.49,
121.32, 120.83, 118.17, 114.03, 101.63, 84.10, 56.08, 55.34, 40.08. HRMS (ESI) Calcd.for
C20H1003 [M+H]* 307.1329, Found: 307.1318.

BnO

Me

T
OMe

59
(2R,3R)-5-(benzyloxy)-2-(4-methoxyphenyl)-3-methyl-2,3-dihydrobenzofuran *H NMR
(600 MHz, Chloroform-d) 4 7.50 (d, J = 7.2 Hz, 2H), 7.46 — 7.35 (m, 5H), 6.99 — 6.95 (m, 2H),
6.88 —6.80 (m, 3H), 5.13 (d, J = 9.1 Hz, 1H), 5.07 (d, J = 2.3 Hz, 2H), 3.85 (s, 3H), 3.50 — 3.43
(m, 1H), 1.42 (d, J = 6.8 Hz, 3H). 3C NMR (151 MHz, Chloroform-d) & 159.72, 153.70, 153.59,
137.48, 133.25,132.74, 128.62, 127.96, 127.74,127.61, 114.12, 114.08, 111.39, 109.42, 92.69,
71.13, 55.36, 45.73, 17.63. HRMS (ESI) Calcd.for CxH2KOs [M+K]* 385.1201, Found:
385.1209.
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17. Copies of NMR spectra
3a 'H NMR (600 MHz, Chloroform-d)
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3a 3C NMR (151 MHz, Chloroform-d)
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3b 'H NMR (500 MHz, Chloroform-d)
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0S0S°ST —
Y66¥°0C —

eIvlrLe—

LLEGOY —

LL8T'SS
Ir0E'SS

T659'8L —

[433: R A0
(a4
60SS¥C1L
8916°9C1
11€6°LTl
L6ES'8TI
8TCL'8TI
0l6v 6Tl N
[80¥°0€1
_NOG.CM_\
LTLsTel
orce eyl —

88SL°CST —

€S9 65T —

OMe
[

Me

l,,,

Me

190

T
200

(ppm)

1

S33



3¢ 'H NMR (600 MHz, Chloroform-d)
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3d 'H NMR (600 MHz, Chloroform-d)
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3e 'H NMR (600 MHz, Chloroform-d)
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3e *C NMR (151 MHz, Chloroform-d)
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3f 'H NMR (600 MHz, Chloroform-d)
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3f 3C NMR (151 MHz, Chloroform-d)
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3gH NMR (600 MHz, Chloroform-d
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3h *H NMR (600 MHz, Chloroform-d)
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3i 'H NMR (600 MHz, Chloroform-d)
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3j 'H NMR (600 MHz, Chloroform-d)
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3j *C NMR (151 MHz, Chloroform-d)
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3k 'H NMR (600 MHz, Chloroform-d)
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3k *C NMR (151 MHz, Chloroform-d)
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31 'H NMR (600 MHz, Chloroform-d)
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31 ¥C NMR (151 MHz, Chloroform-d)
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3m*H NMR (600 MHz, Chloroform-d)
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3mC NMR (151 MHz, Chloroform-d)
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3n 'H NMR (600 MHz, Chloroform-d)
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3n C NMR (151 MHz, Chloroform-d)
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5a'H NMR (600 MHz, Chloroform-d)
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5a3C NMR (151 MHz, Chloroform-d)
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5b 'H NMR (600 MHz, Chloroform-d)
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5b *C NMR (151 MHz, Chloroform-d)
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5¢ *H NMR (600 MHz, Chloroform-d)
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5¢ *C NMR (151 MHz, Chloroform-d)
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5d *H NMR (600 MHz, Chloroform-d)
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5d 3C NMR (151 MHz, Chloroform-d)
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5e *H NMR (600 MHz, Chloroform-d)
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5f 'H NMR (600 MHz, Chloroform-d)
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5f 3C NMR (151 MHz, Chloroform-d)
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5g 'H NMR (600 MHz, Chloroform-d)
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5g 3C NMR (151 MHz, Chloroform-d)
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18. Crystal Data and Structure

Crystal data and structure refinement for compound 3c.
Bond precision: C-C=0.0030 A Wavelength=1.54178
Cell: a=9.8677(7) b=10.1558(7) c=10.8302(7)

alpha=112.405(6) beta=101.117(6) gamma=92.787(6)
Temperature: 293 K

Calculated Reported
Volume 975.62(13) 975.62(12)
Space group P-1 P-1
Hall group -P1 -P1
Moiety formula C24 H24 O3 C24 H24 O3
Sum formula C24 H24 O3 C24 H24 O3
Mr 360.43 360.43
Dx, g cm-3 1.227 1.227
z 2 2
Mu (mm-1) 0.632 0.632
F000 384.0 384.0
F000' 385.12
h, k, Imax 12,12,13 12,12,13
Nref 3770 3653
Tmin, Tmax 0.939,0.939 0.257,1.000
Tmin' 0.939

Correction method= # Reported T Limits: Tmin=0.257 Tmax=1.000 AbsCorr =

NONE

Data completeness= 0.969

R(reflections)= 0.0654( 3013)

S$=1.053

Npar= 247

Theta(max)= 70.917
wR2(reflections)=0.1797( 3653)
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Fig. S16 X-crystal structure of 3c, CCDC: 2488731.

19. Cartesian coordinates of the DFT-optimized structure

Table S4. Cartesian coordinates of the DFT-optimized structure of 1a depicted.

la

B3LYP-D3BJ/6-311g(d,p)

E =-578.034416 a.u.
Cc

OO0OO0OO0O0OITITOITOITIITITITOOOOO

2.42338900
1.09951600
0.88931000
1.95578800
3.26089100
3.49632700

-0.12666000
1.76643000
4.09967000
450114900
2.72462400
1.91356700

-0.03888000
0.05763500
0.05770900

-1.42090100

-2.06322300

-2.06400300

-3.32198400

-0.70223600
-0.23365500
1.14546500
2.04045800
1.55579900
0.18601400
1.51919700
3.10698400
2.24219000
-0.21798300
-2.03837100
-2.55469900
-1.24261900
-1.89348800
-1.89390100
-0.63910200
-0.33418100
-0.33488000
0.26040300

S54

0.00016700
-0.00025700
-0.00061700
-0.00051200
-0.00005000
0.00028100
-0.00096300
-0.00075400
-0.00001800
0.00053400
0.00043800
0.00041900
-0.00038200
-0.87987100
0.87881600
-0.00007800
1.20173800
-1.20167000
1.20432400
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Table S5. Cartesian coordinates of the DFT-optimized structure of intermediate | depicted.

Intermediate 11

-1.56922300
-3.32275900
-1.57060500
-3.95549200
-3.80850000
-3.80988100
-4.93613600

(U)B3LYP-D3BJ/6-311g(d,p)

E =-577.753534 a.u.

C

T T TOIOITIOOOOIIOIOIIIITOOOOO

Table S6. Cartesian coordinates of the DFT-optimized structure of intermediate 11 depicted.

Intermediate 11

1.80111600
1.04298100
1.38531000
2.44165000
3.18273700
2.87081100
0.82510600
2.72030200
4.00316800
3.43529100
1.44287600
2.03339400

-0.10172700
-0.17661900
0.00443400
-1.29589600
-1.60761600
-2.07841600
-2.70990000
-0.99082100
-3.17664100
-1.84158900
-3.49475000
-2.96299700
-3.80014500
-4.35049100

(U)B3LYP-D3BJ/6-311g(d,p)

E =-577.393581 a.u.
Cc

2.45453100

-0.55981400
0.25970300
-0.56106700
0.55927200
0.48880200
0.48755400
1.02055500

-0.87427000
0.20516300
1.51532000
1.75911400
0.68035500

-0.62231700
2.33994900
2.77538300
0.88449000

-1.44915200

-2.10742600

-2.77409200

-0.07887700
0.69248200

-1.04784700

-0.03902800

-1.15755100

1.12774800
-1.12863800

-2.04466000

1.15321300
1.98980300
0.02599000
-1.99608800
2.03684600
0.05495700

-0.81686100

S55

2.14086800
-1.20379800
-2.14098000

0.00038200

2.14563600
-2.14493000

0.00056600

-0.12662500
-0.69867200
-0.33159200

0.51980000
1.06584100
0.74374400
-0.75356700
0.76667600
1.74238100
1.15995300
-0.49186000
-0.11360800

-1.63241500
-2.39759500
-2.11508000

-0.70153600
0.10523500

-0.59608600

0.94150900

0.04309200

0.24207600

1.20809000

1.01818100

1.53767400

0.29482600
1.68145200

0.00021500



C 1.09675200 -0.26549200 -0.00024100
C 0.92571100 1.10282400  -0.00063900
C 2.02913500 197114500 -0.00061600
C 3.34650800 1.47338000  -0.00017700
C 3.56296800 0.11926200 0.00023000
H -0.07507200 1.51684700  -0.00097000
H 1.86153400 3.04191000  -0.00093900
H 4.18142100 2.16456000 -0.00016100
H 455757500  -0.30983100 0.00058400
@) 2.64734100 -2.05094900 0.00060000
C -0.03881600  -1.25790600  -0.00030900
H 0.08780900  -1.91511500 -0.86681100
H 0.08799400  -1.91544600 0.86590800
Cc -1.41351600 -0.64209100 -0.00007600
Cc -2.05521400  -0.33089500 1.20130100
Cc -2.05587900  -0.33137500 -1.20121400
Cc -3.30897900 0.27458500 1.20417900
H -1.56626200 -0.56634100 2.14076700
Cc -3.30965100 0.27410900 -1.20363700
H -1.56745300 -0.56719800  -2.14085900
Cc -3.93995600 0.57957900 0.00038300
H -3.79472000 0.50470700 2.14555500
H -3.79591300 0.50385800  -2.14483500
H -4.91721000 1.04806100 0.00056300

Table S7. Cartesian coordinates of the DFT-optimized structure of FF-Py-CPP (C,v) depicted.
FF-Py-CPP (Cav)

B3LYP-D3BJ/6-311g(d,p)

E =-3411.683333 a.u.

Cc -1.22309200 2.84307900 -0.77762900
Cc -1.23818300 1.42931600 -0.79754600
Cc 0.00000000 0.71641200  -0.79130300
Cc 1.23818300 1.42931600 -0.79754600
Cc 1.22309200 2.84307900 -0.77762900
Cc 0.00000000 3.51129000  -0.77990200
Cc 0.00000000 -0.71641200 -0.79130300
C 1.23818300 -1.42931600 -0.79754600
C 2.45424300 -0.67849100 -0.88563300
C 2.45424300 0.67849100 -0.88563300
C -2.45424300 0.67849100 -0.88563300
C -2.45424300 -0.67849100 -0.88563300
C -1.23818300 -1.42931600 -0.79754600
C -1.22309200 -2.84307900 -0.77762900
Cc 0.00000000  -3.51129000 -0.77990200

S56



MTOOOOOO0OO0OO0OO0O0O0O00TTOOO0OO0000000000TTOOO0O000000000O0

2.46832900
2.68963500
3.83317000
4.77436600
4.55228700
3.42416500
6.06096600
6.62638700
5.71016900
6.72529000
7.95332500
8.50692500
7.83986600
5.30282700
6.33252300
-8.50692500
-7.95332500
-6.72529000
-6.06096600
-6.62638700
-7.83986600
-4.77436600
-4.55228700
-5.71016900
-3.83317000
-2.68963500
-2.46832900
-3.42416500
-5.30282700
-6.33252300
-8.50692500
-7.95332500
-6.72529000
-6.06096600
-6.62638700
-7.83986600
-4.77436600
-4.55228700
-5.71016900
-3.83317000
-2.68963500
-2.46832900
-3.42416500
-6.33252300

3.64685200
4.66194800
5.46091500
5.23955700
4.22906000
3.43783300
5.89769300
5.29057800
4.19106100
6.94189100
7.36232300
6.75243000
5.70122000
4.39708500
2.96454700
6.75243000
7.36232300
6.94189100
5.89769300
5.29057800
5.70122000
5.23955700
4.22906000
4.19106100
5.46091500
4.66194800
3.64685200
3.43783300
4.39708500
2.96454700
-6.75243000
-7.36232300
-6.94189100
-5.89769300
-5.29057800
-5.70122000
-5.23955700
-4.22906000
-4.19106100
-5.46091500
-4.66194800
-3.64685200
-3.43783300
-2.96454700

S57

-0.72539800
-1.66685700
-1.63474400
-0.63795300
0.30966400
0.28571400
-0.33958300
0.79250700
1.28327100
-0.97112200
-0.45406800
0.67139400
1.30888600
2.57978800
1.28950300
0.67139400
-0.45406800
-0.97112200
-0.33958300
0.79250700
1.30888600
-0.63795300
0.30966400
1.28327100
-1.63474400
-1.66685700
-0.72539800
0.28571400
2.57978800
1.28950300
0.67139400
-0.45406800
-0.97112200
-0.33958300
0.79250700
1.30888600
-0.63795300
0.30966400
1.28327100
-1.63474400
-1.66685700
-0.72539800
0.28571400
1.28950300
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-5.30282700
0.00000000
3.39085100
3.39085100

-3.39085100

-3.39085100
0.00000000
1.95510300
3.97893300
3.26512600
6.30513900
8.48426600
9.46044400
8.26160600

-9.46044400

-8.48426600

-6.30513900

-8.26160600

-3.97893300

-1.95510300

-3.26512600

-9.46044400

-8.48426600

-6.30513900

-8.26160600

-3.97893300

-1.95510300

-3.26512600
1.22309200
2.46832900
2.68963500
3.42416500
3.83317000
1.95510300
4.55228700
3.26512600
4.77436600
3.97893300
5.71016900
6.06096600
6.62638700
5.30282700
6.33252300
6.72529000

-4.39708500
4.59325500
-1.21041800
1.21041800
1.21041800
-1.21041800
-4.59325500
4.81335300
6.23233600
2.67632100
7.42364600
8.17547900
7.09579900
5.22111300
7.09579900
8.17547900
7.42364600
5.22111300
6.23233600
4.81335300
2.67632100
-7.09579900
-8.17547900
-7.42364600
-5.22111300
-6.23233600
-4.81335300
-2.67632100
-2.84307900
-3.64685200
-4.66194800
-3.43783300
-5.46091500
-4.81335300
-4.22906000
-2.67632100
-5.23955700
-6.23233600
-4.19106100
-5.89769300
-5.29057800
-4.39708500
-2.96454700
-6.94189100

S58

2.57978800
-0.72395200
-0.97811000
-0.97811000
-0.97811000
-0.97811000
-0.72395200
-2.44911200
-2.38173900
1.03910700
-1.84617100
-0.93519300
1.05411700
2.18364700
1.05411700
-0.93519300
-1.84617100
2.18364700
-2.38173900
-2.44911200
1.03910700
1.05411700
-0.93519300
-1.84617100
2.18364700
-2.38173900
-2.44911200
1.03910700
-0.77762900
-0.72539800
-1.66685700
0.28571400
-1.63474400
-2.44911200
0.30966400
1.03910700
-0.63795300
-2.38173900
1.28327100
-0.33958300
0.79250700
2.57978800
1.28950300
-0.97112200
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Table S8. Cartesian coordinates of the DFT-optimized structure of FF-Py-CPP (C>) depicted.

FF-Py-CPP (C,)

7.83986600
7.95332500
6.30513900
8.50692500
8.26160600
8.48426600
9.46044400

B3LYP-D3BJ/6-311g(d,p)

E =-3411.683138 a.u.
Cc

OTMTTOOOO0OO0O00O00000000000000000000O0

0.01790600
-0.00007700
0.00007700
0.00189100
0.02306100
0.05203500
-0.00007700
-0.00189100
-0.00802400
0.00802400
0.00642100
-0.00642100
0.00007700
-0.01790600
-0.05203500
-0.02306100
-0.01363400
0.98561400
0.97089800
-0.06722200
-1.07318700
-1.06633600
-0.36098100
-1.54850800
-2.08300400
0.31859200
-0.20695200
-1.38773200
-2.07361200
-3.34972200
-2.19294100
-0.90452200

-5.70122000
-7.36232300
-7.42364600
-6.75243000
-5.22111300
-8.17547900
-7.09579900

2.84258200
1.42963900
0.71643700
1.42974600
2.84327300
3.51124700

-0.71643700
-1.42974600
-0.67841000
0.67841000
0.67838500
-0.67838500
-1.42963900
-2.84258200
-3.51124700
-2.84327300

3.65089600
4.60129900
5.40199200
5.24842200
4.30365200
3.51103900
5.92601000
5.39677700
4.33251900
6.92531600
7.38004900
6.84777900
5.84180800

4.62486900

3.10897700

-8.15419900

S59

1.30888600
-0.45406800
-1.84617100

0.67139400

2.18364700
-0.93519300

1.05411700

-1.44553500
-1.46097300
-0.22268500
1.01542000
0.99930800
-0.22332200
-0.22268500
1.01542000
2.23429700
2.23429700
-2.67980900
-2.67980900
-1.46097300
-1.44553500
-0.22332200
0.99930800
2.24380200
2.49384600
3.63683200
4.54617400
4.29361300
3.16616300
5.82388000
6.35274000
5.41989400
6.50935800
7.72147600
8.23869900
7.55026600
4.97190400
6.03980700
-7.87803900
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0.27477100
0.71994400
-0.03869800
-1.22409500
-1.67001200
0.16133800
-0.89859500
-1.85284600
1.16605100
1.08785100
0.02528000
-0.98146400
-3.12210700
-1.99817800
0.01363400
-0.98561400
-0.97089800
0.06722200
1.07318700
1.06633600
0.36098100
1.54850800
2.08300400
-0.31859200
0.20695200
1.38773200
2.07361200
3.34972200
2.19294100
0.03784300
-0.02674200
0.02674200
0.02491900
-0.02491900
-0.03784300
1.79741600
1.76229900
-1.86309300
1.23695600
0.31135800
-1.77580400
-2.99142600
-1.22942600
0.85539000

-7.44944500
-6.46594700
-6.20122700
-6.91591100
-7.88907900
-5.24282500
-5.37160400
-6.43869000
-4.31542000
-3.53043700
-3.65311200
-4.59989500
-5.94559600
-7.45750200
-3.65089600
-4.60129900
-5.40199200
-5.24842200
-4.30365200
-3.51103900
-5.92601000
-5.39677700
-4.33251900
-6.92531600
-7.38004900
-6.84777900
-5.84180800
-4.62486900
-3.10897700
4.59468500
-1.20910300
1.20910300
1.21186500
-1.21186500
-4.59468500
4.70089700
6.12262400
2.80079100
7.34647000
8.15884300
7.21641400
5.42199500
-8.91235900
-7.66825000

S60

-8.11772500
-7.23056300
-6.09719400
-5.86489800
-6.73770100
-4.99282300
-4.08400900
-4.57431900
-4.74604700
-3.59572600
-2.68838600
-2.94385600
-4.76874900
-3.66131000
2.24380200
2.49384600
3.63683200
4.54617400
4.29361300
3.16616300
5.82388000
6.35274000
5.41989400
6.50935800
7.72147600
8.23869900
7.55026600
4.97190400
6.03980700
-0.22349800
3.17575900
3.17575900
-3.61983600
-3.61983600
-0.22349800
1.78294200
3.80581800
2.98252200
6.11759700
8.26864400
9.18055100
7.94394400
-8.58031500
-9.00629800



H 1.63807600  -5.92510700  -7.42747700
H -2.58740600 -8.43130900 -6.54278300
H 2.00383400 -4.20316100 -5.42411700
H 1.87494500 -2.81723200 -3.38264100
H -1.81366100  -4.70763900  -2.25863800
H -1.79741600  -4.70089700 1.78294200
H -1.76229900  -6.12262400 3.80581800
H 1.86309300 -2.80079100 2.98252200
H -1.23695600  -7.34647000 6.11759700
H -0.31135800  -8.15884300 8.26864400
H 1.77580400 -7.21641400 9.18055100
H 2.99142600  -5.42199500 7.94394400
Cc -0.02528000 3.65311200 -2.68838600
Cc -1.08785100 3.53043700  -3.59572600
Cc 0.98146400 459989500 -2.94385600
Cc -1.16605100 4.31542000 -4.74604700
H -1.87494500 2.81723200 -3.38264100
Cc 0.89859500 5.37160400  -4.08400900
H 1.81366100 4.70763900  -2.25863800
Cc -0.16133800 5.24282500  -4.99282300
H -2.00383400 420316100 -5.42411700
Cc 1.85284600 6.43869000 -4.57431900
Cc 0.03869800 6.20122700 -6.09719400
Cc 1.22409500 6.91591100 -5.86489800
F 3.12210700 5.94559600 -4.76874900
F 1.99817800 7.45750200 -3.66131000
Cc -0.71994400 6.46594700 -7.23056300
Cc 1.67001200 7.88907900 -6.73770100
Cc -0.27477100 7.44944500 -8.11772500
H -1.63807600 5.92510700 -7.42747700
Cc 0.90452200 8.15419900 -7.87803900
H 2.58740600 8.43130900 -6.54278300
H -0.85539000 7.66825000 -9.00629800
H 1.22942600 8.91235900  -8.58031500

Table S9. Cartesian coordinates of the DFT-optimized structure of FF-Py-CPP (C;) depicted.
FF-Py-CPP (Cy)

B3LYP-D3BJ/6-311g(d,p)

E =-3411.682390 a.u.

C 0.66293500  -3.20957700 1.22256400
C 0.64513500 -1.79606900 1.23838100
C 0.64657200  -1.08285400 0.00000000
C 0.64513500 -1.79606900 -1.23838100
Cc 0.66293500 -3.20957700 -1.22256400

S61
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0.69236800
0.65060300
0.65150600
0.63784400
0.64882400
0.64882400
0.63784400
0.65150600
0.63900400
0.60984000
0.62332200
1.62057400
1.60450200
0.56729900
-0.43636400
-0.42887900
0.27247000
-0.91296700
-1.44419000
0.94884800
0.42222300
-0.75658900
-1.43923300
-2.71314500
-1.54371100
-0.75658900
0.42222300
0.94884800
0.27247000
-0.91296700
-1.43923300
0.56729900
-0.43636400
-1.44419000
1.60450200
1.62057400
0.62332200
-0.42887900
-2.71314500
-1.54371100
-0.23458300
0.93523300
1.37648800
0.62359400

-3.87773600
0.35020400
1.06359600
0.31235900

-1.04445100

-1.04445100
0.31235900
1.06359600
2.47694400
3.14544400

-4.01672100

-4.96895600

-5.76889900

-5.61194400

-4.66487100

-3.87409800

-6.28753300

-5.75407800

-4.68787400

-7.28901900

-7.74172100

-7.20534600

-6.19712900

-4.97255200
-3.46308400

-7.20534600

-7.74172100

-7.28901900

-6.28753300

-5.75407800

-6.19712900

-5.61194400

-4.66487100

-4.68787400

-5.76889900

-4.96895600

-4.01672100

-3.87409800

-4.97255200

-3.46308400
7.78648600
7.06836800
6.08287500
5.82983900
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0.00000000
0.00000000
-1.23797300
-2.45661200
-2.45724600
2.45724600
2.45661200
1.23797300
1.22247900
0.00000000
-2.46728900
-2.71872600
-3.86227900
-4.77208200
-4.51878700
-3.38998900
-6.05059900
-6.57988900
-5.64720900
-6.73612500
-7.94855500
-8.46603400
-7.77764400
-5.20333200
-6.26700500
8.46603400
7.94855500
6.73612500
6.05059900
6.57988900
7.77764400
4.77208200
4.51878700
5.64720900
3.86227900
2.71872600
2.46728900
3.38998900
5.20333200
6.26700500
7.65824600
7.90473000
7.01790000
5.87801400
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-0.55223700
-0.99425300
0.82124600
-0.23080400
-1.17680400
1.81771200
1.73867100
0.68324300
-0.31469700
-2.45240000
-1.30198300
0.67320100
0.61288800
0.65878500
0.65878500
0.61288800
0.62651000
2.43223600
2.39421800
-1.22473900
1.86537600
0.93779200
-1.14591600
-2.35576000
-1.14591600
0.93779200
1.86537600
-2.35576000
2.39421800
2.43223600
-1.22473900
-0.55685700
1.51112900
2.28690500
-1.90443200
2.64916400
2.51924000
-1.14132100
0.63900400
0.68324300
1.73867100
-0.31469700
1.81771200
2.51924000

6.55777500
7.53307400
4.87222000
5.01416800
6.09120300
3.93464400
3.15225600
3.28721800
4.24501100
5.61233200
7.11385000
-4.96106400
0.84527700
-1.57531300
-1.57531300
0.84527700
4.22888900
-5.07019600
-6.49133700
-3.16309800
-7.71385500
-8.52246200
-7.57280700
-5.77445400
-7.57280700
-8.52246200
-7.71385500
-5.77445400
-6.49133700
-5.07019600
-3.16309800
8.54575900
7.27794500
5.53110400
8.08542800
3.81196200
2.43055000
4.36298100
2.47694400
3.28721800
3.15225600
4.24501100
3.93464400
2.43055000

S63

5.63901200
6.51140200
4.77265400
3.85662200
4.34227800
4.53121900
3.37932800
2.46540100
2.71484600
4.52601700
3.43151100
0.00000000
-3.39668100
-3.39877500
3.39877500
3.39668100
0.00000000
-2.00779900
-4.03192200
-3.20543700
-6.34393300
-8.49555700
-9.40781500
-8.17123100
9.40781500
8.49555700
6.34393300
8.17123100
4.03192200
2.00779900
3.20543700
8.36054600
8.79860400
7.22034400
6.31126300
5.21526000
3.17087400
2.02460700
-1.22247900
-2.46540100
-3.37932800
-2.71484600
-4.53121900
-3.17087400



C -0.23080400 5.01416800 -3.85662200
H -1.14132100 4.36298100 -2.02460700
C 0.82124600 487222000 -4.77265400
H 2.64916400 3.81196200  -5.21526000
C -1.17680400 6.09120300 -4.34227800
C 0.62359400 5.82983900  -5.87801400
C -0.55223700 6.55777500  -5.63901200
F -1.30198300 7.11385000  -3.43151100

F -2.45240000 561233200 -4.52601700

C 1.37648800 6.08287500  -7.01790000
C -0.99425300 7.53307400  -6.51140200

C 0.93523300 7.06836800  -7.90473000
H 2.28690500 5.53110400 -7.22034400
Cc -0.23458300 7.78648600  -7.65824600

H -1.90443200 8.08542800 -6.31126300
H 1.51112900 7.27794500  -8.79860400
H -0.55685700 8.54575900  -8.36054600

Table S10. Cartesian coordinates of the DFT-optimized structure of MF-Py-CPP (C,,) depicted.
MF-Py-CPP (Cav)

B3LYP-D3BJ/6-311g(d,p)

E =-2932.221409 a.u.

Cc -1.22393200 2.84395900 -0.83608300
Cc -1.23749000 1.43016300 -0.88030000
Cc 0.00000000 0.71678300 -0.87707600
Cc 1.23749000 1.43016300 -0.88030000
Cc 1.22393200 2.84395900 -0.83608300
Cc 0.00000000 3.51151800  -0.82587400
Cc 0.00000000 -0.71678300 -0.87707600
Cc 1.23749000 -1.43016300 -0.88030000
Cc 245170100 -0.67853800 -0.99159700
Cc 2.45170100 0.67853800  -0.99159700
Cc -2.45170100 0.67853800  -0.99159700
Cc -2.45170100 -0.67853800 -0.99159700
Cc -1.23749000 -1.43016300 -0.88030000
Cc -1.22393200 -2.84395900 -0.83608300
C 0.00000000 -3.51151800 -0.82587400
C 2.47242200 3.64057600 -0.76020500
C 2.70009700 4.68772600 -1.66598600
C 3.85487100 5.46305800 -1.60389400
C 4.79981600 5.19026900 -0.61783300
C 4.57829800 4.15002500 0.30214800
C 3.42876700 3.38456100 0.23752800
Cc 6.08946300 5.81664400 -0.31126700

S64
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6.65324500
5.73816500
6.75852700
7.99546300
8.55485800
7.88371100
-8.55485800
-7.99546300
-6.75852700
-6.08946300
-6.65324500
-7.88371100
-4.79981600
-4.57829800
-5.73816500
-3.85487100
-2.70009700
-2.47242200
-3.42876700
-8.55485800
-7.99546300
-6.75852700
-6.08946300
-6.65324500
-7.88371100
-4.79981600
-4.57829800
-5.73816500
-3.85487100
-2.70009700
-2.47242200
-3.42876700
0.00000000
3.38413700
3.38413700
-3.38413700
-3.38413700
0.00000000
1.96561600
4.01300700
3.24713700
6.32819800
8.52884100
9.51763400

5.15769600
4.03930400
6.87607000
7.27074300
6.61680300
5.55440900
6.61680300
7.27074300
6.87607000
5.81664400
5.15769600
5.55440900
5.19026900
4.15002500
4.03930400
5.46305800
4.68772600
3.64057600
3.38456100
-6.61680300
-7.27074300
-6.87607000
-5.81664400
-5.15769600
-5.55440900
-5.19026900
-4.15002500
-4.03930400
-5.46305800
-4.68772600
-3.64057600
-3.38456100
4.59227500
-1.21351300
1.21351300
1.21351300
-1.21351300
-4.59227500
4.87748100
6.26040200
2.59328600
7.38697000
8.09302300
6.93626900

S65

0.79680300
1.28629800
-0.92060300
-0.41354500
0.68553700
1.29687700
0.68553700
-0.41354500
-0.92060300
-0.31126700
0.79680300
1.29687700
-0.61783300
0.30214800
1.28629800
-1.60389400
-1.66598600
-0.76020500
0.23752800
0.68553700
-0.41354500
-0.92060300
-0.31126700
0.79680300
1.29687700
-0.61783300
0.30214800
1.28629800
-1.60389400
-1.66598600
-0.76020500
0.23752800
-0.74982200
-1.10608200
-1.10608200
-1.10608200
-1.10608200
-0.74982200
-2.43993400
-2.32128300
0.95574000
-1.77456500
-0.87635000
1.06728700
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8.32530100
-9.51763400
-8.52884100
-6.32819800
-8.32530100
-4.01300700
-1.96561600
-3.24713700
-9.51763400
-8.52884100
-6.32819800
-8.32530100
-4.01300700
-1.96561600
-3.24713700

1.22393200

2.47242200

2.70009700

3.42876700

3.85487100

1.96561600

4.57829800

3.24713700

4.79981600

4.01300700

5.73816500

6.08946300

6.65324500

6.75852700

7.88371100

7.99546300

6.32819800

8.55485800

8.32530100

8.52884100

9.51763400
-5.27052600
-4.77950600
-6.12067200
-4.56339800
-6.42568600
-6.76222700
-5.73477000
-7.29393500

5.05177100
6.93626900
8.09302300
7.38697000
5.05177100
6.26040200
4.87748100
2.59328600
-6.93626900
-8.09302300
-7.38697000
-5.05177100
-6.26040200
-4.87748100
-2.59328600
-2.84395900
-3.64057600
-4.68772600
-3.38456100
-5.46305800
-4.87748100
-4.15002500
-2.59328600
-5.19026900
-6.26040200
-4.03930400
-5.81664400
-5.15769600
-6.87607000
-5.55440900
-7.27074300
-7.38697000
-6.61680300
-5.05177100
-8.09302300
-6.93626900
4.29125700
5.26258500
4.27423800
3.51939300
2.66452000
2.47950300
1.86661900
2.61528700

S66

2.15066300
1.06728700
-0.87635000
-1.77456500
2.15066300
-2.32128300
-2.43993400
0.95574000
1.06728700
-0.87635000
-1.77456500
2.15066300
-2.32128300
-2.43993400
0.95574000
-0.83608300
-0.76020500
-1.66598600
0.23752800
-1.60389400
-2.43993400
0.30214800
0.95574000
-0.61783300
-2.32128300
1.28629800
-0.31126700
0.79680300
-0.92060300
1.29687700
-0.41354500
-1.77456500
0.68553700
2.15066300
-0.87635000
1.06728700
2.73224500
2.81631200
3.41923800
3.04716200
1.17814500
0.15615300
1.46336100
1.84044800
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Table S11. Cartesian coordinates of the DFT-optimized structure of MF-Py-CPP (C,) depicted.

MF-Py-CPP (C))

-6.42568600
-5.73477000
-6.76222700
-7.29393500
-5.27052600
-6.12067200
-4.77950600
-4.56339800
6.42568600
6.76222700
5.73477000
7.29393500
5.27052600
4.77950600
6.12067200
4.56339800
6.42568600
5.73477000
6.76222700
7.29393500
5.27052600
6.12067200
4.77950600
4.56339800

B3LYP-D3BJ/6-311g(d,p)

E =-2932.219605 a.u.
Cc

OO0 O0O000O000000O0

0.01848900
0.00042000
0.00007200
0.00132600
0.01963200
0.04956600
-0.00007200
-0.00132600
-0.00798300

0.00798300

0.00691900
-0.00691900
-0.00042000
-0.01848900
-0.04956600

-2.66452000
-1.86661900
-2.47950300
-2.61528700
-4.29125700
-4.27423800
-5.26258500
-3.51939300
-2.66452000
-2.47950300
-1.86661900
-2.61528700
-4.29125700
-5.26258500
-4.27423800
-3.51939300
2.66452000
1.86661900
2.47950300
2.61528700
4.29125700
4.27423800
5.26258500
3.51939300

2.84386100
1.43031700
0.71678600
1.43053400
2.84427800
3.51103200

-0.71678600
-1.43053400
-0.67843900
0.67843900
0.67847600
-0.67847600
-1.43031700
-2.84386100
-3.51103200

S67

1.17814500
1.46336100
0.15615300
1.84044800
2.73224500
3.41923800
2.81631200
3.04716200
1.17814500
0.15615300
1.46336100
1.84044800
2.73224500
2.81631200
3.41923800
3.04716200
1.17814500
1.46336100
0.15615300
1.84044800
2.73224500
3.41923800
2.81631200
3.04716200

-1.45651800
-1.47114700
-0.23282500

1.00523800
0.99056100
-0.23293600

-0.23282500

1.00523800
2.22392200
2.22392200
-2.68981300
-2.68981300
-1.47114700
-1.45651800
-0.23293600
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-0.01963200
-0.02403700
0.97237600
0.94330800
-0.10209900
-1.11231200
-1.07871800
-0.39657500
-1.58837700
-2.15026500
0.28901500
-0.22642200
-1.40883700
-2.09654100
-0.91498700
0.25972700
0.69239300
-0.06829200
-1.25230000
-1.67799900
0.13182800
-0.92750300
-1.90467900
1.13943600
1.07568200
0.01963200
-0.98450300
0.02403700
-0.97237600
-0.94330800
0.10209900
1.11231200
1.07871800
0.39657500
1.58837700
2.15026500
-0.28901500
0.22642200
1.40883700
2.09654100
0.03314400
-0.02789100
0.02789100
0.02446400

-2.84427800
3.65096200
4.60448000
5.39479300
5.23284200
4.28713200
3.50481000
5.90418600
5.36852700
4.29285000
6.90538800
7.36620700
6.83465700
5.83066100

-8.14865600

-7.43462500

-6.45540800

-6.20158800

-6.92113600

-7.89377900

-5.25040500

-5.39079400

-6.46605100

-4.31761100

-3.52856600

-3.65528300

-4.60550100

-3.65096200

-4.60448000

-5.39479300

-5.23284200

-4.28713200

-3.50481000

-5.90418600

-5.36852700

-4.29285000

-6.90538800

-7.36620700

-6.83465700

-5.83066100
4.59441400

-1.21239300
1.21239300
1.21326600

S68

0.99056100
2.23584200
2.49170700
3.63780000
4.54334500
4.29269300
3.15264100
5.81313600
6.33484400
5.41026800
6.49785800
7.70818500
8.22581100
7.53891400
-7.88320300
-8.12555500
-7.23286200
-6.09348300
-5.84930900
-6.74052000
-4.99588500
-4.08281700
-4.54735700
-4.75992800
-3.61544900
-2.69921500
-2.94441300
2.23584200
2.49170700
3.63780000
4.54334500
4.29269300
3.15264100
5.81313600
6.33484400
5.41026800
6.49785800
7.70818500
8.22581100
7.53891400
-0.23297400
3.16356700
3.16356700
-3.62910500
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-0.02446400
-0.03314400
1.78744800
1.72940600
-1.86469400
1.20775500
0.29495500
-1.79606700
-3.01475200
-1.23729800
0.84018300
1.60542300
-2.58964300
1.96918700
1.86293800
-1.80427200
-1.78744800
-1.72940600
1.86469400
-1.20775500
-0.29495500
1.79606700
3.01475200
-0.01963200
-1.07568200
0.98450300
-1.13943600
-1.86293800
0.92750300
1.80427200
-0.13182800
-1.96918700
1.90467900
0.06829200
1.25230000
-0.69239300
1.67799900
-0.25972700
-1.60542300
0.91498700
2.58964300
-0.84018300
1.23729800
3.54189500

-1.21326600
-4.59441400
4.70965900
6.11926100
2.78693600
7.32129000
8.14458200
7.20423800
5.42313300
-8.90677300
-7.64436100
-5.90335200
-8.45308400
-4.20805200
-2.81288900
-4.70199000
-4.70965900
-6.11926100
-2.78693600
-7.32129000
-8.14458200
-7.20423800
-5.42313300
3.65528300
3.52856600
4.60550100
4.31761100
2.81288900
5.39079400
4.70199000
5.25040500
4.20805200
6.46605100
6.20158800
6.92113600
6.45540800
7.89377900
7.43462500
5.90335200
8.14865600
8.45308400
7.64436100
8.90677300
-4.68405000

S69

-3.62910500
-0.23297400
1.78517600
3.81855600
2.94731800
6.09979700
8.25329400
9.16825800
7.94802600
-8.58755900
-9.01657700
-7.42540900
-6.55975900
-5.44908700
-3.41135900
-2.24088400
1.78517600
3.81855600
2.94731800
6.09979700
8.25329400
9.16825800
7.94802600
-2.69921500
-3.61544900
-2.94441300
-4.75992800
-3.41135900
-4.08281700
-2.24088400
-4.99588500
-5.44908700
-4.54735700
-6.09348300
-5.84930900
-7.23286200
-6.74052000
-8.12555500
-7.42540900
-7.88320300
-6.55975900
-9.01657700
-8.58755900
4.87778900
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Table S12. Cartesian coordinates of the DFT-optimized structure of MF-Py-CPP (Cs) depicted.

MF-Py-CPP (Cs)

4.26212800
3.50545300
3.90409700
2.21249800
2.54925500
1.22981700
2.91203400
3.30457200
3.73344000
3.25409900
3.97845600
1.98722200
0.99838300
2.39451700
2.63815300
-1.98722200
-0.99838300
-2.39451700
-2.63815300
-3.30457200
-3.73344000
-3.25409900
-3.97845600
-2.21249800
-2.54925500
-1.22981700
-2.91203400
-3.54189500
-4.26212800
-3.50545300
-3.90409700

B3LYP-D3BJ/6-311g(d,p)

E =-2932.219632 a.u.
C

OO0 00O0O0

-0.71293700
-0.70043500
-0.70217800
-0.70043500
-0.71293700
-0.74063300
-0.70572700
-0.70604300

-4.74897900
-5.65189900
-3.93828600
-2.92443500
-2.14980800
-2.64121200
-2.95582600

5.87495300
5.49071800
5.05593800
6.63977100
7.61989800
8.04345300
7.26523300
8.41506400

-7.61989800
-8.04345300
-7.26523300
-8.41506400
-5.87495300
-5.49071800
-5.05593800
-6.63977100
2.92443500
2.14980800
2.64121200
2.95582600
4.68405000
4.74897900
5.65189900
3.93828600

-3.22790600
-1.81407800
-1.10039300
-1.81407800
-3.22790600
-3.89523400

0.33317400
1.04663400

S70

5.69753700
4.37417300
4.16541200
6.11553200
5.42152700
6.49787700
6.95489700
-4.80093300
-3.87173800
-5.52091600
-5.19580500
-3.52992200
-3.34410400
-2.57941400
-3.90268700
-3.52992200
-3.34410400
-2.57941400
-3.90268700
-4.80093300
-3.87173800
-5.52091600
-5.19580500
6.11553200
5.42152700
6.49787700
6.95489700
4.87778900
5.69753700
4.37417300
4.16541200

-1.22337700

-1.23807100
0.00000000
1.23807100
1.22337700
0.00000000
0.00000000
1.23836700



OO0 O0O000O000000000000000000000000000000000000O0

-0.69930400
-0.71059400
-0.71059400
-0.69930400
-0.70604300
-0.68905500
-0.65912400
-0.66331200
-1.65518100
-1.61908900
-0.57110400
0.43451300
0.39372000
-0.26928500
0.92247600
1.47670200
-0.94847700
-0.42664400
0.75577600
1.43703500
0.75577600
-0.42664400
-0.94847700
-0.26928500
0.92247600
1.43703500
-0.57110400
0.43451300
1.47670200
-1.61908900
-1.65518100
-0.66331200
0.39372000
0.22139700
-0.95148200
-1.38572400
-0.62846800
0.55370000
0.98097800
-0.83089500
0.22537400
1.20246400
-1.83820300
-1.77742000

0.29485800
-1.06209400
-1.06209400

0.29485800

1.04663400

2.46011100

3.12677600
-4.03419900
-4.99166200
-5.78239300
-5.61703500
-4.66716200
-3.88407300
-6.28866500
-5.74914500
-4.67019500
-7.29326300
-7.75364900
-7.21832900
-6.21088800
-7.21832900
-7.75364900
-7.29326300
-6.28866500
-5.74914500
-6.21088800
-5.61703500
-4.66716200
-4.67019500
-5.78239300
-4.99166200
-4.03419900
-3.88407300

7.78000500

7.06492500

6.08279200

5.82709700

6.54773500

7.52327600

4.87278600

5.01218400

6.09008900

3.93833400

3.14691600

S71

2.45705300
2.45688400
-2.45688400
-2.45705300
-1.23836700
-1.22372100
0.00000000
2.46869300
2.72723900
3.87283600
477477900
4.52143400
3.38213800
6.04270100
6.56050200
5.63509800
6.72881500
7.93656100
8.45028200
7.76200900
-8.45028200
-7.93656100
-6.72881500
-6.04270100
-6.56050200
-7.76200900
-4.77477900
-4.52143400
-5.63509800
-3.87283600
-2.72723900
-2.46869300
-3.38213800
-7.63567600
-7.88373200
-6.99500800
-5.85377500
-5.60385100
-6.49111800
-4.75929500
-3.84256900
-4.30099800
-4.52857500
-3.38552300
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-0.72442300
0.27965400
-0.71929300
-0.68468500
-0.73035700
-0.73035700
-0.68468500
-0.67582600
-2.47197500
-2.40170700
1.17588400
-1.86721700
-0.94303100
1.14802300
2.35528000
1.14802300
-0.94303100
-1.86721700
2.35528000
-2.40170700
-2.47197500
1.17588400
0.54492500
-1.52931700
-2.29735400
1.89119600
-2.66578200
-2.56496300
1.09719400
-0.68905500
-0.72442300
-1.77742000
0.27965400
-1.83820300
-2.56496300
0.22537400
1.09719400
-0.83089500
-2.66578200
1.20246400
-0.62846800
0.55370000
-1.38572400
0.98097800

3.27265600
4.22425500
-4.97850300
0.82957700
-1.59647400
-1.59647400
0.82957700
4.21017200
-5.09993100
-6.51003900
-3.16261800
-7.71205300
-8.53460900
-7.58763100
-5.80043000
-7.58763100
-8.53460900
-7.71205300
-5.80043000
-6.51003900
-5.09993100
-3.16261800
8.54040300
7.27616100
5.53000400
8.08345200
3.82953200
2.43050000
4.31994500
2.46011100
3.27265600
3.14691600
4.22425500
3.93833400
2.43050000
5.01218400
4.31994500
4.87278600
3.82953200
6.09008900
5.82709700
6.54773500
6.08279200
7.52327600

S72

-2.46568400
-2.70595700
0.00000000
3.39644000
3.39631600
-3.39631600
-3.39644000
0.00000000
2.02319900
4.05581300
3.17469000
6.33381200
8.48272100
9.39076500
8.16812500
-9.39076500
-8.48272100
-6.33381200
-8.16812500
-4.05581300
-2.02319900
-3.17469000
-8.33700200
-8.77609600
-7.19199300
-6.30588800
-5.22044700
-3.18521300
-1.99970600
1.22372100
2.46568400
3.38552300
2.70595700
4.52857500
3.18521300
3.84256900
1.99970600
4.75929500
5.22044700
4.30099800
5.85377500
5.60385100
6.99500800
6.49111800
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-0.95148200
-2.29735400
0.22139700
1.89119600
-1.52931700
0.54492500
2.86773300
3.22430300
2.83297800
3.59136600
1.53660900
0.55437600
1.86777900
2.23944500
2.60419300
3.03046700
2.55749800
3.27823100
1.27968200
0.28951700
1.68432100
1.93057000
2.60419300
2.55749800
3.03046700
3.27823100
1.27968200
1.68432100
0.28951700
1.93057000
2.86773300
2.83297800
3.22430300
3.59136600
1.53660900
1.86777900
0.55437600
2.23944500

7.06492500
5.53000400
7.78000500
8.08345200
7.27616100
8.54040300
-5.05554000
-4.30754700
-6.02293600
-5.11869800
-3.30246000
-3.02332300
-2.52568800
-3.33233200
5.50202700
5.11579300
4.68499200
6.26900900
7.24118900
7.66253600
6.88428200
8.03851500
5.50202700
4.68499200
5.11579300
6.26900900
7.24118900
6.88428200
7.66253600
8.03851500
-5.05554000
-6.02293600
-4.30754700
-5.11869800
-3.30246000
-2.52568800
-3.02332300
-3.33233200

S73

7.88373200
7.19199300
7.63567600
6.30588800
8.77609600
8.33700200
-5.09680500
-4.38390100
-4.59220500
-5.91370900
-6.34185600
-6.72827200
-5.64754600
-7.17852300
-4.55140200
-3.62181800
-5.27389300
-4.94179100
-3.27996500
-3.09621700
-2.32911400
-3.64814900
4.55140200
5.27389300
3.62181800
4.94179100
3.27996500
2.32911400
3.09621700
3.64814900
5.09680500
4.59220500
4.38390100
5.91370900
6.34185600
5.64754600
6.72827200
7.17852300



