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Materials and Methods

General Experimental Procedures

All reactions were carried out under aerobic conditions unless otherwise stated. All solvents and commercially
available reagents were purchased from standard vendors and used without further purification unless
otherwise stated. Electrolyses were performed using an IKA Electrasyn 2.0 using carbon graphite working and
counter electrode. Analytical thin-layer chromatography (TLC) was performed using silica gel plates (0.25 mm
thickness) on aluminum support. Visualization was accomplished by irradiation with a UV lamp and/or staining
with either KMnOa or ninhydrin. Column chromatography was performed over Silica gel 60 A (40-63p mesh)
using a CombiFlash Rf Lumen automatic flash chromatography system. Residual solvent was removed using a
static oil pump (< 10 mbar). The cooling of reaction mixtures was achieved using an ice bath (0 °C).

NMR spectra were obtained using a JEOL ECZR 400 (*H 399.78 MHz; '°F 376.17 MHz; 3C 100.53 MHz) or ECA 500
(*H 500.16 MHz; 3C 125.77 MHz) spectrometer and are reported relative to the residual solvent resonances. All
heteronuclear NMR spectra were 'H-decoupled and recorded at room temperature unless otherwise stated.
Data for 'H NMR spectra are reported as follows: chemical shift (5, ppm), coupling constant (Hz), multiplicity (s,
singlet; d, doublet; t, triplet; m, multiplet; br, broad) and integration. Data for *3C and *°F NMR are reported in
terms of chemical shift (6, ppm). IR spectra were recorded on a Perkin Elmer Spectrum Two instrument as neat
samples.

High Resolution Mass Spectrometry (HRMS) data were obtained by Dr. lain Goodall and Dr. Bini Claringbold of
the University of Greenwich Mass Spectrometry Service using a Waters Synapt G2 hybrid Quadrupole-
orthogonal acceleration time-of-flight configuration (Waters, Manchester, UK) operating in Resolution Mode
(M/AM > 18,000), fitted with a Waters Acquity UPLC binary solvent chromatographic pump system. The column
used was a reversed-phase Acquity BEH C18 2.1 x 50 mm, 1.7-micron bead, running a 3- minute separation with
an A:B eluent mixture comprising of either deionised water with 0.1% (v:v) formic acid and acetonitrile with
0.1% (v:v) formic acid (negative mode) respectively or deionised water with 0.1% (v:v) ammonium hydroxide
and acetonitrile with 0.1% (v:v) ammonium hydroxide (positive mode) respectively. Mass calibration of the
instrument was performed using sodium formate cluster ions, and an orthogonal Lock-SprayTM ESI probe was
used with a lock mass calibrant, leucine-enkephalin. The pseudomolecular leucine-enkephalin ion at m/z =
554.2615 (Negative lon Mode), and m/z = 556.2771 (Positive lon Mode), was used as the internal mass
correction calibrant. Additional samples were analyzed on a Thermo LTQ Orbitrap XL coupled with a heated
electrospray source (HESI). The capillary temperature was set to 275 °C and a voltage of 21 V. The sheath gas
and auxiliary gas flow were set to 10 and 5 L h™* respectively and the source current and voltage set to 100 pA
and 5 kV. A solution of analyte (0.1 mg/ml) and sodium formate (1% v/v) in acetonitrile was added by direct
infusion (10 puL/min) into the mass spectrometer using a Hamilton syringe (250 uL).

Gas-Chromatography Mass Spectrometry (GC-MS) data were obtained using a Shimadzu Nexis GC-2030 gas
chromatograph connected to a GCMS-QP2020 NX gas chromatograph mass spectrometer, equipped with an
AOC-20i Plus auto injector. The column was a CD-5MS capillary column (30 m x 0.25 mm x 0.25 um), with helium
as the carrier gas. The sample injection volume was 1 uL, and separations run over a 5-minute period with an
increasing oven temperature (gradient) between 40 — 280 °C. Results were visualised and manipulated using
LabSolutions GCMS solution version 4.50.

High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) data were obtained using a Shimadzu
LC-2050C 3D coupled with a Shimadzu LCMS-2020 FCV-20AH2. The column was an Ascentis Express 90A AQ-
C18, 2.7 um. Results were visualised and manipulated using LabSolutions GCMS solution version 5.114.

DSC data were obtained using a Discovery DSC 2500 with RSC90 cooling accessory (heat flux DSC) (TA
Instruments, Waters, USA). Calibrate with indium for temperature and cell constant according to the
manufacturer’s instructions. Nitrogen was used as purge gas at 50mL/min flow rate. The sample mass was ca
2.5 mg on Tzero aluminum pans and hermetic lids (TA Instruments, Waters, USA). The temperature programme
scanned from 0 C to 200 C at 10 C/min scan rate.



The 1g flow experiment was carried out using the Ammonite 8 flowcell. The cell was manufactured by Cambridge
reactor Design Ltd. The cell design is based on two circular plate electrodes, diameter 149 mm and a spiral
solution channel, width 5 mm where the electrolyte flows from the center of the discs to their perimeter. The
spiral solution channel was created by machining a spiral groove (2 mm in width and 0.5 mm in depth) into the
stainless steel cathode electrode so that there was a 5 mm spacing between neighboring sections of the groove.
A polymer gasket/spacer, thickness 1 mm, was lazer cut so that it fitted into the groove. When compressed
against a flat carbon filled polyvinylidene fluoride (C/PVDF) plate electrode, this creates a channel 2 m long, 5
mm wide with an interelectrode gap of 0.5 mm.

Cyclic voltammetry studies were carried out using an Autolab 302N potentiostat interfaced through Nova 2.1
software to a personal computer. Electrochemical measurements were performed in a glovebox under an
atmosphere of dinitrogen with oxygen and water levels of less than 5 ppm at 298 K, with solvents that had been
thoroughly degassed and purified by passing through an alumina-based purification system. Sample
concentrations of 1.0 mM were used, alongside 0.1 M ["BusN][PFs] supporting electrolyte concentrations.
Experiments were conducted using a standard three-electrode setup comprising of a glassy carbon disc working
electrode, platinum wire counter electrode, and AgCl-coated silver wire as a pseudo-reference electrode.
Potentials are reported relative to the [FeCp2]*/° redox couple, obtained through the addition of ferrocene to
the analyte solution.



General Procedure A for the synthesis of ketone starting materials?
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To a stirred solution of 2-oxo-2-phenylacetic acid (20 mmol, 1 eq.) in DCM (20 mL) was added oxalyldichloride
(2.79 g, 1.1 eq.) and two drops of DMF. The mixture was stirred for 2 h at room temperature. The solvent was
then removed under reduced pressure and the resulting a-acyl chloride was dissolved in DCM (10 mL) and added
to a 100 mL round-bottomed flask containing alcohol R’"OH (40 mmol), triethylamine (40 mmol, 4.0 g) and DCM
(20 mL) at 0 °C and stirred at room temperature overnight. Upon completion, the resulting mixture was washed
with water and extracted with DCM (3 x 20 mL). The combined organics were dried over MgS04 and the solvent
removed under reduced pressure. The crude residue was purified by silica gel flash chromatography
(EtOAc/Pentane = 1/30) to afford the benzoylformate esters.

General Procedure B for the synthesis of ketone starting materials?
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To a stirred solution of 2-oxo-2-phenylacetic acid (1.09 g, 7.26 mmol) and DMAP (0.237 g, 1.94 mmol) in DCM
(24 mL) was added dropwise benzyl alcohol (0.5 mL, 4.84 mmol). N,N ’-diisopropylcarbodiimide (DIC, 2.20 mL,
14.5 mmol) was added dropwise at 0 °C. The mixture was warmed to room temperature and stirred overnight.
Excess DIC was consumed by the addition of AcOH and EtOH. After 30 min, the mixture was quenched with 1M
HCl and neutralized with saturated NaHCOs aqueous solution and diluted with DCM followed by washing with

water and brine. The combined organics were dried over MgSO4 and purified by silica gel flash chromatography
(EtOAc/Hexane = 1/100) to afford the desired ketone.

General Procedure C for the synthesis of ketone starting materials®
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Se0:2 (20 mmol) was added to a solution of phenylacetylene (20 mmol) in dioxane (20 ml) followed by the
addition of 10 mol% of H2S04 and amine (20 mmol). The reaction mixture was then heated at 80 °C for 10-12 h
and the product formation was monitored by TLC. After completion, the reaction mixture was extracted with
ethyl acetate (3 x 100 ml) and washed with water and brine. The combined organics were dried over MgSO4 and
the solvent removed under reduced pressure. The crude residue was purified by silica gel flash chromatography
(EtOAc/Hexane = 1/100) to afford the desired ketone.
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° Synthesised according to general procedure A from prop-2-en-1-ol (2.3232 g, 40 mmol) to

afford ketone 1.1 (3.1573 g, 83%) as a brown liquid. Ketone 1.1: *H NMR (400 MHz, CDCls): 6+ 8.02-8.00 (m, 2H),
7.68-7.64 (m, 1H), 7.51 (t, J = 7.85 Hz, 2H), 6.07-5.97 (m, 1H), 5.47-5.33 (m, 2H), 4.89-4.86 (m, 1H); 1*C {*H} NMR
(101 MHz, CDCls): 6¢186.2, 163.6, 135.1, 132.6, 130.9, 130.2, 129.0, 120.2, 66.7; IR (u, cm?, neat): 3041, 1743,
1690; HRMS (ESI): m/z calcd for C11H1003: 191.0708 [M+H]*; found: 191.0724
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° Synthesised according to general procedure A from prop-2-yn-1-ol (2.2424 g, 40 mmol) to

afford ketone 1.2 (1.7689 g, 47%) as a yellow oil. Ketone 1.2: *H NMR (400 MHz, CDCl3): 6+ 8.04-8.01 (m, 2H),
7.73-7.68 (m, 1H), 7.56-7.51 (m, 2H), 4.97 (d, J = 2.48 Hz, 2H), 2.60 (t, J = 2.48 Hz, 1H); 3C {*H} NMR (101 MHz,
CDCls): 8¢ 185.5, 162.9, 135.4, 132.4, 130.3, 129.1, 76.5, 76.4, 53.5; IR (u, cm™, neat): 3315, 3073, 1744, 1690;
HRMS (ESI): m/z calcd for C11HgO3: 189.0552 [M+H]*; found: 189.0564
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° Synthesised according to general procedure A from but-2-yn-1-ol (2.8036 g, 40 mmol) to

afford ketone 1.3 (3.0332 g, 75%) as a yellow oil. Ketone 1.3: *H NMR (400 MHz, CDCl3): 6x 8.03-8.01 (m, 2H),
7.69-7.65 (m, 1H), 7.54-7.51 (m, 2H), 7.94 (q, J = 2.45 Hz, 2H), 1.89 (t, J = 2.45 Hz, 3H); 3C {*H} NMR (101 MHz,
CDCls): 6¢185.7, 163.2, 135.2, 132.5, 130.3, 129.1, 84.9, 72.1, 54.5, 3.8; IR (u, cm™, neat): 3301, 3023, 1754,
1693; HRMS (ESI): m/z calcd for C12H1003: 203.0708 [M+H]*; found: 203.0720

0
©)H(°\/©
° Synthesised according to general procedure A from 3-phenylprop-2-yn-1-ol (5.2864

g, 40 mmol) to afford ketone 1.4 (4.5456 g, 86%) as a yellow oil. Ketone 1.4: *H NMR (400 MHz, CDCl3): &+ 8.05-
8.03 (m, 2H), 7.64-7.61 (m, 1H), 7.49-7.46 (m, 4H), 7.33-7.30 (m, 3H), 5.20 (s, 2H); 23C {*H} NMR (101 MHz, CDCls):
5c185.5, 163.1, 135.2, 132.5, 132.0, 130.2, 129.2, 129.1, 128.5, 122.0, 88.2, 81.8, 54.4; IR (u, cm, neat): 3298,
2997, 1722, 1689; HRMS (ESI): m/z calcd for C17H1203: 265.0865 [M+H]*; found: 265.0877
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° Synthesised according to general procedure B from benzyl alcohol (0.5236 g, 4.84 mmol)

to afford ketone 1.5 (1.0815 g, 93%) as a colourless oil. Ketone 1.5: 'H NMR (400 MHz, CDCls): 64 7.98-7.96 (m,
2H), 7.66-7.63 (m, 1H), 7.51-7.44 (m, 4H), 7.42-7.38 (m, 3H), 5.42 (s, 2H); 3C {*H} NMR (101 MHz, CDCl3): &¢
186.2, 163.8, 135.1, 134.7, 132.5, 130.2, 129.0, 129.0, 128.9, 128.7, 67.9; IR (u, cm™L, neat): 2941, 1726, 1688;
HRMS (ESI): m/z calcd for CisH1203: 241.0865 [M+H]*; found: 241.0876
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° Synthesised according to general procedure B from 3-chlorobenzyl alcohol (0.6901

g, 4.84 mmol) to afford ketone 1.6 (1.1567 g, 87%) as a yellow oil. Ketone 1.6: *H NMR (400 MHz, CDCls): 61 7.99-
7.97 (m, 2H), 7.68-7.65 (m, 1H), 7.52-7.49 (m, 2H), 7.44-7.43 (m, 1H), 7.34-7.32 (m, 3H), 5.38 (s, 2H); 1C {*H}
NMR (101 MHz, CDCl3): 6¢185.9, 163.5, 136.6, 135.2, 134.8, 132.5, 130.2, 130.2, 129.1, 129.1, 128.7, 126.7, 66.9;
IR (u, cm™, neat): 2993, 1744, 1694; HRMS (ESI): m/z calcd for C1sH11ClO3: 275.0475 [M+H]*; found: 275.0479
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° Synthesised according to general procedure B from 4-(methylthio)benzyl alcohol

(0.7465 g, 4.84 mmol) to afford ketone 1.7 (1.1226 g, 81%) as a yellow oil. Ketone 1.7: *H NMR (400 MHz, CDCls):
8k 7.97-7.95 (m, 2H), 7.66-7.63 (m, 1H), 7.50-7.47 (m, 2H), 7.38-7.36 (m, 2H), 7.27-7.25 (m, 2H), 5.36 (s, 2H),
2.49 (s, 3H); 3C {*H} NMR (101 MHz, CDCls): &¢ 186.1, 163.7, 139.8, 135.1, 132.5, 131.2, 130.1, 129.4, 129.0,
126.5, 67.6, 15.6; IR (u, cm™, neat): 3025, 1701, 1634; HRMS (ESI): m/z calcd for C16H1403S: 309. 0561 [M+Na]*;
found: 309.0570
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° Synthesised according to general procedure B from (4-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)phenyl)methanol (1.1330 g, 4.84 mmol) to afford ketone 1.8 (1.2053 g, 68%) as a yellow
oil. Ketone 1.8: 'H NMR (400 MHz, CDCl3): 84 7.97-7.95 (m, 2H), 7.85-7.83 (m, 2H), 7.66-7.63 (m, 1H), 7.50-7.47
(m, 2H), 7.45-7.44 (m, 2H), 5.43 (s, 2H), 1.35 (s, 12H); *3C {*H} NMR (101 MHz, CDCls): 6¢ 186.1, 163.7, 137.6,
135.3, 135.1, 132.5, 130.2, 129.0, 127.7, 84.1, 67.7, 31.7, 25.0, 22.8, 14.3; IR (u, cm™}, neat): 3176, 2986, 1750,
1698; HRMS (ESI): m/z calcd for C21H23BOs: 384.1982 [M+NHa]*; found: 384.1994
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° Synthesised according to general procedure B from piperonol (0.7364 g, 4.84 mmol)

to afford ketone 1.9 (1.2108 g, 88%) as a yellow oil. Ketone 1.9: 'H NMR (400 MHz, CDCls): 61 7.97-7.95 (m, 2H),
7.66-7.63 (m, 1H), 7.51-7.48 (m, 2H), 6.94-6.93 (m, 2H), 6.82-6.80 (m, 1H), 5.98 (s, 2H), 5.31 (s, 2H); 3C {*H} NMR
(101 MHz, CDCls): 6c186.2, 163.9, 148.2, 148.1, 135.1, 132.6, 130.2, 129.1, 128.3, 123.1, 109.6, 108.5, 101.5,
68.0; IR (u, cm™, neat): 3166, 1739, 1687; HRMS (ESI): m/z calcd for CigH120s: 307.0582 [M+Na]*; found:
307.0596
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° Synthesised according to general procedure B from 4-iodobenzyl alcohol (1.1328 g,

4.84 mmol) to afford ketone 1.10 (1.1165 g, 63%) as a yellow oil. Ketone 1.10: *H NMR (400 MHz, CDCl3): &
7.94-7.92 (m, 2H), 7.64-7.62 (m, 2H), 7.58-7.54 (m, 1H), 7.43-7.39 (m, 2H), 7.13-7.11 (m, 2H), 5.30 (s, 2H); 13C
{*H} NMR (101 MHz, CDCls): 6¢ 185.5, 163.1, 137.5, 134.8, 134.0, 131.9, 130.1, 129.7, 128.7, 94.6, 66.7; IR (u, cm’
1 neat): 3175, 1716, 1697; HRMS (ESI): m/z calcd for C1sH11103: 366.9904 [M+H]*; found: 366.9906
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° Synthesised according to  general procedure B from (3,4,5-

trimethoxyphenyl)methanol (0.9593 g, 4.84 mmol) to afford ketone 1.11 (1.3750 g, 86%) as a yellow oil. Ketone
1.11: *H NMR (400 MHz, CDCl3): 64 7.98-7.96 (m, 2H), 7.67-7.63 (m, 1H), 7.51-7.47 (m, 2H), 6.66 (s, 2H), 5.34 (s,
2H), 3.86 (s, 6H), 3.84 (s, 3H); 3C {*H} NMR (101 MHz, CDCls): 6¢ 186.2, 163.7, 153.6, 153.3, 138.4, 135.2, 132.5,
130.2, 130.1, 129.1, 125.9, 105.8, 68.1, 61.0, 56.3; IR (v, cm™, neat): 3187, 2932, 1753, 1689; HRMS (ESI): m/z
calcd for C18H180s: 331.1182 [M+H]*; found: 331.1194
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° Synthesised according to general procedure B from (4-ethynylphenyl)methanol

(0.6397 g, 4.84 mmol) to afford ketone 1.12 (1.0617 g, 83%) as a yellow oil. Ketone 1.12: *H NMR (400 MHz,
CDCl3): 6x 7.96-7.93 (m, 2H), 7.61-7.56 (m, 1H), 7.49-7.41 (m, 4H), 7.38-7.35 (m, 2H), 5.37 (s, 2H), 3.15 (s, 1H);
13C{*H} NMR (101 MHz, CDCl3): 6¢185.8, 163.4, 135.1, 135.0, 132.3, 132.2, 129.9, 128.8, 128.3, 122.5, 83.0, 78.2,
67.0; IR (u, cm™, neat): 3307, 3054, 1740, 1695; HRMS (ESI): m/z calcd for C17H1203: 282.1130 [M+NHa]*; found:
282.1145
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° Synthesised according to general procedure B from biphenyl-4-yl methanol

(0.8917 g, 4.84 mmol) to afford ketone 1.13 (1.3321 g, 87%) as a yellow oil. Ketone 1.13: 'H NMR (400 MHz,
CDCls): 61 8.11-8.09 (m, 2H), 7.68-7.63 (m, 4H), 7.61-7.57 (m, 3H), 7.52-7.47 (m, 4H), 7.44-7.40 (m, 1H), 5.52 (s,
2H); 13C {*H} NMR (101 MHz, CDCls): 6¢185.9, 163.5, 141.3,140.1,134.8,133.4, 132.2, 129.8, 128.9, 128.7, 127.4,
127.2,126.9, 67.2; IR (u, cm, neat): 3088, 1722, 1693; HRMS (ESI): m/z calcd for C21H1603: 334.1443 [M+NHa]*;
found: 334.1454
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Synthesised according to general procedure B from 9-hydroxymethylanthracene

(1.0080 g, 4.84 mmol) to afford ketone 1.14 (0.7249 g, 44%) as a yellow oil. Ketone 1.14: 'H NMR (400 MHz,
CDCls): 61 8.51 (s, 1H), 8.43-8.40 (m, 2H), 8.04-8.01 (m, 2H), 7.92-7.90 (m, 2H), 7.63-7.59 (m, 2H), 7.57-7.49 (m
3H), 7.39-7.35 (m, 2H), 6.46 (s, 2H); 3C {*H} NMR (101 MHz, CDCls): 8¢ 186.2, 164.2, 134.9, 132.4, 131.4, 131.2,
130.0, 129.3, 128.9, 127.1, 125.3, 124.7, 123.7, 60.6; IR (u, cm™, neat): 3016, 1717, 1689; HRMS (ESI): m/z calcd
for C23H1603: 358.1443 [M+NH4]*; found: 358.1454
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° Synthesised according to general procedure B from 4-(trifluoromethyl)benzyl

alcohol (0.8525 g, 4.84 mmol) to afford ketone 1.15 (1.2980 g, 87%) as a yellow oil. Ketone 1.15: *H NMR (400
MHz, CDCl3): &4 8.00-7.97 (m, 2H), 7.69-7.65 (m, 3H), 7.58-7.49 (m, 4H), 5.46 (s, 2H); 3C {*H} NMR (101 MHz,
CDCls): 6¢185.7, 163.4, 138.6, 135.3, 132.5, 131.3, 130.2, 129.1, 128.6, 126.0, 125.9, 125.9, 125.8, 66.8; °F NMR
(471 MHz, CDCl3): § -62.6; IR (u, cm™?, neat): 3180, 2939, 1758, 1673; HRMS (ESI): m/z calcd for CigH11F30s3:
326.1004 [M+NH4]*; found: 326.1014
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° Synthesised according to general procedure B from 3,5-(trifluoromethyl)benzyl

alcohol (1.1816 g, 4.84 mmol) to afford ketone 1.16 (1.5479 g, 85%) as a yellow oil. Ketone 1.16: *H NMR (400
MHz, CDCls): 61 8.01-7.99 (m, 2H), 7.91-7.90 (m, 3H), 7.71-7.67 (m, 1H), 7.55-7.51 (m, 2H), 5.51 (s, 2H); 3C {*H}
NMR (101 MHz, CDCls): 6¢185.3,163.1, 137.2, 135.4, 132.6, 132.3, 130.2, 129.2, 128.4, 124.5,122.9, 121.8, 65.9
%F NMR (471 MHz, CDCl3): 8 -62.6; IR (u, cm, neat): 3166, 3129, 1756, 1690; HRMS (ESI): m/z calcd for
C17H10F603: 394.0912 [M+NHa4]*; found: 394.0918

: ° Synthesised according to general procedure C from piperidine (1.7030 g, 20 mmol) to afford

ketone 1.17 (2.7811 g, 64%) as a yellow oil. Ketone 1.17: *H NMR (400 MHz, CDCls): &+ 7.96-7.94 (m, 2H), 7.66-
7.62 (m, 1H), 7.53-7.50 (m, 2H), 3.72-3.70 (m, 2H), 3.30-3.28 (m, 2H), 1.71-1.69 (m, 4H), 1.58-1.55 (m, 2H); 3C
{*H} NMR (101 MHz, CDCls): 6¢192.1, 165.6, 134.8, 133.4, 129.7, 129.1, 47.2, 42.3, 26.3, 25.3, 24.5; IR (u, cm,
neat): 3008, 1672, 1649; HRMS (ESI): m/z calcd for C1sH1sNO2: 218.1181 [M+H]*; found: 218.1190



o Ph
oY
° Synthesised according to general procedure C from 4-benzylpiperidine (3.5056 g, 20

mmol) to afford ketone 1.18 (5.2256 g, 85%) as a yellow oil. Ketone 1.18: 'H NMR (400 MHz, CDCls): 61 7.95-
7.93 (m, 2H), 7.66-7.63 (m, 1H), 7.53-7.50 (m, 2H), 7.30-7.27 (m, 2H), 7.22-7.19 (m, 1H), 7.14-7.12 (m, 2H), 4.68-
4.64 (m, 1H), 3.56-3.52 (m, 1H), 3.04-2.99 (m, 1H), 2.77-2.71 (m, 1H), 2.62-2.53 (m, 2H), 1.84-1.81 (m, 2H), 1.65-
1.62 (m, 2H), 1.32-1.30 (m, 1H); 3C {*H} NMR (101 MHz, CDCls): 6¢192.0, 165.5, 139.7, 134.8, 133.3,129.7,129.2,
129.1, 128.5,126.3, 46.4, 42.9, 41.6, 38.3, 32.4,31.7; IR (u, cm?, neat): 3014, 1697, 1654; HRMS (ESI): m/z calcd
for C20H21NO2: 308.1651 [M+H]*; found: 308.1664

o

CF,
Y J
° Synthesised according to general procedure C from 4-trifluoromethylpiperidine (3.0630

g, 20 mmol) to afford ketone 1.19 (3.8226 g, 67%) as a yellow oil. Ketone 1.19: *H NMR (400 MHz, CDCls): &
7.96-7.94 (m, 2H), 7.66-7.65 (m, 1H), 7.55-7.51 (m, 2H), 4.81-4.78 (m, 1H), 3.70-3.67 (m, 1H), 3.10-3.07 (m, 1H),
2.84-2.78 (m, 1H), 2.35-2.32 (m, 1H), 2.07-2.04 (m, 1H), 1.89-1.86 (m, 1H), 1.70-1.55 (m, 2H); 3C {*H} NMR (101
MHz, CDCls): 6¢191.5, 165.6, 135.1, 133.1, 129.8, 129.3, 45.0, 40.5, 40.2, 25.1, 24.3; *F NMR (471 MHz, CDCls):
5 -73.7; IR (u, cm, neat): 3038, 2963, 1687, 1645; HRMS (ESI): m/z calcd for C1aH14F3NO2: 286.1055 [M+H]*;
found: 286.1077

©)H(O S
° To a solution of benzoylformic acid (0.4999 g, 3.33 mmol) in CH2Cl2 (25 mL) was added

furfuryl alcohol (0.2178 g, 2.22 mmol), N,N-dimethylaminopyridine (0.0269 g, 0.22 mmol), and
dicyclohexylcarbodiimide (0.6871 g, 3.33 mmol). After stirring for 6 h, the solution was filtered, diluted with
saturated aqueous NaHCOs, and extracted with DCM (3x25 mL). The combined organic layers were dried with
NazS0s, and the solvent removed under reduced pressure. The crude oil was purified by silica gel flash
chromatography to give ketone 1.20 (0.2147 g, 42%) as a yellow oil.* Ketone 1.20: 'H NMR (400 MHz, CDCls): 6+
7.97-7.96 (m, 2H), 7.66-7.63 (m, 1H), 7.51-7.48 (m, 2H), 7.46-7.45 (m, 1H), 6.55-6.54 (m, 1H), 6.40-6.39 (m, 1H),
5.37 (s, 2H); 3C {*H} NMR (101 MHz, CDCls): &¢ 185.9, 163.5, 148.2, 144.0, 135.1, 134.4, 130.2, 129.0, 112.1,
110.9, 59.4; IR (u, cm, neat): 3006, 2866, 1731, 1695, 1473; HRMS (ESI): m/z calcd for Ci3H1004: 231.0739
[M+H]*; found: 231.0744

N
o}
©)J\r(°\/©/
° A 10 mL round bottomed flask was charged with Mukaiyama’s reagent (2.1

mmol), carboxylic acid of choice (2.0 mmol), alcohol of choice (2.0 mmol), and dimethyl carbonate (4 mL). The
suspension was stirred at room temperature and 2,6-lutidine was added (556 uL, 4.8 mmol). The reaction was
then heated to 60 °C and stirred at room temperature for 24 hours. Reaction mixture was filtered and directly
purified by silica gel flash chromatography (EtOAc/Hexane = 1/100) to afford the desired ketone 1.21 (0.3370 g,
55%) as a yellow oil.> Ketone 1.21: 'H NMR (400 MHz, CDCls): 84 7.95-7.90 (m, 3H), 7.70-7.68 (m, 3H), 7.60-7.56
(m, 1H), 7.49-7.41 (m, 4H), 6.42-6.41 (m, 1H), 5.38 (s, 2H); 13C {*H} NMR (101 MHz, CDCls): 6 186.0, 163.6, 141.4,
140.4, 135.1, 132.6, 132.3, 130.1, 130.0, 129.0, 128.0, 126.8, 119.2, 108.0, 67.2; IR (u, cm™, neat): 3120, 1727,
1695; HRMS (ESI): m/z calcd for C1sH14N203: 324.1359 [M+NH4]*; found: 324.1353

e

©)H(N\/\
° Thionyl chloride (0.96 mL, 13.32 mmol) was added dropwise to a stirred mixture of 2-oxo-

2-phenylacetic acid (1.0 g, 6.66 mmol) and EtsN (1.86 mL, 13.32 mmol) in DCM (10 mL) at 0 °C under nitrogen
atmosphere. The stirring was continued for 20 min. Then a suspension of diallylamine (0.6471 g, 6.66 mmol) in
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DCM (10 mL) was added slowly to the reaction mixture at 0 °C under nitrogen. The stirring was continued at
room temperature and the completion of the reaction was monitored through TLC. A saturated aqueous solution
of NaHCOs (10 mL) was added slowly under stirring to the reaction mixture. The organic layer was washed with
water (3 x 15 mL) and the solvent removed under reduced pressure. The crude residue was purified by silica gel
flash chromatography (petroleum ether/EtOAc = 20/1) to afford ketone 1.22 (1.2980 g, 85%) as a colourless
liquid.6 Ketone 1.22: 'H NMR (400 MHz, CDCl3): 81 7.91-7.89 (m, 2H), 7.60-7.57 (m, 1H), 7.47-7.44 (m, 2H), 5.84-
5.78 (m, 1H), 5.68-5.62 (m, 1H), 5.25-5.22 (m, 2H), 5.15-5.12 (m, 2H), 4.10-4.09 (m, 2H), 3.77-3.75 (m, 2H); 13C
{*H} NMR (101 MHz, CDCls): 6c191.2, 166.9, 134.7, 133.1, 132.0, 131.7, 129.7, 129.0, 119.4, 118.6, 118.6, 49.4,
45.8, 45.8; IR (u, cm™, neat): 2934, 2350, 1701, 1659; HRMS (ESI): m/z calcd for C1aH1sNO2: 230.1181 [M+H]*;
found: 230.1197

[0)

: ,lL o
p” N~~~
7\
0" o\
As reported in the literature, a Michaelis-Arbuzov reaction of benzoyl chloride (10.0 g, 71

mmol) with triethyl phosphite (11.8 g, 74 mmol), and distillation of the resulting mixture under reduced pressure
gave ketone 1.23 (14.7893 g, 86%) as a yellow oil.” Ketone 1.23: *H NMR (400 MHz, CDCls): 61 8.27-8.25 (m, 2H),
7.63-7.61 (m, 1H), 7.52-7.48 (m, 2H), 4.31-4.24 (m, 4H), 1.39-1.36 (m, 6H); 3C {H} NMR (101 MHz, CDCl3): &¢
200.0, 198.3, 136.0, 135.4, 134.9, 130.0, 129.0, 64.2, 64.1, 16.5, 16.5; 3P NMR (202 MHz, CDCl3): § -0.7; IR (u,
cm, neat): 2986, 2898, 1671, 1582; HRMS (ESI): m/z calcd for C11H1504P: 243.0822 [M+H]*; found: 243.0829



General Procedure D for the synthesis of ester/amide/ketone hydrazones?®

tBu Hydrazine.HCI (2 eq.)

AcOH (2 mL)
JOL H,0 (2 mL) HN N
RT R MeOH, rt R)'\R,

AcOH (2 mL) and H20 (2 mL) were stirred and cooled to 0 °C before tert-Butylhydrazine hydrochloride (50 mmol,
6.2305 g, 2 equiv.) was added with continued stirring. The a-ketoester (25 mmol, 1 equiv.) was then added. The
mixture was warmed to room temperature and MeOH (50 mL) was added to homogenize the solution. The
mixture was stirred at room temperature overnight and quenched with H20 upon completion. The reaction
mixture was extracted with 3 x EtOAc, 1 x sat. ag. NaHCOs, and 1 x brine. The combined organics were dried
over MgSOs and the solvent removed under reduced pressure. The crude residue was purified by silica gel flash
chromatography (Hexane/EtOAc = 9:1 to 7:3) to afford the desired hydrazone.

General Procedure E for the synthesis of aryl-CFs; hydrazones®

tBu Hydrazine.HCI (2 eq.) \I/

AcOH HN

SN
A’)LCFs EtOH, rt > Ar)\

The ketone (25 mmol) was dissolved in EtOH (50 mL) at room temperature before tert-Butylhydrazine
hydrochloride (50 mmol, 6.2305 g, 2 equiv.) was added and stirred for 5 min. A few drops of AcOH were then
added and the mixture was refluxed overnight. The reaction was quenched by the addition of H.0 and extracted
with 3 x EtOAc, 1 x sat. ag. NaHCOs, and 1 x brine. The combined organics were dried over MgSOa4 and the solvent
removed under reduced pressure. The crude residue was purified by silica gel flash chromatography (100%
diethyl ether) to afford the desired hydrazone.

tBu-hydrazine (and its salts) still require standard hydrazine-class precautions; the advantage here is
operational handling and avoidance of hydrazine hydrate.

|
©)Y ™~
o . .
Synthesised according to general procedure D from methyl 2-oxo-2-phenylacetate (4.1040 g,

25 mmol) to afford hydrazone 2.1 (5.7404 g, 98%) as a colourless oil. Hydrazone 2.1: *H NMR (400 MHz, CDCls):
81 7.56-7.54 (m, 2H), 7.34-7.31 (m, 2H), 7.26-7.23 (m, 1H), 3.79 (s, 3H), 1.33 (s, 9H); 3C {*H} NMR (101 MHz,
CDCls): 6¢164.2, 137.7, 128.3, 127.9, 126.7, 123.8, 55.3, 51.2, 28.9; IR (u, cm?, neat): 3381, 3185, 2944, 1669,
1372; HRMS (ESI): m/z calcd for C13H1sN202: 235.1447 [M+H]*; found: 235.1458

CF;

HN

|
0\/
o]
cl Synthesised according to general procedure D from ethyl 2-(4-chlorophenyl)-2-

oxoacetate (5.3158 g, 25 mmol) to afford hydrazone 2.2 (6.5744 g, 93%) as a white solid. Hydrazone 2.2: 'H NMR
(400 MHz, CDCls): 61 10.69 (s, 1H), 7.53-7.51 (m, 2H), 7.29-7.26 (m, 2H), 4.30-4.26 (q, J = 6.96 Hz, 2H), 1.35-1.32
(t,J=7.15Hz, 3H), 1.33 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): 6¢163.6, 136.3,132.3,129.4, 128.0,127.9, 122.8,
60.4, 55.4, 28.9, 14.4; IR (u, cm™, neat): 3380, 3178, 2940, 1674; HRMS (ESI): m/z calcd for C1aH1sCIN2O2:
283.1213 [M+H]*; found: 283.1230
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F Synthesised according to general procedure D from ethyl 2-(4-fluorophenyl)-2-oxoacetate
(4.9045 g, 25 mmol) to afford hydrazone 2.3 (4.1280 g, 62%) as a yellow oil. Hydrazone 2.3: *H NMR (400 MHz,
CDCl3): 61 7.55-7.52 (m, 2H), 7.02-6.98 (m, 2H), 4.29-4.25 (q, J = 7.17 Hz, 2H), 1.34-1.31 (t, J = 7.10 Hz, 3H), 1.33
(s, 9H); 3C {*H} NMR (101 MHz, CDCls): 6¢ 163.6, 162.9, 160.9, 133.9, 129.9, 129.8, 123.1, 114.5, 60.3, 55.2, 28.9,
14.4; *F NMR (471 MHz, CDCl3): 6 -116.4; IR (u, cm™, neat): 3378, 3193, 2934, 1673; HRMS (ESI): m/z calcd for
C14H19FN202: 267.1509 [M+H]*; found: 267.1509

Ov
o
Br Synthesised according to general procedure D from ethyl 2-(4-bromophenyl)-2-
oxoacetate (6.4270 g, 25 mmol) to afford hydrazone 2.4 (4.7447 g, 58%) as a yellow oil. Hydrazone 2.4: 'H NMR
(400 MHz, CDCls): 6x 10.70 (s, 1H), 7.47-7.42 (m, 4H), 4.29-4.25 (q, ) = 7.07 Hz, 2H), 1.34-1.31 (t, ) = 7.16 Hz, 3H),
1.33 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): 6c¢163.5, 136.8, 130.9, 129.8, 122.8, 120.5, 60.4, 55.4, 28.9, 14.4;
IR (u, cm™, neat): 3376, 2941, 1668, 1354; HRMS (ESI): m/z calcd for C1aH19BrN202: 327.0708 [M+H]*; found:
327.0707

o

MeO ° Synthesised according to general procedure C from ethyl 2-(4-methoxyphenyl)-2-
oxoacetate (5.2053 g, 25 mmol) to afford hydrazone 2.5 (5.7492 g, 87%) as a yellow oil. Hydrazone 2.5: *H NMR
(400 MHz, CDCl3): 6n 10.27 (s, 1H), 7.30-7.28 (m, 2H), 6.68-6.66 (m, 2H), 4.08-4.04 (q, J = 7.12 Hz, 2H), 3.58 (s,
3H), 1.14-1.11 (t, J = 7.18 Hz, 3H), 1.11 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): &c 163.8, 158.5, 130.6, 129.5,
124.0, 113.3, 60.2, 55.4, 51.2, 28.9, 14.4; IR (u, cm™, neat): 3388, 2938, 1671, 1365; HRMS (ESI): m/z calcd for
C14H20N203: 279.1709 [M+H]*; found: 279.1736

F Synthesised according to general procedure D from ethyl 2-(3,5-difluorophenyl)-2-
oxoacetate (5.3543 g, 25 mmol) to afford hydrazone 2.6 (5.4730 g, 77%) as a yellow oil. Hydrazone 2.6: *H NMR
(400 MHz, CDClz): 61 10.87 (s, 1H), 7.19-7.16 (m, 2H), 6.67-6.63 (m, 1H), 4.33-4.28 (g, J = 7.19 Hz, 2H), 1.38-1.35
(t,J=7.10 Hz, 3H), 1.35 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): 6¢163.7, 163.6, 163.4, 161.7, 161.6, 141.0, 140.9,
140.8,121.3,110.5, 110.5, 110.4, 110.3, 101.7, 101.5, 101.3, 60.6, 55.8, 28.9, 14.4; °F NMR (471 MHz, CDCl3): 6
-111.5; IR (u, cm?, neat): 3372, 3167, 2934, 1674, 1351; HRMS (ESI): m/z calcd for CiaH1sF2N202: 285.1415
[M+H]*; found: 285.1413

o)

/i\ Synthesised according to general procedure D from ethyl 2-oxo-4-phenylbutanoate
(5.1560 g, 25 mmol) to afford hydrazone 2.7 (6.2876 g, 91%) as a yellow oil. Hydrazone 2.7: *H NMR (400 MHz,
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CDCls): 61 10.02 (s, 1H), 7.29-7.25 (m, 2H), 7.22-7.20 (m, 2H), 7.19-7.16 (m, 1H), 4.20-4.16 (q, J = 7.23 Hz, 2H),
2.86-2.83 (t, J = 7.23 Hz, 2H), 2.72-2.69 (t, J = 7.23 Hz, 2H), 1.32-1.29 (t, J = 7.23 Hz, 3H), 1.22 (s, 9H); 13C {*H}
NMR (101 MHz, CDCls): 6c 163.7, 142.6, 128.7, 125.7, 124.0, 59.8, 54.3, 50.9, 34.7, 34.4, 28.8, 14.5; IR (u, cm™,
neat): 3406, 2940, 1668, 1349; HRMS (ESI): m/z calcd for CisH2aN202: 277.1916 [M+H]*; found: 277.1920

HN

~

o8
CF;

Synthesised according to general procedure E from 2,2,2-trifluoro-1-phenylethan-1-one (4.3530 g,
25 mmol) to afford hydrazone 2.8 (4.3356 g, 71%) as a yellow oil. Hydrazone 2.8: *H NMR (400 MHz, CDCls): &n
7.52-7.44 (m, 3H), 7.35-7.33 (m, 2H), 1.19 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): 8¢ 135.7, 129.9, 129.6, 129.1,
128.2, 123.1, 120.4, 54.5, 28.6; °F NMR (471 MHz, CDCl3): & -65.9; IR (u, cm™, neat): 3370, 3186; HRMS (ESI):
m/z calcd for C12H1sF3N2: 245.1415 [M+H]*; found: 245.1413

HN
/©)\ Synthesised according to general procedure E from 1-(4-bromophenyl)-2,2,2-trifluoroethan-

1-one (6.3255 g, 25 mmol) to afford hydrazone 2.9 (5.4937 g, 68%) as a yellow oil. Hydrazone 2.9: *H NMR (400
MHz, CDCl3): &x 7.66-7.62 (m, 2H), 7.24-7.21 (m, 2H), 1.19 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): &c 133.0,
130.9, 128.8,128.4,128.1,127.7,127.0,125.6, 124.4,122.9, 120.2, 117.5, 54.7, 28.6; *°F NMR (471 MHz, CDCls):
§-65.8; IR (u, cm™, neat): 3379, 3186; HRMS (ESI): m/z calcd for C12H1aBrFsN2: 323.0371 [M+H]*; found: 323.0370

HN_
N
! o
>
o
Synthesised according to general procedure D from allyl 2-oxo-2-phenylacetate (4.7550 g,

25 mmol) to afford hydrazone 2.10 (3.3193 g, 51%) as a yellow oil. Hydrazone 2.10: *H NMR (400 MHz, CDCls):
6n 7.59-7.57 (m, 2H), 7.34-7.31 (m, 2H), 7.26-7.22 (m, 1H), 5.98-5.94 (m, 1H), 5.36-5.31 (m, 1H), 5.26-5.23 (m,
1H), 4.73-4.71 (m, 2H), 1.34 (s, 9H); *3C {*H} NMR (101 MHz, CDCls): 6c 163.4, 137.8, 132.2, 128.3, 127.8, 126.7,
123.7, 118.3, 64.9, 55.4, 28.9; IR (u, cm™, neat): 3383, 3189, 2984, 2947, 1673; HRMS (ESI): m/z calcd for
Ci15H20N202: 261.1603 [M+H]*; found: 261.1601

g

HN _

N
rr”
° Synthesised according to general procedure D from prop-2-yn-1-yl 2-oxo-2-phenylacetate

(4.7045 g, 25 mmol) to afford hydrazone 2.11 (3.9394 g, 61%) as a yellow oil. Hydrazone 2.11: 'H NMR (400 MHz,
CDCl3): 61 10.67 (s, 1H), 7.59-7.56 (m, 2H), 7.36-7.32 (m, 2H), 7.27-7.23 (m, 1H), 4.80 (d, J = 2.53 Hz, 2H), 2.49 (t,
J =2.42 Hz, 1H), 1.34 (s, 9H); 3C {*H} NMR (101 MHz, CDCl3): ¢ 162.7, 137.4, 128.4, 127.9, 126.8, 122.9, 78.0,
75.0, 55.6, 51.4, 28.9; IR (u, cm, neat): 3492, 3373, 3181, 2947, 1670; HRMS (ESI): m/z calcd for CisH18N202:
259.1447 [M+H]*; found: 259.1450

HN

/@)\n/o\/
° Synthesised according to general procedure D from ethyl 2-oxo-2-(p-tolyl)acetate (4.8053

g, 25 mmol) to afford hydrazone 2.12 (4.2632 g, 65%) as a yellow oil. Hydrazone 2.12: 'H NMR (400 MHz, CDCls):
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8n 10.54 (s, 1H), 7.48-7.43 (m, 2H), 7.15-7.13 (m, 2H), 4.30-4.25 (q, J = 7.16 Hz, 2H), 2.36 (s, 3H), 1.35-1.32 (t, ) =
7.11 Hz, 3H), 1.33 (s, 9H); 3C {*H} NMR (101 MHz, CDCl3): 6c163.9, 136.3, 135.1, 128.5, 128.2, 124.2, 60.2, 55.1,
28.9, 21.3, 14.4; IR (u, cm, neat): 3374, 2978, 2940, 1667; HRMS (ESI): m/z calcd for CisH22N202: 263.1760
[M+H]*; found: 263.1765

~

0\/

Synthesised according to general procedure D from ethyl 2-(4-(tert-butyl)phenyl)-2-
oxoacetate (5.8575 g, 25 mmol) to afford hydrazone 2.13 (6.7736 g, 89%) as a yellow oil. Hydrazone 2.13: 'H
NMR (400 MHz, CDCls): 61 10.56 (s, 1H), 7.54-7.52 (m, 2H), 7.36-7.34 (m, 2H), 4.31-4.26 (q, J = 7.10 Hz, 2H), 1.36-
1.34 (t, ) = 7.16 Hz, 3H), 1.34 (s, 9H), 1.33 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): 6c 163.9, 149.4, 135.0, 127.9,
124.8,124.0, 60.2, 55.1, 34.6, 31.5, 29.0, 14.5; IR (u, cm?, neat): 3378, 2977, 2959, 2942, 1670; HRMS (ESI): m/z
calcd for C1gH28N202: 305.2229 [M+H]*; found: 305.2246

/P’ov

o’ \
O—\ Synthesised according to general procedure D from diethyl benzoylphosphonate (6.0553 g,
25 mmol) to afford hydrazone 2.14 (7.5745 g, 97%) as a yellow oil. Hydrazone 2.14: *H NMR (400 MHz, CDCls3):
&1 9.99 (s, 1H), 7.67-7.65 (m, 2H), 7.29-7.26 (m, 2H), 7.18-7.15 (m, 1H), 4.13-4.05 (m, 2H), 4.01-3.93 (m, 2H),
1.31 (s, 9H), 1.26-1.23 (t, J = 7.20 Hz, 6H); 13C {H} NMR (101 MHz, CDCls): 6¢ 138.1, 137.8, 127.9, 126.3, 125.4,
125.4,121.9,120.7,61.8, 61.8, 54.6, 28.7, 16.1, 16.0; 3P NMR (202 MHz, CDCls): § 12.45; IR (u, cm, neat): 3364,
3178, 2944, 2907; HRMS (ESI): m/z calcd for C1aH23N203P: 313.1681 [M+H]*; found: 313.1684

o Synthesised according to general procedure D from methyl 2-oxopropanoate (2.5523 g, 25 mmol)
to afford hydrazone 2.15 (4.0043 g, 93%) as a yellow oil. Hydrazone 2.15: 'H NMR (400 MHz, CDCls): 64 3.63 (s,
3H), 1.19 (s, 3H), 1.18 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): 6c174.0, 81.2, 67.9, 51.3, 26.6, 17.3; IR (v, cm,
neat): 3378, 3015, 2938, 1668, 1370; HRMS (ESI): m/z calcd for CsH1sN202: 173.1290 [M+H]*; found: 173.1304

HN

s N

),NH o]
HoN Synthesised according to general procedure D from ethyl 2-(2-amino-2,3-dihydrothiazol-4-
yl)-2-oxoacetate (5.0558 g, 25 mmol) to afford hydrazone 2.16 (4.0174 g, 59%) as a yellow oil. Hydrazone 2.16:
IH NMR (400 MHz, CDCls): 61 10.68 (s, 1H), 5.47 (s, 1H), 4.26-4.22 (q, J = 7.05 Hz, 2H), 2.02 (s, 1H), 1.33-1.30 (t,
1 =7.02 Hz, 3H), 1.29 (s, 2H), 1.28 (s, 9H); 13C {*H} NMR (101 MHz, CDCl3): 6c166.2, 165.7, 143.6, 120.5, 108.1,
60.3, 54.8, 28.7, 14.3; IR (u, cm, neat): 3384, 3350, 3145, 2942, 1670; HRMS (ESI): m/z calcd for C11H20N40:S:
271.1229 [M-H]*; found: 271.1270

o
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Synthesised according to general procedure D from benzil (5.2558 g, 25 mmol) to afford
hydrazone 2.17 (6.2382 g, 89%) as a . Hydrazone 2.17: 'H NMR (400 MHz, CDCls): 6+ 7.98-7.96 (m, 2H), 7.54-7.51
(m, 2H), 7.49-7.47 (m, 1H), 7.44-7.41 (m, 3H), 7.31-7.29 (m, 2H), 1.21 (s, 9H); 13C {*H} NMR (101 MHz, CDCls): &¢
191.2, 140.2, 139.1, 131.0, 130.8, 130.5, 129.4, 129.0, 127.5, 55.4, 28.8; IR (u, cm™, neat): 3369, 3183, 2982,
1683; HRMS (ESI): m/z calcd for C1sH20N20: 281.1654 [M+H]*; found: 281.1693

HN

N
@J\W A
° Synthesised according to general procedure D from but-2-yn-1-yl 2-oxo-2-

phenylacetate (5.0553 g, 25 mmol) to afford hydrazone 2.18 (6.4002 g, 94%) as a colourless liquid. Hydrazone
2.18: 'H NMR (400 MHz, CDCl3): 84 10.79 (s, 1H), 7.70-7.67 (m, 2H), 7.44-7.39 (m, 2H), 7.34-7.30 (m, 1H), 4.85-
4.83 (q, ) = 2.49 Hz, 2H), 1.90 (t, J = 2.49 Hz, 3H), 1.43 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): ¢ 162.8, 137.4,
128.2, 128.1, 127.6, 127.6, 126.5, 123.2, 82.9, 73.4, 55.2, 52.0, 28.7, 3.6; IR (u, cm™, neat): 3376, 3178, 2947,
1671; HRMS (ESI): m/z calcd for C16H20N202: 273.1603 [M+H]*; found: 273.1641

IN
jon i
(o]
O,N

2 Synthesised according to general procedure D from ethyl 2-(4-nitrophenyl)-2-
oxoacetate (5.5795 g, 25 mmol) to afford hydrazone 2.19 (5.4998 g, 75%) as a yellow oil. Hydrazone 2.19: H
NMR (400 MHz, CDCls): &1 11.05 (s, 1H), 8.12-8.09 (m, 2H), 7.77-7.72 (m, 2H), 4.30-4.26 (q, J = 7.20 Hz, 2H), 1.33
(s, 9H), 1.33-1.31 (t, ) = 7.12 Hz, 3H); 3C {*H} NMR (101 MHz, CDCls): 6c163.2, 145.7, 144.1, 127.8, 123.0, 121.3,
60.5, 55.9, 28.7, 14.2; IR (u, cm™, neat): 3374, 3189, 2936, 1674, 1472; HRMS (ESI): m/z calcd for C1aH19N30a:
294.1454 [M+H]*; found: 294.1472

:I\lf
N E j
: ,LI 0
o
Synthesised according to general procedure D from benzyl 2-oxo-2-phenylacetate

(6.0065 g, 25 mmol) to afford hydrazone 2.20 (7.1392 g, 92%) as a yellow oil. Hydrazone 2.20: *H NMR (400 MHz,
CDCl3): &+ 7.48-7.45 (m, 2H), 7.40-7.31 (m, 5H), 7.29-7.25 (m, 3H), 5.26 (s, 2H), 1.24 (s, 9H); 3C {*H} NMR (101
MHz, CDCls): 6¢164.7, 136.9, 131.3, 130.9, 129.3, 129.0, 128.5, 127.8, 127.7, 66.1, 55.1, 28.9; IR (u, cm™, neat):
3374, 3189, 2950, 1674; HRMS (ESI): m/z calcd for CisH22N202: 311.1760 [M+H]*; found: 311.1798

:I\lf
N E]
: ,LI 0
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o
Synthesised according to general procedure D from 3-chlorobenzyl 2-oxo-2-

phenylacetate (6.8675 g, 25 mmol) to afford hydrazone 2.21 (7.3279 g, 85%) as a yellow oil. Hydrazone 2.21: 'H
NMR (400 MHz, CDCls): &1 7.45-7.42 (m, 2H), 7.37-7.32 (m, 2H), 7.23-7.19 (m, 5H), 5.18 (s, 2H), 1.21 (s, 9H); 13C
{*H} NMR (101 MHz, CDCl3): 8¢ 164.5, 139.0, 134.4, 131.0, 130.8, 129.8, 129.4, 129.3, 129.1, 127.9, 127.7, 125.6,
65.1, 55.2, 28.9; IR (u, cm™, neat): 3377, 3190, 2951, 1675; HRMS (ESI): m/z calcd for CisH21CIN20O2: 345.1370
[M+H]*; found: 345.1400
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HN

| o
o
NC Synthesised according to general procedure D from ethyl 2-(4-cyanophenyl)-2-

oxoacetate (5.0800 g, 25 mmol) to afford hydrazone 2.22 (4.1001 g, 60%) as a colourless oil. Hydrazone 2.22: 'H
NMR (400 MHz, CDClz): 61 10.72 (s, 1H), 7.46-7.44 (m, 2H), 7.28-7.26 (m, 2H), 4.03-3.99 (q, J = 7.06 Hz, 2H), 1.06
(s, 9H), 1.06-1.04 (t, J = 7.16 Hz, 3H); 13C {*H} NMR (101 MHz, CDCl3): ¢ 162.9, 141.9, 131.1, 127.8, 121.4, 119.0,
109.0, 60.2, 55.4, 28.5, 14.0; IR (u, cm™, neat): 3372, 3189, 2943, 2257, 1671; HRMS (ESI): m/z calcd for
CisH19N302: 274.1556 [M+H]*; found: 274.1567

HNS S
@JY ’
o . . .
Synthesised according to general procedure D from 4-(methylthio)benzyl 2-oxo-2-

phenylacetate (7.1585 g, 25 mmol) to afford hydrazone 2.23 (6.9514 g, 78%) as a yellow oil. Hydrazone 2.23: 'H
NMR (400 MHz, CDCl3): 61 7.61-7.59 (m, 2H), 7.35-7.31 (m, 4H), 7.27-7.25 (m, 3H), 5.24 (s, 2H), 2.49 (s, 3H), 1.36
(s, 9H); 3C {*H} NMR (101 MHz, CDCls): ¢ 163.3, 138.7, 137.6, 132.7, 128.8, 128.3, 127.7, 126.6, 126.5, 123.5,
65.4,55.3,28.9,15.7; IR (u, cm™?, neat): 3379, 3186, 2955, 1677; HRMS (ESI): m/z calcd for C20H24N202S: 357.1637
[M+H]*; found: 357.1647

oY
° Synthesised according to general procedure D from 4-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)benzyl 2-oxo-2-phenylacetate (9.1555 g, 25 mmol) to afford hydrazone 2.24 (10.2545 g,
94%) as a yellow oil. Hydrazone 2.24: 'H NMR (400 MHz, CDCl3): &+ 10.60 (s, 1H), 7.77-7.86 (m, 2H), 7.54-7.52
(m, 2H), 7.33-7.31 (m, 2H), 7.27-7.24 (m, 2H), 7.19-7.16 (m, 1H), 5.22 (s, 2H), 1.29 (s, 12H), 1.28 (s, 9H); 3C {*H}
NMR (101 MHz, CDCl3): 6¢163.3, 139.1, 137.6, 135.1, 128.3, 127.7, 127.1, 126.6, 123.5, 83.9, 65.7, 55.3, 28.9,
24.9; IR (u, cm™, neat): 3379, 3185, 2953, 1673; HRMS (ESI): m/z calcd for CasH33BN204: 437.2612 [M+H]*; found:
437.2625

~ (o)
N
©)I\r(0\/@°>
° Synthesised according to general procedure D from benzo[d][1,3]dioxol-5-yImethyl

2-oxo-2-phenylacetate (7.1068 g, 25 mmol) to afford hydrazone 2.25 (3.6327 g, 41%) as a white powder.
Hydrazone 2.25: 'H NMR (400 MHz, CDCls): &4 10.62 (s, 1H), 7.53-7.51 (m, 2H), 7.26-7.23 (m, 2H), 7.17-7.14 (m,
1H), 6.80-6.76 (m, 2H), 6.70-6.67 (m, 1H), 5.80 (s, 2H), 5.08 (s, 2H), 1.27 (s, 9H); 13C {*H} NMR (101 MHz, CDCls):
6c163.3, 147.8, 147.6, 137.6, 129.7, 128.2, 127.7, 126.5, 123.6, 122.0, 108.9, 108.2, 101.1, 65.7, 55.2, 28.8; IR
(u, cm™, neat): 3388, 3173, 2948, 2933, 1676; HRMS (ESI): m/z calcd for C20H22N204: 355.1658 [M+H]*; found:
355.1678

HNC

[:::rll\nrgi::]
° Synthesised according to general procedure D from 1-phenyl-2-(piperidin-1-yl)ethane-1,2-

dione (5.4318 g, 25 mmol) to afford hydrazone 2.26 (5.9638 g, 83%) as a yellow oil. Hydrazone 2.26: 'H NMR
(400 MHz, CDCls): 61 7.59-7.56 (m, 2H), 7.35-7.31 (m, 2H), 7.28-7.24 (m, 1H), 3.76-3,73 (t, ) = 5.53 Hz, 2H), 3.27-
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3.24 (t, ) = 5.66 Hz, 2H), 1.66-1.64 (m, 4H), 1.48-1.45 (m, 2H), 1.26 (s, 9H); 1*C {H} NMR (101 MHz, CDCls): 8¢
164.6, 139.6, 135.0, 128.6, 128.0, 124.9, 54.3, 47.2, 42.0, 28.9, 26.8, 26.0, 24.6; IR (u, cm, neat): 3370, 3178,
2984, 1663; HRMS (ESI): m/z calcd for C17H2sN30: 288.2104 [M+H]*; found: 288.2116

N Ph
@(@
° Synthesised according to general procedure D from 1-(4-benzylpiperidin-1-yl)-2-

phenylethane-1,2-dione (7.6848 g, 25 mmol) to afford hydrazone 2.27 (7.6449 g, 81%) as a yellow oil. Hydrazone
2.27: 'H NMR (400 MHz, CDCl3): &4 7.57-7.55 (m, 2H), 7.35-7.31 (m, 2H), 7.30-7.25 (m, 3H), 7.22-7.18 (m, 1H),
7.13-7.11 (m, 2H), 4.76-4.72 (m, 1H), 3.61-3.58 (m, 1H), 2.93-2.87 (m, 1H), 2.75-2.70 (m, 1H), 2.55 (d, J = 7.50
Hz, 2H), 1.82-1.76 (m, 2H), 1.59-1.56 (m, 1H), 1.25 (s, 9H), 1.16-1.08 (m, 1H), 0.93-0.84 (m, 1H); 3C {*H} NMR
(101 MHz, CDCls): 6c164.7, 139.8, 139.5, 135.0, 129.2, 128.6, 128.4, 128.0, 126.2, 124.9, 54.4, 46.5, 42.9, 41.3,
38.2,32.9, 32.0, 28.9; IR (u, cm?, neat): 3373, 3164, 2988, 1668; HRMS (ESI): m/z calcd for C24H31N30: 378.2545
[M+H]*; found: 378.2559

HN

N CF,
@JY )
o . .
Synthesised according to general procedure D from 1-phenyl-2-(4-

(trifluoromethyl)piperidin-1-yl)ethane-1,2-dione (7.1318 g, 25 mmol) to afford hydrazone 2.28 (3.3764 g, 38%)
as a yellow oil. Hydrazone 2.28: *H NMR (400 MHz, CDCl3): 8y 7.55-7.53 (m, 2H), 7.36-7.32 (m, 2H), 7.29-7.26 (m,
1H), 4.88 (d, J = 13.49 Hz, 1H), 3.71 (d, J = 13.49 Hz, 1H), 2.95 (t, J = 13.49 Hz, 1H), 2.77 (t, J = 13.49 Hz, 1H), 2.28-
2.25 (m, 1H), 2.04 (d, J = 13.49 Hz, 1H), 1.78 (d, J = 13.49 Hz, 1H), 1.57-1.48 (m, 1H), 1.25 (s, 9H), 0.91-0.86 (m,
1H); *3C {*H} NMR (101 MHz, CDCl3): ¢ 165.1, 139.4, 134.7, 128.8, 128.3, 124.8, 54.5, 45.2, 40.0, 31.6, 30.3, 28.8,
24.7; *F NMR (471 MHz, CDCls): 6 -73.7; IR (u, cm™, neat): 3374, 3180, 2879, 1671; HRMS (ESI): m/z calcd for
Ci8H24F3N30: 356.2003 [M+H]*; found: 356.2006

lN \Q
oY
° Synthesised according to general procedure D from furan-2-ylmethyl 2-oxo-2-

phenylacetate (5.7555 g, 25 mmol) to afford hydrazone 2.29 (6.6079 g, 88%) as a yellow oil. Hydrazone 2.29: 'H
NMR (400 MHz, CDCls): &4 10.76 (s, 1H), 7.70-7.68 (m, 2H), 7.50 (m, 1H), 7.42-7.39 (m, 2H), 7.34-7.30 (m, 1H),
6.52-6.51 (m, 1H), 6.43-6.42 (m, 1H), 5.31 (s, 2H), 1.45 (s, 9H); 13C {*H} NMR (101 MHz, CDCls): ¢ 163.0, 149.5,
143.2,137.5,128.1,127.7,126.5,123.4,110.6, 110.5, 57.4, 55.2, 28.8; IR (u, cm?, neat): 3373, 3188, 3062, 2991,
2950, 1676; HRMS (ESI): m/z calcd for C17H20N203: 301.1652 [M+H]*; found: 301.1661

OMe

:t OMe
N i I
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o
Synthesised according to general procedure D from 3,4,5-trimethoxybenzyl 2-oxo-

2-phenylacetate (8.2585 g, 25 mmol) to afford hydrazone 2.30 (4.5054 g, 45%) as a yellow oil. Hydrazone 2.30:
H NMR (400 MHz, CDCl3): 84 10.58 (s, 1H), 7.53-7.51 (m, 2H), 7.26-7.23 (m, 2H), 7.18-7.15 (s, 1H), 6.50 (s, 2H),
5.13 (s, 2H), 3.77 (s, 3H), 3.74 (s, 6H), 1.27 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): 6¢163.2, 153.3, 137.7, 137.6,
131.6, 128.3, 127.7, 126.6, 123.6, 104.5, 65.6, 60.9, 56.1, 55.3, 28.8; IR (u, cm™?, neat): 3384, 3184, 2954, 1677,
1370; HRMS (ESI): m/z calcd for C22H28N20s: 401.2076 [M+H]*; found: 401.2086
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° Synthesised according to general procedure D from [1,1'-biphenyl]-4-ylmethyl

2-oxo-2-phenylacetate (7.9090 g, 25 mmol) to afford hydrazone 2.31 (8.6960 g, 90%) as a yellow oil. Hydrazone
2.31: 'H NMR (400 MHz, CDCl3): 84 10.56 (s, 1H), 7.51-7.49 (m, 2H), 7.46-7.42 (m, 4H), 7.31-7.26 (m, 4H), 7.22-
7.18 (m, 3H), 7.13-7.08 (m, 1H), 5.16 (s, 2H), 1.21 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): 6c163.4, 141.1, 140.6,
137.6, 135.0, 128.9, 128.5, 128.3, 127.8, 127.5, 127.3, 127.1, 126.6, 123.6, 65.5, 55.3, 28.9; IR (u, cm™, neat):
3374, 3187, 2951, 1675; HRMS (ESI): m/z calcd for C2sH26N202: 387.2073 [M+H]*; found: 387.2082

Y 2
N
@JV
° Synthesised according to general procedure D from 4-ethynylbenzyl 2-oxo-2-

phenylacetate (6.6070 g, 25 mmol) to afford hydrazone 2.32 (6.1032 g, 73%) as a colourless liquid. Hydrazone
2.32: 'H NMR (400 MHz, CDCl3): 84 10.54 (s, 1H), 7.45-7.43 (m, 2H), 7.33-7.30 (m, 2H), 7.17-7.13 (m, 4H), 7.10-
7.06 (m, 1H), 5.08 (s, 2H), 2.92 (s, 1H), 1.19 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): 8¢ 163.1, 137.5, 136.7, 132.3,
128.2,127.8, 127.7, 126.6, 123.3, 121.9, 83.3, 77.8, 65.2, 55.3, 28.8; IR (u, cm™, neat): 3491, 3371, 3187, 2948,
1675; HRMS (ESI): m/z calcd for C21H22N202: 335.1760 [M+H]*; found: 335.1770

:J: 1
N 0
: J\I 0
o 0 . .
Synthesised according to general procedure D from anthracen-9-ylmethyl 2-oxo-2-

phenylacetate (8.5095 g, 25 mmol) to afford hydrazone 2.33 (3.5921 g, 35%) as a colourless liquid. Hydrazone
2.33: 'H NMR (400 MHz, CDCl3): &4 10.43 (s, 1H), 8.25-8.23 (m, 3H), 7.81-7.77 (m, 2H), 7.40-7.36 (m, 2H), 7.30-
7.27 (m, 4H), 6.99-6.95 (m, 3H), 6.09 (s, 2H), 1.15 (s, 9H); *3C {*H} NMR (101 MHz, CDCls): 6c163.4, 137.5, 131.4,
131.1, 129.3, 129.1, 128.1, 127.6, 126.6, 126.4, 126.3, 126.3, 125.1, 125.0, 124.3, 123.7, 66.6, 58.4, 55.3, 28.9;
IR (u, cm™, neat): 3374, 3184, 3045, 2961, 1673; HRMS (ESI): m/z calcd for C27H26N202: 411.2073 [M+H]*; found:
411.2070

HNS CF;
©)'Y°
° Synthesised according to general procedure D from 4-(trifluoromethyl)benzyl 2-

oxo-2-phenylacetate (7.7065 g, 25 mmol) to afford hydrazone 2.34 (4.3516 g, 46%) as a yellow oil. Hydrazone
2.34: 'H NMR (400 MHz, CDCls): 61 10.81 (s, 1H), 7.66 (d, J = 8.03 Hz, 2H), 7.62 (d, J = 8.03 Hz, 2H), 7.45 (d, J =
8.03 Hz, 2H), 7.37 (t, ] = 8.03 Hz, 2H), 7.28 (t, J = 8.03 Hz, 1H), 5.30 (s, 2H), 1.39 (s, 9H); 3C {*H} NMR (101 MHz,
CDCl3): 6¢163.1, 140.1, 137.6, 130.7, 130.4, 130.1, 129.7, 128.3, 127.9, 127.8, 126.7, 125.5, 123.2, 64.8, 55.4,
28.8; 1°F NMR (471 MHz, CDCl3): 6 -62.3; IR (u, cm™, neat): 3379, 3188, 3147, 2946, 1671; HRMS (ESI): m/z calcd
for Ca0H21F3N202: 379.1633 [M+H]*; found: 379.1638

Synthesised according to general procedure D from 3,5-bis(trifluoromethyl)benzyl
2-ox0-2-phenylacetate (9.4063 g, 25 mmol) to afford hydrazone 2.35 (3.8226 g, 67%) as a yellow oil. Ketone
2.35: 'H NMR (400 MHz, CDCls): 64 10.75 (s, 1H), 7.84 (d, J = 12.23 Hz, 3H), 7.59 (d, J = 7.66 Hz, 2H), 7.35 (t, ) =
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7.66 Hz, 2H), 7.27 (t, ) = 7.66 Hz, 1H), 5.31 (s, 2H), 1.37 (s, 9H); 13C {*H} NMR (101 MHz, CDCls): ¢ 162.7, 138.8,
137.4,132.5,132.2,131.9, 131.5, 128.4, 127.9, 127.8, 126.9, 124.7, 123.0, 122.0, 64.0, 55.5, 28.8; °F NMR (471
MHz, CDCl3): & -62.9; IR (u, cm™, neat): 3375, 3194, 3149, 2949, 1670; HRMS (ESI): m/z calcd for C21H20F6N20:
447.1507 [M+H]*; found: 447.1517

N
©)\ﬂ/o/©
° Synthesised according to general procedure D from 3-phenylprop-2-yn-1-yl 2-oxo-

2-phenylacetate (6.6070 g, 25 mmol) to afford hydrazone 2.36 (5.5179 g, 66%) as a yellow oil. Hydrazone 2.36:
IH NMR (400 MHz, CDCls): 61 10.94 (s, 1H), 7.85 (d, J = 8.23 Hz, 2H), 7.63-7.60 (m, 2H), 7.52 (t, J = 8.23 Hz, 2H),
7.44-7.40 (m, 4H), 5.18 (s, 2H), 1.52 (s, 9H); 3C {*H} NMR (101 MHz, CDCls): ¢ 162.5, 137.2, 131.8, 128.6, 128.2,
128.1, 127.6, 126.5, 123.0, 122.1, 86.3, 83.2, 55.2, 52.0, 28.6; IR (u, cm™, neat): 3378, 3180, 2949, 1673; HRMS
(ESI): m/z calcd for C21H22N202: 335.1760 [M+H]*; found: 335.1769

jlf I
N
° Synthesised according to general procedure D from 4-iodobenzyl 2-oxo-2-

phenylacetate (9.1538 g, 25 mmol) to afford hydrazone 2.37 (7.9623 g, 73%) as a colourless oil. Hydrazone 2.37:
H NMR (400 MHz, CDCls): &1 10.65 (s, 1H), 7.70-7.68 (m, 2H), 7.56-7.54 (m, 2H), 7.34-7.30 (m, 3H), 7.12-7.10
(m, 2H), 5.19 (s, 1H), 1.34 (s, 9H); *3C {*H} NMR (101 MHz, CDCls): 6c 163.2, 137.8, 135.8, 129.9, 128.3, 128.2,
127.8,127.8,126.7,93.9, 65.1, 55.5, 28.9; IR (u, cm™, neat): 3379, 3183, 2950, 1670. 1626; HRMS (ESI): m/z calcd
for C19H21IN202: 437.0726 [M+H]*; found: 437.0733

+ N
N
° Synthesised according to general procedure D from 4-(1H-pyrazol-1-yl)benzyl 2-

oxo-2-phenylacetate (7.6580 g, 25 mmol) to afford hydrazone 2.38 (6.2116 g, 66%) as a yellow oil. Hydrazone
2.38: 'H NMR (400 MHz, CDCls): 84 10.70 (s, 1H), 7.91-7.90 (m, 1H), 7.74-7.78 (m, 3H), 7.63-7.60 (m, 2H), 7.47-
7.45 (m, 2H), 7.37-7.33 (m, 2H), 7.28-7.24 (m, 1H), 7.46-7.45 (m, 1H), 5.29 (s, 2H), 1.37 (s, 9H); 3C {*H} NMR (101
MHz, CDCl3): 6¢163.2, 141.2, 139.9, 137.5, 134.1, 129.2, 128.2, 127.7, 126.7, 126.6, 123.4, 119.1, 107.8, 65.1,
55.3, 28.8; IR (u, cm™l, neat): 3378, 3189, 3128, 2958, 1676; HRMS (ESI): m/z calcd for C2:2H24N402: 377.2031
[M+H]*; found: 377.2022
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Batch-Electrochemical Reaction Setup

—

IKA" ElectraSyn 2.0

Figure S1. Batch electrochemical synthesis setup (disassembled).

Flow-Electrochemical Reaction Setup

Figure S2. Flow electrochemical synthesis setup.
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Figure S3. Ammonite 8 flowcell (closed) Figure S4. Ammonite 8 flowcell (open)

Cyclic Voltammetry Studies

Oxidation Scan - 0.1 V/s

0 0.2 04~""06 08 1 1.2 14 16 1.8 2

E vs [FeCp,]¥+ / V

Figure S5. Cyclic voltammogram of hydrazone 3.5 as a solution in ACN (1 mM) with ["BusaN][PF¢] supporting electrolyte (0.1
M), 0.1V s ! scan rate.
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DSC Studies
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Figure S6. DSC scans of tosylhydrazone (blue trace) and tert-butylhydrazone (green trace)

HPLC-UV traces
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Figure S7. HPLC-UV traces showing the diazo compound (t_R = 4.0 min) and the corresponding tert-butyl hydrazone (t_R =
4.6 min) recorded independently (left), and the reaction mixture during the cyclopropanation process (right). The peak at
t_R =3.8 min corresponds to styrene, while the hydrazone is observed at t_R = 4.6 min. No accumulation of the diazo
compound is detected under the reaction conditions. In addition, PDA spectral deconvolution was performed using
Shimadzu’s method, confirming the absence of any detectable diazo-derived signal.
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Proposed Reaction Mechanism
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Scheme S1. Formation of diazo compounds from hydrazones with cationic leaving group.
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Scheme S2. Proposed reaction mechanism for the electrosynthesis of diazo compounds and rhodium(Il) catalysed
cyclopropanation.
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Optimisation tables for electrochemical synthesis of diazo and cyclopropane
compounds

Table S1. Optimisation of starting material for previous anodic oxidation conditions
Reactions were carried out on a 0.4 mmol scale at room temperature (rt) in a 5 mL ElectraSyn cell equipped with carbon and nickel
electrodes, and yields were determined by '"H NMR using CH,Br as an internal standard.

X
HN<\ c Ni () N,

= 2 -1
come '=517mAcm?3 Fmol CO,Me

o
NH4OAc (5 eq.), KI (0.5 eq.)
0.4 mmol ACN, rt 4.1

Entry Starting Material Yield

1 H 98%
HN

CO,Me

9

0%

=~
§_<o

/

=z

CO,Me

0%

o

CO,Me

31%

Sl

=
-4
/
-4

CO,Me

94%

e

CO,Me

Q




Table S2. Optimisation of anodic oxidation of hydrazone 2.1.
Reactions were carried out on a 0.4 mmol scale at room temperature (rt) in a 5 mL ElectraSyn cell, and yields were determined
by *H NMR using CH:Br; as an internal standard.

HN_

N (*+) ) N,
! cOo,Me I=mA cm, F/mol - ©)kCOZMe
supporting electrolyte
2.1 solvent, rt a1
0.4 mmol
Entry Electrodes Supporting Electrolytes Solvent Conditions Yield
1 C (+), Ni () Collidine (5 eq.) ACN 51.7mAcm?,3F/mol | 48%
Acetic acid (4.5 eq.)
KI (0.5 eq.)
2 C(+), Ni(-) Collidine (1 eq.) ACN 51.7 mAcm? 3F/mol | 51%
Acetic acid (1 eq.)
Kl (0.5 eq.)
3 C(+), Ni () Coll*HBF4 (5 eq.) ACN 51.7 mA cm, 3 F/mol 4%
KI (0.5 eq.)
4 C(+), Ni(-) Coll*HBF4 (1 eq.) ACN 51.7 mA cm, 3 F/mol 5%
KI (0.5 eq.)
5 C(+), Ni () Collidine (2 eq.) ACN 51.7 mA cm?, 3 F/mol 9%
Coll‘HBF4 (2 eq.)
KI (0.5 eq.)
6 C(+), Ni () Collidine (1 eq.) ACN 51.7 mA cm, 3 F/mol 31%
Coll*HBF4 (1 eq.)
KI (0.5 eq.)
7 C(+), Ni () Collidine (3 eq.) ACN 51.7 mA cm, 3 F/mol 12%
Coll*HBF4 (1 eq.)
KI (0.5 eq.)
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Table S3. Optimisation of anodic oxidation of hydrazone 2.1.
Reactions were carried out on a 0.4 mmol scale at room temperature (rt) in a 5 mL ElectraSyn cell, and yields were determined
by *H NMR using CH:Br; as an internal standard.

HN

SN (+) () N,
©)\C02M6 I =mA cm?, Fimol ©)J\C02Me
supporting electrolyte
21 solvent, rt 41
0.4 mmol

Entry | Electrodes Supporting Solvent Conditions Yield
Electrolytes

1 C (+), Ni () EtsNI (0.5 eq.) DCM 10.3 mA cm, 3 F/mol 4%

2 C (+), Ni () EtsNI (0.5 eq.) DCM 10.3 mA cm?, 3 F/mol 20%
Collidine (1 eq.)

3 C (+), Ni () EtsNI (1 eq.) DCM 10.3 mA cm?, 3 F/mol 7%

4 C(+), Ni () EtaNI (0.5 eq.) DCM 5.2 mA cm?, 3 F/mol 4%

5 C (+), Ni (-) EtaNI (1 eq.) DCM 10.3 mA cm™2, 5 F/mol 56%
Coll-AcOH (1 eq.)
Collidine (1 eq.)

6 C (+), Ni () EtaNI (2 eq.) DCM 10.3 mA cm™2, 5 F/mol 73%
Coll-AcOH (1 eq.)

7 C (+), Ni () EtaNI (0.5 eq.) DCM 10.3 mA cm™2, 5 F/mol 71%
Coll:AcOH (1 eq.)

8 C (+), Ni (-) EtaNI (1 eq.) DCM 10.3 mA cm™2, 5 F/mol 38%
Coll:AcOH (1 eq.)

9 C(+), Ni () EtaNI (0.5 eq.) DCM 10.3 mA cm, 3 F/mol 42%
Coll:AcOH (1 eq.)

10 C (+), Ni () EtsNI (0.5 eq.) DCM 10.3 mA cm™2, 4 F/mol 61%
Coll-AcOH (1 eq.)

11 C(+), Ni(-) EtaNI (0.5 eq.) DCM 10.3 mA cm, 6 F/mol 67%
Coll-AcOH (1 eq.)

12 C(+), Ni(-) EtaNI (0.5 eq.) DCM 10.3 mAcm?, 5 F/mol 65%
Coll-AcOH (2 eq.)

13 C(+), Ni () EtaNI (0.5 eq.) DCM 10.3 mA cm?, 5 F/mol 46%
Coll:AcOH (0.5 eq.)

14 C(+), Ni () TBAI (0.5 eq.) DCM 20.7 mA cm?, 3 F/mol 33%
Coll:AcOH (1 eq.)

15 C(+), Ni(-) TBAI (0.5 eq.) DCM 20.7 mA cm?, 3 F/mol 82%
Coll-AcOH (2 eq.)

16 C (+), Steel (-) TBAI (0.5 eq.) DCM 20.7 mA cm?, 3 F/mol 34%
Coll-AcOH (1 eq.)

17 C (+), Steel (-) TBAI (0.5 eq.) DCM 20.7 mA cm?, 3 F/mol 88%
Coll‘AcOH (2 eq.)

18 C (+), Steel (-) TBAI (0.5 eq.) DCM 20.7 mAcm?, 3 F/mol 84%
Coll-AcOH (3 eq.)

19 C (+), Steel (-) TBAI (0.5 eq.) DCM 31 mAcm?, 3 F/mol 62%
Coll*AcOH (2 eq.)

20 C (+), Steel (-) TBAI (0.5 eq.) DCM 20.7 mAcm?, 4 F/mol 70%
Coll-AcOH (2 eq.)
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Table S4. Optimisation of anodic oxidation of hydrazone 2.1: Screening of supporting electrolytes/acids
Reactions were carried out on a 0.4 mmol scale at room temperature (rt) in a 5 mL ElectraSyn cell, and yields were determined
by *H NMR using CH:Br; as an internal standard.

N C(+) SS (1) N,
! co,Me 1=mA cm, F/mol - ©)(C02Me
supporting electrolyte
21 DCM, rt 4.1
0.4 mmol

Entry Supporting Electrolytes Conditions Yield
1 TBAI (0.5 eq.), Coll.TFA (2 eq.) 20.7 mA cm?, 3 F/mol 46%
2 TBAI (0.5 eq.), Coll.TFA (2 eq.) 20.7 mA cm, 4 F/mol 71%
3 TBAI (0.5 eq.), Coll.TFA (2 eq.) 20.7 mA cm?, 5 F/mol 34%
4 TBAI (0.5 eq.), Coll.TFA (3 eq.) 20.7 mA cm?, 4 F/mol 56%
5 TBAI (0.5 eq.), Coll.TFA (2 eq.) 15.5 mA cm, 3 F/mol 64%
6 TBAI (0.5 eq.), Coll.TFA (2 eq.) 25.8 mA cm, 3 F/mol 51%
7 Coll.TFA (3 eq.) 10.3 mAcm™, 4 F/mol N/A
8 TBAI (0.5 eq.), Coll.TfOH (2 eq.) 20.7 mA cm?, 4 F/mol 79%
9 Coll.TfOH (2 eq.) 20.7 mA cm?, 4 F/mol N/A
10 Coll.TfOH (2 eq.) 10.3 mAcm?, 4 F/mol N/A
11 Coll.TfOH (3 eq.) 10.3 mAcm?, 4 F/mol N/A
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Table S5. Optimisation of anodic oxidation of hydrazone 2.1. : effect of Coll-HBF4 loading, current density, and electrodes
Reactions were carried out on a 0.4 mmol scale at room temperature (rt) in a 5 mL ElectraSyn cell, and yields were determined
by *H NMR using CH:Br; as an internal standard.

N *+) () N,
I CO,Me I=mA cm2, F/imol - ©)‘\C02Me
Coll.HBF, (eq.)
2.1 DCM, rt 441
X mmol
Entry SM Coll*HBF4 Current F/mol | DCM Electrodes Yield
(mA cm™)
1 0.4mmol | 3eq. 10.3 1.5 5mL C(+), SS(-) 64%
2 0.4mmol | 3eq. 20.7 2 5mL C(+), SS(-) 33%
3 0.4 mmol 3 eq. N/A N/A 5mL C(+), SS(-) 0%
4 0.4 mmol 3 eq. 5.2 1 5mL C(+), SS(-) 42%
5 0.4 mmol 3eq. 10.3 1 5mL C(+), SS(-) 20%
6 0.4 mmol 3 eq. 20.7 1 5mL C(+), SS(-) 37%
7 0.4 mmol 3eq. 5.2 2 5mL C(+), SS(-) 24%
8 0.4 mmol 3 eq. 10.3 3 5mL C(+), SS(-) 0%
9 0.4 mmol 3 eq. 20.7 3 5mL C(+), SS(-) 0%
10 0.4 mmol 3 eq. 5.2 1.5 5mL C(+), SS(-) 78%
11 0.4 mmol 3 eq. 20.7 1.5 5mL C(+), SS(-) 41%
12 0.4 mmol 3 eq. 2.1 1.5 5mL C(+), SS(-) 71%
13 0.4 mmol 3 eq. 5.2 1.5 5mL C(+), Ni(-) 77%
14 0.2 mmol 3 eq. 5.2 1.5 5mL C(+), SS(-) 82%
15 0.4 mmol 2 eq. 5.2 1.5 5mL C(+), SS(-) 89%
16 0.4 mmol 5 eq. 5.2 1.5 5mL C(+), SS(-) 61%
17 0.4 mmol 3 eq. 5.2 1.2 5mL C(+), SS(-) 47%
18 0.4mmol | 3eq. 5.2 1.4 5mL C(+), SS(-) 55%
19 0.4 mmol 3 eq. 5.2 1.6 5mL C(+), SS(-) 56%
20 0.4 mmol 1.5 eq. 5.2 1.5 5mL C(+), SS(-) 56%
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Reactions were carried out on a 0.4 mmol scale at room temperature (rt) in a 5 mL ElectraSyn cell equipped with carbon and stainless steel

Table S6. Optimisation of conditions for the electrosynthesis of cyclopropane 3.1.

electrodes, and yields were determined by '"H NMR using CH,Br; as an internal standard.

C(+)

SS ()

1=mA cm, F/mol

CO,Me
J; :Ph

COo,Me
Coll.HBF, (eq.), Styrene (eq.) Ph
21 Rhy(OAc), (mol%) 3.1
X mmol DCM, rt
Entry SM Coll-HBF4 Styrene Rh2(OAc)s DCM Current Charge Yield
(mmol) (eq.) (eq.) (mol%) (mL) (mA cm?) (F/mol)
1 04 2 10 1 5 5.2 1.5 43%
2 0.4 2 10 1 5 1 2.5 61%
3 0.4 0.5 10 1 5 1 2.2 97%
4 04 0.5 10 1 5 2.1 2 95%
5 0.4 0.5 10 1 5 3.1 2 97%
6 0.4 0.5 10 1 5 5.2 2 90%
7 1 0.5 10 1 10 3.1 2.1 93%
8 0.8 0.5 5 1 5 3.1 2 75%
9 0.4 1 10 1 5 7.2 2.3 83%
10 0.4 0.5 10 0.5 5 3.1 2.2 41%
11 0.4 1 10 1 5 10.3 2.3 78%
12 0.4 2.5 10 1 5 20.7 8 55%
13 0.4 0.5 10 N/A 5 3.1 2 0%
14 0.4 0.5 10 1 5 N/A N/A 0%
15 0.4 N/A 10 1 5 3.1 2 17%
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General Procedure F for the electrochemical cyclopropanation of activated
hydrazones

N~y c @ ss ()
| CO,Me
cO,Me I =mA cm2, Fimol - Ph)><Ph
Coll.HBF, (eq.), Styrene (eq.)
2.1 Rh,(OAc), (mol%) 3.1
X mmol DCM, rt

In a 5 mL ElectraSyn 2.0 vial, the hydrazone (0.4 mmol), Coll HBF4 (0.2 mmol, 0.0418 g, 0.5 eq.), styrene (4 mmol,
0.4166 g, 10 eq.), and rhodium (l1) acetate (1 mol%) were dissolved in DCM (5 mL). The ElectraSyn 2.0 cap was
equipped with a Cgr anode (working electrode) and a stainless steel cathode (counter electrode). The reaction
conditions were set to 3.1 mA cm™ and 2 F/mol. The reaction was stirred vigorously and electrolysed at room
temperature. The mixture was quenched with water and extracted with EtOAc (3 x 50 mL). The combined
organics were dried over MgS04 and the solvent removed under reduced pressure. The crude residue was
purified by silica gel flash chromatography (Hexane/EtOAc = 9:1 to 7:3) to afford the desired cyclopropane. The
procedure was repeated with different hydrazones of varying functionality.

Synthesised according to general procedure F from hydrazone 2.1 (0.0937 g, 0.4 mmol) to
afford cyclopropane 3.1 (0.0979 g, 97%) as a colourless oil. Cyclopropane 3.1: *H NMR (400 MHz, CDCls): &1 7.15-
7.13 (m, 3H), 7.07-7.03 (m, 5H), 6.79-6.77 (m, 2H), 3.67 (s, 3H), 3.14-3.11 (dd, J = 9.35, 7.20 Hz, 1H), 2.17-2.14
(dd, J =9.29, 4.74 Hz, 1H), 1.91-1.88 (dd, J = 7.34, 4.97 Hz, 1H); 3C {*H} NMR (101 MHz, CDCl3): 6c 174.5, 136.5,
134.8,132.1,128.2,127.8,127.2, 126.4, 52.8, 37.5, 33.3, 20.6; IR (u, cm™, neat): 1716; HRMS (ESI): m/z calcd for
C17H1602: 253.1229 [M+H]*; found: 253.1219

Synthesised according to general procedure F from hydrazone 2.12 (0.1049 g, 0.4 mmol)
to afford cyclopropane 3.2 (0.0864 g, 77%) as a colourless oil. Cyclopropane 3.2: 'H NMR (400 MHz, CDCls): &x
7.07-7.05 (m, 3H), 6.94-6.89 (m, 4H), 6.79-6.77 (m, 2H), 4.19-4.08 (m, 2H), 3.08-3.05 (dd, J = 9.46, 7.29 Hz, 1H),
2.24 (s, 3H), 2.12-2.09 (dd, J = 9.46, 5.11 Hz, 1H), 1.84-1.82 (dd, J = 7.16, 5.11 Hz, 1H), 1.20-1.17 (t, ) = 6.90 Hz,
3H); 13C {*H} NMR (101 MHz, CDCl3): 8¢174.1, 136.8, 136.6, 131.8, 128.5, 128.2, 127.8, 126.3, 61.4, 37.4, 33.0,
21.3, 20.4, 14.3; IR (u, cm™, neat): 1723; HRMS (ESI): m/z calcd for C19H2002: 281.1542 [M+H]*; found: 281.1545

Synthesised according to general procedure F from hydrazone 2.13 (0.1218 g, 0.4 mmol)
to afford cyclopropane 3.3 (0.0890 g, 69%) as a colourless oil. Cyclopropane 3.3: *H NMR (400 MHz, CDCls): &1
7.13-7.10 (m, 2H), 7.04-7.02 (m, 3H), 6.94-6.92 (m, 2H), 6.74-6.72 (m, 2H), 4.20-4.08 (m, 2H), 3.06-3.03 (dd, J =
9.50, 7.24 Hz, 1H), 2.14-2.11 (dd, J = 9.39, 4.87 Hz, 1H), 1.84-1.82 (dd, J = 7.24, 4.87 Hz, 1H), 1.23 (s, 9H), 1.21-
1.18 (t, J = 7.06 Hz, 3H); 3C {*H} NMR (101 MHz, CDCls): 6c174.1, 149.8, 136.8, 131.6, 130.2, 128.2, 127.7,126.2,
124.6, 61.3, 37.4, 34.5, 33.0, 31.4, 20.5, 14.3; IR (u, cm™, neat): 1725; HRMS (ESI): m/z calcd for C2:H2602:
323.2011 [M+H]*; found: 323.2014
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OMe Synthesised according to general procedure F from hydrazone 2.5 (0.1057 g, 0.4 mmol)
to afford cyclopropane 3.4 (0.0996 g, 84%) as a yellow oil. Cyclopropane 3.4: 'H NMR (400 MHz, CDCls): &+ 7.07-
7.06 (m, 3H), 6.94-6.93 (m, 2H), 6.79-6.77 (m, 2H), 6.67-6.65 (m, 2H), 4.18-4.08 (m, 2H), 3.72 (s, 3H), 3.07-3.04
(dd, J =9.09, 7.18 Hz, 1H), 2.13-2.10 (dd, J = 9.33, 5.02 Hz, 1H), 1.83-1.80 (dd, J = 7.18, 4.79 Hz, 1H), 1.20-1.17 (t,
J=7.18 Hz, 3H); 3C {*H} NMR (101 MHz, CDCls): 6c174.2, 158.5, 136.8, 133.0, 128.2, 127.8, 127.1, 126.3, 113.2,
61.3, 55.2, 37.0, 33.1, 20.6, 14.3; IR (u, cm?, neat): 1717; HRMS (ESI): m/z calcd for CigH2003: 297.1491 [M+H]*;
found: 297.1492

F Synthesised according to general procedure F from hydrazone 2.3 (0.1065 g, 0.4 mmol)
to afford cyclopropane 3.5 (0.0807 g, 71%) as a colourless oil. Cyclopropane 3.5: *H NMR (400 MHz, CDCls): &
7.08-7.07 (m, 3H), 7.00-6.97 (m, 2H), 6.82-6.76 (m, 5H), 4.17-4.09 (m, 2H), 3.11-3.07 (dd, J =9.19, 7.24 Hz, 1H),
2.15-2.13 (dd, J = 9.19, 4.60 Hz, 1H), 1.85-1.83 (dd, J = 7.35, 5.05 Hz, 1H), 1.20-1.17 (t, J = 7.24 Hz, 3H); 13C {*H}
NMR (101 MHz, CDCls): &¢ 173.7, 162.8, 160.9, 136.3, 133.6, 133.5, 130.9, 130.9, 128.2, 127.9, 126.5, 114.8,
114.6, 61.5, 36.9, 33.1, 20.4, 14.3; 1°F NMR (471 MHz, CDCl3): 6 -115.2; IR (u, cm™}, neat): 1718; HRMS (ESI): m/z
calcd for CigH17FO2: 285.1291 [M+H]*; found: 285.1282

€l Synthesised according to general procedure F from hydrazone 2.2 (0.1131 g, 0.4 mmol)
to afford cyclopropane 3.6 (0.0999 g, 83%) as a colourless liquid. Cyclopropane 3.6: *H NMR (400 MHz, CDCls):
61 7.10-7.07 (m, 5H), 6.96-6.95 (m, 2H), 6.79-6.77 (m, 2H), 4.18-4.09 (m, 2H), 3.12-3.09 (dd, J = 9.68, 7.37 Hz,
1H), 2.15-2.12 (dd, J = 9.22, 4.95 Hz, 1H), 1.85-1.83 (dd, J = 7.37, 5.07 Hz, 1H), 1.20-1.17 (t, J = 7.37 Hz, 3H); 13C
{*H} NMR (101 MHz, CDCls): ¢ 173.4, 136.1, 133.7, 133.3, 132.9, 128.1, 128.1, 128.0, 126.6, 61.5, 37.0, 33.1,
20.2, 14.3; IR (u, cm?, neat): 1717; HRMS (ESI): m/z calcd for C1sH17ClO2: 301.0995 [M+H]*; found: 301.0984

Br  Synthesised according to general procedure F from hydrazone 2.4 (0.1309 g, 0.4 mmol)
to afford cyclopropane 3.7 (0.0801 g, 58%) as a yellow oil. Cyclopropane 3.7: 'H NMR (400 MHz, CDCls): 6x 7.26-
7.25 (m, 2H), 7.09-7.08 (m, 3H), 6.90-6.88 (m, 2H), 6.79-6.77 (m, 2H), 4.18-4.08 (m, 2H), 3.11-3.08 (dd, J = 9.44,
7.50 Hz, 1H), 2.15-2.12 (dd, J = 9.15, 4.87 Hz, 1H), 1.84-1.82 (dd, J = 7.50, 5.26 Hz, 1H), 1.19-1.16 (t, J = 7.20 Hz,
3H); 13C {*H} NMR (101 MHz, CDCls): 6¢173.4, 136.1, 133.7, 132.4, 130.9, 128.1, 128.0, 126.6, 121.2, 61.6, 37.1,
33.1,20.2, 14.3; IR (u, cm™, neat): 1720; HRMS (ESI): m/z calcd for C1sH17BrO2: 345.0490 [M+H]*; found: 345.0472

CN  Synthesised according to general procedure F from hydrazone 2.22 (0.1093 g, 0.4 mmol)
to afford cyclopropane 3.8 (0.0944 g, 81%) as a colourless oil. Cyclopropane 3.8: *H NMR (400 MHz, CDCls): &x
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7.42-7.39 (m, 2H), 7.14-7.06 (m, 5H), 6.77-6.75 (m, 2H), 4.19-4.09 (m, 2H), 3.19-3.14 (dd, J = 9.30, 7.07 Hz, 1H),
2.20-2.16 (dd, J = 9.36, 5.07 Hz, 1H), 1.92-1.89 (dd, J = 7.31, 5.07 Hz, 1H), 1.20-1.16 (t, J = 7.13 Hz, 3H); 13C {*H}
NMR (101 MHz, CDCl3): 6¢172.6, 140.8, 135.5, 132.8, 131.6, 131.6, 128.2, 128.0, 127.0, 119.0, 110.9, 61.8, 37.5,
33.4,19.8,14.2; IR (u, cm™, neat): 1713; HRMS (ESI): m/z calcd for C19H17NO2: 292.1340 [M+H]*; found: 292.1345

Synthesised according to general procedure F from hydrazone 2.6 (0.1137 g, 0.4 mmol)
to afford cyclopropane 3.9 (0.0980 g, 81%) as a colourless liquid. Cyclopropane 3.9: 'H NMR (400 MHz, CDCls):
6x 7.12-7.09 (m, 3H), 6.84-6.81 (m, 2H), 6.59-6.55 (m, 3H), 4.21-4.11 (m, 2H), 3.16-3.12 (dd, J = 9.49, 7.38 Hz,
1H), 2.14-2.11 (dd, J = 9.24, 5.19 Hz, 1H), 1.88-1.85 (dd, J = 7.38, 5.19 Hz, 1H), 1.20-1.16 (t, J = 7.05 Hz, 3H); :*C
{*H} NMR (101 MHz, CDCls): ¢ 172.7,163.4, 163.3, 161.4, 161.3, 139.0, 139.0, 135.5, 128.5, 128.1, 128.0, 126.9,
126.1, 115.0, 115.0, 114.8, 114.8, 103.0, 102.8, 102.6, 61.7, 37.1, 37.1, 33.3, 20.0, 14.2; °F NMR (471 MHz,
CDCl3): 6-111.1; IR (u, cm™, neat): 1716; HRMS (ESI): m/z calcd for C1sH16F202: 303.1197 [M+H]*; found: 303.1177

Synthesised according to general procedure F from hydrazone 2.10 (0.1041 g, 0.4
mmol) to afford cyclopropane 3.10 (0.0646 g, 58%) as a colourless liquid. Cyclopropane 3.10: *H NMR (400 MHz,
CDCl3): &n 7.13-7.11 (m, 3H), 7.06-7.02 (m, 5H), 6.79-6.76 (m, 2H), 5.88-5.78 (m, 1H), 5.15-5.10 (m, 2H), 4.64-
4.52 (m, 2H), 3.14-3.10 (dd, J = 9.31, 7.10 Hz, 1H), 2.14-2.11 (dd, J = 9.31, 5.10 Hz, 1H), 1.91-1.88 (dd, J = 7.43,
4.98 Hz, 1H); 13C {*H} NMR (101 MHz, CDCls): ¢ 173.6, 136.5, 134.8, 132.2, 132.1, 128.2, 127.8, 127.8, 127.1,
126.5,117.4,65.7,33.2,31.7, 14.3; IR (u, cm™}, neat): 1710; HRMS (ESI): m/z calcd for C1oH1802: 279.1385 [M+H]*;
found: 279.1383

Synthesised according to general procedure F from hydrazone 2.11 (0.1033 g, 0.4
mmol) to afford cyclopropane 3.11 (0.0928 g, 84%) as a colourless liquid. Cyclopropane 3.11: *H NMR (400 MHz,
CDCls): &k 7.14-7.12 (m, 3H), 7.06-7.02 (m, 5H), 6.79-6.76 (m, 2H), 5.88-5.78 (m, 1H), 4.72-4.62 (m, 2H), 3.17-
3.13 (dd, J = 9.52, 7.28 Hz, 1H), 2.43-2.42 (t, J = 2.52 Hz, 1H), 2.21-2.17 (dd, J = 9.32, 5.03 Hz, 1H), 1.94-1.91 (dd,
1 =7.28,5.03 Hz, 1H); 3C {*H} NMR (101 MHz, CDCls): 6c173.1, 136.2, 134.3, 132.1, 128.2, 127.9, 127.3, 126.6,
77.9,74.8,52.8, 37.4, 33.5, 20.6; IR (u, cm™%, neat): 1711; HRMS (ESI): m/z calcd for Ci19H1602: 277.1229 [M+H]*;
found: 277.1230

Synthesised according to general procedure F from hydrazone 2.18 (0.1089 g, 0.4
mmol) to afford cyclopropane 3.12 (0.0894 g, 77%) as a colourless liquid. Cyclopropane 3.12: 'H NMR (400 MHz,
CDCl3): 61 7.13-7.11 (m, 3H), 7.06-7.02 (m, 5H), 6.78-6.76 (m, 2H), 4.69-4.59 (m, 2H), 3.16-3.12 (dd, ) =9.45, 7.44
Hz, 1H), 2.19-2.16 (dd, J = 9.35, 5.03 Hz, 1H), 1.92-1.89 (dd, J = 7.44, 5.03 Hz, 1H), 1.84-1.83 (t, J = 2.40 Hz, 3H);
13C {*H} NMR (101 MHz, CDCls): 6¢173.3, 136.4, 134.5,132.1, 130.3, 128.2, 127.8, 127.2, 126.5, 83.0, 73.5, 53.7,
37.6, 33.3, 20.4, 3.9; IR (u, cm™, neat): 1711; HRMS (ESI): m/z calcd for Ca0H1802: 291.1385 [M+H]*; found:
291.1395
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Synthesised according to general procedure F from hydrazone 2.36 (0.1338 g,
0.4 mmol) to afford cyclopropane 3.13 (0.0240 g, 17%) as a colourless liquid. Cyclopropane 3.13: *H NMR (400
MHz, CDCls): 8x 7.45-7.42 (m, 2H), 7.34-7.29 (m, 3H), 7.14-7.12 (m, 3H), 7.08-7.04 (m, 5H), 6.80-6.77 (m, 2H),
4.96-4.86 (m, 2H), 3.20-3.16 (dd, J = 9.16, 7.12 Hz, 1H), 2.23-2.20 (dd, J = 9.26, 4.78 Hz, 1H), 1.96-1.93 (dd, J =
7.43, 5.09 Hz, 1H); 33C {*H} NMR (101 MHz, CDCl3): 8¢ 173.2, 136.3, 134.5, 132.1, 132.1, 128.8, 128.4, 128.2,
127.8, 127.3, 126.5, 122.4, 86.4, 83.3, 53.7, 37.6, 33.4, 20.5; IR (v, cm!, neat): 1714; HRMS (ESI): m/z calcd for
C25H2002: 353.1542 [M+H]*; found: 353.1554

Synthesised according to general procedure F from hydrazone 2.20 (0.1242 g, 0.4
mmol) to afford cyclopropane 3.14 (0.1301 g, 99%) as a colourless liquid. Cyclopropane 3.14: *H NMR (400 MHz,
CDCl3): 61 7.33-7.29 (m, 3H), 7.22-7.20 (m, 2H), 7.16-7.15 (m, 3H), 7.09-7.07 (m, 5H), 6.81-6.78 (m, 2H), 5.22-
5.10 (m, 2H), 3.18-3.14 (dd, J =9.21, 7.09 Hz, 1H), 2.21-2.17 (dd, J = 9.58, 4.58 Hz, 1H), 1.94-1.91 (dd, J = 7.09,
4.88 Hz, 1H); 13C {*H} NMR (101 MHz, CDCls): 6c 173.6, 136.4, 136.3, 134.8, 132.1, 128.5, 128.4, 128.2, 128.0,
127.8,127.8,127.7,127.4,127.2,126.4,66.7,37.7, 33.2, 20.4; IR (u, cm™, neat): 1708; HRMS (ESI): m/z calcd for
C23H2002: 329.1542 [M+H]*; found: 329.1548

Synthesised according to general procedure F from hydrazone 2.18 (0.1089 g,
0.4 mmol) to afford cyclopropane 3.12 (0.0894 g, 77%) as a colourless liquid. Cyclopropane 3.12: *H NMR (400
MHz, CDClz): 61 7.44-7.42 (m, 2H), 7.15-7.12 (m, 5H), 7.07-7.05 (m, 5H), 6.79-6.77 (m, 2H), 5.19-5.06 (m, 2H),
3.15-3.12 (dd, J = 9.26, 7.06 Hz, 1H), 3.07 (s, 1H), 2.19-2.16 (dd, J = 9.26, 5.18 Hz, 1H), 1.94-1.91 (dd, J = 7.39,
5.18 Hz, 1H); 3C {*H} NMR (101 MHz, CDCls): ¢ 173.6, 137.0, 136.3, 134.6, 132.3, 132.0, 128.2, 127.8, 127.8,
127.2,127.2,126.5,121.7,83.4, 77.6, 66.2, 37.6, 33.3, 20.6; IR (u, cm™, neat): 3489, 1710; HRMS (ESI): m/z calcd
for CasH2002: 353.1542 [M+H]*; found: 353.1554

O Synthesised according to general procedure F from hydrazone 2.31 (0.1546
g, 0.4 mmol) to afford cyclopropane 3.16 (0.0793 g, 49%) as a colourless liquid. Cyclopropane 3.16: *H NMR (400
MHz, CDClz): & 7.60-7.58 (m, 2H), 7.55-7.54 (m, 2H), 7.46-7.43 (m, 2H), 7.38-7.34 (m, 1H), 7.28-7.26 (m, 2H),
7.16-7.15 (m, 3H), 7.09-7.06 (m, 5H), 6.80-6.78 (m, 2H), 5.25-5.13 (m, 2H), 3.18-3.15 (dd, J = 9.42, 7.19 Hz, 1H),
2.21-2.19 (dd, J = 9.42, 4.86 Hz, 1H), 1.95-1.92 (dd, J = 7.48, 4.86 Hz, 1H); 3C {*H} NMR (400 MHz, CDCls): &¢
173.7, 140.9, 140.8, 136.4, 135.3, 134.8, 132.1, 128.9, 128.2, 127.9, 127.8, 127.5, 127.3, 127.2, 127.2, 126.5,
66.5, 37.7, 33.2, 20.5; IR (u, cm™, neat): 1713; HRMS (ESI): m/z calcd for Ca9H2402: 405.1855 [M+H]*; found:
405.1856

Synthesised according to general procedure F from hydrazone 2.33 (0.1642 g, 0.4
mmol) to afford cyclopropane 3.17 (0.0617 g, 36%) as a yellow oil. Cyclopropane 3.17: 'H NMR (400 MHz, CDCl3):
6n 8.49-8.28 (m, 4H), 8.03-8.01 (m, 2H), 7.82-7.80 (m, 2H), 7.54-7.47 (m, 4H), 7.07-7.05 (m, 2H), 7.00-6.94 (m,
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4H), 6.68-6.66 (m, 2H), 6.23-6.07 (m, 2H), 3.05-3.02 (dd, J = 9.48, 7.23 Hz, 1H), 2.09-2.06 (dd, J = 9.48, 4.99 Hz,
1H), 1.84-1.82 (dd, J = 7.23, 4.99 Hz, 1H); 13C {*H} NMR (101 MHz, CDCls): 6c 134.3, 132.0, 129.2, 129.1, 128.2,
127.7,127.4,127.1,126.6, 126.4, 125.2, 125.1, 124.4, 60.1, 33.1, 20.2; IR (u, cm™, neat): 1697; HRMS (ESI): m/z
calcd for C31H2402: 429.3157 [M+H]*; found: 429.3168

Synthesised according to general procedure F from hydrazone 2.21 (0.1379g, 0.4
mmol) to afford cyclopropane 3.18 (0.1379 g, 95%) as a colourless liquid. Cyclopropane 3.18: *H NMR (400 MHz,
CDCl3): &n 7.30-7.28 (m, 2H), 7.20-7.17 (m, 2H), 7.14-7.12 (m, 3H), 7.06-7.04 (m, 5H), 6.78-6.76 (m, 2H), 5.20-
5.07 (m, 2H), 3.15-3.10 (dd, J = 9.34, 7.18 Hz, 1H), 2.18-2.15 (dd, J = 9.34, 5.11 Hz, 1H), 1.92-1.89 (dd, J = 7.18,
5.11 Hz, 1H); 3C {*H} NMR (101 MHz, CDCls): 6¢ 173.7, 136.5, 136.3, 134.8, 132.1, 128.6, 128.2, 128.0, 127.8,
127.8,127.4,127.2, 126.5, 60.6, 37.7, 33.2, 22.8; IR (u, cm™, neat): 1710; HRMS (ESI): m/z calcd for C23H19ClO>:
363.1152 [M+H]*; found: 363.1156

Synthesised according to general procedure F from hydrazone 2.37 (0.1745 g, 0.4
mmol) to afford cyclopropane 3.19 (0.1018 g, 56%) as a colourless liquid. Cyclopropane 3.19: *H NMR (400 MHz,
CDCl3): &n 7.64-7.61 (m, 2H), 7.14-7.13 (m, 3H), 7.07-7.02 (m, 5H), 6.92-6.90 (m, 2H), 6.78-6.76 (m, 2H), 5.12-
5.00 (m, 2H), 3.13-3.10 (dd, J = 9.50, 7.54 Hz, 1H), 2.17-2.14 (dd, J = 9.50, 5.19 Hz, 1H), 1.92-1.90 (dd, J = 7.54,
5.19 Hz, 1H); 3C {*H} NMR (101 MHz, CDCls): 6¢ 173.6, 137.7, 136.3, 136.0, 134.6, 132.0, 129.3, 128.2, 127.9,
127.8, 127.2, 126.5, 93.6, 66.1, 37.6, 33.3, 20.6; IR (u, cm, neat): 1709; HRMS (ESI): m/z calcd for C23H1sl10z:
455.0508 [M+H]*; found: 455.0511

3

Synthesised according to general procedure F from hydrazone 2.34 (0.1514 g,
0.4 mmol) to afford cyclopropane 3.20 (0.0999 g, 63%) as a yellow oil. Cyclopropane 3.20: 'H NMR (400 MHz,
CDCls): &n 7.57-7.55 (m, 2H), 7.27-7.25 (m, 2H), 7.17-7.15 (m, 3H), 7.09-7.06 (m, 5H), 6.81-6.78 (m, 2H), 5.25-
5.12 (m, 2H), 3.18-3.14 (dd, J = 9.38, 7.14 Hz, 1H), 2.21-2.17 (dd, J = 9.38, 5.01 Hz, 1H), 1.96-1.93 (dd, J = 7.14,
5.01 Hz, 1H); 3C {*H} NMR (101 MHz, CDCls): 6¢ 173.6, 140.3, 136.2, 134.6, 132.1, 128.2, 127.9, 127.8, 127.3,
127.3, 126.6, 125.6, 125.6, 125.5, 125.5, 65.8, 37.6, 33.4, 20.7; *°F NMR (471 MHz, CDCl3): & -62.5; IR (u, cm™,
neat): 1712; HRMS (ESI): m/z calcd for CasH19F302: 397.1415 [M+H]*; found: 397.1427

CFs Synthesised according to general procedure F from hydrazone 2.35 (0.1786 g,

0.4 mmol) to afford cyclopropane 3.21 (0.1412 g, 76%) as a yellow oil. Cyclopropane 3.21: *H NMR (400 MHz,
CDCl3): 61 7.81-7.76 (m, 2H), 7.53 (s, 1H), 7.18-7.17 (m, 3H), 7.09-7.05 (m, 5H), 6.82-6.79 (m, 2H), 5.29-5.15 (m,
2H), 3.18-3.14 (dd, J = 9.26, 7.34 Hz, 1H), 2.21-2.18 (dd, J = 9.26, 5.06 Hz, 1H), 1.98-1.95 (dd, J = 7.34, 5.06 Hz,
1H); 3C{*H}NMR (101 MHz, CDCl3): 6¢173.9,138.9, 138.8, 137.8, 131.9, 128.4,128.2, 128.0, 128.0, 127.6, 127.5,
127.3, 126.8, 126.7, 122.7, 121.8, 66.0, 39.3, 37.5, 25.9; °F NMR (471 MHz, CDCls): § -62.9; IR (u, cm, neat):
1720; HRMS (ESI): m/z calcd for CasH1sFs02: 465.1392 [M+H]*; found: 465.1392
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0,

%Synthesised according to general procedure F from hydrazone 2.24
(0.1745 g, 0.4 mmol) to afford cyclopropane 3.22 (0.0654 g, 36%) as a colourless liquid. Cyclopropane 3.22: H
NMR (400 MHz, CDCl3): 8u 7.74-7.72 (m, 2H), 7.44-7.42 (m, 2H), 7.13-7.12 (m, 3H), 7.06-7.04 (m, 5H), 6.78-6.76
(m, 2H), 5.20-5.08 (m, 2H), 3.14-3.10 (dd, J = 9.43, 7.37 Hz, 1H), 2.17-2.14 (dd, J = 9.43, 4.91 Hz, 1H), 1.91-1.89
(dd, J = 7.37, 4.91 Hz, 1H), 1.33 (s, 12H); *3C {*H} NMR (101 MHz, CDCls): 6¢ 135.0, 132.1, 129.4, 128.7, 128.2,
127.8, 126.4, 126.2, 84.0, 51.4, 45.3, 44.0, 25.0, 20.5; IR (v, cm™, neat): 1725; HRMS (ESI): m/z calcd for
C29H31B04: 455.2394 [M-H]’; found: 455.2395

Synthesised according to general procedure F from hydrazone 2.25 (0.1418 g,
0.4 mmol) to afford cyclopropane 3.23 (0.1073 g, 72%) as a colourless liquid. Cyclopropane 3.23: *H NMR (400
MHz, CDCl3): 6u 7.14-7.12 (m, 3H), 7.06-7.04 (m, 5H), 6.78-6.68 (m, 5H), 5.94 (s, 2H), 5.09-4.97 (m, 2H), 3.13-
3.10 (dd, J = 9.44, 7.47 Hz, 1H), 2.16-2.13 (dd, J = 9.44, 4.83 Hz, 1H), 1.91-1.88 (dd, J = 7.47, 4.83 Hz, 1H); 3C {*H}
NMR (101 MHz, CDCl3): 6¢173.7, 147.8, 147.5, 136.4, 134.8, 132.1, 130.1, 128.2, 127.8, 127.8, 127.2, 126.5,
121.4, 108.3, 101.2, 66.8, 37.7, 33.2, 20.5; IR (u, cm™, neat): 2930, 1715; HRMS (ESI): m/z calcd for C2aH2004:
373.1440 [M+H]*; found: 373.1445

: ‘N’N

A\

\§>Synthesised according to general procedure F from hydrazone 2.38 (0.1506
g, 0.4 mmol) to afford cyclopropane 3.24 (0.0852 g, 54%) as a colourless liquid. Cyclopropane 3.24: *H NMR (400
MHz, CDCl3): 61 7.89-7.88 (d, J = 2.50 Hz, 1H), 7.71-7.70 (d, J = 1.65 Hz, 1H), 7.63-7.60 (m, 2H), 7.27-7.23 (m, 2H),
7.14-7.11 (m, 3H), 7.06-7.03 (m, 5H), 6.79-6.75 (m, 2H), 6.45-6.44 (t, J = 2.19 Hz, 1H), 5.20-5.07 (m, 2H), 3.15-
3.11(dd, J =9.25, 7.24 Hz, 1H), 2.18-2.14 (dd, J = 9.25, 5.00 Hz, 1H), 1.92-1.89 (dd, J = 7.24, 5.00 Hz, 1H); 13C {*H}
NMR (101 MHz, CDCls): 6¢c 173.6, 141.3, 139.8, 136.3, 134.7, 134.5, 132.0, 128.6, 128.2, 127.8, 127.8, 127.2,
126.8, 126.5, 119.2, 107.8, 66.1, 37.7, 33.3, 20.5; IR (u, cm, neat): 3129, 1714; HRMS (ESI): m/z calcd for
Ca26H22N202: 395.1760 [M+H]*; found: 395.1765

0 /\_-CF3

Q Synthesised according to general procedure F from hydrazone 2.8 (0.0977 g, 0.4 mmol) to
afford cyclopropane 3.25 (0.0493 g, 47%) as a yellow oil. Cyclopropane 3.25: *H NMR (400 MHz, CDCl3): &+ 7.20-
7.12 (m, 5H), 7.09-7.07 (m, 3H), 6.78-6.76 (m, 2H), 2.86-2.82 (dd, J = 9.45, 6.75 Hz, 1H), 1.90-1.86 (dd, J = 9.66,
6.08 Hz, 1H), 1.70-1.66 (m, 1H); 3C {*H} NMR (101 MHz, CDCls): 6c135.8,132.6, 131.6, 128.3, 128.1, 128.0, 128.0,
126.6, 25.8, 14.8; °F NMR (471 MHz, CDCls): § -69.7; IR (u, cm™, neat): 3184, 579; HRMS (ESI): m/z calcd for
Ci6H13F3: 263.1048 [M+H]*; found: 263.1054

o
&

Br Synthesised according to general procedure F from hydrazone 2.9 (0.1293 g, 0.4 mmol) to
afford cyclopropane 3.26 (0.0996 g, 73%) as a yellow oil. Cyclopropane 3.26: *H NMR (400 MHz, CDCl3): 61 7.31-
7.28 (m, 2H), 7.14-7.10 (m, 3H), 7.01-6.99 (m, 2H), 6.80-6.77 (m, 2H), 2.87-2.83 (dd, J = 9.66, 6.94 Hz, 1H), 1.90-
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1.86 (dd, J = 9.66, 6.15 Hz, 1H), 1.67-1.63 (m, 1H); 13C {*H} NMR (101 MHz, CDCl3): 8¢ 135.2, 134.2, 133.0, 131.4,
130.8, 128.2, 128.0, 126.9, 122.7, 28.6, 25.8, 14.7; *F NMR (471 MHz, CDCl3): & -69.7; IR (u, cm™., neat): 3183,
580; HRMS (ESI): m/z calcd for C16H12BrFs: 341.0153 [M+H]*; found: 341.0179

<WN’S
110
A P\o/\

Q Synthesised according to general procedure F from hydrazone 2.14 (0.1249 g, 0.4 mmol)
to afford cyclopropane 3.27 (0.0833 g, 63%) as a yellow oil. Cyclopropane 3.27: *H NMR (400 MHz, CDCls): &
7.12-7.11 (m, 3H), 7.08-7.05 (m, 5H), 6.76-6.73 (m, 2H), 4.11-4.02 (m, 4H), 3.04-2.96 (m, 1H), 2.10-2.02 (m, 1H),
1.74-1.68 (m, 1H), 1.30-1.27 (m, 3H), 1.25-1.22 (m, 3H); 3C {*H} NMR (101 MHz, CDCls): 6c132.5, 130.2, 129.4,
128.3,128.1, 127.9, 127.8, 126.7, 126.3, 62.6, 55.3, 51.2, 28.9, 28.8, 16.5; 3P NMR (202 MHz, CDCl3): & 27.0; IR
(u, cm?, neat): 2907; HRMS (ESI): m/z calcd for C1gH2303P: 331.1463 [M+H]*; found: 331.1467
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Optimisation for electrochemical cyclopropanation of non-activated olefins

Table S7. Optimisation of electrolysis conditions for the electrosynthesis of cyclopropane 3.48
Reactions were carried out on a 0.4 mmol scale at room temperature (rt) in a 5 mL ElectraSyn cell equipped with carbon and
stainless steel electrodes, and yields were determined by *H NMR using CH2Br; as an internal standard.

Y

HN_ CO,Me
IN C(+) SS (v Ph
CO,Me 1=mA cm, F/imol
Coll.HBF, (eq.), 1-decene (eq.)
o "o
Entry Coll. HBF4 1-decene Rh20Acs DCM HFIP Current F/mol NMR Yield
(eq.) (eq.) (mA)

1 0.5 10 1 mol % 5mL N/A 3 2 0%
2 0.5 10 1 mol % 5mL 10 eq. 3 2 4%
3 0.5 10 1 mol % N/A 5mL 3 2 48%
4 0.5 5 1 mol % N/A 5mL 3 2 16%
5 0.5 10 1 mol % N/A 5mL 1 2 15%
6 0.5 10 1 mol % N/A 5mL 5 2 6%
7 0.5 10 1 mol % N/A 5mL 1 2.5 9%
8 0.5 10 N/A N/A 5mL 3 2 0%
9 0.5 10 1 mol % N/A 5mL N/A N/A 0%
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General Procedure G for the electrochemical cyclopropanation of hydrazones
with varying olefins

I'IN‘N C (+) SS ()
| CO,Me
- -2
co,Me 1=3.1mAcm? 2 Flm>ol )><ph
(10 eq.)
2.1 e 3.39-3.49
0.4 mmol Coll.HBF, (0.5 eq.)

Rhy(OAc), (1 mol%)
DCM or HFIP, rt

In a5 mL ElectraSyn 2.0 vial, the hydrazone (0.4 mmol, 0.0937 g), Coll. HBF4 (0.2 mmol, 0.0418 g, 0.5 eq.), olefin
(4 mmol, 10 eq.), and rhodium (Il) acetate (1 mol%) were dissolved in DCM (5 mL). The ElectraSyn 2.0 cap was
equipped with a Cgr anode (working electrode) and a stainless steel cathode (counter electrode). The reaction
conditions were set to 3.1 mA cm™ and 2 F/mol. The reaction was stirred vigorously and electrolysed at room
temperature. The mixture was quenched with water and extracted with EtOAc (3 x 50 mL). The combined
organics were dried over MgS04 and the solvent removed under reduced pressure. The crude residue was
purified by silica gel flash chromatography (Hexane/EtOAc = 9:1 to 7:3) to afford the desired cyclopropane. The
procedure was repeated with different olefins of varying functionality.

Synthesised according to general procedure G from styrene (0.4166 g, 4 mmol) and DCM as
solvent to afford cyclopropane 3.1 (0.0979 g, 97%) as a colourless oil. Cyclopropane 3.1: *H NMR (400 MHz,
CDCl3): 61 7.15-7.13 (m, 3H), 7.07-7.03 (m, 5H), 6.79-6.77 (m, 2H), 3.67 (s, 3H), 3.14-3.11 (dd, J = 9.35, 7.20 Hz,
1H), 2.17-2.14 (dd, J = 9.29, 4.74 Hz, 1H), 1.91-1.88 (dd, J = 7.34, 4.97 Hz, 1H); 3C {*H} NMR (101 MHz, CDCl3): &c
174.5,136.5,134.8,132.1,128.2, 127.8,127.2, 126.4, 52.8, 37.5, 33.3, 20.6; IR (u, cm?, neat): 1716; HRMS (ESI):
m/z calcd for C17H1602: 253.1229 [M+H]*; found: 253.1219

Synthesised according to general procedure G from 4-fluorostyrene (0.4886 g, 4 mmol)
and DCM as solvent to afford cyclopropane 3.39 (0.0822 g, 76%) as a yellow oil. Cyclopropane 3.39: 'H NMR (400
MHz, CDClz): 61 7.15-7.13 (m, 3H), 7.02-7.00 (m, 2H), 6.77-6.71 (m, 4H), 3.66 (s, 3H), 3.11-3.07 (dd, J = 9.28, 7.09
Hz, 1H), 2.15-2.11 (dd, J = 9.28, 4.90 Hz, 1H), 1.84-1.81 (dd, J = 7.09, 4.90 Hz, 1H); 3C {*H} NMR (101 MHz, CDCls):
6c174.4, 162.8, 160.4, 134.7, 132.2, 132.0, 129.6, 129.5, 128.6, 127.9, 127.3, 126.7, 114.9, 114.6, 52.8, 37.4,
32.5, 20.7; **F NMR (471 MHz, CDCls): & -116.4; IR (u, cm™, neat): 1714; HRMS (ESI): m/z calcd for Ci7H1sFOa:
271.1239 [M+H]*; found: 271.1233

Synthesised according to general procedure G from 4-bromostyrene (0.7322 g, 4 mmol)
and DCM as solvent to afford cyclopropane 3.40 (0.1073 g, 81%) as a colourless oil. Cyclopropane 3.40: 'H NMR
(400 MHz, CDCl3): 61 7.18-7.14 (m, 5H), 7.03-7.00 (m, 2H), 6.64-6.60 (m, 2H), 3.66 (s, 3H), 3.08-3.04 (dd, ] =9.44,
7.40 Hz, 1H), 2.16-2.12 (dd, ) = 9.44, 4.85 Hz, 1H), 1.84-1.81 (dd, J = 7.40, 4.85 Hz, 1H); 3C {*H} NMR (101 MHz,
CDCls): 6¢174.2, 135.7, 134.4, 132.0, 130.9, 129.8, 128.0, 127.4, 120.3, 52.8, 37.6, 32.6, 20.8; IR (u, cm, neat):
1712; HRMS (ESI): m/z calcd for Ci7H15BrO2: 331.0412 [M+H]*; found: 331.0422
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Synthesised according to general procedure G from 4-(trifluoromethyl)styrene (0.6886
g, 4 mmol) and DCM as solvent to afford cyclopropane 3.41 (0.0756 g, 59%) as a yellow oil. Cyclopropane 3.41:
'H NMR (400 MHz, CDCls): &y 7.32-7.29 (m, 2H), 7.16-7.13 (m, 3H), 7.02-7.00 (m, 2H), 6.86-6.83 (m, 2H), 3.67 (s,
3H), 3.17-3.13 (dd, J = 9.38, 7.21 Hz, 1H), 2.21-2.17 (dd, J = 9.38, 5.05 Hz, 1H), 1.91-1.88 (dd, J = 7.21, 5.05 Hz,
1H); 3C {*H} NMR (400 MHz, CDCls): ¢ 174.1, 141.0, 134.2,131.9, 128.4,128.1, 127.5, 124.8, 124.7, 124.7, 52.9,
38.1,32.6,21.0; *F NMR (471 MHz, CDCls): 6 -62.3; IR (u, cm™, neat): 1713; HRMS (ESI): m/z calcd for C1gH1sF30:
321.1112 [M+H]*; found: 321.1111

Synthesised according to general procedure G from 4-cyanostyrene (0.5166 g, 4 mmol)
and DCM as solvent to afford cyclopropane 3.42 (0.0344 g, 31%) as a yellow oil. Cyclopropane 3.42: 'H NMR (400
MHz, CDCl3): 6u 7.34-7.32 (m, 2H), 7.17-7.13 (m, 3H), 7.00-6.98 (m, 2H), 6.84-6.82 (m, 2H), 3.67 (s, 3H), 3.15-
3.12 (dd, ) =9.18, 7.29 Hz, 1H), 2.22-2.19 (dd, J = 9.18, 5.06 Hz, 1H), 1.92-1.90 (dd, J = 7.29, 5.06 Hz, 1H); *3C {*H}
NMR (101 MHz, CDCl3): 6¢173.8, 142.6,133.9, 132.9, 131.8, 131.6, 128.7,128.2, 127.7, 126.7, 119.0, 110.1, 53.0,
38.4, 32.7, 21.1; IR (u, cm?, neat): 2258, 1712; HRMS (ESI): m/z calcd for C1sH1sNO2: 278.1264 [M+H]*; found:
278.1257

Synthesised according to general procedure G from 3-chlorostyrene (0.5544 g, 4 mmol)
and DCM as solvent to afford cyclopropane 3.43 (0.1032 g, 90%) as a colourless liquid. Cyclopropane 3.43: 'H
NMR (400 MHz, CDCls): 6x 7.17-7.14 (m, 3H), 7.04-7.01 (m, 3H), 6.98-6.94 (t, ) = 7.88 Hz, 1H), 6.80-6.79 (t,J =
2.09 Hz, 1H), 6.60-6.57 (m, 1H), 3.67 (s, 3H), 3.09-3.05 (dd, J =9.48, 7.38 Hz, 1H), 2.16-2.12 (dd, J = 9.48, 5.29 Hz,
1H), 1.87-1.84 (dd, J = 7.38, 5.29 Hz, 1H); 13C {*H} NMR (101 MHz, CDCl3): ¢ 174.2, 138.8, 134.4, 132.0, 129.0,
128.5, 128.0, 127.4, 126.6, 126.1, 52.9, 37.7, 32.6, 20.7; IR (u, cm, neat): 1718; HRMS (ESI): m/z calcd for
C17H15ClO2: 287.0839 [M+H]*; found: 287.0851

Synthesised according to general procedure G from alpha-methylstyrene (0.4727 g, 4 mmol)
and DCM as solvent to afford cyclopropane 3.44 (0.1012 g, 95%) as a colourless liquid. Cyclopropane 3.44: 'H
NMR (400 MHz, CDCl3): 64 7.18-7.15 (m, 2H), 7.08-7.00 (m, 8H), 3.71 (s, 3H), 2.11-2.10 (d, J = 5.52 Hz, 1H), 1.95-
1.94 (d, ) =5.52 Hz, 1H), 1.67 (s, 3H); *C {*H} NMR (101 MHz, CDCls): 6¢172.3, 141.1, 136.6, 131.5, 128.1, 127.8,
127.4, 126.7, 126.3, 52.5, 42.2, 34.0, 22.7, 22.4; IR (u, cm™, neat): 1709; HRMS (ESI): m/z calcd for CisH1502:
267.1440 [M+H]*; found: 267.1439

o
D
o
Synthesised according to general procedure G from vinyl acetate (0.3444 g, 4 mmol) and

HFIP as solvent to afford cyclopropane 3.45 (0.0300 g, 32%) as a colourless liquid. Cyclopropane 3.45: *H NMR
(400 MHz, CDCl3): 61 7.33-7.24 (m, 5H), 4.81-4.79 (dd, ) = 7.12, 4.34 Hz, 1H), 3.65 (s, 3H), 1.98-1.94 (dd, J = 7.12,
6.31 Hz, 1H), 1.78 (s, 3H), 1.73-1.70 (dd, J = 6.31, 4.34 Hz, 1H); 3C {*H} NMR (101 MHz, CDCls): 8¢ 172.7, 171.2,
133.8, 131.3, 129.0, 128.3, 127.8, 58.0, 52.8, 34.3, 20.7, 19.4; IR (u, cm, neat): 1713, 1711; HRMS (ESI): m/z
calcd for C13H1404: 235.1010 [M+H]*; found: 235.1022
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Synthesised according to general procedure G from 4-phenyl-1-butene (0.5288 g, 4
mmol) and HFIP as solvent to afford cyclopropane 3.46 (0.0740 g, 66%) as a colourless liquid. Cyclopropane 3.46:
IH NMR (400 MHz, CDCls): 61 7.32-7.21 (m, 7H), 7.16-7.13 (m, 1H), 7.07-7.05 (m, 2H), 3.61 (s, 3H), 2.70-2.64 (m,
2H), 1.91-1.86 (m, 1H), 1.71-1.69 (dd, J = 9.24, 4.55 Hz, 1H), 1.11-1.09 (dd, J = 6.90, 4.55 Hz, 1H), 0.90-0.83 (m,
2H); 23C {*H} NMR (101 MHz, CDCl3): 8¢ 175.2, 141.9, 136.2, 131.4, 128.5, 128.4, 128.2, 127.3, 126.0, 52.5, 35.5,
33.9, 32.5, 28.4, 21.6; IR (u, cm™, neat): 1709; HRMS (ESI): m/z calcd for C1oH2002: 281.1675 [M+H]*; found:
281.1684

Synthesised according to general procedure G from 1-hexene (0.3366 g, 4 mmol) and HFIP
as solvent to afford cyclopropane 3.47 (0.0269 g, 29%) as a colourless liquid. Cyclopropane 3.47: *H NMR (400
MHz, CDCl3): &1 7.56-7.54 (m, 2H), 7.34-7.30 (m, 3H), 3.79 (s, 3H), 2.46-2.28 (m, 2H), 1.72-1.66 (m, 1H), 1.28-
1.25 (m, 6H), 0.90-0.86 (m, 3H); 13C {*H} NMR (101 MHz, CDCls): 6c164.2, 131.5, 128.3, 127.9, 126.7, 55.3, 51.2,
32.0,29.5,29.2, 28.9, 22.8, 14.2; IR (u, cm’, neat): 1708; HRMS (ESI): m/z calcd for CisH2002: 233.1604 [M+H]*;
found: 233.1603

Synthesised according to general procedure G from 1-decene (0.5611 g, 4
mmol) and HFIP as solvent to afford cyclopropane 3.48 (0.0554 g, 48%) as a colourless liquid. Cyclopropane 3.48:
IH NMR (400 MHz, CDCls): 61 7.56-7.54 (m, 2H), 7.35-7.29 (m, 3H), 3.79 (s, 3H), 2.47-2.28 (m, 2H). 1.74-1.68 (m,
1H), 1.30-1.24 (m, 14H), 0.90-0.86 (m, 3H); 3C {*H} NMR (101 MHz, CDCls): 6¢164.2, 131.5, 128.3, 127.9, 126.7,
55.3,52.4,51.2,32.0, 29.5, 29.4, 29.2, 28.9, 22.8, 21.8, 14.2; IR (u, cm}, neat): 1712; HRMS (ESI): m/z calcd for
Ci9H2802: 289.2242 [M+H]*; found: 289.2245

o

Synthesised according to general procedure G from 11-bromo-1-
undecene (0.9328 g, 4 mmol) and HFIP as solvent to afford cyclopropane 3.49 (0.0564 g, 37%) as a colourless
liquid. Cyclopropane 3.49: 'H NMR (400 MHz, CDCl3): 8 7.56-7.54 (m, 1H), 7.34-7.30 (m, 4H), 3.79 (s, 3H), 3.42-
3.39 (t, J = 6.79 Hz, 2H), 2.04-1.97 (m, 2H), 1.72-1.66 (m, 1H), 1.30-1.25 (m, 16H); 13C {*H} NMR (101 MHz, CDCls):
8¢ 168.0, 131.5, 128.3, 127.9, 34.2, 33.0, 29.7, 28.9, 28.3; IR (u, cm™, neat): 1708; HRMS (ESI): m/z calcd for
Ca0H29BrO2: 381.1564 [M+H]*; found: 381.1569
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General Procedure H for the electrosynthesis of stabilised diazo compounds

\I/ C(+) SS (-)

N N2

I 1=5.2mA cm?, 1.5 F/mol
.)\. > 0)1\0

Coll.HBF, (2 eq.
DCMA,(rt ) 4.1-4.10

0.4 mmol

In a 5 mL ElectraSyn 2.0 vial, the hydrazone (0.4 mmol) and coll. HBF4 (0.8 mmol, 0.1672 g, 2 eq.) were dissolved
in DCM (5 mL). The ElectraSyn 2.0 cap was equipped with a Cgr anode (working electrode) and a stainless steel
cathode (counter electrode). The reaction conditions were set to 5.2 mA cm™ and 1.5 F/mol. The reaction was
stirred vigorously and electrolysed at room temperature. The mixture was quenched with water and extracted
with EtOAc (3 x 50 mL). The combined organics were dried over MgS04 and the solvent removed under reduced
pressure. The crude residue was purified by silica gel flash chromatography (Hexane/EtOAc = 9:1 to 7:3) to afford
the desired diazo compound. The procedure was repeated with different hydrazones of varying functionality.

N,

o
° Synthesised according to general procedure H from hydrazone 2.1 (0.0937 g, 0.4 mmol) to

afford cyclopropane 4.1 (0.0529 g, 75%) as a yellow oil. Diazo 4.1: *H NMR (400 MHz, CDCl3): 6x 7.50-7.47 (m,
2H), 7.41-7.37 (m, 2H), 7.21-7.17 (m, 1H), 3.87 (s, 3H); 3C {*H} NMR (101 MHz, CDCls): 6¢ 165.8, 129.1, 126.0,
125.6, 124.1, 52.1; IR (u, cm™%, neat): 2966, 2818, 2078, 1708; HRMS (ESI): m/z calcd for CoHsN202: 177.0659
[M+H]*; found: 177.0656

N
Ov

Synthesised according to general procedure H from hydrazone 2.13 (0.1162 g, 0.4
mmol) to afford diazo 4.2 (0.0502 g, 51%) as a yellow oil. Diazo 4.2: "H NMR (400 MHz, CDCl3): &1 7.42 (s, 4H),
4.36-4.31 (g, J = 7.21, 2H), 1.36-1.34 (t, J = 7.21 Hz, 3H), 1.33 (s, 9H); 13C {*H} NMR (101 MHz, CDCls): 6c 165.6,
149.1,126.1, 124.1, 122.5, 61.1, 34.6, 31.4, 14.6; IR (u, cm?, neat): 2964, 2084, 1705; HRMS (ESI): m/z calcd for
C14H18N202: 247.1447 [M+H]*; found: 247.1445

N>

°<
o
MeO Synthesised according to general procedure H from hydrazone 2.5 (0.1057 g, 0.4 mmol)

to afford diazo 4.3 (0.0256 g, 31%) as a yellow oil. Diazo 4.3: *H NMR (400 MHz, CDCls): &1 7.40-7.36 (m, 2H),
6.96-6.92 (m, 2H), 4.35-4.29 (q, J = 6.94 Hz, 2H), 3.81 (s, 3H), 1.35-1.31 (t, J = 6.94 Hz, 3H); 13C {*H} NMR (101
MHz, CDCl3): 8¢ 165.9, 158.1, 126.1, 117.2, 114.7, 61.1, 55.5, 14.7; IR (u, cm™%, neat): 2923, 2854, 2254, 1735,
1676; HRMS (ESI): m/z calcd for C11H12N203: 243.0746 [M+Na]*; found: 243.0739

N,

o
o
F Synthesised according to general procedure H from hydrazone 2.3 (0.1009 g, 0.4 mmol)

to afford diazo 4.4 (0.0350 g, 42%) as a yellow oil. Diazo 4.4: *H NMR (400 MHz, CDCls): 64 7.46-7.43 (m, 2H),
7.12-7.07 (m, 2H), 4.36-4.30 (q, J = 7.26 Hz, 2H), 1.36-1.32 (t, J = 7.26 Hz, 3H); 13C {*H} NMR (101 MHz, CDCls): &¢
165.4,162.4,126.1,126.0,121.6, 116.3, 116.0, 61.2, 14.6; °F NMR (471 MHz, CDCl3): 6 -116.3; IR (u, cm?, neat):
3280, 3165, 2945, 2873, 2255, 1624; HRMS (ESI): m/z calcd for C10HsFN202: 209.0716 [M+H]*; found: 209.0728
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N,

o
o
cl Synthesised according to general procedure H from hydrazone 2.2 (0.1075 g, 0.4 mmol)

to afford diazo 4.5 (0.0458 g, 51%) as a yellow oil. Diazo 4.5: *H NMR (400 MHz, CDCls): 64 7.43-7.40 (m, 2H),
7.35-7.32 (m, 2H), 4.35-4.30 (q, J = 7.31 Hz, 2H), 1.35-1.32 (t, J = 7.31 Hz, 3H); 13C {*H} NMR (101 MHz, CDCls): &¢
165.0, 131.5, 129.2, 125.1, 124.4, 61.3, 14.6; IR (u, cm?, neat): 2976, 2922, 2868, 2112, 1680; HRMS (ESI): m/z
calcd for C10HsCIN202: 225.0561 [M+H]*; found: 225.0568

N>

Ov
o]
Br Synthesised according to general procedure H from hydrazone 2.4 (0.1253 g, 0.4 mmol)

to afford diazo 4.6 (0.0431 g, 40%) as a yellow oil. Diazo 4.6: *H NMR (400 MHz, CDCl3): 6x 7.50-7.47 (m, 2H),
7.38-7.34 (m, 2H), 4.36-4.30 (q, J = 7.14 Hz, 2H), 1.35-1.32 (t, J = 7.14 Hz, 3H); 13C {*H} NMR (101 MHz, CDCls): &¢
165.0, 132.1, 125.4, 125.0, 119.4, 61.3, 14.6; IR (u, cm?, neat): 3333, 3263, 2982, 2089, 1737; HRMS (ESI): m/z
calcd for C10H9BrN202: 268.9920 [M+H]*; found: 268.9915

N

0\/
o
NC Synthesised according to general procedure H from hydrazone 2.22 (0.1037 g, 0.4 mmol)

to afford diazo 4.7 (0.0482 g, 56%) as a yellow oil. Diazo 4.7: *H NMR (400 MHz, CDCl3): 6x 7.65-7.59 (m, 4H),
4.38-4.33 (q,) =7.04 Hz, 2H), 1.37-1.33 (t, ) = 7.04 Hz, 3H); *C {*H} NMR (101 MHz, CDCl3): 6c164.0, 132.7, 131.9,
123.5, 118.9, 108.7, 61.6, 14.6; IR (u, cm™, neat): 2925, 2231, 2094, 1704; HRMS (ESI): m/z calcd for C11HsN3O2:
216.0633 [M+H]*; found: 216.0625

N, _
@AW\/
o
Synthesised according to general procedure H from hydrazone 2.18 (0.1089 g, 0.4

mmol) to afford diazo 4.8 (0.0334 g, 39%) as a yellow oil. Diazo 4.8: *H NMR (400 MHz, CDCls): 6y 7.50-7.47 (m,
2H), 7.41-7.37 (m, 2H), 7.21-7.17 (m, 1H), 4.85-4.83 (q, J = 2.50 Hz, 2H), 1.88-1.87 (t, J = 7.04 Hz, 3H); 13C {*H}
NMR (101 MHz, CDCls): 6¢164.7,129.1, 126.1, 125.4, 124.1, 83.6, 73.3, 53.2, 3.8; IR (u, cm?, neat): 2945, 2857,
2065, 1713; HRMS (ESI): m/z calcd for C12H10N202: 215.0821 [M+H]*; found: 215.0824

o
gJ§<
N, ~o
oY
o . .
Synthesised according to general procedure H from hydrazone 2.24 (0.1745

g, 0.4 mmol) to afford diazo 4.9 (0.0393 g, 26%) as a yellow oil. Diazo 4.9: 'H NMR (400 MHz, CDCl3): &1 7.84-
7.82 (m, 2H), 7.50-7.48 (m, 2H), 7.41-7.36 (m, 4H), 7.21-7.17 (m, 1H), 5.53 (s, 2H), 1.35 (s, 12H); 13C {*H} NMR
(101 MHz, CDCls): 6¢165.1, 139.0, 135.2, 129.1, 127.4, 126.0, 125.5, 124.2, 84.0, 66.5, 25.0; IR (u, cm™, neat):
3201, 3176, 3047, 2983, 2942, 1754; HRMS (ESI): m/z calcd for C21H23BN204: 379.1922 [M+H]*; found: 379.1928

N,

: J_ o
p” N~~~
7\
0" 0\
Synthesised according to general procedure H from hydrazone 2.14 (0.1249 g, 0.4 mmol) to

afford diazo 4.10 (0.0569 g, 56%) as a yellow oil. Diazo 4.10: 'H NMR (400 MHz, CDCls): &u 7.38-7.33 (m, 2H),
7.19-7.12 (m, 3H), 4.27-4.09 (m, 4H), 1.36-1.32 (t, J = 7.07 Hz, 6H); 3C {*H} NMR (101 MHz, CDCls): 6c 129.4,
125.5,122.8,122.8,63.1, 63.0, 16.3, 16.3; 3P NMR (202 MHz, CDCl3): 6 17.9; IR (u, cm™., neat): 2946, 2850, 2082,
1794, 1602; HRMS (ESI): m/z calcd for C11H1sN203P: 255.0916 [M+H]*; found: 255.0917
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General Procedure | for the electrochemical cyclopropanation of activated
hydrazones with decreased olefin concentration

C(+) SS ()

HN I=10.7 mA cm, 2 Fimol )><:
N -
l,L Coll.HBF4 (0.5 eq.) PH
Styrene (2 eq.)
Rh,(OAc), (1 mol%) R
2 DCI‘\‘Il, 't 3.1-3.24

2 mmol

In a 5 mL ElectraSyn 2.0 vial, the hydrazone (2 mmol, 1 eq., 0.4 M), Coll HBF4 (1 mmol, 0.5 eq., 0.2 M), styrene
(4 mmol, 2 eq., 0.8 M), and rhodium (ll) acetate (1 mol%, 0.004 M) were dissolved in DCM (5 mL). The ElectraSyn
2.0 cap was equipped with a Cgr anode (working electrode) and a stainless steel cathode (counter electrode).
The reaction conditions were set to 10.7 mA cm™? and 2 F/mol. The reaction was stirred vigorously and
electrolysed at room temperature. The mixture was quenched with water and extracted with EtOAc (3 x 50 mL).
The combined organics were dried over MgSOa4 and the solvent removed under reduced pressure. The crude
residue was purified by silica gel flash chromatography (Hexane/EtOAc = 9:1 to 7:3) to afford the desired
cyclopropane. The procedure was repeated with different hydrazones of varying functionality.

Synthesised according to general procedure | from hydrazone 2.1 (0.4686 g, 2 mmol) to
afford cyclopropane 3.1 (0.3532 g, 70%) as a colourless oil. Cyclopropane 3.1: *H NMR (400 MHz, CDCls): &1 7.15-
7.13 (m, 3H), 7.07-7.03 (m, 5H), 6.79-6.77 (m, 2H), 3.67 (s, 3H), 3.14-3.11 (dd, J = 9.35, 7.20 Hz, 1H), 2.17-2.14
(dd, J =9.29, 4.74 Hz, 1H), 1.91-1.88 (dd, J = 7.34, 4.97 Hz, 1H); 3C {*H} NMR (101 MHz, CDCls): 6c 174.5, 136.5,
134.8,132.1,128.2,127.8,127.2,126.4,52.8, 37.5, 33.3, 20.6; IR (u, cm?, neat): 1716; HRMS (ESI): m/z calcd for
C17H1602: 253.1229 [M+H]*; found: 253.1219

OMe Synthesised according to general procedure | from hydrazone 2.5 (0.5567 g, 2 mmol) to
afford cyclopropane 3.4 (0.3557 g, 60%) as a yellow oil. Cyclopropane 3.4: IH NMR (400 MHz, CDCl3): 61 7.07-
7.06 (m, 3H), 6.94-6.93 (m, 2H), 6.79-6.77 (m, 2H), 6.67-6.65 (m, 2H), 4.18-4.08 (m, 2H), 3.72 (s, 3H), 3.07-3.04
(dd, ) =9.09, 7.18 Hz, 1H), 2.13-2.10 (dd, J = 9.33, 5.02 Hz, 1H), 1.83-1.80 (dd, J = 7.18, 4.79 Hz, 1H), 1.20-1.17 (t,
) =7.18 Hz, 3H); 3C {*H} NMR (101 MHz, CDCls): 6¢174.2, 158.5, 136.8, 133.0, 128.2, 127.8, 127.1, 126.3, 113.2,
61.3, 55.2, 37.0, 33.1, 20.6, 14.3; IR (u, cm?, neat): 1717; HRMS (ESI): m/z calcd for CigH2003: 297.1491 [M+H]*;
found: 297.1492

€l Synthesised according to general procedure | from hydrazone 2.2 (0.5655 g, 2 mmol) to
afford cyclopropane 3.6 (0.4030 g, 67%) as a colourless liquid. Cyclopropane 3.6: 'H NMR (400 MHz, CDCls): &x
7.10-7.07 (m, 5H), 6.96-6.95 (m, 2H), 6.79-6.77 (m, 2H), 4.18-4.09 (m, 2H), 3.12-3.09 (dd, J = 9.68, 7.37 Hz, 1H),
2.15-2.12 (dd, J = 9.22, 4.95 Hz, 1H), 1.85-1.83 (dd, J = 7.37, 5.07 Hz, 1H), 1.20-1.17 (t, J = 7.37 Hz, 3H); 3C {*H}
NMR (101 MHz, CDCl3): 6¢173.4, 136.1, 133.7, 133.3, 132.9, 128.1, 128.1, 128.0, 126.6, 61.5, 37.0, 33.1, 20.2,
14.3; IR (u, cm™, neat): 1717; HRMS (ESI): m/z calcd for C1sH17ClO2: 301.0995 [M+H]*; found: 301.0984
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O Synthesised according to general procedure | from hydrazone 2.31 (0.7730
g, 2 mmol) to afford cyclopropane 3.16 (0.3399 g, 42%) as a colourless liquid. Cyclopropane 3.16: *H NMR (400
MHz, CDCl3): 8u 7.60-7.58 (m, 2H), 7.55-7.54 (m, 2H), 7.46-7.43 (m, 2H), 7.38-7.34 (m, 1H), 7.28-7.26 (m, 2H),
7.16-7.15 (m, 3H), 7.09-7.06 (m, 5H), 6.80-6.78 (m, 2H), 5.25-5.13 (m, 2H), 3.18-3.15 (dd, J = 9.42, 7.19 Hz, 1H),
2.21-2.19 (dd, J = 9.42, 4.86 Hz, 1H), 1.95-1.92 (dd, J = 7.48, 4.86 Hz, 1H); 3C {*H} NMR (400 MHz, CDCls): 6¢
173.7, 140.9, 140.8, 136.4, 135.3, 134.8, 132.1, 128.9, 128.2, 127.9, 127.8, 127.5, 127.3, 127.2, 127.2, 126.5,
66.5, 37.7, 33.2, 20.5; IR (u, cm™, neat): 1713; HRMS (ESI): m/z calcd for C2oH2402: 405.1855 [M+H]*; found:

405.1856

A\

\§7 Synthesised according to general procedure | from hydrazone 2.38 (0.7529 g,
2 mmol) to afford cyclopropane 3.24 (0.3157 g, 40%) as a colourless liquid. Cyclopropane 3.24: *H NMR (400
MHz, CDCl3): 61 7.89-7.88 (d, J = 2.50 Hz, 1H), 7.71-7.70 (d, J = 1.65 Hz, 1H), 7.63-7.60 (m, 2H), 7.27-7.23 (m, 2H),
7.14-7.11 (m, 3H), 7.06-7.03 (m, 5H), 6.79-6.75 (m, 2H), 6.45-6.44 (t, J = 2.19 Hz, 1H), 5.20-5.07 (m, 2H), 3.15-
3.11 (dd, ) =9.25, 7.24 Hz, 1H), 2.18-2.14 (dd, J = 9.25, 5.00 Hz, 1H), 1.92-1.89 (dd, J = 7.24, 5.00 Hz, 1H); *3C {*H}
NMR (101 MHz, CDCl3): 6¢173.6, 141.3, 139.8, 136.3, 134.7, 134.5, 132.0, 128.6, 128.2, 127.8, 127.8, 127.2,
126.8, 126.5, 119.2, 107.8, 66.1, 37.7, 33.3, 20.5; IR (v, cm™, neat): 3129, 1714; HRMS (ESI): m/z calcd for
C26H22N203: 395.1760 [M+H]*; found: 395.1765
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General Procedure J for the electrochemical cyclopropanation of activated

hydrazones in flow
1=3.3 mA cm, X F/imol

> qqéssu )><:

Coll.HBF4 (0.5 eq.)
Styrene (2 eq.)
Rhy(OAc), (1 mol%) -
DEM. it 3.1-3.9

A solution of substrate (1 eq., 0.4 M), styrene (2 eq., 0.8 M), Rh2(OAc)a (1% mol, 0.004 M) and Coll HBF4 (0.5 eq.
0.2M) was pumped at 0.1 mL min! through an Asia® FLUX reactor (225 pL, 3.3 mA cm™) followed by an Asia®
Pressure Controller set at 2.5 bar. The reaction mixture was left recirculating until full conversion was achieved.
The mixture was extracted with EtOAc (3 x 50 mL). The combined organics were dried over MgS0O4 and the
solvent removed under reduced pressure. The crude residue was purified by silica gel flash chromatography
(Hexane/EtOAc = 9:1 to 7:3) to afford the desired cyclopropane. The procedure was repeated with different
hydrazones of varying functionality.

Synthesised according to general procedure J from hydrazone 2.1 (0.4686 g, 2 mmol) to
afford cyclopropane 3.1 (0.3078 g, 61%) as a colourless oil. Cyclopropane 3.1: *H NMR (400 MHz, CDCls): &1 7.15-
7.13 (m, 3H), 7.07-7.03 (m, 5H), 6.79-6.77 (m, 2H), 3.67 (s, 3H), 3.14-3.11 (dd, J = 9.35, 7.20 Hz, 1H), 2.17-2.14
(dd, J =9.29, 4.74 Hz, 1H), 1.91-1.88 (dd, J = 7.34, 4.97 Hz, 1H); 3C {*H} NMR (101 MHz, CDCl3): 8¢ 174.5, 136.5,
134.8,132.1,128.2,127.8,127.2,126.4,52.8, 37.5, 33.3, 20.6; IR (u, cm?, neat): 1716; HRMS (ESI): m/z calcd for
Ci17H1602: 253.1229 [M+H]*; found: 253.1219

OMe Synthesised according to general procedure J from hydrazone 2.5 (0.5567 g, 2 mmol) to
afford cyclopropane 3.4 (0.2017 g, 34%) as a yellow oil. Cyclopropane 3.4: IH NMR (400 MHz, CDCl3): 61 7.07-
7.06 (m, 3H), 6.94-6.93 (m, 2H), 6.79-6.77 (m, 2H), 6.67-6.65 (m, 2H), 4.18-4.08 (m, 2H), 3.72 (s, 3H), 3.07-3.04
(dd, J=9.09, 7.18 Hz, 1H), 2.13-2.10 (dd, J =9.33, 5.02 Hz, 1H), 1.83-1.80 (dd, J = 7.18, 4.79 Hz, 1H), 1.20-1.17 (t,
J=7.18 Hz, 3H); 3C {*H} NMR (101 MHz, CDCl3): 6c174.2, 158.5, 136.8, 133.0, 128.2, 127.8, 127.1, 126.3, 113.2,
61.3, 55.2, 37.0, 33.1, 20.6, 14.3; IR (u, cm?, neat): 1717; HRMS (ESI): m/z calcd for CigH2003: 297.1491 [M+H]*;
found: 297.1492

€l Synthesised according to general procedure J from hydrazone 2.2 (0.5655 g, 2 mmol) to
afford cyclopropane 3.6 (0.4091 g, 68%) as a colourless liquid. Cyclopropane 3.6: 'H NMR (400 MHz, CDCls): &x
7.10-7.07 (m, 5H), 6.96-6.95 (m, 2H), 6.79-6.77 (m, 2H), 4.18-4.09 (m, 2H), 3.12-3.09 (dd, J = 9.68, 7.37 Hz, 1H),
2.15-2.12 (dd, J = 9.22, 4.95 Hz, 1H), 1.85-1.83 (dd, J = 7.37, 5.07 Hz, 1H), 1.20-1.17 (t, J = 7.37 Hz, 3H); 3C {*H}
NMR (101 MHz, CDCl3): 6¢173.4, 136.1, 133.7, 133.3, 132.9, 128.1, 128.1, 128.0, 126.6, 61.5, 37.0, 33.1, 20.2,
14.3; IR (u, cm™, neat): 1717; HRMS (ESI): m/z calcd for C1sH17ClO2: 301.0995 [M+H]*; found: 301.0984
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O Synthesised according to general procedure J from hydrazone 2.31 (0.7730
g, 2 mmol) to afford cyclopropane 3.16 (0.2104 g, 26%) as a colourless liquid. Cyclopropane 3.16: *H NMR (400
MHz, CDCls): 8x 7.60-7.58 (m, 2H), 7.55-7.54 (m, 2H), 7.46-7.43 (m, 2H), 7.38-7.34 (m, 1H), 7.28-7.26 (m, 2H),
7.16-7.15 (m, 3H), 7.09-7.06 (m, 5H), 6.80-6.78 (m, 2H), 5.25-5.13 (m, 2H), 3.18-3.15 (dd, ) =9.42, 7.19 Hz, 1H),
2.21-2.19 (dd, J = 9.42, 4.86 Hz, 1H), 1.95-1.92 (dd, J = 7.48, 4.86 Hz, 1H); 3C {*H} NMR (400 MHz, CDCls): &¢
173.7, 140.9, 140.8, 136.4, 135.3, 134.8, 132.1, 128.9, 128.2, 127.9, 127.8, 127.5, 127.3, 127.2, 127.2, 126.5,
66.5, 37.7, 33.2, 20.5; IR (u, cm™, neat): 1713; HRMS (ESI): m/z calcd for C29H2402: 405.1855 [M+H]*; found:
405.1856

Synthesised according to general procedure J from hydrazone 2.6 (0.5686 g, 2 mmol) to
afford cyclopropane 3.9 (0.2117 g, 35%) as a colourless liquid. Cyclopropane 3.9: *H NMR (400 MHz, CDCls): &x
7.12-7.09 (m, 3H), 6.84-6.81 (m, 2H), 6.59-6.55 (m, 3H), 4.21-4.11 (m, 2H), 3.16-3.12 (dd, J = 9.49, 7.38 Hz, 1H),
2.14-2.11 (dd, J = 9.24, 5.19 Hz, 1H), 1.88-1.85 (dd, J = 7.38, 5.19 Hz, 1H), 1.20-1.16 (t, J = 7.05 Hz, 3H); 13C {*H}
NMR (101 MHz, CDCls): &¢ 172.7, 163.4, 163.3, 161.4, 161.3, 139.0, 139.0, 135.5, 128.5, 128.1, 128.0, 126.9,
126.1, 115.0, 115.0, 114.8, 114.8, 103.0, 102.8, 102.6, 61.7, 37.1, 37.1, 33.3, 20.0, 14.2; °*F NMR (471 MHz,
CDCl3): §-111.1; IR (u, cm™, neat): 1716; HRMS (ESI): m/z calcd for C1sH16F202: 303.1197 [M+H]*; found: 303.1177
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Faradaic Efficiency
FE (%) =

nXxF X i 2 X 96485 x 0.97
Nproduit % 100 =

- X 100 = 0.647
Qtotal 3 X 96485

Assuming a two-electron process, passage of 3 F mol™ corresponds to a theoretical maximum Faradaic
efficiency of 67%. Based on the isolated yield (97%), a Faradaic efficiency of 65% was obtained for the
formation of 3.1, using the method presented in Figure 3.

Table S8. Faradaic efficiency (FE) of electrochemical cyclopropanation, calculated for the formation of compounds

3.1to03.27.
Compound Yield (%) FE (%)
31 97 64.7
3.2 77 51.3
3.3 69 46.0
3.4 84 56.0
3.5 71 47.3
3.6 83 55.3
3.7 58 38.7
3.8 81 54.0
3.9 81 54.0
3.10 58 38.7
3.1 84 56.0
3.12 77 51.3
3.13 17 11.3
3.14 99 66.0
3.15 78 52.0
3.16 49 327
3.17 36 24.0
3.18 95 63.3
3.19 56 37.3
3.20 63 42.0
3.21 76 50.7
3.22 36 24.0
3.23 72 48.0
3.24 54 36.0
3.25 47 313
3.26 73 48.7
3.27 63 42.0
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NMR spectra of previously described compounds
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