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1. General information

Anhydrous reactions were performed under nitrogen or Ar in solvents dried by passing through an activated
alumina column on a PureSolvTM solvent purification system (Innovative Technologies, Inc., MA). Analytical thin
layer chromatography was carried out using TLC-aluminum sheets with 0.2 mm of silica gel (Merck GF234) using
UV light as the visualizing agent, and an acidic solution of vanillin in ethanol or a basic aqueous solution of KMnO4
as the developing agent. Flash column chromatography (FCC) was carried out manually using PanReac Silica Gel
60 (40-63 um) or employing the automated flash column chromatographer CombiFlash Companion with
disposable pre-packed normal phase silica gel columns (Teledyne Isco). Preparative TLC was performed on 20
cm x 20 cm silica gel plates (2.0 mm or 1.0 mm silica thickness, Analtech). Melting points were measured using
a Mettler Toledo MP70 Melting Point apparatus. NMR spectra were recorded on Bruker Ultrashield 300, 400 or
500 MHz spectrometers using the residual solvent signal as internal standard [for *H NMR: CDCls at 7.26 ppm,
CD,Cl; at 5.31 ppm, CsDs at 7.16 ppm, for **C NMR: CDCl; at 77.16 ppm, CD,Cl, at 54.00 ppm, CsDs at 128.06
ppm]. All measurements were carried out at 24 °C unless otherwise stated. The following abbreviations were
used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet, br s =
broad singlet. Coupling constants (/) are reported in Hertz (Hz). Infrared spectra were recorded on a Bruker
ALPHA FTIR-ATR TRO spectrometer with ATR module on a thin film (the sample was dissolved in a volatile solvent,
then the solvent evaporated). The most intense absorption bands (v) are listed in wavenumbers (cm™). Mass
spectra were recorded on a Waters LCT Premier Spectrometer (ESI and APCI) or on an Autoflex Broker Daltonics
(MALDI and LDI). Optical rotations were recorded using a Jasco P-1030 polarimeter equipped with a PMT
detector using a 2 mL, 10 cm long cell. [a]p" values, reported in deg mL g* dm?, are calculated on the average
value of at least ten consecutive readings. Concentrations (c) are quoted in mg/mL. HPLC analyses were
performed on an Agilent Technologies 1200 series instrument. SFC analyses were performed on an Agilent
Technologies 1260 Infinity Il or on a Waters ACQUITY UPC2 instrument. X-Ray data were collected on a Kappa
APEX Il DUO diffractometer equipped with an APPEX 2 4K CCD area detector, a Microsource with Mo, radiation
and an Oxford Cryostream 700 low temperature device. All reagents were used as purchased, with no further
purification.



2. Synthesis of substrates for the alkoxycyclization of 1-bromo-1,6-enynes

Substrates 1la-e were synthesized according to literature procedure.! The spectral data were in accordance with
the reported data.

2.1. General procedure A for the synthesis of 1-bromo-1,6-enynes 1f-h
Br
Br Br
Z FZ Vi
= MeO X FsC X
1a 1b 1e
Br Br
4 FZ
PP TsN\/Y
1d 1e
1. B R
M
TMS ;
TMS nBulLi, TMEDA, THF
©i' =z = -78°C to 23 °C =

Pd(PPh3),Cly 2.K MeOH L

Br Cul, NEt, 23°C Br KCOs MeOH, xR

RZ
|
I $1(R'= R2= Me)

$2 (R'= (CH,),CHC(CHs),, R2= Me)

NXS, AgNO; (X= Br, 1)
LI 1 orccl, TBAF (X =Cl)

1f (X= Cl, R"= R2= Me)
1g (X=1, R' = RZ= Me)
1h (X= Br, R'= (CH,),CHC(CHj3),, R? = Me)

Step I-l: Precursors $1,2 were prepared according to the literature procedure.?

Step llI: 1f was prepared by adding TBAF-3H,0 (0.1 equiv) to a solution of S1 in CCls (1.7 M)? which was then
stirred at 24 °C for 6 h and quenched by the addition of water. Compounds 1g,h were instead prepared by
dissolving $1,2 (1 equiv) in acetone (0.05 M) and by adding NXS (1.1 equiv) and AgNOs; (0.2 equiv) to the resulting
solution which was then stirred at 24 °C for 2 h and quenched by the addition of water. For 1f-h extraction of
the aqueous phase in pentane (x3) was followed by the addition of a saturated NaCl solution to the organic
phase, which was finally dried with anhydrous Na,SOs4. The crudes were purified by flash column
chromatography.

1-(Chloroethynyl)-2-(3-methylbut-2-en-1-yl)benzene (1f)

1f was synthesized following the general procedure A. The pure product was isolated by
flash column chromatography purification on silica gel (pentane) as a yellow oil (750 mg,
61%).

cl
4

X H NMR (500 MHz, CDCls) & 7.45 (dt, J = 7.7, 1.3 Hz, 1H), 7.33 — 7.26 (m, 1H), 7.22 (dd, J =
7.6, 1.4 Hz, 1H), 7.16 (td, J = 7.5, 1.4 Hz, 1H), 5.32 (ddgq, J = 8.8, 5.8, 1.4 Hz, 1H), 3.53 (d, J =

1f 7.4 Hz, 2H), 1.79 (d, J = 4.7 Hz, 6H). 13C NMR (126 MHz, CDCl3) 6 144.5, 133.1, 132.8, 128.9,



128.6,125.9, 122.3,121.6, 71.3, 68.5, 33.1, 25.9, 18.0. HRMS (APCI-): m/z: calculated for C13H1.Cl: 203.0622 [M-

H]’; found: 203.0617.

1-(lodoethynyl)-2-(3-

18

methylbut-2-en-1-yl)benzene (1g)

was synthesized following the general procedure A. The pure product was isolated by flash

FZ column chromatography purification on silica gel (pentane) as a yellow oil (450 mg, 72%).

H

NMR (500 MHz, CDCls) 6 7.41 (dd, J = 7.7, 1.4 Hz, 1H), 7.29 — 7.22 (m, 1H), 7.19 (dd, J = 7.8,

o 1.4 Hz, 1H), 7.13 (td, J = 7.5, 1.5 Hz, 1H), 5.29 (ddq, J = 8.8, 5.9, 1.5 Hz, 1H), 3.51 (d, J = 7.4 Hz,

1g 2H

93.

found: 297.0138.

), 1.76 (s, 6H). 3C NMR (126 MHz, CDCl3) § 144.9, 133.2, 129.1, 128.5, 125.7, 122.9, 122.3,
3,77.4,33.1, 26.0, 18.2, 9.0. HRMS (APCl+): m/z: calculated for Ci3H14l: 297.0135 [M+H]*;

(E)-1-(Bromoethynyl)-2-(3,7-dimethylocta-2,6-dien-1-yl)benzene (1h)

1h was synthesized following the general procedure A. The pure product was

B
FZ ' isolated by flash column chromatography purification on silica gel (pentane) as a
transparent oil (190 mg, 55%).
= = 1H NMR (400 MHz, C¢Ds) & 7.35 (dd, J = 7.7, 1.4 Hz, 1H), 7.12 — 7.01 (m, 1H), 6.99
(td, J=7.6, 1.4 Hz, 1H), 6.82 (td, J = 7.5, 1.4 Hz, 1H), 5.36 (tq, J/ = 7.3, 1.3 Hz, 1H),
1h

5.17 (ddq, J = 8.4, 5.5, 1.4 Hz, 1H), 3.54 (d, J = 7.3 Hz, 2H), 2.13 (q, J = 7.5 Hz, 2H),

2.09-2.02 (m, 2H), 1.66 (s, 3H), 1.62 (s, 3H), 1.52 (s, 3H). ¥*C NMR (101 MHz, C¢D¢) 6 144.8, 136.7, 133.1, 131.3,

129.1, 128.8, 127.9,

126.0, 124.8, 122.7, 79.8, 53.5, 40.1, 33.3, 27.0, 25.9, 17.8, 16.3. HRMS (APCl+): m/z:

calculated for CigH2,Br: 317.0899 [M+H]*; found: 317.0894.

2.2, Procedure B for the synthesis of 1-bromo-1,6-enyne 1i

Br
V\( PhO,S. _SO,Ph

PhO,S._SO,Ph
NaH, DMF, 23 °C, 16 h |
|
78%
Br\/
1 NaH, DMF,
23°C,16 h
Br NBS (1.2 equiv), P
4 AgNO; (0.2 equiv) 72
PhO-S Acetone, 23 °C, 2h PhO,S
2 -
PhO,S N PhO,S h

I
1i S3

Step I-l: Precursor S3 was synthesized according to the reported procedure.?

(1-Bromo-7-methyloct-6-en-1-yne-4,4-diyldisulfonyl)dibenzene (1i)

Br
FZ

PhO,S
PhO,S X

1i

NBS (1.2 equiv) was added to a solution of S3 in acetone (0.05 M) and the resulting solution
was stirred at 24 °C for 2 h. The reaction was quenched by the addition of water and the
aqueous phase was extracted in pentane (x3), the organic phase washed with saturated
NaCl aqueous solution and finally dried with anhydrous Na,SO,4. The pure product was
isolated by flash column chromatography purification on silica gel (5:1 cyclohexane:EtOAc)
to give 1i as a white solid (229 mg, 73%).

M.p. 135-143 °C. *H NMR (500 MHz, CDCl3) 6 8.13 — 8.03 (m, 4H), 7.75 — 7.66 (m, 2H), 7.64 — 7.53 (m, 4H), 5.39

(ddt, ) = 6.8, 5.4, 1.4

Hz, 1H), 3.22 (s, 2H), 2.99 (d, J = 1.3 Hz, 2H), 1.76 (d, J = 1.4 Hz, 3H), 1.57 (s, 3H). 1*C NMR

(126 MHz, CDCl5) 6 137.7, 136.8, 134.8, 131.6, 128.7, 114.9, 89.1, 77.4, 72.5, 44.5, 28.5, 26.3, 21.9, 18.4. HRMS
(ESI+): m/z: calculated for C2;H21BrNaQ,4S,: 502.9957 [M+Na]*; found: 502.9972.



3. Enantioselective gold(l)-catalyzed alkoxycyclization of 1-bromo-1,6-enynes.
3.1. Reaction Optimization

Catalysts (R,R)-A-l were synthesized according to literature procedures.* The spectral analysis were in
accordance with the reported data.

F
Ph F
ag P N .
Adsp.au-cl Adup. Au o R‘P Au- CI
O~ O o #
Ph’@ FsC

Ph F F CF3
(RR)-A (R.R)-B (RR)-C:R=1Bu,X=Y=Z=H
(RR-D:R=Ad,X=Y=Z=H
(RR)-E:R=Ad,X=CF;, Y=Z=H
(RR)-F:R=Ad,X=Z=H,Y=CFg
(RR)-G:R=Ad,X=CHs,Y=Z=H
(RR-H:R=Ad,X=H,Y=Z=F
(RR)}1: R=Ad, X=H, Y =Z=CF;

After selecting the best performing catalyst in 1,2-dichloroethane (1,2-DCE), as described in the manuscript,
different solvents were screened:

e i P
N solvent, 23 °C, 24 h - OMe

1a 2a
Entry Solvent Yield 2a er2a

1 1,2-DCE 80% 81:19

2 CH,Cl, 73% 80:20

3 toluene 74% 78:22

4 CeHsCl 64% 80:20

5 THF 54% 77:23

6 o,a,a-trifluorotoluene 80% 81:19

Table S1 - Solvent screening for the alkoxycyclization of 1a.

Once selected a,a,a-trifluorotoluene as the best solvent at 24 °C, a screening of the chloride scavenger was
performed:

Br (R,R)-A (3 mol%),
// scavenger (3 mol%) Br
MeOH (10 equiv) /
N a,a,a-trifluorotoluene, —OMe
23°C,24h
1a 2a
Entry Scavenger Yield 2a er2a

1 AgSbFs 80% 83:17



2 NaBArf, 24% 82:18

3 AgPFs 72% 81:19
a AgBF, 14% 81:19
5 AgTFA 16% 79:21

Table S2 — Chloride scavenger screening for the alkoxycyclization of 1a.

3.2 General Procedure C for the enantioselective gold(l)-catalyzed alkoxycyclization of 1-bromo-1,6-
enynes
Ph
Ad Ph
Adafy ,o o
A (R,R)-A (3 mol%), AgSbF (3 mol%), X P-Au-Cl
7 ROH (10 equiv) I e N
R R CH,Cl, (0.1 M), T (°C), t (h) - ?R
3 R R
1 R 2 Ph
Ph
(RR)-A

1-Halo-6-enynes 1 (1 equiv) were weighted in a microwave vial together with gold catalyst (R,R)-A (3 mol%) and
a stirring bar. The vial was capped and introduced in the glovebox where dry CH,Cl, (0.1 M) and ROH (10 equiv)
were added. AgSbFs (3 mol%) was weighted in the glovebox in a second vial and dissolved in the minimum
quantity of dry CH,Cl,. Then, the two vials were taken out of the glovebox, they were both brought to the
required temperature (specified below) and finally the solution of AgSbFs was added to the first vial. The reaction
was stirred the time specified below. Once completed (monitored by TLC), three drops of NEt; were added. The
crude products were purified by flash column chromatography on silica gel or preparative TLC.

(S,E)-1-(Bromomethylene)-2-(2-methoxypropan-2-yl)-2,3-dihydro-1H-indene (2a)

Br 2a was synthesized following the general procedure C performing the reaction at -60 °C
i for 4 days. The pure product was isolated by preparative TLC (2:1 CH,Cl,: cyclohexane)
OMe 3satransparent oil, which slowly crystallizes when kept in a freezer (27.8 mg, 99%).

14 NMR (400 MHz, C¢De) 6 7.05 — 6.96 (m, 1H), 6.99 — 6.91 (m, 3H), 6.38 (d, J = 1.4 Hz,

2a 1H), 3.47 (d, J = 7.7 Hz, 1H), 3.08 (d, J = 16.4 Hz, 1H), 2.99 (s, 3H), 2.64 (dd, J = 16.2, 7.6

Hz, 1H), 1.33 (s, 3H), 0.76 (s, 3H). 3C NMR (101 MHz, CsDs) § 149.6, 145.7, 141.7, 128.8, 126.8, 125.1, 120.0,

101.3,78.5,51.6,49.0,32.9, 25.1, 23.0. HRMS (ESI+): m/z: calculated for C14H17BrNaO: 303.0355 [M+Na]*; found:

303.0348. SFC (OD-3 (100x3 mm, 3 pum), CO,:MeOH 90:10, 1.2 mL/min, 25 °C, BPR 150 bar; 230 nm): 0.945 min
(90), 1.064 min (10); [a]o?® = 75.9° (¢ = 0.24 in CH,Cl,). X-Ray data available at CCDC 2337764.°



Table S3 - Crystal data and structure refinement for mo_AC013061B_0m (compound 2a).

Identification code
Empirical formula

Formula weight
Temperature/K

Crystal system

Space group

a/A

b/A

c/A

of°

B/

v/°

Volume/A3

Z

Peaicg/cm?

p/mm

F(000)

Crystal size/mm3

Radiation

20 range for data collection/®
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F2

Final R indexes [I>=20 (l)]
Final R indexes [all data]
Largest diff. peak/hole / e A’
Flack parameter

(S,E)-1-(Bromomethylene)-2-(2-ethoxypropan-2-yl)-2,3-dihydro-1H-indene (2b)

mo_AC013061B_0Om

Ci14H17BrO
281.18

100.40
orthorhombic
P2:2:2;
7.2267(12)
11.976(2)
14.973(3)

90

90

90

1295.9(4)

4

1.441

3.150

576.0
0.3x0.2x0.1
MoKa (A =0.71073)
4.356 t0 61.224

-10<sh<8,-14<k<17,-21<1<18

14021

3880 [Rint = 0.0303, Rsigma = 0.0283]

3880/0/148
1.042

R1=0.0249, wR; = 0.0634
R1=0.0298, wR, = 0.0653

0.44/-0.40
-0.007(4)



2b was synthesized following the general procedure C performing the reaction at -60 °C
Br for 4 days. The pure product was isolated by preparative TLC (pentane) as a transparent

/ oil (26.6 mg, 90%).
OEt
1H NMR (400 MHz, CDCl3) 6 7.31 (dt, J = 7.3, 1.1 Hz, 1H), 7.24 — 7.19 (m, 2H), 7.19 — 7.13

2b (m, 1H), 6.64 (d, J = 1.4 Hz, 1H), 3.51 (dt, J = 7.6, 1.2 Hz, 1H), 3.45 (g, J = 7.0 Hz, 2H), 3.17

(d,J=16.5 Hz, 1H), 2.94 (dd, J = 16.4, 7.5 Hz, 1H), 1.38 (s, 3H), 1.15 (t, J = 7.0 Hz, 3H), 0.75

(s, 3H) ppm. 3C NMR (101 MHz, CDCls) 6 149.4, 145.5, 141.5, 128.7, 126.7, 125.1, 119.8, 100.8, 56.8, 51.3, 32.9,

25.9, 23.7, 16.2 ppm. HRMS (ESI+): m/z: calculated for CisH19BrNaO: 317.0511 [M+Na]*; found: 317.0513. SFC

(OD-3 (100x3 mm, 3 um), CO,:MeOH 95:5, 1.2 mL/min, 25 °C, BPR 150 bar; 254 nm): 1.409 min (90), 1.598 min
(10); [a]o?® = 97.4°(c = 0.44 in CH,Cl,).

(S,E)-1-(Bromomethylene)-2-(2-isopropoxypropan-2-yl)-2,3-dihydro-1H-indene (2c)

2c was synthesized following the general procedure C performing the reaction at -60 °C
Br for 4 days. The pure product was isolated by preparative TLC (pentane) as a transparent
/ oil (19.5 mg, 63%).
OiPr

1H NMR (500 MHz, CsD¢) 6 7.01 (m, 1H), 6.99 —6.91 (m, 3H), 6.38 (d, J = 1.4 Hz, 1H), 3.67
2¢ (hept, J = 6.1 Hz, 1H), 3.47 (dt, ) = 7.6, 1.2 Hz, 1H), 3.19 (d, J = 16.5 Hz, 1H), 2.68 (dd, J =
16.3, 7.6 Hz, 1H), 1.38 (s, 3H), 1.05 (dd, J = 13.9, 6.1 Hz, 6H), 0.75 (s, 3H). 3C NMR (126
MHz, CsD¢) 6 149.6, 145.8, 141.8, 128.7, 126.7, 125.0, 120.0, 101.4, 79.1, 63.4, 52.8, 33.8, 26.4, 25.3, 25.0, 23.7.
HRMS (ESI+): m/z: calculated for Ci6H,1BrNaO: 331.0668 [M+Na]*; found: 331.0666. SFC (IG (4.6 mm x 150 mmlL,
3 um), COz:IPA 97:3, 2 mL/min, 25 °C, 2000 psi; 290 nm): 2.140 min (10), 2.390 min (90); [a]o?® = 61.3° (c = 0.45

in CHyCl,).

(S,E)-2-(2-(Allyloxy)propan-2-yl)-1-(bromomethylene)-2,3-dihydro-1H-indene (2d)

2d was synthesized following the general procedure C performing the reaction at -60 °C
f Br for 4 days. The pure product was isolated by preparative TLC (pentane) as a transparent
oil (10.9 mg, 35%).

1H NMR (500 MHz, CeDg) & 7.00 (ddd, J = 8.1, 5.5, 2.5 Hz, 1H), 6.98 — 6.92 (m, 3H), 6.37

2d (d, J=1.4 Hz, 1H), 5.83 (ddt, J = 17.2, 10.5, 4.9 Hz, 1H), 5.21 (dq, J = 17.2, 1.9 Hz, 1H),

5.02 (dg, J = 10.5, 1.8 Hz, 1H), 3.71 (qdt, J = 12.7, 5.0, 1.7 Hz, 2H), 3.45 (d, J = 7.6 Hz, 1H),

3.13(d, J = 16.5 Hz, 1H), 2.64 (ddd, J = 16.5, 7.7, 1.1 Hz, 1H), 1.34 (s, 3H), 0.82 (s, 3H). 13C NMR (126 MHz, C¢Ds)

6 149.6, 145.7, 141.7, 136.5, 128.7, 126.7, 125.1, 120.0, 114.6, 101.3, 78.8, 62.6, 52.1, 33.0, 25.8, 23.4. HRMS

(APCI+): m/z: calculated for Ci3Hi4Br: 249.0273 [M-OAllyl]*; found: 249.0271. SFC (OD-3 (100x3mm,3um),

C02:MeOH 95:5, 1.2 mL/min, 25 °C, BPR 150 bar; 254 nm): 1.411 min (88), 1.627 min (12); [a]p?® = 95.3° (c=0.19
in CHyCl,).

OAllyl

(S, E)-2-(2-(Benzyloxy)propan-2-yl)-1-(bromomethylene)-2,3-dihydro-1H-indene (2e)

Br 2e was synthesized following the general procedure C performing the reaction at -60 °C
/ for 4 days. The pure product was isolated by preparative TLC (pentane) as a transparent
oBn ©il (24.7 mg, 69%). !

1H NMR (400 MHz, CDg) 6 7.24 — 7.18 (m, 4H), 7.14 —7.09 (m, 1H), 7.01 (ddd, J= 7.2, 5.8,

2e 2.6 Hz, 1H), 6.98 — 6.91 (m, 3H), 6.39 (d, / = 1.4 Hz, 1H), 4.33 — 4.20 (m, 2H), 3.52 (dt, J =

7.6, 1.2 Hz, 1H), 3.16 (d, J = 16.5 Hz, 1H), 2.65 (ddd, J = 16.4, 7.6, 1.2 Hz, 1H), 1.41 (s, 3H), 0.88 (s, 3H) ppm. 3C

NMR (101 MHz, C¢Dg) 6 149.6, 145.7, 141.7, 140.2, 128.7, 128.4, 127.4, 127.2, 126.7, 125.1, 120.0, 101.3, 79.1,

63.8, 52.3, 33.1, 25.8, 23.5 ppm. HRMS (ESI+): m/z: calculated for CyH»:BrNaO: 379.0668 [M+Nal*; found:

379.0683. SFC (OD-3 (100x3mm,3um), CO,:MeOH 80:20, 1.2 mL/min, 25 °C, BPR 150 bar; 254 nm): 1.274 min
(88), 1.541 min (12); [a]o?® = 92.8° (c = 0.38 in CH,Cl,).

(S,E)-1-(Bromomethylene)-2-(2-(2,2,2-trifluoroethoxy)propan-2-yl)-2,3-dihydro-1H-indene (2f)

Br 2f was synthesized following the general procedure C performing the reaction at -60
| °C for 4 days. The pure product was isolated by preparative TLC (pentane) as a yellow
OCH,CF4 oil (109 mg, 35%)

'H NMR (400 MHz, C¢D¢) 6 6.99 (m, 1H), 6.95 — 6.87 (m, 3H), 6.30 (d, J = 1.4 Hz, 1H),

2 3.34 —3.21 (m, 3H), 2.98 (d, J = 16.6 Hz, 1H), 2.55 (dd, J = 16.6, 7.6 Hz, 1H), 1.13 (s,



3H), 0.61 (s, 3H) ppm. 3C NMR (101 MHz, CeDe) & 148.7, 145.2, 141.2, 129.0, 126.9, 125.1, 120.0, 101.7, 80.4,
60.4 (q, J = 34.1 Hz), 51.7, 32.8, 25.3, 22.5 ppm. °F NMR (376 MHz, CsD¢) & -74.1 ppm. HRMS (APCI+): m/z:
calculated for CisH16BrF;0: 348.0331 [M]*; found: 348.0333. SFC (OD-3 (100x3mm,3um), CO,:MeOH 98:2, 1.2
mL/min, 25 °C, BPR 150 bar; 254 nm): 1.204 min (61), 1.605 min (39); [a]o%® = 13.0° (c = 0.17 in CH,Cl,).

(S,E)-2-(1-(Bromomethylene)-2,3-dihydro-1H-inden-2-yl)propan-2-ol (2g)

Br 2g was synthesized following the general procedure C performing the reaction at -60 °C for
J 4 days. The pure product was isolated by flash column chromatography purification on silica
gel (10:1 cyclohexane:EtOAc) as a transparent oil (35.4 mg, 99%).

1H NMR (400 MHz, C¢Dg) 6 7.06 — 6.95 (m, 1H), 6.98 — 6.89 (m, 3H), 6.36 (d, J = 1.4 Hz, 1H),

29 3.16 (dt, J = 7.5, 1.3 Hz, 1H), 2.80 — 2.71 (m, 1H), 2.63 (ddd, J = 16.5, 7.5, 1.1 Hz, 1H), 1.07

(s, 3H), 0.96 (s, 3H). *C NMR (101 MHz, CsD¢) 6 149.2, 145.5,141.2, 128.8, 126.9, 125.1, 120.1, 101.6, 74.4, 55.1,

33.9, 28.7, 27.5. HRMS (ESI+): m/z: calculated for Ci3H1sBrNaO: 289.0198 [M+Nal*; found: 289.0195. SFC (IG-3

(100x3mm,3um), CO,:MeOH 80:20, 1.2 mL/min, 25 °C, BPR 150 bar; 254 nm): 1.322 min (91), 2.790 min (9);
[a]DZG =94.0° (C =0.3in CH2C|2).

OH

(S,E)-1-(Bromomethylene)-5-methoxy-2-(2-methoxypropan-2-yl)-2,3-dihydro-1H-indene (2h)

Br 2h was synthesized following the general procedure C performing the reaction at -
/ 60 °C for 5 days. The pure product was isolated by flash column chromatography

OMe purification on silica gel (100:1 pentane:Et,0) as a transparent oil (24.4 mg, 78%).

MeO
'H NMR (400 MHz, CsD¢) 6 6.89 (d, J = 8.4 Hz, 1H), 6.63 (dd, J = 8.4, 2.4 Hz, 1H), 6.56

(brs, 1H), 6.28 (d, J = 1.4 Hz, 1H), 3.52 (dt, J = 7.6, 1.2 Hz, 1H), 3.27 (s, 3H), 3.08 (d, J
= 16.5 Hz, 1H), 3.02 (s, 3H), 2.65 (dd, J = 16.5, 7.6 Hz, 1H), 1.39 (s, 3H), 0.82 (s, 3H) ppm. 3C NMR (101 MHz,
CeDs) 6 161.1, 149.0, 147.7, 134.6, 121.0, 113.7, 109.6, 98.7, 78.7, 54.9, 51.9, 49.0, 33.1, 25.2, 23.0 ppm. HRMS
(APCI+): m/z: calculated for Ci4H16BrO: 279.0379 [M-OMe]*; found: 279.0380. SFC (IG-3 (100x3mm,3um),
CO,:EtOH 90:10, 1.2 mL/min, 25 °C, BPR 150 bar; 254 nm): 1.161min (14), 1.418 min (86); [a]»? = 84.6° (c=0.21
in CHyCl,).

2h

(S,E)-1-(Bromomethylene)-2-(2-methoxypropan-2-yl)-5-(trifluoromethyl)-2,3-dihydro-1H-indene (2i)

Br 2i was synthesized following the general procedure C performing the reaction at -60
7k °C for 5 days and using 5 mol% of A and of AgSbFs. The pure product was isolated by
OMe Preparative TLC (2:1 cyclohexane:CH.Cl,) followed by flash column chromatography
FsC in silica gel (20:1 cyclohexane:CH,Cl,) to give 2i as a transparent oil (24.3 mg, 70%).

2i 1H NMR (400 MHz, C¢D¢) & 7.18 (m, 2H), 6.70 (d, J = 7.9 Hz, 1H), 6.30 (d, J = 1.4 Hz,

1H), 3.34 (dt, J = 7.8, 1.2 Hz, 1H), 2.92 (s, 3H), 2.88 (m, 1H), 2.42 (dd, J = 16.8, 7.7 Hz, 1H), 1.21 (s, 3H), 0.65 (s,
3H). 3C NMR (101 MHz, CsDe) & 148.29, 146.23, 144.94, 128.18, 127.94, 123.95 (q, J = 3.8 Hz), 122.11 (q, / = 3.8
Hz), 120.12, 104.09, 78.31, 52.00, 48.95, 32.69, 24.69, 22.66. *°F NMR (376 MHz, C¢Ds) & -61.73. HRMS (APCI+):
m/z: calculated for C14H13BrF3: 317.0147 [M-OMe]*; found: 317.0150. SFC (IG (4.6 mm x 150 mmlL, 3 um), CO,:IPA
97:3, 2 mL/min, 25 °C, 2000 psi; 291 nm): 1.820 min (13), 2.080 min (87); [a]o2® = 74.2° (c = 0.24 in CH,Cl,).

(S,E)-1-(Bromomethylene)-2-((S)-2-methoxy-6-methylhept-5-en-2-yl)-2,3-dihydro-1H-indene (2j)

2j was synthesized following the general procedure C performing the reaction at -40
°C for 5 days. The pure product was isolated by preparative TLC (100:1 pentane:Et,0),
as a transparent oil (18.5 mg, 53%) and as a single diastereomer.®

H NMR (500 MHz, C¢Dg) & 7.05 — 6.97 (m, 1H), 6.98 —6.92 (m, 3H), 6.36 (d, J = 1.4 Hz,
1H), 5.37 = 5.30 (m, 1H), 3.48 (d, J = 7.7 Hz, 1H), 3.13 (d, J = 16.4 Hz, 1H), 2.97 (s, 3H),
2.62 (ddd, J = 16.3, 7.6, 1.2 Hz, 1H), 2.36 — 2.21 (m, 1H), 2.15 — 2.02 (m, 2H), 1.84 — 1.71 (m, 1H), 1.70 (s, 3H),
1.60 (s, 3H), 0.81 (s, 3H). 3C NMR (126 MHz, CsD¢) & 149.7, 145.7, 142.0, 131.0, 128.8, 126.8, 125.6, 125.0, 120.0,
101.3, 80.2, 50.3, 48.8, 37.2, 32.5, 25.9, 22.7, 20.7, 17.8. HRMS (APCl+): m/z: calculated for CisH,,Br: 317.0899
[M-OMel*; found: 317.0900. SFC (1G-3 (100x3mm,3um), CO»:MeOH 97:3, 1.2 mL/min, 25 °C, BPR 150 bar; 254
nm): 1.461 min (6), 2.275 min (94); [a]p?® = 61.1° (c = 0.21 in CH,Cl,).

(S,E)-1-(Bromomethylene)-2-((R)-1-methoxy-1-phenylethyl)-2,3-dihydro-1H-indene (2k)



2k was synthesized following the general procedure C performing the reaction at -40 °C
for 4 days. The pure product was isolated by preparative TLC (7:1 cyclohexane:CH,Cl,), as
a white solid (33.7 mg, 0.098 mmol, 98%) and as a single diastereomer.®

M.p. 64-72 °C. *H NMR (400 MHz, C¢D¢) & 7.40 — 7.33 (m, 2H), 7.24 — 7.16 (m, 2H), 7.16 —
7.07 (m, 1H), 7.04 — 6.89 (m, 5H), 6.40 (d, J = 1.4 Hz, 1H), 3.62 (dt, J = 7.8, 1.2 Hz, 1H), 3.23
(d, J = 16.6 Hz, 1H), 2.84 (s, 3H), 2.70 (dd, J = 16.6, 7.7 Hz, 1H), 1.26 (s, 3H). 3C NMR (101 MHz, CsD¢) & 148.0,
145.5,144.2,142.0,128.5,127.3,126.6,125.0,119.9, 102.9, 81.9, 56.3, 50.3, 33.9, 30.2, 19.6, 1.4. HRMS (APCl+):
m/z: calculated for Ci1gH16Br: 311.0430 [M-OMe]*; found: 311.0425. SFC (0J-3 (100x3mm,3um), CO,:MeOH 95:5,
1.2 mL/min, 25 °C, BPR 150 bar; 280 nm): 2.609 min (18), 3.641 min (82); [a]o?® = 74.4° (c = 0.23 in CH,Cl,).

2k

(S,E)-1-(Chloromethylene)-2-(2-methoxypropan-2-yl)-2,3-dihydro-1H-indene (2I)

Cl 2| was synthesized following the general procedure C performing the reaction at -40 °C
/ for 24 h. The pure product was isolated by preparative TLC (pentane), as a yellow oil (23.1
OMe mg, 98%).

1H NMR (500 MHz, CsDs) 6 7.04 — 6.91 (m, 4H), 6.25 (d, J = 1.5 Hz, 1H), 3.51 (dt, J = 7.8,
1.3 Hz, 1H), 3.10 (d, J = 16.5 Hz, 1H), 2.99 (s, 3H), 2.66 (dd, J = 16.5, 7.7 Hz, 1H), 1.31 (s,
3H), 0.76 (s, 3H). 3C NMR (126 MHz, CsD¢) 6 146.6, 145.6, 141.2, 128.7, 126.7, 125.0, 119.8, 112.3, 78.6, 49.9,
49.0, 33.1, 24.8, 22.8. HRMS (APCI+): m/z: calculated for Ci3H14Cl: 205.0779 [M-OMe]*; found: 205.0777. SFC
(1G-3 (100x3mm,3um), CO,:MeOH 97:3, 1.2 mL/min, 25 °C, BPR 150 bar; 254 nm): 1.115 min (76), 1.256 min
(24); [a]o®® = 63.0° (c = 0.22 in CH,Cl,).

2]

(S,E)-1-(lodomethylene)-2-(2-methoxypropan-2-yl)-2,3-dihydro-1H-indene (2m)

I 2m was synthesized following the general procedure C performing the reaction at -60 °C

/ for 6 days. The pure product was isolated by preparative TLC (pentane), as a yellow oil
OMe (26.3 mg, 80%).
2m 'H NMR (500 MHz, CsD¢) & 7.00 (ddd, /= 7.2, 6.0, 2.5 Hz, 1H), 6.97 — 6.90 (m, 3H), 6.45 (d,

J=1.3 Hz, 1H), 3.35 (dt, J = 7.5, 1.1 Hz, 1H), 3.04 (d, J = 16.4 Hz, 1H), 2.99 (s, 3H), 2.63
(ddd, J = 16.3, 7.5, 1.2 Hz, 1H), 1.34 (s, 3H), 0.76 (s, 3H). 23C NMR (126 MHz, CsDs) & 155.6, 145.8, 142.3, 128.7,
126.7,125.1,120.3, 78.8, 73.0, 54.4, 48.9, 32.7, 25.2, 23.2. HRMS (APCl+): m/z: calculated for Ci3Hi4l: 297.0135
[M-OMel*; found: 297.0125. SFC (IBN-3 (100x3mm,3um), CO,:MeOH 95:5, 1.2 mL/min, 25 °C, BPR 150 bar; 280
nm): 1.367 min (93), 1.530 min (7); [a]o?® = -97.0° (c = 0.20 in CH,Cl,).

(S,E)-2-(2-(Benzyloxy)propan-2-yl)-1-(iodomethylene)-2,3-dihydro-1H-indene (2n)

2n was synthesized following the general procedure C performing the reaction at -60 °C for
I
/] 4 days. The pure product was isolated by preparative TLC (30:1 cyclohexane:EtOAc), as a
opn Paleyellow solid (20.5 mg, 51%).

M.p. 64.5-65.5 °C. *H NMR (400 MHz, CcDe) 6 7.24 — 7.17 (m, 4H), 7.15 — 7.09 (m, 1H), 7.04
—6.94 (m, 3H), 6.91 (d, J = 7.2 Hz, 1H), 6.45 (d, J = 1.2 Hz, 1H), 4.27 (dd, J = 19.1, 12.0 Hz,
2H), 3.41 (d, J = 7.5 Hz, 1H), 3.13 (d, J = 16.4 Hz, 1H), 2.64 (dd, J = 16.3, 7.5 Hz, 1H), 1.43 (s, 3H), 0.88 (s, 3H). 1*C
NMR (101 MHz, C6D6) & 155.6, 145.8, 142.3, 140.2, 128.7, 128.4, 127.5, 127.2, 126.7, 125.2, 120.3, 79.3, 73.1,
63.8, 55.1, 32.8, 26.2, 23.8. HRMS (ESI+): m/z: calculated for CaoHa1INaO[M+Na]*: 427.0529; found: 427.0525.
SFC (IBN-3 (100x3mm,3um), CO,:EtOH 95:5, 1.2 mL/min, 25 °C, BPR 150 bar; 210 nm): 3.136 min (85), 3.471 min
(15); [a]o®® = 148.7° (¢ = 0.1 in CH,Cl,).

2n

(R,E)-3-(Bromomethylene)-4-(2-methoxypropan-2-yl)-1-tosylpyrrolidine (20)

20 was synthesized following the general procedure C performing the reaction at 24 °C for

/ Br 24 h. The pure product was isolated by preparative TLC (10:1 cyclohexane:EtOAc), as a yellow
oil (29.4 mg, 76%).
TsN:g < OMe

H NMR (500 MHz, CsDe) 6 7.73 (d, J = 8.2 Hz, 2H), 6.82 — 6.76 (m, 2H), 5.55 (s, 1H), 3.71 (dd,
J=10.1, 2.2 Hz, 1H), 3.66 (d, J = 1.6 Hz, 2H), 3.21 (dd, J = 10.1, 7.8 Hz, 1H), 2.79 — 2.71 (m,
1H), 2.55 (s, 3H), 1.89 (s, 3H), 0.87 (s, 3H), 0.84 (s, 3H). 3C NMR (126 MHz, CsDs) 6 142.80, 142.44, 135.44,
129.54, 103.68, 77.47, 53.66, 51.51, 48.85, 48.64, 34.44, 23.66, 22.73, 22.31, 21.10, 14.28. HRMS (ESI+): m/z:
calculated for CisH22BrNNaOsS: 410.0396 [M+Na]*; found: 410.0396. SFC (IA-3 (100x3mm,3um), CO,:MeOH
85:15, 1.2 mL/min, 25 °C, BPR 150 bar; 210 nm): 1.584 min (87), 2.022 min (13); [a]o?® = -6.2° (¢ = 0.21 in CH,Cl,).

20



(S,2)-(3-(Bromomethylene)-4-(2-methoxypropan-2-yl)cyclopentane-1,1-disulfonyl)dibenzene (2p)

2p was synthesized following the general procedure C performing the reaction at -40

g/ Br °C for 48 h. The pure product was isolated by preparative TLC (3:1 CH,Cl,:cyclohexane),
PhO,S oMe 352 transparent oil (25.9 mg, 50%).
PhO,S H NMR (400 MHz, CDCls) & 8.11 — 7.99 (m, 4H), 7.76 — 7.66 (m, 2H), 7.66 — 7.55 (m,
% 4H), 6.05 (dd, J = 2.4, 1.5 Hz, 1H), 3.51 (ddd, J = 15.7, 2.7, 1.4 Hz, 1H), 3.05 (s, 3H), 3.02
—2.92 (m, 2H), 2.80 — 2.68 (m, 2H), 1.25 (s, 3H), 1.20 (s, 3H). 3C NMR (101 MHz, CDCls) & 143.6, 137.4, 136.3,
134.9, 134.6, 131.3, 131.1, 129.0, 128.9, 103.2, 91.8, 78.5, 50.6, 49.4, 41.7, 32.4, 24.7, 23.5. HRMS (ESI+): m/z:
calculated for Cy;H2sBrNaOsS;: 535.0219 [M+Na]*; found: 535.0238. SFC (0J-3 (100x3mm,3um), CO,:MeOH
80:20, 1.2 mL/min, 25 °C, BPR 150 bar; 230 nm): 1.057 min (11), 1.433 min (89); [a]6%¢ =-22.6° (¢ = 0.21 in CH,Cl,).

4. Functionalization of alkoxycyclization products
(R,E)-1-(Bromomethylene)-2-(prop-1-en-2-yl)-2,3-dihydro-1H-indene (3)

Under Ar atmosphere, 2g (10.9 mg, 0.041 mmol) and Burgess reagent (14.6 mg, 0.061 mmol,

Br 1.5 equiv) were dissolved in anhydrous THF (0.41 mL) and the mixture was stirred for 16 h at

24 °C. The reaction was quenched with the addition of 2 mL of H,0 and 2 mL of EtOAc. The

aqueous phase was extracted with EtOAc (x3) and the combined organic layers were washed

3 with saturated NaCl aqueous solution and dried with Na,SO.. The pure product was isolated by
preparative TLC (pentane) as a yellow oil (10.0 mg, 98%).

/

14 NMR (400 MHz, C¢Ds) & 7.05 — 6.87 (m, 4H), 6.47 (d, J = 2.0 Hz, 1H), 4.92 (dp, J = 1.7, 0.8 Hz, 1H), 4.79 (p, J =
1.5 Hz, 1H), 3.67 (dtd, J = 8.8, 2.2, 0.8 Hz, 1H), 2.90 (dd, J = 16.7, 8.8 Hz, 1H), 2.52 (dd, J = 16.8, 2.3 Hz, 1H), 1.54
(dd, J=1.5, 0.8 Hz, 3H). *3C NMR (101 MHz, CsD¢) 6 149.4, 145.5, 144.9, 140.1, 129.0, 127.1, 125.7, 120.5, 111.8,
100.6, 51.4, 37.5, 19.8. HRMS (APCI+): m/z: calculated for C13H14Br: 249.0273 [M+H]*; found: 249.0270. SFC (0J-
3 (100x3mm,3um), CO,:MeOH 98:2, 1.2 mL/min, 25 °C, BPR 150 bar; 254 nm): 1.586 min (9), 1.768 min (91);
[a]DZG =103.3° (C =0.24in CH2C|2).

Methyl (S,E)-2-(2-(2-(Benzyloxy)propan-2-yl)-2,3-dihydro-1H-inden-1-ylidene)acetate (4)

Following a modified procedure,” to a solution of 2n (20 mg, 1.0 equiv) in MeOH (0.5 mL)
was added iPr,NEt (26 uL, 0.15 mmol, 1.0 equiv) and Pd(dppf).Cl, (3.7 mg, 0.0050 mmol,
ogn 0-10 equiv). The reactor was sealed and flashed with CO 3 times. After stirring at 110 °C for
16 h under CO (10 bars), the reactor was cooled down to 24 °C, and the system was purged
4 with Ar. The reaction mixture was filtered through a plug of Celite and concentrated under
reduced pressure. The product was purified by flash column chromatography (20:1

cyclohexane:EtOAc) as a colorless oil (13.8 mg, 82%).

CO,Me

'H NMR (400 MHz, C¢Dg) 6 7.21 — 7.17 (m, 5H), 7.13 — 7.08 (m, 1H), 7.05 (td, J = 7.4, 1.2 Hz, 1H), 6.99 — 6.90 (m,
2H), 6.44 (d, J = 1.5 Hz, 1H), 4.74 (d, /= 7.5 Hz, 1H), 4.38 (dd, J = 15.0, 11.5 Hz, 2H), 3.49 (s, 3H), 3.20 (d, J = 16.6
Hz, 1H), 2.72 (dd, J = 16.6, 7.3 Hz, 1H), 1.37 (s, 3H), 0.91 (s, 3H). 3C NMR (101 MHz, CsDs) & 167.5, 162.6, 148.2,
142.1,140.3,130.6,128.6,128.3,127.4,127.1,126.8,125.1,121.0,112.3, 79.0, 63.9, 50.8, 49.5, 33.9, 23.7, 23.7.
HRMS (ESI+): m/z: calculated for CoHa4NaOs[M+Na]*: 359.1618; found: 359.1627. SFC (0J-3 (100x3mm,3um),
CO,:MeOH 95:5, 1.2 mL/min, 25 °C, BPR 150 bar; 210 nm): 1.791 min (15), 2.600 min (85); [a]p = 128.8° (c =
0.1 in CHyCl,).

(S,E)-2-((2-(2-Methoxypropan-2-yl)-2,3-dihydro-1H-inden-1-ylidene)methyl)-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane (5)

_ Following a modified procedure,® a mixture of 2a (20.0 mg, 0.071 mmol), ByPin, (21.7 mg,
fj Bpin 0.085 mmol, 1.2 equiv), and KOAc (20.9 mg, 0.213 mmol, 3 equiv) in dry 1,4-dioxane
(0.35mL) was purged with N;, and Pd(dppf)Cl; (2.60 mg, 0.0036 mmol, 0.05 equiv) was
added. The mixture was stirred at 90 °C for 24 h. The solvent was removed under vacuo,

5 and of Et,0 was added. The crude mixture was filtered through a pad of Celite and the pad

washed with Et,0. Then, water was added to the filtrate, and the mixture was extracted

with Et,0. The organic phase was washed with saturated NaCl aqueous solution, dried with Na,SO,4, and

concentrated in vacuo. The product was purified by preparative TLC (15:1 cyclohexane:EtOAc) as a yellow oil
(15.2 mg, 65%).

OBn



14 NMR (400 MHz, CsDe) 6 7.39 (dd, J = 7.6, 1.2 Hz, 1H), 7.04 (dd, J = 3.9, 1.0 Hz, 2H), 6.98 (dq, J = 8.2, 4.3 Hz,
1H), 6.24 (d, J = 1.3 Hz, 1H), 4.07 (d, J = 7.5 Hz, 1H), 3.21 (d, J = 16.6 Hz, 1H), 3.16 (s, 3H), 2.83 (dd, J = 16.5, 7.6
Hz, 1H), 1.38 (s, 3H), 1.14 (s, 6H), 1.14 (s, 6H), 0.82 (s, 3H). 13C NMR (101 MHz, CsD¢) & 165.7, 147.0, 144.1, 129.4,
126.8, 125.0, 120.8, 82.9, 77.7, 50.8, 49.0, 33.3, 25.3, 24.9, 23.1, 22.5. HRMS (ESI+): m/z: calculated for
CaoH29Na03B: 350.2138 [M+Na]*; found: 350.2133. SFC (1G-3 (100x3mm,3um), CO,:MeOH 96:4, 1.2 mL/min, 25
°C, BPR 150 bar; 280 nm): 1.191 min (89), 1.512 min (11); [a]o?® = 34.3° (c = 0.16 in CH,Cl,).

(S,E)-1-Benzylidene-2-(2-methoxypropan-2-yl)-2,3-dihydro-1H-indene (6)

Phenylboronic acid (17.2 mg, 0.141 mmol, 1.8 equiv), Pd(PPhs),Cl; (2.76 mg, 0.0039 mmol,

O 0.05 equiv) and K,COs5 (32.6 mg, 0.236 mmol, 3 equiv) were added to a solution of 2a (22.1

/ mg, 0.076 mmol) in 1,4-dioxane (1.25 mL) and water (0.21 mL). The mixture was stirred
O’ OMe for 3 h at 85 °C. Water was then added, the aqueous phase was extracted with Et,0 (x3)
and the combined organic layers were joined, washed with saturated NaCl aqueous

6 solution and dried with Na,SO,. The product was purified by preparative TLC (20:1

cyclohexane:EtOAc) as a white solid (16.2 mg, 74%).

M.p. 75-83 °C. 'H NMR (500 MHz, CDe) & 7.46 — 7.42 (m, 2H), 7.42 — 7.38 (m, 1H), 7.24 — 7.14 (m, 2H), 7.17 —
7.03 (m, 5H), 4.01 (d, J = 7.9 Hz, 1H), 3.23 (d, J = 16.6 Hz, 1H), 2.97 —2.91 (m, 1H), 2.91 (s, 3H), 0.86 (s, 3H), 0.75
(s, 3H). 13C NMR (126 MHz, CsDs) 6 145.7, 145.7, 144.2, 139.5, 129.2, 128.6, 128.4, 128.4, 126.8, 124.9, 123.2,
120.0, 79.1, 48.8, 48.0, 33.6, 23.4, 22.1. HRMS (ESI+): m/z: calculated for CaoH22NaO: 301.1563 [M+Nal*; found:
301.1552. SFC (0J-3 (100x3mm,3um), CO2:MeOH 90:10, 1.2 mL/min, 25 °C, BPR 150 bar; 210 nm): 1.299 min
(10), 1.542 min (90); [a]p® = -175.0° (c = 0.1 in CH,Cl,).

5. Synthesis of the substrates for the cyclization of 1-bromo-5-enynes

BulLi cl NBS, AgNO c
nBuLi » AgNU3
cnﬁ]ﬂm =M — (I ——— I
THF, -78 °C DMF, 23 °C
1 TMS I Br
R R 11
NHR! | KeCOs K
acetone, reflux
R!
N R
S
Br
Step I-ll: The 1-bromo-5-enynes substrates were synthesized by adapting a procedure reported in literature.’
5.1. General procedure D for the preparation of sulfonamide precursors 54-S8

To a solution of (3,5-dimethoxyphenyl)methanamine in CH,Cl, was added NEt; (1.1 equiv) at 0 °C and the mixture
was stirred for 10 min at this temperature. The corresponding sulfonyl chloride (1.2 equiv) was added, and the
reaction mixture was allowed to warm up to 24 °C and stirred overnight. The reaction was quenched with water
and the aqueous phase was extracted with CH,Cl,. The combined organic layers were dried over Na,SO,, filtered
and concentrated. The crude was purified by flash column chromatography (cyclohexane/EtOAc 3:1 to 2:1).

N-(3,5-Dimethoxybenzyl)-2-nitrobenzenesulfonamide (S4)

0,0 NO; The title compound (white solid, 88%) was synthesized according to general
MeO N’S procedure D using 2-nitrobenzenesulfonyl chloride.
\QAH M.p. = 85 — 87 °C (cyclohexane/ EtOAc). 'H NMR (300 MHz, CDCls) & 8.04 — 7.99
(m, 1H), 7.85—-7.80 (m, 1H), 7.72-7.62 (m, 2H), 6.34 (dd, J = 2.3, 0.6 Hz, 2H), 6.27
(t,J = 2.3 Hz, 1H), 5.72 (t, J = 6.3 Hz, 1H), 4.25 (d, J = 6.3 Hz, 2H), 3.70 (s, 6H). 13C

NMR (101 MHz, CDCls) 6 161.0, 147.8, 137.9, 134.0, 133.4, 132.7, 131.0, 125.2, 105.6, 100.0, 55.3, 48.0. HRMS
(ESI+) calculated for [C1sH16N2NaOgS]* 375.0621 m/z; found [M + Na]* 375.0613 m/z.

OMe sS4

N-(3,5-Dimethoxybenzyl)-4-(trifluoromethyl)benzenesulfonamide (S5)



0.0 The title compound (white solid, 89%) was synthesized according to general
MeO N'S\©\ procedure D using 4-(trifluoromethyl)benzenesulfonyl chloride.
H
CF, M.p.=95—97 °C (cyclohexane/ EtOAc). *H NMR (400 MHz, CDCls) 6 7.96 (d,
OMe g5 J=8.1Hz, 2H), 7.75 (d, J = 7.9 Hz, 2H), 6.31 (t, J = 2.3 Hz, 1H), 6.27 (d, J = 2.3
Hz, 2H), 4.94 — 4.85 (m, 1H), 4.13 (d, J = 6.0 Hz, 2H), 3.71 (s, 6H). 13C NMR

(101 MHz, CDCl;) 6 161.1, 143.8, 137.9, 127.6, 126.2 (q, J = 7.6 Hz), 105.7, 99.8, 55.3, 47.5. F NMR (376 MHz,
CDCls) 6 —63.3. HRMS (ESI-) calculated for [CigH1sFsNO4S]™ 374.0679 m/z; found [M — H]~ 374.0666 m/z.

N-(3,5-Dimethoxybenzyl)-4-fluorobenzenesulfonamide (S6)

0.0 The title compound (white solid, 93%) was synthesized according to general
MeO N,S\©\ procedure D using 4-fluorobenzenesulfonyl chloride.
H
£ M.p.=93-95 °C (cyclohexane/ EtOAc). *H NMR (400 MHz, CDCl5) § 8.01 - 7.71
OMe &g (m, 2H), 7.21 = 7.13 (m, 2H), 6.37 — 6.24 (m, 3H), 4.83 (brs, 1H), 4.08 (d, J = 6.2
Hz, 2H), 3.72 (s, 6H). 3C NMR (101 MHz, CDCls) & 165.2 (d, J = 254.9 Hz), 161.2,

138.4,136.2 (d, J = 3.3 Hz), 130.0, 129.9, 116.4 (d, J = 3.0 Hz), 105.8, 100.0, 55.5, 47.5. *F NMR (376 MHz, CDCl3)
6 —105.3. HRMS (ESI-) calculated for [Ci1sH1sFNO4S]™ 324.0711 m/z; found [M — H]~ 324.0709 m/z.

4-Methyl-N-(3,4,5-trimethoxybenzyl)benzenesulfonamide (S7)

D using tosyl chloride.
MeO

OMe

MeO NHTs The title compound (white solid, 93%) was synthesized according to general procedure
S7

M.p. = 122-125 °C (cyclohexane/ EtOAc). 'H NMR (400 MHz, CDCls) 6 7.75 (d, J = 8.3 Hz,
2H), 7.30 (d, J = 7.9 Hz, 2H), 6.36 (s, 2H), 4.89 (brs, 1H), 4.07 (d, J = 5.9 Hz, 2H), 3.79 (s,
3H), 3.75 (s, 6H), 2.42 (s, 3H). 3C NMR (101 MHz, CDCls) & 153.4, 143.7, 137.6, 137.2, 132.1, 129.8, 129.8, 104.8,
60.9, 56.1,47.7, 21.6. HRMS (ESI+) calculated for [C17H2:NNaOsS]* 374.1040 m/z; found [M + Na] 374.1033 m/z.

N-(2-(3,5-Dimethoxyphenyl)propan-2-yl)-4-methylbenzenesulfonamide (S8)

The title compound (brown gum, 60%) was synthesized according to general procedure
MeO NHTs D using tosyl chloride and 2-(3,5-dimethoxyphenyl)propan-2-amine.

'H NMR (500 MHz, CDCl3) & 7.56 (d, J = 8.3 Hz, 2H), 7.15 (d, J = 9.3 Hz, 2H), 6.41 (d, J =
OMe S8 2.2 Hz, 2H), 6.25 (t, J = 2.2 Hz, 1H), 5.20 (s, 1H), 3.69 (s, 6H), 2.38 (s, 3H), 1.60 (s, 6H). 1*C
NMR (126 MHz, CDCl3) § 160.7, 147.7,142.8,139.9, 129.3,127.1, 104.4, 98.8, 58.8, 55.3,
29.9, 21.5. HRMS (ESI+) calculated for [CigH23NNaO4S]* 372.1240 m/z; found [M + Na]* 372.1235 m/z.

5.2. General procedure E for the preparation of 1-bromo-5-enynes 9b-g

To a solution of the corresponding sulfonamides (1.2 equiv.) and 6-bromo-2-(chloromethyl)hex-1-en-5-yne (1.0
equiv) in acetone (0.14 M) was added K,COs; (1.2 equiv) and Kl (0.12 equiv) at 24 °C. The mixture was heated
under refluxing conditions for 24 h before the solvent was evaporated. The residue was taken up in Et;O and
washed sequentially with water and saturated NaCl aqueous solution, dried over anhydrous Na,SO4. The solvent
was evaporated, and the crude was purified by flash column chromatography (cyclohexane/EtOAc 3:1) to give
target compounds. Enyne 9a was described® and the spectral analysis is in accordance with the reported data.

N-(6-Bromo-2-methylenehex-5-yn-1-yl)-N-(3,5-dimethoxybenzyl)-2-nitrobenzenesulfonamide (9b)

NO, The title compound (white solid, 86%) was synthesized according to general procedure
©[ 0 E using N-(3,5-dimethoxybenzyl)-2-nitrobenzenesulfonamide (S4).

weo. S ) M.p. = 104 — 106 °C (cyclohexane/ EtOAC). H NMR (400 MHz, CDCls) 6 8.02 (dd, J = 7.7,
Il 1.3 Hz, 1H), 7.71 = 7.61 (m, 3H), 6.31 (t, J = 2.3 Hz, 1H), 6.28 (d, J = 2.2 Hz, 2H), 4.95 (d,
B J=15.8 Hz, 2H), 4.45 (s, 2H), 3.91 (s, 2H), 3.68 (s, 6H), 2.25 (td, J = 7.2, 0.7 Hz, 2H), 2.09
OMe (t, J = 7.2 Hz, 2H). 3C NMR (101 MHz, CDCls) 6 161.0, 147.7, 140.9, 137.6, 134.2, 133.5,
% 131.8, 131.2, 124.2, 115.4, 105.9, 100.0, 79.2, 55.3, 51.7, 50.3, 38.7, 31.4, 18.1. HRMS
(ESI+) calculated for [C22H24BrN,0gS]* 523.0533 m/z; found [M + H]* 523.0508 m/z.

N-(6-Bromo-2-methylenehex-5-yn-1-yl)-N-(3,5-dimethoxybenzyl)-4-(trifluoromethyl)benzenesulfonamide
(9¢)



FsC The title compound (white solid, 80%) was synthesized according to general procedure
\©\ £ E using N-(3,5-dimethoxybenzyl)-4-(trifluoromethyl)benzenesulfonamide (S5).

2H), 7.76 (d, J = 8.8 Hz, 2H), 6.32 (t, J = 2.3 Hz, 1H), 6.20 (d, J = 2.3 Hz, 2H), 4.97 (s, 1H),

Br 4.89 (s, 1H), 4.31 (s, 2H), 3.81 (s, 2H), 3.68 (s, 6H), 2.29 (td, J = 7.2, 0.8 Hz, 2H), 2.13 (t,

OMe J=7.2 Hz, 2H). *3C NMR (101 MHz, CDCls) 6 161.0, 144.3, 141.3, 137.5, 134.4 (d, J =

oc 33.0 Hz), 127.7, 126.4 (q, J = 3.6 Hz), 115.8, 106.6, 99.9, 79.3, 55.4, 52.3, 50.9, 38.9,

31.6, 18.2. %F NMR (376 MHz, CDCls) 6 —63.2. HRMS (ESI+) calculated for [Ca3H23BrFsNNaO4S]* 568.0375 m/z;
found [M + Na]* 568.0365 m/z.

veo. S Nm M.p. = 91— 93 °C (cyclohexane/ EtOAc). "H NMR (400 MHz, CDCls) 6 7.93 (d, J = 7.9 Hz,

N-(6-Bromo-2-methylenehex-5-yn-1-yl)-N-(3,5-dimethoxybenzyl)-4-fluorobenzenesulfonamide (9d)

0 E using N-(3,5-dimethoxybenzyl)-4-fluorobenzenesulfonamide (S6).

F\©\ The title compound (colorless oil, 89%) was synthesized according to general procedure
weo. S 'H NMR (400 MHz, CDCls) § 7.73 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 7.7 Hz, 2H), 6.33 (s, 2H),
| 4.92(d,s=1.4Hz, 1H), 4.86 (d, J = 1.3 Hz, 1H), 4.27 (s, 2H), 3.81 (s, 3H), 3.73 (s, 6H), 3.72

Br (s, 2H), 2.43 (s, 3H), 2.22 (td, J = 7.5, 1.0 Hz, 2H), 2.10 (t, J = 7.3 Hz, 2H). 3C NMR (101

OMe MHz, CDCl3) & 165.1 (d, J = 257.3 Hz), 161.0, 141.6, 138.0, 136.7, 130.0 (d, J = 9.2 Hz),

od 116.4 (d, J = 22.6 Hz), 115.5, 106.6, 100.0, 79.4, 55.4, 52.2, 51.0, 38.8, 31.6, 18.2.1%F

NMR (376 MHz, CDCl3) 6 —105.5. HRMS (ESI+) calculated for [C22H23BrFNNaQ,4S]* 518.0407 m/z; found [M + Na]*

518.0426 m/z.

N-(6-bromo-2-methylenehex-5-yn-1-yl)-N-(2-(3,5-dimethoxyphenyl)propan-2-yl)-4-
methylbenzenesulfonamide (9e)

\@\ The title compound (colorless oil, 36%) was synthesized according to general procedure
P E using N-(2-(3,5-dimethoxyphenyl)propan-2-yl)-4-methylbenzenesulfonamide (S8).

Sy
MeOo m H NMR (400 MHz, CDCl3) 6 7.61 — 7.54 (m, 2H), 7.23 (d, J = 7.7 Hz, 2H), 6.38 (d, J = 2.2
@ Hz, 2H), 6.31 (t,J = 2.2 Hz, 1H), 3.93 (s, 2H), 3.70 (s, 6H), 2.41 (s, 3H), 2.34— 2.26 (m, 2H),
Br 2.25-2.19(m, 2H), 1.67 (s, 6H). 3C NMR (101 MHz, CDCls) 6 160.6, 148.5, 145.2, 142.9,
140.6,129.4,127.4,113.1,105.0, 98.8, 79.9, 64.9, 55.3, 52.6, 38.5, 32.1, 29.5, 21.6, 18.5.

9e HRMS (ESI+) calculated for [CasH30BrNNaO4S]* 542.0971 m/z; found [M + Na]* 542.0967
m/z.

N-(6-bromo-2-methylenehex-5-yn-1-yl)-4-methyl-N-(3,4,5-trimethoxybenzyl)benzenesulfonamide (9f)

The title compound (colorless oil, 88%) was synthesized according to general procedure
E using 4-methyl-N-(3,4,5-trimethoxybenzyl)benzenesulfonamide (S7).

2N
Meoj;i) m H NMR (400 MHz, CDCls) 6 7.73 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 7.7 Hz, 2H), 6.33 (s, 2H),
4.92 (s, 1H), 4.86 (s, 1H), 4.27 (s, 2H), 3.81 (s, 3H), 3.73 (s, 6H), 3.72 (s, 2H), 2.43 (s, 3H),
e0 Br 2.22(td,J=7.1, 1.0 Hz, 2H), 2.10 (t, J = 7.3 Hz, 2H). 1*C NMR (101 MHz, CDCls) & 153.3,
143.5,142.0, 137.7, 131.6, 129.9, 127.4, 115.3, 105.8, 79.5, 61.0, 56.1, 52.1, 51.2, 38.7,

of 31.6,21.7, 18.2. HRMS (ESI+) calculated for [C24H2sBrNNaOsS]* 544.0764 m/z; found [M

+ Na]* 544.0783 m/z.
N-(6-bromo-2-methylenehex-5-yn-1-yl)-N-(furan-3-ylmethyl)-4-methylbenzenesulfonamide (9g)

The title compound (colorless oil, 93%) was synthesized according to general procedure
E using N-(furan-3-ylmethyl)-4-methylbenzenesulfonamide.°

/, N
1H NMR (400 MHz, CDCl3) § 7.74 — 7.64 (m, 2H), 7.31 (s, 1H), 7.30 = 7.27 (m, 2H), 7.15 (s,
/ \ 1H), 6.07 (s, 1H), 4.98 (s, 1H), 4.93 (s, 1H), 4.18 (s, 2H), 3.71 (s, 2H), 2.44 (s, 3H), 2.28 (t,
J=7.3Hz, 2H), 2.13 (t, J = 7.3 Hz, 2H). *C NMR (101 MHz, CDCls) 5 143.6, 143.4, 142.0,

141.7, 137.5, 129.8, 127.4, 119.9, 115.4, 111.0, 79.5, 51.5, 41.1, 38.7, 31.5, 21.7, 18.2.
HRMS (ESI+) calculated for [C33H,0BrNNaOsS]* 444.0239 m/z; found [M + Na]* 444.0234 m/z.

6. Enantioselective gold(l)-catalyzed 1-bromo-5-enyne cyclization

6.1. Reaction optimization



A chloride scavenger and solvent screening was performed with catalyst (R,R)-D and the AgSbFs/C¢HsBr
combination was chosen to continue with the optimization.

MeQ
TsN (R,R)-D (5 mol%)
MeO | | scavenger (5 mol%)

Y

solvent, 24 °C, 4 - 24 h

Br
OMe
9a
Entry Scavenger Solvent Conversion (%) er
1 AgSbFs CH,Cl, 100 70:30
2 AgBF,4 PhMe 100 65:35
3 AgSbFs PhCF3 100 76:24
4 NaBArf, PhCF3 -7 70:30
5 AgNTf, PhCF; 100 72:28
6 AgOTf PhCF3 100 63:37
7 AgSbFg CeHsCl 100 82:18
8 AgSbFg xylenes - 80:20
9 AgSbFg CeHs 100 81:19
10 AgSbFe o-xylene - 80:20
11 AgSbFe p-xylene 100 78:22
12 AgSbFe 1,2-dichlorobenzene 100 76:24
13 AgSbFe 1,3-dichlorobenzene 100 78:22
14 AgSbF; CsHsBr 100 82:18
15 AgSbFs Cl(CH>),Cl 100 64:36
16 AgSbFs Cly(CH),Cl, 100 68:32
17 AgSbFg CeHsCI:HFIP 100 67:33
(10:1)
18 AgSbFe heptane 100 69:31

“Traces of product.
Table S4 - Solvent and chloride scavenger screening for the 1-bromo-5-enyne cascade cyclization.
6.2. General procedure F for the cyclization of 1-bromo-5-enynes

A 5 mL microwave vial was charged with AgSbFs (5 mol %) cooled to -40 °C and a solution of the corresponding
enyne (1.0 equiv) and (R,R)-F (5 mol %) in chlorobenzene (0.05M) was added. The reaction was stirred for 7 days



at the same temperature and then quenched by addition of 3 drops of NEts. The volatiles were removed under
reduced pressure, and the crude was purified by preparative TLC to give the target compound.

(R)-3-Bromo-5',7'-dimethoxy-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-ene (10a)

MeO The title compound (colorless gum, 21.9 mg, 61%, 71% brsm 92:8 er) was synthesized
following the general procedure F using 9a° (35.9 mg, 73 umol). Purification was performed
by preparative TLC (4:1 cyclohexane/EtOAc).

M.p. = 81 — 83°C (Et,0). HPLC (Chiralpak IA (250 x 4.6mm, 5um) at 25 °C, flow 1.0 mL/min,
isocratic hexane/iPrOH 90:10, 280 nm), 13.2 min (92), 23.4 min (8). [a]o2¢ =—257.5° (CHCl3, ¢
= 1.0). The spectral data were fully consistent with those previously reported.’

(R)-3-Bromo-5',7'-dimethoxy-2'-((2-nitrophenyl)sulfonyl)-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-
isoquinolin]-3-ene (10b)

MeQ The title compound (white solid, 6.80 mg, 18%, 69% brsm 90:10 er) was synthesized following
the general procedure F using 9b. Purification was performed by preparative TLC (2:1
cyclohexane/EtOAc).

M.p. = 62 — 64 °C (CH,Cl,). 'H NMR (400 MHz, CDCl3) & 8.06 — 8.01 (m, 1H), 7.76 — 7.71 (m,
2H), 7.65 = 7.61 (m, 1H), 6.35 (d, J = 2.5 Hz, 1H), 6.22 (d, J = 2.5 Hz, 1H), 6.11 — 6.07 (m, 1H),
4.47 (d, J = 15.2 Hz, 1H), 4.37 (d, J = 15.2 Hz, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 3.45 (d, J = 12.7
Hz, 1H), 3.37 (s, 2H), 3.34 (d, J = 7.3 Hz, 1H), 2.68 (ddd, J = 13.6, 11.7, 6.5 Hz, 1H), 2.34 — 2.06

10b (m, 4H), 1.51 (dd, J=13.8, 5.9 Hz, 1H). 3*C NMR (101 MHz, CDCl3) § 159.7, 159.3, 134.4, 134.0,
131.9, 131.4, 131.2, 127.2, 124.3, 120.8, 120.7, 102.2, 98.9, 55.5, 55.4, 52.3, 49.4, 41.4, 39.6, 26.5, 24.2. HRMS
(ESI+) calculated for [Ca2H24BrN20O6S]* 523.0533 m/z; found [M + H]* 523.0535 m/z. HPLC (Chiralpak IB (250 x
4.6mm, 5um) at 25 °C, flow 1.0 mL/min, isocratic hexane/;PrOH 80:20, 280 nm), 12.1 min (90), 14.1 min (10).
[a]o?® = +289.8° (CHCls, ¢ = 0.35).

(R)-3-Bromo-5',7'-dimethoxy-2'-((4-(trifluoromethyl)phenyl)sulfonyl)-2',3'-dihydro-1'H-spiro[cyclohexane-
1,4'-isoquinolin]-3-ene (10c)

MeO The title compound (white solid, 18.6 mg, 47%, 68% brsm 92:8 er) was synthesized
following the general procedure F using9c. Purification was performed by preparative TLC
(5:1 cyclohexane/EtOAc).

M.p. = 92 — 94 °C (Et,0). *H NMR (500 MHz, CDCl3) 6 7.99 (d, J = 8.2 Hz, 2H), 7.84 (d, J = 8.9
Hz, 2H), 6.34 (d, /= 2.5 Hz, 1H), 6.16 (d, J = 2.5 Hz, 1H), 6.13 — 6.08 (m, 1H), 4.23 —4.10 (m,
2H), 3.79 (s, 3H), 3.76 (s, 3H), 3.52 — 3.43 (m, 1H), 3.23 (d, J = 12.0 Hz, 1H), 3.06 (d, J = 12.0
Hz, 1H), 2.66 — 2.56 (m, 1H), 2.32 —2.22 (m, 1H), 2.22 — 2.09 (m, 2H), 1.56 (dd, J = 13.7, 5.9
Hz, 1H). 3C NMR (126 MHz, CD,Cl,) 6 159.6, 159.3, 140.2, 135.3 — 134.3 (m), 134.0, 128.4,
127.1,126.6 (q,J = 3.7 Hz), 123.4 (g, J = 272.7 Hz), 121.0, 120.7, 102.3, 98.8, 55.44, 55.37, 52.2, 49.7, 41.4, 39.7,
26.5, 24.1. F NMR (376 MHz, CDCl3) § —62.5. HRMS (ESI+) calculated for [C2sH23BrFsNNaOQ4S]* 568.0375 m/z;
found [M + Na]* 568.0373 m/z. HPLC (Chiralpak IA (250 x 4.6mm, 5um) at 25 °C, flow 1.0 mL/min, isocratic
hexane/iPrOH 90:10, 280 nm), 10.1 min (92), 16.9 min (8). [a]p?® = —182.1° (CHCl3, ¢ =1.0)

(R)-3-Bromo-2'-((4-fluorophenyl)sulfonyl)-5',7'-dimethoxy-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-
isoquinolin]-3-ene (10d)

The title compound (white solid, 18.7 mg, 38.0 umol, 51%, 80% brsm 92:8 er) was
synthesized following the general procedure F using 9d (36.2 mg, 73 umol). Purification was
performed by preparative TLC (5:1 cyclohexane/Et,0). M.p. = 75 — 77 °C (CHxCly).

1H NMR (400 MHz, CDCl3) 6 7.94 — 7.82 (m, 2H), 7.30 — 7.20 (m, 2H), 6.34 (d, J = 2.5 Hz, 1H),
6.16 (d, J = 2.4 Hz, 1H), 6.12 — 6.05 (m, 1H), 4.21 —4.04 (m, 2H), 3.79 (s, 3H), 3.75 (s, 3H), 3.53
—3.41 (m, 1H), 3.21 (d, J = 11.9 Hz, 1H), 2.99 (d, J/ = 12.0 Hz, 1H), 2.64 — 2.52 (m, 1H), 2.32 —
2.04 (m, 3H), 1.56 (dd, J = 13.5, 5.8 Hz, 1H). 3C NMR (101 MHz, CDCls) § 165.47 (d, J = 255.3
Hz), 159.4 (d, J = 38.0 Hz), 134.3, 132.5 (d, J = 3.4 Hz), 130.6 (d, J = 9.2 Hz), 127.1, 121.1,
120.8,116.8,116.6,102.4,98.7,55.4,55.4,52.3,49.8, 41.5, 39.8, 26.5, 24.1. **F NMR (376 MHz, CDCls) 6 —104.8.
HRMS (ESI+) calculated for [C2H24BrFNO4S]* 496.0588 m/z; found [M + H]* 496.0589 m/z. HPLC (Chiralpak IA




(250 x 4.6mm, 5um) at 25 °C, flow 1.0 mL/min, isocratic hexane/iPrOH 90:10, 220 nm), 11.3 min (92), 20.4 min
(8). [@]p?=—227.5° (CHCls, c = 1.0).

(R)-3-Bromo-5',7'-dimethoxy-1',1'-dimethyl-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-
ene (10e)

MeO The title compound (colorless gum, 20.4 mg, 54%, 93:7 er) was synthesized following the
general procedure F using 9e (38.0 mg, 73 umol). Purification was performed by preparative
TLC (1:1 toluene/CH,Cl,).

'H NMR (400 MHz, CDCl3) 6 7.78 (d, J = 6.3 Hz, 2H), 7.29 (d, J = 8.3 Hz, 2H), 6.32 (dd, J = 12.2,
2.5 Hz, 2H), 5.97 = 5.91 (m, 1H), 3.78 (s, 3H), 3.77 (s, 3H), 3.49 (brs, 1H), 3.28 (brs, 1H), 3.16
(d,J=16.6 Hz, 1H), 2.67 (brs, 1H), 2.42 (s, 3H), 2.15—2.03 (m, 1H), 1.99 (brs, 2H), 1.86 (s, 3H),
1.81 (s, 3H), 1.37 — 1.27 (m, 1H). 3C NMR (101 MHz, CD,Cl,) 6 158.9, 158.8, 147.2, 143.6,
138.7, 129.8, 127.8, 126.8, 121.3, 121.2, 103.1, 97.3, 63.2, 55.4, 55.3, 49.1, 40.6, 39.5, 29.8,
26.5, 24.1, 21.7. HRMS (ESI+) calculated for [CasH3oBrNNaOQ,S]* 542.0971 m/z; found [M + Na]* 542.0978 m/z.
SFC (Chiralpak ID (100 x 3.0 mm, 3 um) at 35 °C, flow 1.2 mL/min, isocratic CO,/IPA 75:25, ABRP pressure 150
bar, 210 nm), 2.00 min (93), 2.47 min (7). [a]p?® = 14.37° (CHCl, c =1.0).

(R)-3-Bromo-5',6',7'-trimethoxy-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-ene (10f)

MeQ  OMe The title compound (colorless gum, 24.0 mg, 63%, 86% brsm, 81:19 er) was synthesized
following the general procedure F using 9f (38.0 mg, 73 umol). Purification was performed
by preparative TLC (4:1 cyclohexane/EtOAc).

H NMR (400 MHz, CDCl3) 6 7.73 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 6.30 (s, 1H), 6.14
—6.05 (m, 1H), 4.14 (d, J = 14.3 Hz, 1H), 4.03 (d, J = 14.3 Hz, 1H), 3.92 (s, 3H), 3.80 (s, 3H),
3.79 (s, 3H), 3.38 (d, / = 18.6 Hz, 1H), 3.21 (d, J = 12.0 Hz, 1H), 2.91 (d, J = 12.0 Hz, 1H), 2.44
(s, 3H), 2.42 = 2.35 (m, 1H), 2.35—2.20 (m, 2H), 2.20—2.09 (m, 1H), 1.68 (dd, J = 13.0, 5.1 Hz,
1H). 3C NMR (101 MHz, CDCls) & 153.5, 152.5, 143.0, 141.6, 133.1, 130.0,128.00, 127.98,
127.2, 126.0, 120.7, 104.8, 61.0, 60.7, 56.0, 51.9, 49.6, 42.4, 40.1, 27.6, 24.2, 21.7. HRMS (ESI+) calculated for
[C24H28BrNNaOsS]* 544.0764 m/z; found [M + Na]* 544.0752 m/z. SFC (Chiralpak OJ (100 x 3.0 mm, 3 um) at 35
°C, flow 1.2 mL/min, isocratic CO,/MeOH 75:25, ABRP pressure 150 bar, 210 nm, 1.84 min (19), 2.57 min (81).
[a]o? = —16.64° (CHCs, ¢ = 1.0).

(S)-3-Bromo-5'-tosyl-5',6'-dihydro-4'H-spiro[cyclohexane-1,7'-furo[3,2-c]pyridin]-3-ene (10g)

>0 The title compound (colorless gum, 5.6 mg, 18 %, 26% brsm, 89:11 er) was synthesized
P following the general procedure F using 9g (38.0 mg, 73 umol). Purification was performed

o J<:% by preparative TLC (10:1 cyclohexane/EtOAc).
Sso 5" 14 NMR (400 MHz, CDCl3) § 7.76 — 7.69 (m, 2H), 7.37 — 7.30 (m, 2H), 7.26 (d, J = 1.9 Hz, 1H),
6 6.17 (d, J = 1.9 Hz, 1H), 6.13 (m, 1H), 4.15 (d, J = 13.9 Hz, 1H), 3.92 (d, J = 13.9 Hz, 1H), 3.35
(d, J = 11.8 Hz, 1H), 2.98 (d, J = 11.6 Hz, 1H), 2.86 (dq, / = 17.7, 2.7 Hz, 1H), 2.44 (s, 3H), 2.40

109 —2.31 (m, 1H), 2.29 - 2.20 (m, 2H), 2.00 (ddd, J = 13.5, 9.7, 6.3 Hz, 1H), 1.75 (dt, J = 16.5, 4.0
Hz, 1H). 3C NMR (101 MHz, CD,Cl,) § 153.2, 143.9, 142.2, 134.1, 130.0, 128.1, 127.7, 119.1, 113.1, 108.1, 51.9,
43.8,41.5,38.4,29.9, 28.1, 24.3, 21.7. HRMS (ESI+) calculated for [C19H20BrNNaO3S]* 444.0239 m/z; found [M +
Na]* 444.0240 m/z. SFC (Chiralpak IG (100 x 3.0 mm, 3 um) at 35 °C, flow 1.2 mL/min, isocratic CO,/EtOH 75:25,
ABRP pressure 150 bar, 210 nm), 2.171 min (89), 2.524 min (11). [a]p?® = —1.2° (CHCl3, c = 0.4).

7. Product derivatization starting from 10a

(R)-5',7'-Dimethoxy-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2'-tosyl-2',3'-dihydro-1'H-
spiro[cyclohexane-1,4'-isoquinolin]-3-ene (11)

To a solution of dry 1,4-dioxane (0.68 mL), in an oven-dried vial, were added 10a (67 mg, 0.14 mmol), B,Pin, (69

MeO mg, 0.27 mmol, 2 equiv), and KOAc (40 mg, 0.41 mmol, 3 equiv). The solution was purged
with Ar, and Pd(dppf)Cl;(10.0 mg, 0.01 mmol, 10 mol%) was added. The reaction mixture
was stirred for 24 h at 90 °C. After the reaction was completed, the solvent was
evaporated. Then, the reaction mixture was filtered through a pad of Celite and washed
twice with Et,0. The residue was purified by flash column chromatography using 15:1
cyclohexane:EtOAc to obtain 11 as a colourless foam (59.0 mg, 80%).




1H NMR (400 MHz, CD,Cl,) 6 7.69 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 6.57 (d, J = 4.4 Hz, 1H), 6.32 (d, J =
2.5 Hz, 1H), 6.16 (d, J = 2.5 Hz, 1H), 4.04 (q, J = 14.5 Hz, 2H), 3.75 (s, 3H), 3.73 (s, 3H), 3.10 — 2.85 (m, 3H), 2.63
(ddd,J=13.3,11.2, 7.1 Hz, 1H), 2.43 (s, 3H), 2.32-2.10 (m, 2H), 2.00 (dd, /= 17.8, 2.1 Hz, 1H), 1.45 (dd, /= 13.4,
6.0 Hz, 1H), 1.25(d, /= 2.8 Hz, 12H). 3C NMR (101 MHz, CD,Cl,) § 160.2, 159.1, 144.2, 141.1, 134.7, 133.5, 130.1,
128.2,123.3, 102.6, 98.6, 83.5, 55.6, 55.5, 52.6, 50.4, 37.2, 33.1, 27.4, 25.1, 24.9, 23.9, 21.7. HRMS (ESI+): m/z:
calculated for C29H3sBNOgS: 539.2513 [M+Na]*; found: 562.2404.

(R,2)-3-(But-2-en-2-yl)-5',7'-dimethoxy-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-ene
(12)

MeO To a solution of 11 (53.9 mg, 0.10 mmol, 1 equiv) in 1,4-dioxane (1.0 mL), Pd(PPhs); (11.6
mg, 0.001 mmol, 10 mol%) was added. The vial was evacuated and backfilled with Ar
three times. Then, (Z)-2-bromobut-2-ene (15.2 mL, 1.50 equiv) and NaOH (0.1 mL, 2M)
were added in this order, and the resulting mixture was left stirring for 20 h at 100 °C.
After the reaction was completed, it was filtered through pad of Celite (using as eluent
EtOAc) and all volatiles were removed by rotatory evaporation. The residue was purified
by flash column chromatography using 8:1 cyclohexane:Et,0 to obtain 12 as a white foam

(36.0 mg, 77%).

1H NMR (400 MHz, CDCl3) 6 7.71 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 6.33 (d, J = 2.5 Hz, 1H), 6.15 (d, J =
2.5 Hz, 1H), 5.50 —5.43 (m, 1H), 5.24 (qq, / = 6.7, 1.4 Hz, 1H), 4.19 — 4.11 (m, 1H), 4.00 (d, J = 14.4 Hz, 2H), 3.76
(s, 3H), 3.74 (s, 3H), 3.22 — 3.14 (m, 1H), 3.05 — 2.94 (m, 2H), 2.66 (ddd, J = 13.3, 11.6, 6.8 Hz, 1H), 2.43 (s, 3H),
2.30-2.10 (m, 2H), 1.88 (d, J = 18.3 Hz, 1H), 1.77 (t, J = 1.5 Hz, 3H), 1.66 (dd, J = 6.7, 1.5 Hz, 3H), 1.45 (dd, J =
13.6, 6.2 Hz, 1H). 3C NMR (101 MHz, CDCls) § 159.8, 158.8, 143.7, 139.5, 137.1, 134.4, 133.0, 129.8, 128.0,
122.9,121.6,119.6, 102.3,98.7, 55.4, 55.2, 52.8, 50.2, 37.4, 34.0, 27.6, 23.4, 22.1, 21.7, 14.7. HRMS (ESI+): m/z:
calculated for C;7H33NQO4S: 467.2130 [M+H]*; found: 468.2198.

(R)-(5',7'-Dimethoxy-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-en-3-
yl)(phenyl)methanonemalonate (14)

Under Ar, in an oven-dried microwave vial, 10a (63 mg, 0.13 mmol) was dissolved in
dry THF (0.80 mL). The solution was cooled down to -78 °C and, at the same
temperature, tert-butyllithium (0.17 mL, 1.67 M, 2.1 equiv) was slowly added. The
reaction mixture was left stirring for 2 h before adding a solution of N-methoxy-N-
methylbenzamide (23 mg, 0.14 mmol, 1.1 equiv) in THF (0.50 mL). After its slowly
addition, the reaction was left stirring over night at 24 °C, gradually worming it up.
After the reaction was completed, it was quenched with a saturated solution of NH4Cl.
The organic layer was diluted with Et,0, washed with saturated NaCl aqueous solution, dried over Na,SO, and
concentrated by rotatory evaporation. The residue was purified by flash column chromatography using 7:1
cyclohexane:EtOAc to obtain 14 as a white solid (40.5 mg, 61%).

1H NMR (400 MHz, CDCl3) § 7.77 — 7.66 (m, 4H), 7.54 — 7.47 (m, 3H), 7.35 (d, J = 8.0 Hz, 2H), 6.69 — 6.63 (m, 1H),
6.36 (d,J = 2.5 Hz, 1H), 6.19 (d, J = 2.5 Hz, 1H), 4.30 (d, J = 14.5 Hz, 1H), 4.02 (d, J = 14.5 Hz, 1H), 3.80 (s, 3H), 3.78
(s, 3H) 3.49 — 3.33 (m, 2H), 2.82 (d, J = 12.0 Hz, 1H), 2.57 (t, J = 9.0 Hz, 2H), 2.35 (dd, J = 20.4, 15.9 Hz, 5H), 1.82
—1.74 (m, 1H). 3C NMR (101 MHz, CDCl3) 6 198.2, 159.7, 159.0, 144.0, 142.3, 138.8, 137.5, 134.5, 133.1, 131.5,
130.0, 129.4, 128.2, 128.0, 122.1, 102.4, 98.5, 55.4, 55.3, 52.1, 50.0, 37.2, 30.7, 26.7, 23.2, 21.6. HRMS (ESI+):
my/z: calculated for C3oH31NOsS: 517.1923 [M+Na]*; found: 541.1832.

(R)-5',7'-Dimethoxy-3-phenyl-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-ene (15)

Under Ar, in an oven-dried microwave vial, phenylboronic acid (22 mg, 0.18 mmol, 1.8
equiv), Pd(PPhs),Cl; (3.56 mg, 0.005 mmol, 5 mol%) and K,CO; (42 mg, 0.31 mmol, 3
equiv) were added to a solution of 10a (50.0 mg, 0.102 mmol) in 1,4-dioxane (1.67 mL)
and water (0.28 mL). The solution was purged with Ar for 10 min before stirring it for 12
h at 85 °C. After the reaction was completed, it was quenched with the addition of water.
Then, the aqueous phase was extracted with Et,0 (x3) and the combined organic layers
were washed with saturated NaCl aqueous solution and dried with Na,SO,. The residue
was purified by flash column chromatography using 20:1 cyclohexane/EtOAc to obtain
15 as a white foam (47 mg, 95%).




1H NMR (400 MHz, CD,Cl,) 6 7.73 — 7.58 (m, 2H), 7.45 — 7.38 (m, 2H), 7.35 = 7.27 (m, 4H), 7.26 — 7.18 (m, 1H),
6.37 (d, J=2.5Hz, 1H), 6.21 (d, J = 2.5 Hz, 1H), 6.14 (dd, /= 4.7, 2.5 Hz, 1H), 4.22 (d, /= 14.5 Hz, 1H),3.99 (d, / =
14.5 Hz, 1H), 3.77 (s, 3H), 3.75 (s, 3H) 3.35-3.23 (m, 2H), 2.90 (d, J = 11.8 Hz, 1H), 2.77 (ddd, J = 13.4, 10.6, 7.8
Hz, 1H), 2.42 —2.26 (m, 4H), 1.70 - 1.40 (m, 3H) . *3C NMR (101 MHz, CD,Cl,) § 160.2, 159.3, 144.3, 143.0, 136.1,
135.0, 133.5,130.1, 128.6, 128.1, 127.1, 125.8, 123.3, 122.8, 102.7, 98.8, 55.6, 55.6, 52.9, 50.4, 38.0, 34.4, 27.7,
23.0, 21.7. HRMS (ESI+): m/z: calculated for CooH3:NO,4S: 489.1974 [M+Na]*; found: 512.1878.

(R)-5',7'-Dimethoxy-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-one (13)

To a solution of 11 (30 mg, 0.06 mmol, 1 equiv) in THF (0.38 mL) were sequentially added
NaBOs-H,0 (18 mg, 0.17 mmol, 3 equiv) and water (0.38 mL). The reaction was left stirring
for 2 h. After the reaction was completed, it was quenched by the addition of N,S,0s. Then,
the aqueous phase was extracted with Et,O (x3) and the combined organic layers were
washed with saturated NaCl aqueous solution and dried with Na,;SO4. The residue was
purified by flash column chromatography using 5:1 cyclohexane/EtOAc to obtain 13 as a
white solid (22.0 mg, 92%).

1H NMR (400 MHz, CDCl5) 6 7.74 — 7.68 (m, 2H), 7.38 = 7.32 (m, 2H), 6.31 (d, J = 2.5 Hz, 1H), 6.14 (d, J = 2.4 Hz,
1H), 4.51 (dd, J=14.8, 1.7 Hz, 1H), 3.74 (s, 3H), 3.71 (s, 3H), 3.74 - 3.63 (m, 2H), 3.21 (d, /= 15.5 Hz, 1H), 2.43 (s,
3H), 2.39(dd, J = 7.5, 5.9 Hz, 2H), 2.31 (dd, J = 11.9, 1.2 Hz, 1H), 2.20 (ddd, J/ = 14.5, 8.9, 5.6 Hz, 1H), 2.09 — 1.99
(m, 1H), 1.98 — 1.87 (m, 3H). *C NMR (101 MHz, CDCls) § 210.9, 159.2, 158.8, 144.0, 133.7, 132.9, 130.0, 127.9,
121.6,102.3, 98.3, 55.4, 54.5, 53.9, 49.2, 48.7, 40.8, 40.4, 31.9, 21.7, 20.9. The physical data of title compound
matches to those previously reported.

MeQ

(R)-3-lodo-5',7'-dimethoxy-2'-tosyl-2',3'-dihydro-1'H spiro[cyclohexane-1,4'-isoquinolin]-3-ene (10h)

A microwave vial was charged with 10a (250.0 mg, 507.7 umol) in butan-1-ol (2.50 mL), Nal
MeQ (152.2 mg, 2.00 equiv, 1.02 mmol) and Cul (48.3 mg, 0.50 equiv, 253.4 umol). The solution
was degassed for 15 min. Then, DMEDA (9.0 mg, 4.36 uL, 0.20 equiv, 40.61 umol) was added,
the solution is stirred for 15 min at 24 °C then placed in a preheated hotplate at 120 °C and
stirred for 24 h The reaction was cooled to 24 °C and filtered through a Pasteur pipette
loaded with celite. The crude reaction was analysed by GC-MS showing complete bromide
to lodide exchange and was purified by column chromatography (cyclohexane to 1:4
EtOAc/cyclohexane), affording 10h as an off-white solid (99%).

'H NMR (400 MHz, CDCl5) 6 7.80 — 7.70 (m, 2H), 7.36 (d, J = 8.1 Hz, 2H), 6.39 (d, / = 5.0 Hz, 1H), 6.32 (d, /= 2.5
Hz, 1H), 6.14 (d, J = 2.5 Hz, 1H), 4.14 (d, J = 14.5 Hz, 1H), 4.06 (d, J = 14.6 Hz, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.56
—3.45 (m, 1H), 3.22 (d, /= 11.9 Hz, 1H), 2.99 (d, J = 12.0 Hz, 1H), 2.60 (ddd, / = 13.4, 11.6, 6.3 Hz, 1H), 2.44 (s,
3H), 2.39 — 2.24 (m, 2H), 2.24 — 2.04 (m, 1H), 1.66 — 1.55 (m, 1H). *3C NMR (101 MHz, CDCls) § 159.6, 159.1,
143.9, 135.7, 134.5, 133.2, 130.0, 128.0, 121.3, 102.4, 98.6, 95.3, 55.4, 55.4, 52.3, 49.9, 45.7, 40.5, 26.2, 25.7,
21.7. HRMS (ESI+): m/z: calculated for Cy3H26INNaQ,4S: 562.0519 [M+Na]*; found: 562.0507.

(E,R)-)-1-(5',7'-Dimethoxy-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-en-3-yl)-3-
(trimethylsilyl)prop-2-en-1-one 16

A tube was charged with (E)-trimethyl(2-(tributylstannyl)vinyl)silane (59.5 mg,
MeQ 1.50 equiv, 153 umol), Pd(OAc), (2.29 mg, 0.10 equiv, 10.2 umol), Cul (5.83 mg,
0.30 equiv, 30.6 umol), triphenylphosphine (8.02 mg, 0.30 equiv, 30.6 umol), and
11h (55.0 mg, 102 pumol). The tube was flushed with Ar, and degassed THF (1.50
mL) was added. The reactor was sealed, and the system was flushed with CO 3
times, after which the reactor was pressurised to 5 bars. The reactor was placed
in a preheated hot plate and stirred at 50 °C for 16 hours. The reactor was then
removed from the hot plate, and the system was purged with Ar. The reaction
was filtered through a plug of Celite and the reaction mixture was purified by flash column chromatography
(cyclohexane to 1:4 EtOAc/cyclohexane), affording 16 (53.0 mg, 96 %).

1H NMR (500 MHz, CD,Cl,) 6 7.74 — 7.63 (m, 2H), 7.38 — 7.32 (m, 2H), 7.20 — 7.12 (m, 1H), 7.12 — 7.05 (m, 1H),
7.08-7.03 (m, 1H), 6.34 (d, J = 2.6 Hz, 1H), 6.19 (d, J = 2.5 Hz, 1H), 4.17 (d, J = 14.5 Hz, 1H), 3.97 (d, J = 14.5 Hz,
1H), 3.74 (s, 3H), 3.73 (s, 2H), 3.22 = 3.15 (m, 2H), 2.67 (d, J = 12.0 Hz, 1H), 2.58 — 2.47 (m, 1H), 2.42 (s, 3H), 2.50
—2.34 (m, 1H), 2.29 — 2.13 (m, 2H), 1.68 — 1.56 (m, 1H), 1.49 — 1.24 (m, 1H), 0.18 (s, 9H). 3C NMR (126 MHz,
CD,Cl,) & 190.6, 160.2, 159.5, 146.6, 144.5, 139.8, 138.7, 137.9, 135.0, 133.4, 130.3, 128.3, 122.5, 102.9, 98.8,




55.8, 55.7, 52.7, 50.4, 37.4, 30.5, 27.1, 23.6, 21.8, -1.5. HRMS (ESI+): m/z: calculated for CyoH3sNNaOsSSi:
562.2054 [M+Na]*; found: 562.2037.

(R)-5',7'-Dimethoxy-2'-tosyl-2',3a,3',6,7,7a-hexahydro-1'H-spiro[indene-5,4'-isoquinolin]-3(4H)-one (17).

A 1 mL microwave vial was charged with (E)-1-(5',7'-dimethoxy-2'-tosyl-2',3'-dihydro-

1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-en-3-yl)-3-(trimethylsilyl)prop-2-en-1-one
16 (55.0 mg, 102 umol) and CH,Cl, (1.25 mL), which was previously passed through
basic alumina). The solution was cooled to 0 °C and FeCl; (19.8 mg, 1.20 equiv, 122
pumol) was added in one portion. The solution was stirred at 0°C followed by TLC. After
complete consumption of the starting material, the solution was filtered through Celite,
the solvent was removed under vacuum, and the residue was purified by column
chromatography (cyclohexane to 1:4 EtOAc/cyclohexane) affording 17 (37.8 mg, 79%
yield) as a mixture of inseparable diastereoisomers in an 85:15 ratio.

'H NMR (500 MHz, CD:Cl,) & 7.76 — 7.71 (m, 1.70H, Major), 7.68 (dd, J = 5.7, 2.6 Hz, 1H, Major + minor), 7.66 —
7.63 (m, 0.30H, minor), 7.43 — 7.35 (m, 2H, Major + minor), 6.35 (d, J = 2.5 Hz, 0.15H, minor), 6.31 (d, / = 2.5 Hz,
0.85H, Major), 6.16 (d, J = 1.8 Hz, 1H, Major + minor), 6.15 (d, J = 2.2 Hz, 1H, Major+ minor), 4.36 — 4.28 (m, 1H,
Major + minor), 3.90 — 3.81 (m, 1H, Major + minor), 3.78 (s, 0.45H, minor), 3.74 (s, 0.45H, minor), 3.72 (s, 2.55H,
Major), 3.71 (s, 2.55H, Major), 3.50 (dd, /= 11.9, 1.7 Hz, 0.85H, Major), 3.35 (dd, / = 11.9, 1.9 Hz, 0.15H, minor),
3.15-3.07 (m, 0.15H, minor), 2.91 (dddd, J = 14.8, 7.1, 4.8, 2.2 Hz, 0.85H, Major), 2.84 —2.78 (m, 0.15H, minor),
2.59 — 2.51 (m, 1.85H, Major), 2.44 (s, 3H), 2.38 (dd, J/ = 14.8, 8.4 Hz, 0.15H, m), 2.27 — 2.21 (m, 0.15H, minor),
2.09 (ddd, J=14.1, 4.5, 2.9 Hz, 1H, Major + minor), 1.98 — 1.81 (m, 3H, Major + minor), 1.63 (td, /= 13.1, 4.5 Hz,
1H, Major + minor), 1.31 — 1.20 (m, 1H, Major + minor). 3C NMR (126 MHz, CD,Cl,) 6 213.3 (minor), 212.9
(Major), 168.4 (minor), 167.9 (M), 159.6 (Major + minor), 159.4 (Major), 159.3 (minor), 144.6 (Major + minor),
134.4 (minor), 133.9 (Major), 133.6 (Major), 133.4 (Major), 133.1 (minor), 132.3 (minor), 130.4 (Major), 130.3
(minor), 128.3 (Major + minor), 124.6 (Major), 124.3 (minor), 102.7 (minor), 102.5 (Major), 98.6 (Major + minor),
55.8 (Major + minor), 55.6 (Major), 55.5 (minor), 55.3 (minor), 55.2 (Major), 50.1 (minor), 49.7 (Major), 44.2
(minor), 42.3 (minor), 42.1 (Major), 41.7 (Major), 37.2 (minor), 37.0 (Major), 34.3 (Major), 32.7 (minor), 31.4
(minor), 29.3 (Major), 26.6 (Major), 25.2 (minor), 23.3 (minor), 21.8 (Major). HRMS (ESI+): m/z: calculated for
Co6H29NNaOsS: 490.1659 [M+Na]+; found: 490.1653.

8. Experimental mechanistic studies

8.1. Synthesis of pre-activated catalyst (R,R)-A*

Me " SbFe
/// Ph
N

Ph
Ph ! Ph
Ad Ad‘A]\U

Adap 5 =
P-Au-Cl AgSbFg (1.05 equiv) Ad—P

acetonitrile (10 equiv
) CH,Cl,, 23°C, 16 h \

Q) )

Ph
Ph
(RR)-A (R,R)-A*

95%

A solution of AgSbFs (5.95 mg, 0.0173 mmol, 1.05 equiv) in CH,Cl, (0.25 mL) was added to a mixture of complex
(R,R)-A (20.0 mg, 0.0165 mmol) in acetonitrile (8.6 uL, 0.165 mmol, 10 equiv) and CH,Cl, (0.50 mL) under an
atmosphere of Ar. The reaction was stirred at 24 °C for 16 h. The mixture was filtered through a path of Celite,
washed with CH,Cl, and concentrated to yield complex (R,R)-A* (22.7 mg, 0.0156 mmol, 95% yield) as a yellow
solid. M.p. 243-280 °C.

1H NMR (400 MHz, CDCl,) 6 7.73 (s, 1H), 7.68-7.60 (m, 8H), 7.54-7.45 (m, 15H), 7.44-7.38 (m, 4H), 7.21 (s, 1H),
7.05—-6.94 (m, 2H), 6.78 (s, 1H), 6.68 (s, 1H), 5.41 (s, 2H), 2.78 (s, 2H), 2.25 (s, 3H), 2.18 — 1.90 (m, 20H), 1.72 (s,
6H), 1.63 (s, 6H). 13C NMR (101 MHz, CD,Cl,) & 145.7, 144.8, 142.7, 141.4, 134.4, 131.5, 131.2, 129.3, 128.2,
127.8,127.0, 125.4, 124.3,121.6, 114.9, 64.5, 43.2, 42.4, 36.4, 33.3,30.1, 29.2 (d, J = 9.9 Hz), 28.9 (d, J = 9.9 Hz),
2.1.3'P NMR (162 MHz, CD,Cl,) & 62.7. HRMS (ESI+): m/z: calculated for CrH7AuNP: 1176.4906 [M-MeCN-
SbFe]*; found: 1176.4869. [a]o = 74.5° (c = 0.2 in CH,Cl,).



Both the 'H NMR and the *C NMR of (R,R)-A* show broader signals than (R,R)-A.* Nevertheless, the presence
of a single signal at 62.7 in the 3P NMR, downfield shifted with respect to neutral complex (R,R)-A (6 65.3)*

combined with the HRMS, correspond to a cationic species.
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8.2. Deuterated substrate 1a’ and product 5’

Substrate 1a’ was synthesized following the route depicted below which was adapted from different literature
procedures. 1121314

2 b) c)
NaH, (EtO),0P< MeZCuLl
)J\/U\ D,0 6 o CIPO(OEt), O\ o _ (2equiv)
24h, 23°C, _YOEt  EtO,0°C, 2h )\)LOEt Et,0, -50 °C, 16h
two times D D
99% 52%
L|AIH4
EtQO 0°C,
f)
- TMS
[
/ PBrS b
Br Pd(F’F’hs)zC'zv \)\( Et,0, 0 °C, HO\)Y
Cul, NEt;, 23 °C 30 min
0, 0,
93 A’ 60% 58% over 2 steps
1. nBuLi, TMEDA, THF
-78°C t0 23 °C 9)
2. K,CO3 MeOH,
23°C h) 5
r
F NBS, AgNO Z
. A9Ts D(81%)
N Acetone, 23 °C N
84% 1a’

over two steps 76%
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DAD1 D, Sig=230,4 Ref=off
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Time [min]
Signal: DAD1 D, Sig=230,4 Ref=off
RT [min] Type  Width [min] Area Height Area% Name
1.713 BVR 0.0468 217.5327 71.9281 41.9586
1.934 WR 0.0520 300.9135 90.1225 58.0414

Sum 518.4462

8.3. Other cyclization of enynes

Formal cycloisomerization product 18 was not purified since it underwent decomposition in silica gel.

cl cl
Z (R,R)-A* (3 mol%) /
N CH,Cly, 23 °C, 16 h
18
1f 16%, int. std.
Crude 1H NMR in C6D6
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Products 8a, 19*> and 21, have been reported.




When using (R,R)-A* under anhydrous conditions, naphthalene 20 was isolated (flash chromatography in
pentane) (Table 5).

Ph
Ph
Z (RR)-A* (3 mol%) OO
0,
CH,Cl,, 23°C, 24 h + 21 (35%)
AN
7a 20 (37%)

'H NMR (400 MHz, CDCl3) 6 7.88 — 7.75 (m, 3H), .66 (s, 1H), 7.57 — 7.28 (m, 7H), 3.18 (dt, J = 13.7, 6.8 Hz, 1H),
1.24 (d, J= 6.9 Hz, 6H).**C NMR (101 MHz, CDCl3) § 145.3, 142.1, 140.7, 133.2, 131.6, 129.7, 128.8, 128.1, 127.7,
127.4,127.0,125.9, 125.6, 124.1, 29.7, 24.5. HRMS (APCI+): m/z: calculated for CigHio: 247.1481 [M+H]*; found:
247.1481.
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1,6-Enyne S9 reacted in presence of (R,R)-A* in the absence of MeOH to form S10 and naphthalene $12. Because
of the low yield and decomposition of $10 in silica gel it was not possible to measure with precision its er. When
the reaction was carried put in the presence of MeOH, $11 was isolated in 65% isolated yield (preparative TLC
50:1 hexane:EtOAc) and 91:9 er.

Me Me Me
(R,R)-A* (3 mol%),
MeOH
CH,Cl,, 23 °C,

16 h
n MeOH S10 S11 S12
0 6%, ~ 78:22 er / 12%
1 1%, er n.d. 77% (65%), 91:9 er /

Table S5 - The reactions were performed under dry conditions using glovebox solvents. The reported yields were
calculated by 'H NMR integration using 1,1,2,2-tetrachloroethane as internal standard. Isolated yields in
parenthesis. The er were measured on the pure isolated products.
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1-(3-Methylbut-2-en-1-yl)-2-(prop-1-yn-1-yl)benzene (S9)

ZnCl, B
(1.25 equiv), \/Y Ve
Me Pd(PPh3)s Br
Br (0.014 equiv) (1.5 equiv) Z
@E * | | THF, % nBuLi (1.5 equiv)
' MgBr  23°C,24h Me  TMEDA, THF A

51% -78°C o 23°C S9 (86%)

1,6-Enyne S9 was synthesized starting from commercially available 2-bromoiodobenzene: following a literature
procedure?’, 1-bromo-2-(prop-1-yn-1-yl)benzene was obtained in 51% isolated yield. Then, the latter was
subjected to the same conditions used for synthesizing S1-2 (page S5) and S9 was obtained as a transparent oil
in 86% yield after flash column chromatography (200:1 hexane/EtOAc). *H NMR (400 MHz, CDCls) 6 7.36 (d, J =
7.6 Hz, 1H), 7.24-7.14 (m, 2H), 7.10 (td, /= 7.3, 1.9 Hz, 1H), 5.31 (tt, J = 7.3, 1.5 Hz, 1H), 3.49 (d, J/ = 7.4 Hz, 2H),
2.09 (s, 3H), 1.74 (d, J = 2.1 Hz, 6H). 3C NMR (101 MHz, CDCls) § 143.6, 132.7, 132.3, 128.4, 127.8, 125.7, 123.4,
122.8, 89.7, 78.7, 33.1, 25.9, 18.0, 4.7. HRMS (APCl+): m/z: calculated for CiqHi7: 185.1325 [M+H]*; found:
185.1323.
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2-(2-Methoxypropan-2-yl)-3-methyl-1,2-dihydronaphthalene (S11)
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S11

OMe

14 NMR (500 MHz, CeDe) 6 7.05 (tt, J = 7.3, 1.3 Hz, 1H), 6.99 (td, J = 7.3, 1.4 Hz, 1H), 6.96
(s, 1H), 6.98 — 6.88 (m, 1H), 6.31 (d, J = 1.6 Hz, 1H), 3.01 — 2.95 (m, 1H), 2.95 (s, 3H), 2.90
(dd, J = 16.3, 1.9 Hz, 1H), 2.28 (dd, J = 7.9, 1.9 Hz, 1H), 1.98 (d, J = 1.5 Hz, 3H), 0.95 (s, 3H),
0.90 (s, 3H). 13C NMR (126 MHz, CsDs) & 138.8, 135.5, 135.0, 127.2, 126.9, 126.6, 126.3,
125.3, 78.6, 48.4, 46.0, 30.9, 25.5, 23.3, 23.2. HRMS (APCI+): m/z: calculated for CiaHiy:

185.1325 [M-MeOH]*; found: 185.1326. SFC (OJ (3um, 4, 0.3x15 cm), CO, 100, 2 mL/min, 25 °C, 2000 psi; 260
nm): 1.240 min (9), 1.750 min (91); [a]p?® = -157.4° (c = 0.19 in CH,Cl,).
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SFC racemic S11*
CTAE OJ-SFC CO2 100% 2mLmin 2000psi (1mg/ml in MeOH) 18-Oct-2022
AACO01-31_0OJ-SFC_C02_100_03 Sm (Mn, 2x3) Diode Array
1.27
-2 Range: 1.75e-2
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* In the non-stereoselective reaction the 5-exo-dig product was also observed (the other two peaks in
the spectrum) but it could not be separated by column chromatography from the product of 6-endo-
dig cyclization.

SFC enantioenriched S11
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Terminal enyne S$13 was also tested, but as expected,’® it afforded diene S14, together with dimerization
products $15-16 and product S17 when MeOH was added to the reaction mixture, but no trace of
cycloisomerization product S18 was observed.

Z (RR)Aor(RRD (3%) “/< O.’ .

o= MeOH (0-20 equw)
CH,Cl,, 23°C, 24 h

S13 =z
OMe X |

S$17 S18

lodoenyne 1g was not included in this study since, in absence of MeOH, a mixture of 5-exo-dig and 6-endo-dig
cycloisomerization products $19 and S20 which could not be separated by column chromatography.

I (R,R)-A (3 mol%),
AgSbFg (3 mol%
CH,Cl,, 23 °C,
16 h

8.4. Further mechanistic studies

To exclude the possibility that the racemization occur on product 3 after the protodeauration step via a
reversible gold(l) or Brgnsted-acid mediated double bond isomerization,'® we performed the enantioselective
hydroxycyclization of 1a using complex (R,R)-A to form 2g (75:25 er, reaction performed at 23 °C (note that
higher er was obtained at -60 °C, see Table 1, entry 12), followed by alcohol elimination with the Burgess reagent
(see Scheme 3) to afford enantioenriched 3 with the same er (75:25 er). The er of compound 3 remained
unchanged when subjected again to the same alkoxycyclization conditions.



(RR)-A (3 mol%), / Br Burgess reagent / Br (RR)-A (3 mol%),

AgSbFg (3 mol%) (1.4 equiv) AgSbFg (3 mol%)
a s OH 3(75:5¢ern)
CH,Cl,, H,0 (10 equiv) THF, 23°C, 3 h CH,Cl,,
23°C, 24 h 23°C, 24 h
2g (75:5 er) 3 (755 er)

The er of 2a (80:20 er) also remained unchanged when subjected again to the same alkoxycyclization conditions.
Neither 2a nor 3 were formed when 1a was treated with MeSOsH in the presence or absence of MeOH.

Br  MeSO3H (10 mol%)
= MeOH (0 to 1 equiv)

— X 2ao0r3
N CH,Cly, 23°C, 16 h
1a

8.5. Determination of the E-configuration of 2g and 3

Product S22, the Z-isomer of 3, could in principle be formed by an oxidative-cyclometallation to form S21,
followed by elimination.

Br
Al |1}
[Aul, ROH @Eﬁ/:F /
________________ -
CHy CI
23°C, 16 s21 S22

To exclude this scenario, NOESY spectroscopy was run on both enantioenriched 2g (82:18 er) and racemic 3
(51:49 er) formed 1a (Table 3, entry 3). As shown below, NOE correlations confirmed the E-configuration of 2g
and 3.

29 i ) 3
-~ R 82:18 er = 51:49 er
: . -
contact between H and H” contact between H and H”



9. DFT Calculations

9.1. Computational methods
The calculations were performed in Gaussian09.2° The stationary points were characterized by vibrational

analysis. Transition states were identified by the presence of one imaginary frequency while minima by a full set
of real frequencies. The connectivity of the transition states was confirmed by the relaxation of each transition
state towards both previous and next intermediates. All the energies are potential energies (E) and free energies
(G) in solution at 298.15 K and 1 atm in kcal/mol. A data set collection of computational results is available in
the ioChem-BD!!! repository and can be accessed via https://doi.org/10.19061/iochem-bd-1-307.

1-Bromo-1,6-enynes:
DFT was applied using B3LYP?2 using Grimme’s D3 empirical dispersion correction,?®> modelling the solvent

(CH.Cl,) with implicit solvation using the polarisable continuum model.?* Gold was modelled with the Stuttgart-
Dresden basis set and effective core potential,? bromine with LANL2TZ(f)!?®! and all other non-metal atoms

with Pople basis set?”! 6-311+G(d,p). Single-point energy calculations were performed with the 6-311+G(d,p)

basis set for non-metal atoms and SDD basis set and ECP for gold.

1-Bromo-1,5-enynes:
DFT was applied using BP86-D3% that has proved its efficiency in other DFT studies of gold-catalyzed

transformations.?® The SDD basis set and ECP was used to describe Au.? Br atom was described by ECP with the
LANL2DZ basis set.?® Polarization functions were added Br (¢f= 0.428).3° The 6-31G(d) basis set?” was employed
for all remaining atoms (C, H, P, F, and N). Full geometry optimizations were carried out in chlorobenzene,

through an implicit polarizable continuum model (PCM).%*

9.2. Initial cyclizations
The different possible cyclizations of the haloenynes were studied (Schemes S1 and S2), reproducing the

experimentally observed selectivity and confirming trimethylphosphine to be an adequate ligand for the

computational study.
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Scheme S1- Competition between 5-exo-dig and 6-endo-dig barriers with gold(l) bromoenyne complex Al,
consistent with the experimental observations. Free energy in kcal mol?, B3LYP-D3/6-311G+(d,p) + SDD, PCM.



TSC3b
——
;115

~
~

Scheme S2 - Competition between 5-exo-dig and 6-endo-dig barriers with gold(l) chloroenyne complex C1,
consistent with the experimental observations. Free energy in kcal mol?, B3LYP-D3/6-311G+(d,p) + SDD, PCM.

The same pathways were found for the cyclization of substrates bearing Ph (Scheme S3) and Me (Scheme S4)
groups at C1 of the alkyne, showing an increased preference for the 6-endo-dig products, although somewhat

less selective than that seen experimentally.

Scheme S3 - Competition between 5-exo-dig and 6-endo-dig barriers with gold(l) phenylenyne complex B1. Free

energy in kcal mol™.



D1

Scheme S4 - Competition between 5-exo-dig and 6-endo-dig barriers with gold(l) methylenyne complex D1. Free
energy in kcal mol™.

9.3. MeOH clusters

We studied whether MeOH exists as a monomer or as a higher oligomer in CH,Cl,, which could bring non-trivial
changes in pKa due to the solvation of protons. Previous work on the MeOH cluster speciation within MeOH had
found tetramers, hexamers, octamers and tridecamers to be most favored.3! We calculated several neutral and
protonated clusters of MeOH, optimizing with B3LYP/6-31G(d) and running single point calculations with 6-
311+G(d,p), using PCM implicit solvation for CH,Cl, (Schemes S5-57). The results showed that the main neutral
species was monomeric MeOH (m1), while protonation resulted in higher order clusters being favored.
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Scheme S5 - Most stable calculated neutral and protonated MeOH clusters for each molecularity (in CH,Cl,
modelled with PCM). Free energy in kcal mol™.

We used monomeric MeOH m1 as the reference for the neutral alcohol, while [H(MeOH),]*, pm2a, was used as
the simplest stable model as an approximation. Given a high enough concentration of alcohol, all deprotonated
intermediates can be stabilized by a further 3.2 kcal mol? forming pm4Cc. The energies of other disfavored
clusters were also calculated analogously. All energies can be found in Table S12 below and their structures are
available in the data repository.?!
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Scheme S6 - Structures and free energies (kcal mol?) of all studied neutral MeOH clusters.
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Scheme S7 - Structures and free energies (kcal mol?) of all studied protonated MeOH clusters.

When modeling the nucleophilic attack, we found that proton shuttling away from A4 requires a MeOH dimer,
which can occur through immediate dissociation of a protonated MeOH dimer from the cation once a third

MeOH attaches or via intermediates of higher molecularity (Scheme S8), the exact nature of which presumed to
depend strongly on the exact concentration of MeOH.
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Scheme S8 - Formation of the alkoxycyclization product shown with MeOH and its dimer, with the deprotonation
sink modelled as [H(MeOH),]*. Only subsequent protodemetallation is irreversible. Free energies (kcal mol?)

This suggests that the alkoxycyclization needs a larger cluster than the monomer to be attacked productively to
prevent charge build-up on the oxygen (Scheme S5). Modelling A4 with several MeOH clusters showed the dimer
(Adb) to be preferred.
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Scheme S9 - MeOH addition to the bromoenyne carbocation shows the preferred cluster to be the dimer in Adb.
The differences in stability are primarily dependent on entropic contributions. Free energy in kcal mol™.

Analogously to the bromoenynes, the intermediates of chloroenyne alkoxycyclization are also most stable with
a MeOH dimer (Scheme 10).
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Scheme S10 - In the MeOH addition to the chloroenyne carbocation, the preferred cluster was also found to be
the dimer in C4b. Free energy in kcal mol™.

9.4. Discarded racemization pathway (reversible deprotonation)

A reversible deprotonation mechanism was considered for addressing the observed racemization (Scheme S9).
The deprotonation pathway would form strained conjugated diene A7 that could lead to enantiomeric
scrambling by reprotonation TSA7 on the other face of the alkene. TSA7 is a multistep process consisting of
TSpreA7, which leads to high-energy intermediate preA7, and TSA7 which leads to A7. However, several factors
make this mechanism unlikely. Experimentally, the cyclization of deuterated 3-d; did not show any scrambling
or change in isotopic ratio (Scheme 8 in the manuscript), which would not be expected in a reversible proton
exchange mechanism. The barrier TSA7 is 3.1 kcal mol? higher than the direct elimination (TSA6), requiring in
both cases two molecules of MeOH and thus having identical molecularity. In addition, vinylgold(l) A7
constitutes an example of a neutral gold(l) complex and so is subject to protodemetallation: if formed, A7 should
undergo rapid protodeauration, which we had calculated to be barrierless for a neutral intermediate, however,
this product was never observed experimentally. Therefore, A7 would have to be unable to undergo
protodeauration, for which there would be no explanation as the reverse reaction also requires protonated
MeOH. In addition, A8 could be formed under these conditions. Deprotonation TSA9 at the benzylic position
would be significantly more favorable than the reverse reaction (by 8.3 kcal mol?), as both processes require a
MeOH dimer. These results suggest that reversible deprotonations are very unlikely to be the origin of
racemization. In contrast, the 1,2-H shift through TSA8 was found to be favored since it has lower energy barrier
than the deprotonation TSA7 (see Scheme 9 in the manuscript).
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Scheme S11 - Discarded racemization pathway through reversible deprotonation in the bromoenyne
cyclization. Free energy in kcal mol™.

Analogous calculations with the phenylenyne show a similar pattern, with TSB7 being outcompeted by all
alternative productive deprotonations explored in the manuscript. In addition, this pathway is also outcompeted
by alkoxycyclization even in the regime with a low concentration of methanol. As discussed previously,
formation of B8 is irreversible and so does not lead to racemization, instead forming the experimentally
observed isopropylnaphthalene product. These calculations suggest that the main pathway for formation of this
product is not a series of proton transfers but, rather, the 1,2-hydride shift, as is the case for the bromoenynes.



04
N Ph
LAu + H
Ph Me ,
*0- -H-0-
: Me +[H(MeOH),]* OMe
|'._|, TSB7 B5
Me, 1 © o216 LAu /
0--H-O- e ! | L_Ph meon , 210
1 ‘l N}
TSB7-8 ! \ ! /’
1 ] ’
;150 / " 2MeOH  TSB2 13.9
1 \ 1 ‘| LA.
1 1
: — ! ;o116 {
h 96 \ ! Ph
] \ A
- o O
! Ph : Ph K
1
ool
! 1.4 Y
‘ B7 LAU*
I N Ph B4b
-14.2 + [H(MeOH),]
LAu*
Ph B2 N
B1
Bg H

Scheme S12 - Discarded deprotonation pathway in the phenylenyne cyclization. Free energy in kcal mol™?.

9.5. Hidden intermediate

A hidden intermediate was located by IRC analysis of the 1,2-hydride shift TSA2b-8, and the same geometry
appears in the relaxation of TSA2b as a non-stationary geometry. This hidden intermediate is not a downhill
bifurcation point, but an intermediate geometry that relaxes in a barrierless manner, corresponding to the open-
form carbocationic vinylgold(l) complex often found as a full intermediate in enyne cyclizations.
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Scheme S13 - Key hidden intermediate as located in the IRC of the 1,2-hydride shift.

9.6. Alternative fates of Int7



Once formed, intermediate A8 could in principle evolve to several elimination or alkoxycyclized products
(Scheme 7). Deprotonation at the stereogenic center to form diene A7 presents a 24.3 kcal/mol barrier, which
is higher than the reverse shift to give A2b back (21.3 kcal/mol). Nucleophilic attack on the tertiary carbocation
to afford A10 through TSA10 presents a nearly inexistent barrier for MeOH dissociation to form A8 again. Finally,
while the benzylic deprotonation can seem very competitive on first impression, at low enough concentrations
of MeOH in which TSA2b-8 is accessed and entropically favoured, the reversibility of the intramolecular hydride

shift is reasonable.
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9.7. Deuterium labeling
We calculated the 1,2-hydride shift racemization barriers for the deuterium-labelled bromoenyne (Scheme S15).

The AG?, at 16.1 kcal mol?, was 0.8 kcal mol™ higher than with *H, consistent with the slower racemization

observed experimentally.
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Scheme S15 -. Deuterium-labelled 1,2-hydride shift barriers

9.8. Isopropanol attack



The alcohol attack and alcohol-mediated elimination mechanisms were calculated using isopropanol, as a bulkier
and somewhat more basic example (Scheme $16). As also found experimentally (Table 3, in manuscript), less
racemization is expected, as the elimination steps in particular are lower in energy than with MeOH.
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Scheme S$16 - Gold(l)-catalysed alkoxycyclization and cycloisomerization pathways of bromoenyne complex Al
with isopropanol-mediated nucleophilic attack or elimination. Free energy in kcal mol™.

9.9. Additional chloroenyne and methylenyne calculations

The pathways with chloroenyne complex C1 are very similar to those of the bromoenyne, with analogous
conclusions derived from the computational results (Schemes 17-19).
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Scheme S17 - Gold(l)-catalysed 5-exo-dig cyclization of chloroenyne C1 followed by MeOH-mediated
nucleophilic attack/elimination to afford C5 and C6. Free energy in kcal mol™.



Scheme S18 - Discarded racemization pathway through reversible deprotonation in the chloroenyne cyclization

Free energy in kcal mol™.
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Scheme S19 - Pathway of racemization of C2 through a reversible 1,2-H shift alongside outcompeted quenching

pathways that require MeOH. Free energy in kcal mol™.
The evolution of methylenyne complex D1 is analogous to phenylenyne complex B1, with its 1,2-hydride shift

also being irreversible and forming the precursor to an experimentally observed naphthalene product (Scheme

$20). A deprotonation pathway was also found not to be competitive (Scheme S21).
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Scheme S20 - Gold(l)-catalyzed 6-endo-dig cyclization of methylenyne complex B1 followed by MeOH-mediated
nucleophilic attack or elimination. Free energy in kcal mol™.
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Scheme S21 - Discarded deprotonation pathway in the methylenyne cyclization. Free energy in kcal mol™.

9.10. Brgnsted acid catalysis

Silver catalysis or Brgnsted acid catalysis, with varying kinetics, could in principle form racemic products along
the enantioenriched ones from the gold(l)-catalysed pathway. The former was disproven by experiments using
a cationic version of the chiral catalyst, which showed high racemization of the elimination product regardless.
Brgnsted acid involvement has been found in isomerization of gold(l)-catalysed products, and such acidic
protons are well-understood to originate from cationic intermediates such as A2 or A2b.3? It remained unclear



whether these protons could catalyse these same cycloisomerizations as gold(l), potentially explaining the
formation of partially racemic product.

The Brgnsted acid-catalysed cyclization was calculated, displaying low barriers for cyclization (TSA12) and
moderately high barriers for proton transfer to the next enyne (TSA13). Nevertheless, the feasibility of this
catalytic cycle does not depend exclusively on having accessible transition states: the reaction medium can
intercept most of these intermediates. This is because even if all barriers are acceptable for 24 °C processes, all
intermediates in this system are extremely acidic. As a consequence, the presence of traces of water or any
suitable proton shuttles that would be protonated preferentially stop the chain reaction (Scheme S17, pathway
shown in blue) — from the relative energies, even 10 mol% of MeOH (or water) would completely deprotonate
these structures. In addition, proton catalysis would presumably also form the Z isomer of A13, as no major
steric or electronic factors would impede the Z-type reactivity as opposed to gold(l) catalysis; this product was
never found experimentally.
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Scheme S22 - Mechanism of the proton-catalysed cyclization of bromoenynes. In blue, MeOH model for side-
deprotonations. Free energy in kcal mol™.

Similarly, either intermediate A12, other protonated organic fragments, or the protonated traces of MeOH or
water can protodemetallate the catalyst: the process is completely barrierless (Scheme $23). Hence, we
conclude that the Brgnsted acid-catalysed pathway is not competitive under the reaction conditions and cannot
be responsible for the racemization.
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The same pathways were calculated with chloroenynes leading to the same overall mechanistic picture

(Schemes S24-25).
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Scheme S25- Mechanism of the protodemetallation of C6 with the protonated MeOH dimer. C14 has a lower
electronic energy than TSC15. Free energy in kcal mol™.

Even if we ignore entropic contributions and consider the protonated MeOH tetramer to be the real speciation
of the free proton, as the difference in energy between the two MeOH clusters is of only 3.2 kcal mol?, the
greatest overall barrier for the protodemetallation would be of about 0.8 kcal mol? after adding the
predissociation cost for the tetramer. This is an upper bound, however, as it is very likely that the dissociation
of two neutral MeOH molecules can be aided by precoordination to A6. The model presented in Scheme S25 is
therefore our best proposal for protodemetallation in spite of simplifying the MeOH speciation in such a pK;-
sensitive process.

Several protonated intermediates were calculated (Scheme S$26) and their energies collected in the “computed
structures and energies” section below.
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Scheme S$26 -Structures of neutral and protonated haloenynes and of their cyclised products.

9.11.Computed structures and energies

Table S6 - Bromoenyne alkoxycyclizations and eliminations. B3LYP-D3/6-31G(d)+SDD(Au), PCM (CH,Cly); HLT:
B3LYP-D3/6-311+G(d,p)+SDD(Au), PCM (CH-Cl,)

Code E / Hartree G / Hartree Eur / Hartree
Al -1113.13464 -1112.85505 -1113.33394
A3 -1113.16085 -1112.87697 -1113.35242
A3b -1113.14297 -1112.86204 -1113.33814
A2 -1113.15203 -1112.87100 -1113.34666
A2b -1113.15711 -1112.87231 -1113.35191
A4 -1228.89794 -1228.56056 -1229.13569
Adb -1344.65133 -1344.26485 -1344,93511
Adc -1460.39336 -1459.95976 -1460.72359
A4d -1576.14378 -1575.65734 -1576.51668
A6 -1112.73494 -1112.46477 -1112.93629
A8 -1113.16513 -1112.88273 -1113.35902
A10 -1228.89361 -1228.55740 -1229.13103

preA7 -1344.61378 -1344.23986 -1344.90405
A7 -1112.73530 -1112.46582 -1112.93477
A9 -1112.74134 -1112.47004 -1112.94073
A5 -1228.48931 -1228.16490 -1228.72711
Al4 -1344.63822 -1344.25738 -1344.93044
Al15 -1113.19126 -1112.90672 -1113.38766

TSA2 -1113.12555 -1112.84759 -1113.32251

TSA2b -1113.14676 -1112.86582 -1113.34196

TSA6 -1344.61714 -1344.24224 -1344.90804

TSbA6 -1344.61393 -1344.24070 -1344.90529

TSA2b-8 -1113.12629 -1112.84641 -1113.32258

TSA10 -1228.89154 -1228.55600 -1229.13003




TSA7-8 -1344.60842 -1344.23315 -1344.89776
TSA9 -1344.62047 -1344.24575 -1344.91058
TSA3 -1113.11694 -1112.83725 -1113.31510
TSA3b -1113.11387 -1112.83520 -1113.31128
TSA15 -1344.63477 -1344.26039 -1344.92535
TSpreA7 -1344.61275 -1344.23918 -1344.90365
TSA7 -1344.61311 -1344.23834 -1344.90298
A2b-D -1113.15711 -1112.87585 -1113.35191
A8-D -1113.16513 -1112.88630 -1113.35902
TSA2b-8-D -1113.12629 -1112.84871 -1113.32258
preA7ipr -1501.90603 -1501.42256 -1502.23841
Adipr -1307.54328 -1307.15276 -1307.80304
TSAZipr -1501.90518 -1501.42174 -1502.23782
TSpreAZipr -1501.90382 -1501.42212 -1502.23722
TSA6bipr -1501.90414 -1501.42030 -1502.23777
TSAGipr -1501.90939 -1501.42551 -1502.24222
TSA7-8ipr -1501.89894 -1501.41483 -1502.23054
A8jp -2236.44404 -2235.65179 -2236.91715
TSA2b-8jp -2236.40323 -2235.61477 -2236.87892
TSA6jp -2467.89165 -2467.00786 -2468.46303

TSA9jp -2467.89839 -2467.01455 -2468.46810

Table S7 - Protonated bromoenyne intermediates and Brgnsted acid-mediated transition states. B3LYP-D3/6-

31G(d) + SDD(Au), PCM (CH,Cl,); HLT: B3LYP-D3/6-311+G(d,p) + SDD(Au), PCM (CH,Cl,)

Code E / Hartree G / Hartree Eur / Hartree
Al6 -516.31696 -516.14242 -516.45851
Al17 -516.72082 -516.53590 -516.85712
All -516.72827 -516.54188 -516.86144




A18 -516.37653 -516.19633 -516.51479
A19 -516.79350 -516.60236 -516.92398
A20 -516.73515 -516.54532 -516.86982
A18b -516.37763 -516.19733 -516.51546
A19b -516.79434 -516.60182 -516.92502
Al12 -516.78248 -516.59236 -516.91401
TSA12 -516.72587 -516.53840 -516.85840
TSA13 -1033.10169 -1032.71809 -1033.37085
TSbA13 -748.25503 -747.96901 -748.48143

Table S8- Phenylenyne alkoxycyclizations and eliminations. B3LYP-D3/6-31G(d) + SDD(Au), PCM (CH,Cl,); HLT:
B3LYP-D3/6-311+G(d,p) + SDD(Au), PCM (CH-Cl,)

Code E / Hartree G / Hartree Enwr / Hartree
B1 -1331.64504 -1331.27826 -1331.90458

B3 -1331.64125 -1331.27105 -1331.89583

B2 -1331.65775 -1331.28456 -1331.90880
B2b -1331.63523 -1331.26629 -1331.89011
B8 -1331.67977 -1331.30850 -1331.93166

B4 -1447.37601 -1446.95076 -1447.67393
B4b -1563.13038 -1562.65696 -1563.47366
B6_cisoid -1331.21994 -1330.86035 -1331.48095
B6_transoid -1331.22127 -1330.86192 -1331.48298
B7 -1331.22638 -1330.86796 -1331.48606

B5 -1446.96615 -1446.55378 -1447.26415
TSB3 -1331.62799 -1331.26163 -1331.88449
TSB2 -1331.63013 -1331.26334 -1331.88611
TSB2b -1331.62457 -1331.25726 -1331.88005
TSB2b-8 -1331.62122 -1331.25306 -1331.87751




TSB6 cisoid -1563.10236 -1562.63992 -1563.45354
TSB6 transoid -1563.10346 -1562.64033 -1563.45480
TSbB6 -1563.09951 -1562.63848 -1563.44953
TSB7-8 -1562.11162 -1562.64878 -1563.46140
TSB7 -1563.10227 -1562.63887 -1563.45150

Table S9 - Chloroenyne alkoxycyclizations and eliminations. B3LYP-D3/6-31G(d)+SDD(Au), PCM (CH,Cly); HLT:
B3LYP-D3/6-311+G(d,p)+SDD(Au), PCM (CH-Cl,)

Code E / Hartree G / Hartree Enwr / Hartree
C1 -1560.14643 -1559.86888 -1560.37830

c3 -1560.18199 -1559.89613 -1560.40628
C3b -1560.16403 -1559.88029 -1560.39169
c2 -1560.17308 -1559.88862 -1560.40030
C2b -1560.17286 -1559.88678 -1560.40026
ca -1675.91807 -1675.57925 -1676.18875
Cab -1791.67123 -1791.28355 -1791.98796
Cac -1907.41313 -1906.97808 -1907.77634
cad -2023.16365 -2022.67571 -2023.56949
C6_cisoid -1559.75412 -1559.48183 -1559.98850
C6_transoid -1559.75482 -1559.48245 -1559.98881
c8 -1560.18681 -1559.90162 -1560.41331
C10 -1675.91375 -1675.57617 -1676.18426
c7 -1559.75527 -1559.48331 -1559.98782

c9 -1559.76242 -1559.48939 -1559.99477

C5 -1675.50909 -1675.18282 -1675.77993
ci4 -1791.65686 -1791.27443 -1791.98223
C15 -1560.21018 -1559.92433 -1560.43908
TSC2 -1560.14277 -1559.86317 -1560.37236




TSC2b -1560.16750 -1559.88431 -1560.39539
TSCé -1791.63640 -1791.25956 -1791.96037
TSbC6 -1791.63343 -1791.25962 -1791.95780
TSC2b-8 -1560.14674 -1559.86547 -1560.37569
TSC10 -1675.91278 -1675.57558 -1676.18394
TSC7-8 -1791.63036 -1791.25372 -1791.95271
TSC9 -1791.64228 -1791.26483 -1791.96524
TSC3 -1560.13509 -1559.85529 -1560.36582
TSC3b -1560.13246 -1559.85246 -1560.36249
TSC15 -1791.65321 -1791.27806 -1791.97682
TSC7 -1791.63207 -1791.25345 -1791.95430

Table S10 - Protonated chloroenyne intermediates and Brgnsted acid-mediated transition states. B3LYP-D3/6-
31G(d) + SDD(Au), PCM (CH,Cl,); HLT: B3LYP-D3/6-311+G(d,p) + SDD(Au), PCM (CH,Cl,)

Code E / Hartree G / Hartree Enwr / Hartree
Cie -963.33602 -963.15979 -963.50938
C17 -963.73963 -963.55263 -963.90782
C11 -963.74652 -963.55842 -963.91134
C18 -963.39829 -963.21625 -963.56847
C19 -963.81138 -963.61815 -963.97405
Cc20 -963.75392 -963.56475 -963.92030

C18b -963.39948 -963.21746 -963.56929

C19%b -963.81198 -963.61738 -963.97495
Ci12 -963.80394 -963.61202 -963.96737

TSC12 -963.74527 -963.55611 -963.90954

TSC13 -1927.14080 -1926.75340 -1927.47410

TSbC13 -1195.27656 -1194.98874 -1195.53486




Table S11- Methylenyne alkoxycyclizations and eliminations. B3LYP-D3/6-31G(d)+SDD(Au), PCM (CH,Cl); HLT:
B3LYP-D3/6-311+G(d,p)+SDD(Au), PCM (CH-Cl,)

Code E / Hartree G / Hartree Enwr / Hartree
D1 -1139.89809 -1139.58126 -1140.11037

D3 -1139.89339 -1139.57114 -1140.09979

D2 -1139.91008 -1139.58564 -1140.11405
D2b -1139.88461 -1139.56456 -1140.09218

D8 -1139.93143 -1139.60784 -1140.13669

D4 -1255.62729 -1255.24846 -1255.87768
D4b -1371.38163 -1370.95431 -1371.67760
D6_cisoid -1139.47123 -1139.16037 -1139.68441
D6_transoid -1139.47432 -1139.16448 -1139.68781
D7 -1139.47544 -1139.16614 -1139.68769

D5 -1255.21765 -1254.85216 -1255.46802
TSD3 -1139.88036 -1139.56214 -1140.08883
TSD2 -1139.88003 -1139.56107 -1140.08910
TSD2b -1139.87572 -1139.55626 -1140.08435
TSD2b-8 -1139.87139 -1139.55275 -1140.08015
TSD6 cisoid -1371.35259 -1370.93902 -1371.65597
TSD6 transoid -1371.35520 -1370.94143 -1371.65866
TSbD6 -1371.35143 -1370.93871 -1371.65372
TSD7-8 -1371.36185 -1370.94787 -1371.66429
TSD7 -1371.35291 -1370.93952 -1371.65521

Table S12- MeOH and isopropanol clusters, neutral and protonated. B3LYP-D3/6-31G(d) + SDD(Au), PCM
(CH,Cl,); HLT: B3LYP-D3/6-311+G(d,p) + SDD(Au), PCM (CH,Cl;). MeOH clusters named as (p)mNX, where p =

protonated, N = number of MeOH units, X is a specific conformation or bonding arrangement.

Code E / Hartree G / Hartree Eucr / Hartree
iPrOH -194.36003 -194.27882 -194.43549
H(iPrOH)2 -389.15998 -388.96869 -389.29922




ml -115.71753 -115.68892 -115.77095
m2a -231.44894 -231.37568 -231.55089
m3Aa -347.18581 -347.06447 -347.33398
m3Ab -347.18621 -347.06409 -347.33379
m3Ba -347.19120 -347.06844 -347.33560
m4Aa -462.91964 -462.75266 -463.11603
m4Ab -462.91704 -462.75296 -463.11435
méAc -462.92175 -462.75309 -463.11616
m4Ad -462.92134 -462.75161 -463.11660
m4Ae -462.91962 -462.75287 -463.11618
m4Ba -462.92093 -462.74893 -463.11537
m4Ca -462.93417 -462.76548 -463.12630
m4Cb -462.93455 -462.76452 -463.12622
m4Cc -462.93485 -462.76428 -463.12651

mé6 -694.40525 -694.14719 -694.69483
pml -116.11177 -116.07015 -116.16045
pm2a -231.86924 -231.78377 -231.96507
pm2b -231.86908 -231.78287 -231.96504

pm3Aa -347.61601 -347.48003 -347.75928
pm3Ab -347.61657 -347.48011 -347.75989
pm3Bal -347.61374 -347.48034 -347.75549
pm3Ba2 -347.61320 -347.47791 -347.75495
pm4Aal -463.35503 -463.17494 -463.54641
pm4Aa2 -463.34621 -463.16431 -463.53760
pm4Abl -463.35576 -463.17747 -463.54614
pm4Ab2 -463.35748 -463.17519 -463.54711
pmiAcl -463.35554 -463.17566 -463.54653
pm4Ac2 -463.34644 -463.16171 -463.53742




pm4Adl -463.35676 -463.17462 -463.54672
pm4Ad2 -463.32905 -463.14892 -463.52242
pmé4Ael -463.35834 -463.17867 -463.54821
pm4Ba -463.34349 -463.16137 -463.53559
pm4cCa -463.36402 -463.17992 -463.55165
pm4Cb1l -463.36299 -463.17870 -463.55030
pm4Cb2 -463.36399 -463.18046 -463.55162
pm4Cc -463.36431 -463.18178 -463.55191
pm6 -694.84076 -694.56696 -695.12572
10. NMR spectra, SFC and HPLC traces
1-(Chloroethynyl)-2-(3-methylbut-2-en-1-yl)benzene (1f)
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1-(lodoethynyl)-2-(3-methylbut-2-en-1-yl)benzene (1g)
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(E)-1-(Bromoethynyl)-2-(3,7-dimethylocta-2,6-dien-1-yl)benzene (1h)
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(1-Bromo-7-methyloct-6-en-1-yne-4,4-diyldisulfonyl)dibenzene (1i)
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(S,E)-1-(Bromomethylene)-2-(2-methoxypropan-2-yl)-2,3-dihydro-1H-indene (2a)
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HSQC

HSQC 1H-13C
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DAD1 D, Sig=230,4 Ref=off
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(S,E)-1-(Bromomethylene)-2-(2-ethoxypropan-2-yl)-2,3-dihydro-1H-indene (2b)
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SFC racemic 2b

DAD1 B, Sig=254,4 Ref=off
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SFC enantioenriched 2b
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Sum 877.9016



(S,E)-1-(Bromomethylene)-2-(2-isopropoxypropan-2-yl)-2,3-dihydro-1H-indene (2c)
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SFC racemic 2¢
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SFC enantioenriched 2c

[CTAE IG CO2-IPA 97:3 2mLmin 2000psi (1mg/ml in MoOH)
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239

2.0e-2

1.8e-24

1.6e-2

1.4e-23

1.2e-27

AU

1.0e-2-

8.0e-37

6.0e-37

4.0e-37

2.0e-37

0.0

Time Height
214
239

2722
18340

12-Jul-2023|
Diode Array

290)

Range: 2.288e-2|
Area  Area’:
146.96 9.90¢
1336.93  90.10

-0.00

S69



(S,E)-2-(2-(Allyloxy)propan-2-yl)-1-(bromomethylene)-2,3-dihydro-1H-indene (2d)
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SFC racemic 2d

DAD1 B, Sig=254,4 Ref=off

x10 2 |
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2.5
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o
1.754
> 1.54
£1.251
1-
0.75-
0.54
0.25-

oMN——r-—-
-0.25
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1.62
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0 010203 04 0506070809 1 1.1 12 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 22 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Time [min]
Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type  Width [min] Area Height Area% Name
1.620 VR 0.0456 530.4476 181.3040 49.2463
1911 WR 0.0592 546.6832 138.2796 50.7537

Sum  1077.1307

SFC enantioenriched 2d

DAD1 B, Sig=254,4 Ref=off

x10 2
3.5

2.5

1411

541 827

o N W—-\
-0.57

0 01 02 03 0.4 0.5 06 07 0.8 0.9 1 11 12 1.3 14 15 16 1.7 1.8 1.9 2 21 22 23 2.4 25 2.6 2.7 28 29 3

Time [min)
Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1411 VB 0.0482 446.4383 145.8975 88.1009
1.627 WR 0.0457 60.2970 20.5658 11.8991

Sum 506.7353



(S,E)-2-(2-(Benzyloxy)propan-2-yl)-1-(bromomethylene)-2,3-dihydro-1H-indene (2e)
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SFC racemic 2e

DAD1 B, Sig=254,4 Ref=off

x10 21

0.9
0.8
0.7
0.6
0.5
2 041
£ 0.34
0.2
0.1

1.336

1.611

-0.11
-0.24
-0.34
-0.44

22 24 26 28 3 32 34 36 38 4 42 44 46 48 5
Time [min]

[

0 02 04 06 08 1 12 14 16 18

Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type  Width [min] Area Height Area% Name
1.336 BB 0.0321 152.2652 73.5601 50.3723
1.611 BB 0.0380 150.0143 61.3826 49.6277
Sum 302.2795

SFC enantioenriched 2e

DAD1 B, Sig=254,4 Ref=off

x10 27 ~
2.4 X
2.2
2
1.8
1.6
1.4
5 1.2
g
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0.2
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:4—1.541

-0.64+— — ’ — r — . — r ’
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 5
Time [min]

Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.274 BVR 0.0306 470.5033 237.3411 88.0987
1.541 VWR 0.0390 63.5606 251775 11.9013
Sum 534.0639



(S,E)-1-(Bromomethylene)-2-(2-(2,2,2-trifluoroethoxy)propan-2-yl)-2,3-dihydro-1H-indene (2f)
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Br

OCH,CF3

2f

-74.06

DAD1 B, Sig=254,4 Ref=off

T T
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SFC racemic 2f

T T
-160 -170 -180 -190

x10 2|
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221
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141
2121 3 2
1 T v
0.8
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0.4-
021
o]
021
041
0 010203 040506070808 1 1112 1.3 1.4 1.5 16 1.7 1.8 1.9 2 2.1 22 2.3 2.4 25 26 27 28 29 3
Time [min]
Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type  Width [min] Area Height Area% Name
1.188 VWR 0.0518 279.5270 81.9931 50.6221
1.539 VBR 0.0484 272.6572 87.4622 49.3779
Sum 552.1842




SFC enantioenriched 2f

DAD1 B, Sig=254,4 Ref=off
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0 01020304 0506070809 1 11 1.2 1.3 1.4 15 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 29 3

Time [min]
Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type  Width [min] Area Height Area% Name
1.204 BVR 0.0569 729.3004 193.9670 60.9740
1.605 BB 0.0546 466.7832 132.4602 39.0260

Sum  1196.0836



(S,E)-2-(1-(Bromomethylene)-2,3-dihydro-1H-inden-2-yl)propan-2-ol (2g)
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DAD1 B, Sig=254,4 Ref=off

2 (ppm)

SFC racemic 2g
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0
-0.25+ w

-0.5

"0 02 04 06 08 1
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Time [min]
Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.262 VBR 0.0388 687.6851 274.1008 50.1711
2.736 BVR 0.0748 682.9933 142.7814 49.8289

Sum  1370.6783

1 (ppm)



DAD1 B, Sig=254,4 Ref=off

SFC enantioenriched 2g
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Signal: DAD1 B, Sig=254,4 Ref=off
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Sum 854.7176
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(S,E)-1-(Bromomethylene)-5-methoxy-2-(2-methoxypropan-2-yl)-2,3-dihydro-1H-indene (2h)
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DAD1 B, Sig=254,4 Ref=off

SFC racemic 2h

x10 24
4—
3.5
3- [yl
w
2.54 b ©
D 8
T 7 v
1.54
1-
0.5
P
0.5
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 5
Time [min]
Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type  Width [min] Area Height Area% Name
1.163 VW R 0.0327 4447247 210.4368 49.4931
1.388 BVR 0.0404 453.8337 171.4258 50.5069
Sum 898.5584
SFC enantioenriched 2h
DAD1 B, Sig=254,4 Ref=off
x10 27
3.5 -
o =
2.5
5 2
P
3
1 pE
0.5
o+
.0A5-
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 5
Time [min]
Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type  Width [min] Area Height Area% Name
1.161 BVR 0.0313 131.1040 64.2472 14.4480
1418 BVR 0.0443 776.3168 271.9676 85.5520
Sum 907.4209




(S,E)-1-(Bromomethylene)-2-(2-methoxypropan-2-yl)-5-(trifluoromethyl)-2,3-dihydro-1H-indene (2i)
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SFC enantioenriched 2i
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(S,E)-1-(Bromomethylene)-2-((S)-2-methoxy-6-methylhept-5-en-2-yl)-2,3-dihydro-1H-indene (2j)
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DAD1 B, Sig=254,4 Ref=off

SFC racemic 2j

x10 2 |

3.5
34
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0 W
0.5+

22 24 26 28 3

32 34 36 38 4 42 44 46 48

5

0 02 04 06 08 1 12 14 16 18 2
Time [min]
Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.671 VWR 0.0590 622.3201 163.2508 51.5372
2502 WR 0.0821 585.1961 107.3694 48.4628
Sum  1207.5162
SFC enantioenriched 2j
DAD1 B, Sig=254,4 Ref=off
x10 2 1
3.257
3-
2.754
2.5
2.25
27 w
51.757 &
E 1.5 o
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0.5 s
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; X
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0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 5
Time [min]
Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.461 BVR 0.0536 441781 12.5472 5.5459
2275 WR 0.0888 752.4136 131.5023 94.4541
Sum 796.5916




(S,E)-1-(Bromomethylene)-2-((R)-1-methoxy-1-phenylethyl)-2,3-dihydro-1H-indene (2k)
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DAD1 E, Sig=280,4 Ref=off

SFC racemic 2k

x102_
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Time [min]
Signal: DAD1 E, Sig=280,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.973 MM 0.0448 145.1981 54.0087 50.0545
2.832 BVR 0.0754 144.8820 29.7123 49.9455
Sum 290.0801
SFC enantioenriched 2k
DAD1 E, Sig=280,4 Ref=off
x10 2 |
3-
2.5
2-
=)
T 1.5
1 -
g 2
0.5 o —’IA
o-‘/\ﬁ..—.—————._J J
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0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 5
Time [min]
Signal: DAD1 E, Sig=280,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
2.609 VBR 0.0471 69.5686 23.4877 18.1249
3.641 MM 0.1190 314.2608 44,0196 81.8751
Sum 383.8294




(S,E)-1-(Chloromethylene)-2-(2-methoxypropan-2-yl)-2,3-dihydro-1H-indene (2I)
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SFC racemic 2l

DAD1 B, Sig=254,4 Ref=off
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Time [min]
Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.100 WR 0.0432 508.6760 176.0486 49.8670
1.232 WR 0.0433 511.3888 176.6477 50.1330

Sum  1020.0648

SFC enantioenriched 2l
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Time [min]
Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.115 BV 0.0440 627.5121 218.5681 75.6597
1.256 VB 0.0436 201.8750 70.0255 24.3403

Sum 829.3872



(S,E)-1-(lodomethylene)-2-(2-methoxypropan-2-yl)-2,3-dihydro-1H-indene (2m)
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DAD1 E, Sig=280,4 Ref=off

SFC racemic 2m
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SFC enantioenriched 2m
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Signal: DAD1 E, Sig=280,4 Ref=off
RT [min] Type Width [min] Area Height
1.367 VW R 0.0376 919.1964 381.2606
1.530 WR 0.0403 64.7817 24.5299
Sum 983.9781
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(S,E)-2-(2-(Benzyloxy)propan-2-yl)-1-(iodomethylene)-2,3-dihydro-1H-indene (2n)
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SFC racemic 2n

DAD1 C, Sig=210.4 Ref=off
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Time [min]

DAD1 C, Sig=210,4 Ref=off

RT [min] Type  Width [min] Area Height Area% Name
3.135 WR 0.0715 212.7444 459451 495155
3470 VR 0.0805 216.9075 42.1637 50.4845

Sum 429.6520

SFC enantioenriched 2n
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RT [min] Type  Width [min] Area Height Area% Name
3.136 VWWR 0.0717 241.2574 52.4436 84.9553
3.471 BB 0.0706 42.7241 8.5720 15.0447

Sum 283.9815
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(R,E)-3-(Bromomethylene)-4-(2-methoxypropan-2-yl)-1-tosylpyrrolidine (20)
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SFC racemic 20

DAD1 C, Sig=210,4 Ref=off
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Time [min]
Signal: DAD1 C, Sig=210,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.590 BV R 0.0604 282.8968 71.0692 51.4705
2.015 BVR 0.0717 266.7324 54.8527 48.5295

Sum 549.6292

SFC enantioenriched 20

DAD1 C, Sig=210,4 Ref=off
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Signal: DAD1 C, Sig=210,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.584 BVR 0.0561 974.7511 266.7286 87.1384
2.022 WR 0.0658 143.8736 33.3962 12.8616
Sum 1118.6247



(S,2)-(3-(Bromomethylene)-4-(2-methoxypropan-2-yl)cyclopentane-1,1-disulfonyl)dibenzene (2p)
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SFC racemic 2p

DAD1 D, Sig=230,4 Ref=off
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Signal: DAD1 D, Sig=230,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.020 VBR 0.0404 210.1210 80.5557 49.9835
1411 BVR 0.0631 210.2595 52.1287 50.0165

Sum 420.3805

SFC enantioenriched 2p
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Signal: DAD1 D, Sig=230,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.057 VW R 0.0389 98.8730 39.8901 11.3444
1.433 MM 0.0656 772.6818 196.4503 88.6556

Sum 871.5547



(R,E)-1-(Bromomethylene)-2-(prop-1-en-2-yl)-2,3-dihydro-1H-indene (3)

€91
ST
vS'T
vS'T
SS'T
(344
0s'¢
£€5°C
L4x4
18°C
68°C
16°C
€6°C

99°¢
99°¢
99°¢
99°¢
L9°€
L9°¢
89°¢
89°¢
89°¢
69°¢
69°€
69°€

8LV
8LV
6LV
6LV
6LV
6%
6%
06y
67
6'v
6y
€6'Y

Br

=86'C

Firt

Fort

Fco1

ES0T
Fe601

00T |

Fozv |

3.0

4.0 3.5

4.5

5.5

6.0

f1 (ppm)

g9

86T —

§LE—

YIS —

9'00T—

8T —
S'02T~_

JAT4N
H.NNH#

1021

0621

TorT—
6'vPT~_
SSET—
PerT~

Br

UL L

-10

f1 (ppm)



NOESY

NOESY

Br >0

— =P -
=
I P

F7.4
7.6
7.8
8.0
8.2
8.0 7‘9 7TS 7‘7 7‘6 7.5 7I4 7‘3 7T2 7.1 7?0 6?9 6I8 6T7 ETB GTS 6?4 6I3 ETZ ETI 6?0 STQ SI& 5T7 5T6 STS
2 (ppm)
SFC racemic 3
DAD1 B, Sig=254,4 Ref=off
x10 2
3.5
a-
2.5
2-
=2
<
E 1.57 N o
S @
14 - -
0.5- M
0 M- W
0'5- T T T T T T T T T T T T T T T T T T T T T T T T T
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 5
Time [min]
Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.422 BVR 0.0471 225.9430 75.0482 49.6106
1.602 BB 0.0476 229.4896 75.2020 50.3894
Sum 455.4326

1 (ppm)



SFC enantioenriched 3

DAD1 B, Sig=254,4 Ref=off
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Signal: DAD1 B, Sig=254,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.586 VW R 0.0419 303.9811 113.0646 9.0624
1.768 BB 0.0450 3050.3433 1061.5714 90.9376
Sum  3354.3244



Methyl (S, E)-2-(2-(2-(Benzyloxy)propan-2-yl)-2,3-dihydro-1H-inden-1-ylidene)acetate (4)
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DAD1 C, Sig=210,4 Ref=off

SFC racemic 4
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Signal: DAD1 C, Sig=210,4 Ref=off
RT [min] Type  Width [min] Area Height Area% Name
1797 WR 0.0556 212.1956 58.8028 499619
2608 VWR 0.0800 2125193 41.7036 50.0381
Sum 4247149
SFC enantioenriched 4
DAD1 C, Sig=210,4 Ref=off
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Signal: DAD1 C, Sig=210,4 Ref=off
RT [min] Type  Width [min] Area
1.791 BB 0.0556 93.5834
2600 VBR 0.0801 521.9662
Sum 615.5496
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(S,E)-2-((2-(2-Methoxypropan-2-yl)-2,3-dihydro-1H-inden-1-ylidene)methyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (5)
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SFC racemic 5

DAD1 E, Sig=280,4 Ref=off
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Signal: DAD1 E, Sig=280,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.194 WR 0.0688 144.6492 31.6625 50.1572
1.502 BVR 0.0831 143.7427 25.3527 49.8428

Sum 288.3919

SFC enantioenriched 5

DAD1 E, Sig=280,4 Ref=off
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Signal: DAD1 E, Sig=280,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.191 WR 0.0702 356.9990 74.0853 88.8881
1512 WE 0.0906 44.6285 6.6658 11.1119
Sum 401.6274



(S,E)-1-Benzylidene-2-(2-methoxypropan-2-yl)-2,3-dihydro-1H-indene (6)
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SFC racemic 6

DAD1 C, Sig=210,4 Ref=off
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Signal: DAD1 C, Sig=210,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.309 BB 0.0358  1201.8523 523.4111 49.9934
1.556 BV R 0.0431 1202.1703 436.7412 50.0066

Sum 2404.0226
SFC enantioenriched 6

DAD1 C, Sig=210,4 Ref=off
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Signal: DAD1 C, Sig=210,4 Ref=off
RT [min] Type Width [min] Area Height Area% Name
1.299 VWR 0.0362 24.7660 10.6177 10.0563
1.542 BVR 0.0420 221.5067 82.1018 89.9437
Sum 246.2727



N-(3,5-Dimethoxybenzyl)-2-nitrobenzenesulfonamide (S4)
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N-(3,5-Dimethoxybenzyl)-4-(trifluoromethyl)benzenesulfonamide (S5)
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N-(3,5-Dimethoxybenzyl)-4-fluorobenzenesulfonamide (S6)
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4-Methyl-N-(3,4,5-trimethoxybenzyl)benzenesulfonamide (S7)
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N-(2-(3,5-Dimethoxyphenyl)propan-2-yl)-4-methylbenzenesulfonamide (S8)
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N-(6-Bromo-2-methylenehex-5-yn-1-yl)-N-(3,5-dimethoxybenzyl)-2-nitrobenzenesulfonamide (9b)
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N-(6-Bromo-2-methylenehex-5-yn-1-yl)-N-(3,5-dimethoxybenzyl)-4-(trifluoromethyl)benzenesulfonamide
(9¢)
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N-(6-Bromo-2-methylenehex-5-yn-1-yl)-N-(3,5-dimethoxybenzyl)-4-fluorobenzenesulfonamide (9d)

80C
oLe
cle
ozce

Lee

e
e
vee
vee

er'e

cLEN

€L'e
LY —
987

98'v
[4o74
Nm.w\.

€€9—

e~
ees/
[7VANS
v

=¥0T
20T
=90'¢

€0¢C
4 6L9
A

80°¢

=00C

£80C

FL07C

L0

-1.

10 05 0.0 -05

1.5

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20

f1 (ppm)

6L'8L—

09'Le—
8L'8€—
2oL~

vzes
Yr'es

[l

reL—

86'66—
65'90L—

0G'GLL
_.m.m:‘eW
vSoLL

Le'6clL

oo.om_.v.
€L9EL~
L6'LEL
85'LyL"

66'09L~
98'€9l—
6E99L"

s

Jl

-3

I
Br
AT

9d

/
(e}
OMe

Y

MeO

0

20

30

210 200

-10

10

180 170 160 150 140 130 120 1O 100 90 80 70 60 50 40
1 (ppm)

190



105.49

7 N
MeO H
Br
OMe
9d
[ ——
T T T T T T T T T T T T T T T T T T T
-0 -20 -30 -40 -50 -60 -70 -80 -90 -100 -1M0 -120 -130 -140 -150 -160 -170 -180 -190

1 (ppm)



N-(6-Bromo-2-methylenehex-5-yn-1-yl)-N-(2-(3,5-dimethoxyphenyl)propan-2-yl)-4-
methylbenzenesulfonamide (9e)
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N-(6-Bromo-2-methylenehex-5-yn-1-yl)-4-methyl-N-(3,4,5-trimethoxybenzyl)benzenesulfonamide (9f)
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N-(6-Bromo-2-methylenehex-5-yn-1-yl)-N-(furan-3-ylmethyl)-4-methylbenzenesulfonamide (9g)
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(R)-3-Bromo-5',7'-dimethoxy-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-ene (10a)

MeO

10a SFC racemic 10a

Sample Info : IA, 1 ml/min

Hex:IPA= 90:10
GZ-03-0317-rac

DAD1 G, Sig=280,10 Ref=off (CA\HPCHEM\2\DATA\GIUSEPPEWMIGUEL 2020-01-15 14-49-52\GZ-03-0317-RAC.D)
mAU
120
100 §
80 &
60
40
20
0 1 T
T T T T T T T T T T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 min
Peak RetTime Type Width Area Height Area
# [min] [min] [mMAU*s] [mAU] %
1 12.506 BB 0.2751 2546.47070 140.76143 49.9015
2 21.260 BB 0.5148 2556.52368 72.60278 50.0985
Totals : 5102.99438 213.36421
SFC enantioenriched 10a
Sample Info : IA, 1 ml/min
Hex:IPA= 90:10
GZ-03-0318
DADT G, Sig=280,10 Ref=off (C\HPCHEM\2\DATA\GIUSEPPEMIGUEL 2020-01-15 07-58-20\GZ-03-0317.D)
mAU b
303
253
20
154
53 g
04 AN
0 5 10 15 20 min|
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
1 13.243 BB 0.2859 674.56195 35.78954 91.6345
2 23.388 BB 0.4426 61.58186 2.02616 8.3655

Totals : 736.14381 37.81570



(R)-3-Bromo-5',7'-dimethoxy-2'-((2-nitrophenyl)sulfonyl)-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-

isoquinolin]-3-ene (10b)
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Sample

SFC racemic 10b

Info : IB, 1 ml/min
Hex:IPA= 80:20
GZ-04-0074-rac

DAD1 A, Sig=220,10 Ref=off (CAHPCHEM\2\DATA\GIUSEPPEWIGUEL 2020-09-01 15-12-12\GZ-04-0074-RAC.D)

mAU
200 §
150
100
50
0 - A~
0 2 &4 & 8 " do 42 14 16 “min}
Signal 1: DAD1 A, Sig=220,10 Ref=off
Peak RetTime Type Width Area Height Area
# [min] [min] [mMAU*s] [mAU] %
1 11.689 BB 0.2605 4087.83984 237.83284 50.0503
2 13.568 BB 0.2990 4079.63086 209.62668 49.9497
SFC enantioenriched 10b
Sample Info : IB, 1 ml/min
Hex:IPA= 80:20
GZ-03-0319
DAD1 A, Sig=220,10 Ref=off (CAHPCHEM2\DATA\GIUSEPPEWIGUEL 2020-01-15 17-47-38\GZ-03-0319.D)
mAU
600
500
400
300 o
200 N
100 3
0 T T
T T T T T T T T T T T T T T T T T T T T T T T T T T T
o 5 10 15 20 25 min|

Signal 1: DAD1 A, Sig=220,10 Ref=off

Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
1 12.136 BB 0.2704 1.42830e4 799.43097 89.5874
2 14.122 BB 0.3160 1660.09351 80.68880 10.4126



(R)-3-Bromo-5',7'-dimethoxy-2'-((4-(trifluoromethyl)phenyl)sulfonyl)-2',3'-dihydro-1'H-spiro[cyclohexane-

1,4'-isoquinolin]-3-ene (10c)
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-63.22

MeO

FsC 10c
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f1 (ppm)
SFC racemic 10c
Sample Info : IA, 1 ml/min

Hex:IPA= 90:10
GZ-03-0318-rac2

DAD1 G, Sig=280,10 Ref=off (C\HPCHEM\2\DATA\GIUSEPPE\MIGUEL 2020-01-15 14-17-44\GZ-03-0318-RAC2.D)

50
40
30
20
10

15.915

1 - - T 1 - T T 1 T T T T 1
5 10 15 20 25

Signal 1: DADl1 G, Sig=280,10 Ref=off

PN TN T R

Peak RetTime Type Width Area Height Area
# [min] [min] [MAU*s ] [mAU] $
1 9.684 BB 0.2104 789.54810 56.70955 50.8977
2 15.915 BB 0.3527 761.69635 32.83299 49.1023

Totals : 1551.24445 89.54253




SFC enantioenriched 10c

Sample Info : IA, 1 ml/min
Hex:IPA= 90:10
GZ-03-0318

DAD1 G, Sig=280,10 Ref=off (CA\HPCHEM\2\DATA\GIUSEPPEWIGUEL 2020-01-15 07-58-20\GZ-03-0318.D)

mAU
80
60
40
20 %
] 2
0 . L .
0o 25 5 75 10 125 15 175 20 min
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %
1 10.129 BB 0.2194 1390.19971 95.74094 91.9482
2 16.879 BB 0.3613 121.73895 5.08557 8.0518
Totals : 1511.93865 100.82651



(R)-3-Bromo-2'-((4-fluorophenyl)sulfonyl)-5',7'-dimethoxy-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-

isoquinolin]-3-ene (10d)
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-104.83

F 10d
-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190
f1 (ppm)
SFC racemic 10d
Sample Info : IA, 1 ml/min
90:10 HEX:IPA
AC-GT-87

DAD1 A, Sig=220,10 Ref=off (CAHPCHEM\2\DATA\GIUSEPPEWMIGUEL 2019-04-12 10-27-58\AE-GT-87.D)

mAU 1
250—§ <
] R
2005 S
1504
1003
503
04 I — ,
o s "4 - 45 - 3
Signal 1: DAD1 A, Sig=220,10 Ref=off
Peak RetTime Type Width Area Height Area
# [min] [min] [mAU*s] [mAU] %

1 11.450 BB 0.2411 5111.86572 322.18506 49.7989
2 20.734 BB 0.4770 5153.15234 160.33481 50.2011




Sample Info

: IA, 1 ml/min
Hex:IPA= 90:10
GZ-03-0339-2

SFC enantioenriched 10d

500
400
300
200
100

DAD1 A, Sig=220,10 Ref=off (C\HPCHEM\2\DATA\GIUSEPPEWMIGUEL 2020-01-25 12-32-04\GZ-03-0339-2.D)

~

20.426

1 11.307 BB
2 20.426 BB

0.2396 1.04242e4 662.27344 91.6504

0.4692

949.67029 30.84594 8.3496



(R)-3-Bromo-5',7'-dimethoxy-1',1'-dimethyl-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-
ene (10e)
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SFC racemic 10e

DAD1 C, Sig=210,4 Ref=off

x10 2 ©
Ky ©
275 2
257 3
225
>
1751
o 1.5
125
1_
0.75
0.5
0.25
AN
0251
05
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 5
Time [min]
Signal: DAD1 C, Sig=210,4 Ref=off
RT [min] Type  Width [min] Area Height Area% Name
2062 VW R 0.0622 1191.7931 301.1457 50.0533
2536 VW R 0.0789 1189.2562 235.5728 49 9467
Sum 2381.0493
SFC enantioenriched 10e
DAD1 C, Sig=210,4 Ref=off
x10 27 °
1.8 g
1.6 i
1.4
12
1_.
o 0.81
£ 0.6
0.4 1;
0.2 ¥
02
0.4
‘OAG- T T T T T T T T T 1 T T T T 1 T T T T 1 T T T T T
0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48 5
Time [min]
Signal: DAD1 C, Sig=210,4 Ref=off
RT [min] Type  Width [min] Area Height Area% Name
2.008 VWR 0.0594 562.6505 147.9788 93.0995
2470 VW R 0.0603 41.7036 8.4983 6.9005

Sim ANA 2RA1



(R)-3-Bromo-5',6',7'-trimethoxy-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-ene (10f)
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SFC racemic 10f

DAD1 C, Sig=210,4 Ref=off
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Time [min]

Signal: DAD1 C, Sig=210,4 Ref=off
RT [min] Type  Width [min] Area Height Area% Name
1917 BVR 00635 5454316 1353487 50.2620
2699 WR 01128 5397448  74.2599 49.7380
Sum  1085.1765

SFC enantioenriched 10f

DAD1 C, Sig=210,4 Ref=off
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Signal: DAD1 C, Sig=210,4 Ref=off
RT [min] Type  Width [min] Area Height Area% Name
1841 VW R 0.0614 129.6038 32.9600 18.6063
2573 VW R 0.1091 566.9546 80.5722 81.3937
Sum 696.5584



(S)-3-Bromo-5'-tosyl-5',6'-dihydro-4'H-spiro[cyclohexane-1,7'-furo[3,2-c] pyridin]-3-ene (10g)
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SFC racemic 10g

DAD1 C, Sig=210,4 Ref=off

x10 2]
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0.251
G w

2.236
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-0.254
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2236 VBR 00647  286.8841 68.6864 49.8462
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SFC enantioenriched 10g
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Sum  266.2492



(R)-5',7'-Dimethoxy-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2'-tosyl-2',3'-dihydro-1'H-

inolin]-3-ene (11)
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(R,2)-3-(But-2-en-2-yl)-5',7'-dimethoxy-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-ene

(12)
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(R)-(5',7'-Dimethoxy-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-en-3-

yl)(phenyl)methanonemalonate (14)
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(R)-(5',7'-Dimethoxy-3-phenyl-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-ene (15)
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(R)-(3-lodo-5',7'-dimethoxy-2'-tosyl-2',3'-dihydro-1'H spiro[cyclohexane-1,4'-isoquinolin]-3-ene (10h)
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(R,E)-1-(5',7'-Dimethoxy-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclohexane-1,4'-isoquinolin]-3-en-3-yl)-3-

(trimethylsilyl)prop-2-en-1-one (16)
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(R)-5',7'-Dimethoxy-2'-tosyl-2',3a,3',6,7,7a-hexahydro-1'H-spiro[indene-5,4'-isoquinolin]-3(4H)-one (17)
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