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1. Experimental Section

1.1. Materials and Methods

All reagents were purchased from Energy Chemical Co., Nanjing Kaimuco Technology Co., Ltd and
immediately used without further purification. The Schlenk technology was strictly performed under nitrogen
condition in all reactions and the concrete synthetic procedures were showed below in detail. The final
products were first purified by column chromatography, then temperature-gradient sublimation was utilized
to further purify the target compounds under high vacuum to obtain highly pure samples. Thermo Fisher
ITQ1100 GC/MS mass spectrometer was employed to measure the mass spectra. Flash EA 1112 spectrometer
was used to perform the elemental analyses. '"H NMR (500 MHz), *C NMR (125 MHz) spectra were recorded
on Bruker AV 500 NMR (H NMR) and 600 NMR ('*C NMR) instrument at ambient temperature using

deuterated solvents with tetramethylsilane (TMS) as the internal standard.

1.2. Synthesis

Synthesis of Cz-DF: 1,2-Difluoro-4-iodobenzene (25.00 g, 104.17 mmol), 3,6-ditert-butyl-9H-carbazole
(9.70 g, 34.72 mmol), copper (Cu) (11.11 g, 173.60 mmol), 18-Crown-6 (9.18 g, 34.72 mmol) and potassium
carbonate (K,COs) (23.99 g, 173.60 mmol) were added with 250 mL 1,2-dichlorobenzene (0-DCB) under
nitrogen atmosphere. Then the mixture was heated to 180 °C and stirred for 24 hours. After cooling to room
temperature, the reaction mixture was extracted with dichloromethane and water, and the combined organic
layer was condensed in vacuum, and the crude product was further purified by column chromatography with
a mixture eluent of petroleum ether/dichloromethane (8:1) to afford a white solid (10.06 g, 25.69 mmol).
Yield: 74%. '"H NMR (500 MHz, DMSO-dg) ¢ 8.18 (d, J = 1.9 Hz, 2H), 7.70 — 7.60 (m, 2H), 7.44 (dd, J =
8.6, 1.9 Hz, 3H), 7.28 (d, J = 8.6 Hz, 2H), 1.41 (s, 18H). 3C NMR (151 MHz, DMSO-d;) ¢ 150.8, 150.7,
149.2,149.2, 149.1, 149.1, 147.6, 147.5, 142.8, 142.7, 138.4, 134.1, 134.1, 134.1, 134.1, 123.5, 123.5, 123.5,
122.9,122.9,118.7,118.6,116.6, 116.1, 115.9, 108.9, 39.9, 39.8, 39.6, 39.5, 39.4, 39.2,39.1,34.4,34.4,31.7.

ESI-MS (M): m/z: 390.72 [M]+ (caled: 391.51).

Synthesis of Cz-Br-DF: N-bromosuccinimide (NBS) (2.80 g, 15.75 mmol) was dissolved in N,N-
dimethylformamide (DMF) (40 mL) and added dropwise to a solution of Cz-DF (5.87 g, 15.00 mmol) in DMF
(60 mL) at 0 °C. Then the mixture was bubbled with nitrogen for 1 minute and stirred for 24 hours at room

temperature. The reaction mixture was directly concentrated under reduced pressure and purified by column
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chromatography with a mixture eluent of petroleum ether/dichloromethane (10:1) to afford a white solid (6.07
g, 12.90 mmol). Yield: 86%. '"H NMR (500 MHz, DMSO-dy) ¢ 8.21 (d,J= 1.7 Hz, 1H), 8.17 (d, J= 1.9 Hz,
1H), 7.57 — 7.46 (m, 3H), 7.42 (dd, J = 8.8, 1.9 Hz, 1H), 7.25 (dd, J = 8.9, 4.2 Hz, 1H), 6.94 (d, J = 8.6 Hz,
1H), 1.40 (d, J= 6.9 Hz, 18H). °*C NMR (151 MHz, DMSO-d;) ¢ 150.5, 150.4, 150.2, 150.1, 148.9, 148.8,
148.5, 148.5, 144.3, 143.4, 141.1, 135.5, 134.3, 134.3, 134.2, 134.2, 128.2, 126.9, 126.9, 126.8, 126.8, 126.2,
124.6, 122.0, 119.3, 117.7, 117.6, 116.7, 116.6, 116.5, 109.6, 108.9, 102.7, 40.0, 39.9, 39.7, 39.6, 39.5, 39.3,
39.2,34.4,34.4,31.7,31.6. ESI-MS (M): m/z: 471.00 [M]+ (calcd: 470.40).

Synthesis of Cz-Br-I1Cz-2: Cz-DF (6.07 g, 12.90 mmol), 11,12-dihydroindolo[2,3-a]carbazole (ICz)
(13.56 g, 12.90 mmol) and cesium carbonate (Cs,CO3) (25.23 g, 77.40 mmol) were added with 160 mL DMF
under nitrogen atmosphere. After stirring and refluxing for 72 h, the resulting solution was poured into ice
water. The white powder solid was filtered out and dried in vacuum, and then further purified by column
chromatography with a mixture eluent of dichloromethane/petroleum ether (1:7) to afford a white solid (2.30
g, 3.35 mmol). Yield: 26%. '"H NMR (500 MHz, Methylene Chloride-d,) ¢ 8.80 (dd, J= 7.6, 1.7 Hz, 2H), 8.43
(d, J=8.6 Hz, 2H), 8.19 (d, /= 1.7 Hz, 2H), 7.93 (t, J = 2.1 Hz, 1H), 7.86 (d, J= 1.7 Hz, 1H), 7.70 (s, 1H),
7.66 —7.59 (m, 4H), 7.55 - 7.50 (m, 1H), 7.40 (dd, /= 7.9, 2.0 Hz, 1H), 7.32 (d, /= 6.8 Hz, 1H), 7.21 (s, 1H),
7.08 (d, J= 1.8 Hz, 1H), 1.52 (s, 9H), 1.46 (s, 9H). 3C NMR (151 MHz, CD,Cl,-d¢) 6 150.7, 149.5, 146.5,
145.8,142.2,139.4, 137.8, 134.9, 131.9, 131.2, 131.1, 130.3, 128.6, 127.2, 124.2, 122.3, 120.6, 120.3, 118.2,

117.3,117.2,116.3, 108.8, 105.3, 35.4, 35.2, 32.1, 32.0. ESI-MS (M): m/z: 687.18 [M]+ (calcd: 686.70).

Synthesis of RBN-ICz: A solution of n-butyllithium (z-BuLi) in pentane (2.36 mL, 2.50 M, 13.40 mmol)
was slowly added to a solution of Cz-Br-ICz-2 (2.30 g, 3.35 mmol) in tert-butylbenzene (¢-BuPh) (130 mL)
at —60 °C under nitrogen atmosphere. After stirring at 45 °C for 8 h, pentane was removed in vacuum. After
addition of boron tribromide (BBr3) (3.36 g, 13.40 mmol) at —60 °C, the reaction mixture was stirred at room
temperature for 1 h. N,N-Diisopropylethylamine (DIPEA) (3.60 g, 20.10 mmol) was added at 0 °C, and then
the reaction mixture was warmed to room temperature. Next, after stirring at 140 °C for 12 h, the reaction
mixture was cooled to room temperature. Sodium acetate aqueous solution and dichloromethane were added
to the reaction mixture for extraction, and the combined organic layer was condensed in vacuum, and the crude
product was purified by column chromatography using a mixed eluent of dichloromethane/petroleum ether
(1:6) and then recrystallized from dichloromethane and methanol as a purple powder (0.29 g, 0.47 mmol).

Yield: 14%. 'H NMR (500 MHz, Toluene-ds) d 8.42 (d, J= 1.8 Hz, 1H), 8.10 (d, J = 7.2 Hz, 1H), 7.99 (d, J
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= 1.9 Hz, 1H), 7.87 (d, J= 2.0 Hz, 1H), 7.46 (d, J= 7.4 Hz, 1H), 7.42 (d, J = 8.6 Hz, 1H), 7.34 (d, J= 7.3 Hz,
1H), 7.18 — 7.16 (m, 1H), 6.99 (d, J = 8.2 Hz, 1H), 6.95 — 6.92 (m, 1H), 6.86 (dq, J= 7.9, 4.5, 4.0 Hz, 4H),
6.83 — 6.78 (m, 2H), 1.24 (s, 9H), 1.18 (s, 9H). ESI-MS (M): m/z: 615.46 [M]+ (caled: 615.59).

1.3.  Thermal and Electrochemical Characterization

TA Q500 thermogravimeter was selected to perform the thermogravimetric analysis (TGA) under
nitrogen atmosphere at a heating rate of 10 K min~!. BAS 100W Bioanalytical electrochemical work station
was used to measure the electrochemical property with platinum disk as working electrode, platinum wire as
auxiliary electrode, a porous glass wick Ag/Ag" as pseudo reference electrode and ferrocene/ferrocenium as
the internal standard. And 0.1 M solution of n-BuyNPF¢ which was the supporting electrolyte was utilized to
measure the reduction (in anhydrous tetrahydrofuran) potential at a scan rate of 100 mV s™!. The LUMO
energy levels of the compounds were calculated according to the formula: E;ymo (€V) = —[4.8 + (E12(ox/red)
— E1p(Fct/Fe))] eV. The HOMO energy level was estimated from the optical bandgaps calculated from the

onset of UV—vis absorption spectrum and LUMO energy level.

1.4. Theoretical Calculations Method

The ground state geometries were fully optimized by B3LYP method including Grimme’s dispersion
correction with 6-31G(d,p) basis set using Gaussian 16 software package.l'-*) The HOMO and LUMO were
visualized with Gaussview 6.0. The excited state properties were calculated by TDDFT with the same theory
level as DFT. The charge decomposition analysis (CDA), molecular planarity parameter (MPP), LOL-n
analysis and LOL-n color-filled maps were completed with Multiwfn program.!”l The drawing of LOL-%t

isosurface, electrostatic potential map and the calculation of RMSD were completed with VMD 1.9.4.[8]

1.5. Photophysical Characterization

Shimadzu RF-5301 PC spectrometer and Shimadzu UV-2550 spectrophotometer were adopted to record
the PL emission spectra and UV—Vis absorption, respectively. The fluorescence and phosphorescence spectra
taken at liquid nitrogen temperature (77 K) were recorded by Ocean Optics QE Pro with a 365 nm Ocean
Optics LLS excitation source. Edinburgh FLS920 steady state fluorimeter equipping with an integrating
sphere was employed to measure the absolute photoluminescence quantum yields of both solution and films.
In the ultrafast transient absorption spectroscopy system (Ultrafast System LLC, Helios Fire), a titanium-

sapphire laser amplifier (Coherent Inc., Astrella) was utilized to emit femtosecond pulses at a central
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wavelength of 800 nm, a pulse width ~ 35 fs, and a repetition rate of 1 kHz. The oscillator (Coherent Inc.,
Vitara-S) and the amplifier pump source (Coherent Inc., REVOLUTION 38 SYSTEM) were integrated
components of the system. Pump light (365 nm) was provided by the tunable optical parametric amplifier
(Coherent Inc., TOPAS Prime). The broadband UV—Vis probe light (420—760 nm) was generated by focusing
a small portion of the titanium-sapphire laser fundamental into a static sapphire window. The time delay
between the pump and probe pulses was precisely controlled using an automated optical delay line, with 8 ns
time window and 14 fs resolution. All samples were prepared as dilute toluene solutions (1 x 107> M). The
effective optical path in quartz cuvette is 2 mm. Custom designed fiber-coupled alignment-free spectrometer
with a 1024-pixel CMOS sensor (spectral response: 200-1000 nm) was used as UV—Vis detector. The
measured TA data were processed in Glotaran software based on the R-package TIMP.®! Four-step sequential

model was employed in global target analysis.

1.6.  Analysis of Rate Constants

The calculation formulas for the rate constant of fluorescence (k¢), internal conversion (kic), intersystem

crossing (kisc), TADF (krapr) and reverse intersystem crossing (krisc) are expressed as following list:[10-13]

kr = D/t (S1)
@y = kel (kg + kic) (S2)
Dp = ke/(kg + kic + kisc) (S3)
Disc = kisc/(kg + kic + kisc) (S4)
krapr = @Prapr/(Pisc TraDF) (S5)
krisc = ke krapr Prapr/(kisc Pr) (S6)

Drapr/ Pr = (Pisc Prisc)/(1-Pisc Prisc) (S7)

Where @y is the total fluorescence quantum yield, @ is the prompt fluorescent component of @pr, Drapr
is the delayed fluorescent component of @p;. 7 is the lifetime of prompt fluorescence, rrapr is the lifetime of
TADF. kr is the rate constant of fluorescence, kjc is the rate constant of internal conversion; ktapr, kisc, Arisc
are the rate constant of TADF, intersystem crossing and reverse intersystem crossing, respectively. @jsc and
@risc are the quantum efficiencies of ISC and RISC process, respectively.

1.7. Device Fabrication and Measurement



The indium tin oxide (ITO) glass substrates with a sheet resistance of 15 Q per square were cleaned with
optical detergent, deionized water, acetone and isopropanol successively, and then treated with plasma for 5
minutes. Subsequently, they were transferred to a vacuum chamber. Under high vacuum (< 9 x 107> Pa), the
organic materials were deposited onto the ITO glass substrates at a rate of 0.5 A s7!. After finishing the
deposition of organic layers, ITO glass substrates were patterned by a shadow mask with an array of 2.0 mm
x 2.5 mm openings. Then LiF and Al were successively deposited at a rate of 0.1 A s' and 5 A s7!,
respectively. The EL spectrum, CIE coordinates and luminance intensity of OLEDs were recorded by Photo
Research PR655, meanwhile, the current density (J) and driving voltage () were recorded by Keithley 2400.
By assuming Lambertian distribution, EQE was estimated according to brightness, electroluminescence

spectrum and current density. The materials of device fabrication are provided by Xi’an Polymer Light

Technology Corp.
.
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Figure S1. 'H NMR spectrum (500 MHz, DMSO-ds) of Cz-DF.



- N
L1g B
e . W
v've 1 o™ V'L~ =208k
OSWO T6E | w2 = o
OSIa z'6¢ 1 =
OSINa ¥'6€
OSING §'6€ LS
OSINd 9'6€ r
OSINa 8'6€ L2
osnaees’ sv'z
o .
1S mzw ‘L L
OSING 9¥'Z
n
. gl
LS p r
oaH 6L'E
OdH 6L°¢
g R
Le @
@
e .
] d
M £6°9 I .w& [¥
' - ve9 = €0 Fo
N Fe
0 ®)
o0 = f - \4" —
3 o M~ £
LS o o
o = -
b e vZ'L R =
N d / '~ L2 %
LS i vz L\ E |
6'801 o > szif e
6'SLL o 2] £6'97 92'L FN
VoLt = = 69| WL . |
| 0 vzL{ VL N w
991t e a yer| svi7 == o}h” 1
98T | _ N gz L mw.h\ = 80y &
L'8LLY re an! 9z ov'L o~ g |
62zl © M W oL —= Pz
6 zTil Fo Ly L rN
s€zl 1 - — evs| 8vL]
1 =— & v 6¥°L ] ~
AN EN —_— V'L 2 Fo L
o] NI, o2y 0S h_
. —_— v oLy 0S°L ©
”HM” \ﬁ m D‘\.é 1521 I~
FEl S 2 grs | 282 == =¢goy 2
_...vm_‘ ] Lﬁlw 6v°L vm.h% [TH T S wm . N
IPEr TR TR o o5z 952 . S - S 8O
- = — 0 z 00° |
v'8€lL Led (o8 052 o € <
i — =} bl N )W L = S K 20°I
add Ny E=z o Lol A2 98% ® = L o
8- Zii S o = (S 1 m = < - = .
vl Az ook b P E.\.\ X L ST 5 sed
9Ll Ny N® I ) Z 95L” L1'8 O E &
b6t ] /4 h O o 9 [ VAN ] 218 o O——= oc._‘2. \M
- ~ £O - o O s 128 7 5 — €op 20l
Vel s 13 e g 128 © I
z6vl < - = - o7 L@ ey
zevl o I ~ ©
2051 - n
8051 @
=
=Y}
- p—
£

Figure S3. 'H NMR spectrum (500 MHz, DMSO-d;) of Cz-Br-DF.
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Figure S11. ESI-MS of RBN-ICz.
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Figure S12. CV curve of RBN-ICz.
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Figure S13. TGA curve of RBN-ICz.
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Twisted Top Side
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Figure S14. Comparison of the optimized ground-state structures of (a) m-Cz-BNCz and (b) RBN-ICz.
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Figure S15. Charge-transfer excited-state regulation based on p-= conjugation of m-Cz-BNCz and RBN-ICz.
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Fragment 1 Fragment 2

m-Cz-BNCz

RBN-ICz

Figure S16. Charge decomposition analysis (CDA) was performed by partitioning each molecule into two

fragments: fragment 1 and fragment 2 of m-Cz-BNCz and RBN-ICz.

S,:2.28 eV

Figure S17. S; energies, and difference density plots of Sy and S; states. Ap(r) = pex(r) — pgs(r), Ap(r)
represents the density variation (isovalue = 0.001), and pgs(r) and pgx(r) are defined as the electronic density

associated with the ground and excited states of (a) m-Cz-BNCz and (b) RBN-ICz.
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(@) hole—electron density

RBN-ICz

Figure S18. (a) Hole—electron distributions for m-Cz-BNCz and RBN-ICz in the S;. (b) S; visualizing the

spatial correlation between the hole and electron distributions for m-Cz-BNCz and RBN-ICz.

(b)

0.152 0.043

Figure S19. Comparison of the optimized structures of (a) m-Cz-BNCz and (b) RBN-ICz in S, (blue) and S;
(red) and corresponding RMSD.
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Figure S20. Solvatochromic effects of (a) m-Cz-BNCz, and (b) RBN-ICz measured in different polar solvents

(1 x 105 M, 298 K).
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Figure S21. Normalized fluorescence and phosphorescence spectra in toluene solution (1 x 107 M, 77 K) of

RBN-ICz (excited at 365 nm).
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Figure S22. fs-transient absorption dynamics: (a) m-Cz-BNCz and (b) RBN-ICz.
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Figure S23. PL spectra of RBN-ICz with 1 wt% doping concentration in DMIC-TRZ deposited film (excited

at 365 nm. Inset: photograph taken under 365 nm UV light).
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Figure S24. Transient PL decay curve recorded at 298 K and under vacuum atmosphere of RBN-ICz with 1

wt% doping concentration in DMIC-TRZ deposited film (excited at 365 nm).
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Figure S25. Variable-temperature transient PL decay curves of RBN-ICz with 1 wt% doping concentration

in DMIC-TRZ deposited film (excited at 365 nm).
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Figure S26. Structures of the materials used in the devices with single host (with/without sensitizer).
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Figure S27. EL characteristics of RBN-ICz-based devices with the configuration of [ITO/TAPC (50
nm)/TCTA (5 nm)/DMIC-TRZ: x wt% RBN-ICz (30 nm)/TmPyPB (30 nm)/LiF (1 nm)/Al (100 nm) (x =

0.5, 1.0 and 2.0)]. (a) EL spectra. (b) CE-L and PE-L curves. (¢c) EQE-L curves. d) J/~V-L curves.
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Figure S28. UV-vis absorption spectrum of RBN-ICz (toluene, 1 x 107 M, 298 K) and PL spectrum of

PO-01 (toluene, 1 x 107> M, 298 K, excited at 365 nm).
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Figure S29. J-V-L curves of RBN-ICz-based devices with the configuration of [[TO/TAPC (50 nm)/TCTA

(5 nm)/DMIC-TRZ: 25 wt% PO-01: 1 wt% RBN-ICz (30 nm)/TmPyPB (30 nm)/LiF (1 nm)/Al (100 nm)].
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Figure S30. Normalized RGB emission spectra of the latest smartphone based on (a) Samsung AMOLED and

(b) Creative Life (TCL) AMOLED.

Table S1. Summary of PL spectra data in different polar solvents of m-Cz-BNCz and RBN-ICz.

Hexane Toluene Tetrahydrofurane
Compound
[PLY/FWHMD)] [PLY/FWHMD)] [PLY/FWHMD)]
m-Cz-BNCz 508 nm/33 nm 519 nm/38 nm 521 nm/45 nm
RBN-ICz 585 nm/26 nm 615 nm/44 nm 616 nm/60 nm

3 PL peak wavelength. ® Full-width at half-maximum.

Table S2. Summary of PL spectrum data of RBN-ICz with 1 wt% doping concentration in DMIC-TRZ

deposited film.
compound Aem® [nm] FWHMD [nm/eV] @p© [%]
RBN-ICz 620 59/0.19 96.3

3 PL peak wavelength. ® Full-width at half-maximum. © Absolute photoluminescence quantum yield.
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Table S3. Summary of photophysical data of RBN-ICz with 1 wt% doping concentration in DMIC-TRZ

deposited film.
Emitter Dpr D) Drapr® 9 TTADF kgD kisc® krisc
[%] [%] [%] [ns] [us] [108s71]  [107s7']  [10°s7']
RBN-ICz 96.3 70.7 25.6 3.33 209.9 3.0 8.8 6.7

3 The total photoluminescence quantum yield (@pp ). » The prompt fluorescent (@r) component of @Pp . 9 The
delayed fluorescent (@rapr) component of @py. 9 The lifetime of prompt fluorescence (zg). @ The lifetime of
delayed fluorescence (zrapr). P The rate constant of prompt fluorescence (k). ® The rate constant of
intersystem crossing (kisc). M The rate constant of reverse intersystem crossing (krisc).

Table S4. Summary of EL data of devices (single host: DMIC-TRZ) based on emitter RBN-ICz with different

doping concentration.

X Wt% Jem® [nm] [l:l\nY]H/[?\?] CIE(x, y)? I[/$(]i) [(iimrf’)z] [(C:f‘xx?] [11;}13 “{;}(g:] E[(oi)Fih)
0.5 616 54/0.17 (0.66, 0.33) 2.6 12940 30.4 36.7 24.6
1.0 620 57/0.18 (0.67,0.33) 2.6 9545 32.5 39.2 32.3
2.0 628 64/0.20 (0.68, 0.32) 2.6 5429 25.1 30.2 30.3

3 EL peak wavelength. ® Full-width at half-maximum. © Commission Internationale de L’Eclairage
coordinates (value taken at 100 cd m2). 9 Turn-on voltage at 1 cd m 2. ©® Maximum luminance. ? Maximum
current efficiency. ® Maximum power efficiency. » Maximum external quantum efficiency, respectively.

Table S5. Summary of OLED performance (CIE, > 0.54) employing representative red MR-TADF emitters.

Emitter Aem® FWHMD CIE CEnax? PEax® EQE.x™ MWD

[nm] [nm/eV] (x, y)° [ed A [lm W] [%] Reference

Bu

AL
B
‘Bu: O 620 57/0.18 (0.67,0.33) 325 39.2 323 615 This work
v

RBN-ICz
RBN-ICz* 624 59/0.19 (0.67,0.33) 323 39.5 34.1 615 This work
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(0.663,
0.337)

O B O 591 35/0.12 (0.57,0.42) 69.0 76.0 31.0 786 [41]

\©/ \©/ 600 41/0.14 (0.61, 0.40) 25.2 26.3 11.8 1065 [41]

617 48/0.15 70.8 76.7 433 1180 [40]

By 599 45015  (0.61,0.39) 37.1 36.4 17.3 1498 [42]

Bu Bu
mBDPA-TOAT

‘Bu ‘Bu

603 62/0.20 (0.66, 0.34) 12.6 11.7 11.3 1162 [42]

peos 0‘0.@ Q..
O
‘B(O N@'Bu

pBDPA-TOAT
S8 @&O 0O
)

N
DMAC-TOAT
3 EL peak wavelength. ® Full-width at half-maximum. ©® Commission Internationale de L’Eclairage

656 104/0.33 (0.59, 0.39) 2.1 1.5 1.5 945 [42]

coordinates. ¥ Turn-on voltage at 1 ¢d m™2. © Maximum luminance. f Maximum current efficiency.
Maximum power efficiency. » Maximum external quantum efficiency. "M. W. (Note: * denotes device with
sensitizer)

Table S6. Cartesian coordinates of RBN-ICz at the optimized Sy geometry.
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