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Experimental Section

Chemicals.

All chemicals were of analytical reagent grade and used as received without further
purification. Tungstic acid (H,WOy; 99 %) were obtained from Shanghai Aladdin
Biochemical Technology Co., Ltd and ruthenium chloride (RuCls; 97 %) were obtained
from Shanghai Bide Pharmaceutical Technology Co., Ltd. Commercial 20 wt.% Pt/C,
commercial RuO, and Nafion perfluorinated resin solution (5 wt.%) were purchased
from Sigma-Aldrich. The Nafion 117 membranes were purchased from Zhengzhou

YaoLe Instrument Technology Co., Ltd.
Materials Synthesis

Synthesis method of WO; powder: A certain amount of H,WOj is transferred to a tube
furnace, calcined at 600°C for 2 hours at a heating rate of 5°C/min, and taken out after
cooling to room temperature to obtain WO; powder.

A typical synthesis protocol for the Rugncs-WOy catalyst entails the mixing of 100 mg
of WOs powder and 50 mg of RuCls in 15 mL of deionized water, subsequently

followed by magnetic stirring for 30 minutes. The resultant mixture was then
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transferred into a 20 mL Teflon-lined autoclave. The mixture was maintained at 90 °C
for a duration of 12 hours and thereafter permitted to cool down naturally to room
temperature. The as-obtained powder was subjected to repeated washing with deionized
water; subsequent to drying, it was transferred to a tubular furnace for calcination under
an air atmosphere at 350 °C, with a heating ramp rate of 5 °C min' and a holding time
of 2 hours. After cooling to room temperature, the product was subjected to filtration
and subsequent drying to afford the Rugnc-WOy powder.

The Ruga,-WOy catalyst was synthesized as follows: First, 10 mg of RuCl; was
dissolved in 20 ml of water, 100 mg of WO; powder was added, and the mixture was
impregnated overnight. The mixture was then dried and placed in a quartz boat. The
boat was then transferred to a plasma-enhanced chemical vapor deposition (PECVD)
instrument. The PECVD parameters were set as follows: temperature 400°C, radio
frequency (RF) power 500 W, treatment time 40 minutes, tube pressure 50 Pa, and
nitrogen flow. Finally, the instrument was started, and when the temperature reached
the set value, the plasma generator was turned on. After the time expired, the plasma
generator was turned off, and the instrument temperature was allowed to cool to room
temperature to yield Rugas-WOy.

A typical synthesis method for the RuO,/WOy catalyst is to mix 40 mg of H,WO, and
20 mg of RuCl; in 10 ml of water and stir for 2 hours. The powder is then transferred
to a tube furnace and calcined at 450°C for 2 hours at a heating rate of 5°C/min. After

cooling to room temperature, the RuO,/WOj catalyst is removed.

Material characterization

X-ray diffraction (XRD) patterns were collected on an Empyrean PANalytical
diffractometer using Cu-Ka irradiation (40 kV, 40 mA, L = 1.5418 A) at a scan rate of
5° min-1. X-ray photoelectron spectroscopy (XPS) information was collected on a
Thermo Fisher Scientific-ESCALAB 250Xi instrument. The peak data were calibrated
based on the C 1s peak at 284.8 eV. Ru K-edge XAFS analysis was performed on the
BL14W beamline of the Shanghai Synchrotron Radiation Facility (SSRF) using a

Si(111) crystal monochromator. Prior to beamline analysis, the sample was placed in



an aluminum sample holder and sealed with a thin film of Kapton tape. XAFS spectra
were recorded at room temperature using a Bruker 5040 four-channel silicon drift
detector (SDD). Ru K-edge extended X-ray absorption fine structure (EXAFS) spectra
were recorded in transmission mode. For certain samples, the line shape and peak
position of the ruthenium K-edge XANES spectra show minimal changes between
scans. XAFS spectra for these standard samples were recorded in transmission mode.

Spectra were processed and analyzed using Athena software.
Electrochemical characterization

Electrochemical characterizations were performed at room temperature using a CHI
760E electrochemical workstation utilizing a three-electrode configuration. A total of
2 mg of the Rugncs-WOy electrocatalyst was homogeneously dispersed in 1 mL of 0.1
wt% Nafion® resin solution, followed by ultrasonic treatment for 30 minutes to ensure
complete homogenization. Subsequently, 80 pL of the resulting Rugncs-WOy catalyst
ink was uniformly deposited onto a 1 cm x 1 cm carbon cloth (CC) substrate. The
Rugncs-WOx-loaded CC, a high-purity graphite rod, and a saturated calomel electrode
(SCE, Hg/Hg,Cl,) were employed as the working electrode, counter electrode, and
reference electrode, respectively. Linear Sweep Voltammetry (LSV) measurements
were performed in a 0.5 mol L™ aqueous H2SOs4 electrolyte over a potential range of 1
Vto 1.5V (vs. SCE) at a sweep rate of 5 mV s™'. All experimentally recorded potentials
were calibrated to the reversible hydrogen electrode (RHE) using the following
equation: E (vs. RHE) = E (vs. SCE) + 0.059 x pH + 0.242 V. Linear Sweep
Voltammetry (LSV) measurements were performed in 0.5 M H2SOas at a scan rate of 5
mV s, with 85% iR compensation applied.

Electrochemical surface area (ECSA) is an important measure to determine the number
of active sites. The ECSA of each sample can be evaluated from electrochemical double

capacitance (Cy) according to the following equation:

Cdl
ECSA=Cs



Where C; is the specific capacitance of the sample or the capacitance of an atomically
smooth planar surface of the material per unit area under identical electrolyte
conditions, Cy in the Faradaic potential region is calculated by linear fitting. The Cs are
usually found to be in the range of 0.02-0.06 mF cm™ per cm?, and it is assumed as
0.035 mF cm? per cm? in the calculations of ECSA.

Take the calculation process of the TOF value of Rugncs-WOy as an example, and the
details are described below:

Total hydrogen turnovers per geometric area

TOF= Active sites per geometric area

Operando DEMS Isotope Labeling Test

Operando DEMS experiments were conducted on a Linglu differential electrochemical
mass spectrometer. The electrolyte consisted of 0.5 M H.SOs saturated with Nz. O:
produced by the OER was analyzed in real time by entering the mass spectrometer
vacuum chamber. Isotope labeling was performed using a sulfuric acid solution
prepared with H2'%0 enriched to ~97 atom% '#0O. The labeling process consisted of two
steps:

1) Multiple LSV reactions (1.1-1.8 V vs RHE) were performed in H2'*0/0.5 M H2SO4
to partially replace the catalyst lattice oxygen (**O_L) with '*O;

2) Transfer the '*O-labeled working electrode to the H2'*0/0.5 M H2SOs4 electrolyte and
run LSV again, with the anode gaseous products recorded in real time by mass
spectrometry. Simultaneously monitor the m/z = 32, 34, and 36 signals during each
cycle.

The 340: signal originates from two *O-'*0 coupling pathways:

(1) Lattice residual '*O_L couples with '®0O adsorbed species in H2'#0;

(2) Lattice O_L coupled with H2'*O-derived O adsorbed species

Measurement of local pH on the catalyst surface

According to the literature, the potential of IrOy electrode is sensitive to pH and can be
used to monitor the variations in the pH on the working electrode surface. In this work,

the pH values on the catalyst surfaces were measured by an IrO,-modified RRDE



technique, with a disc diameter of 5.61 mm and a ring inner and outer diameter of 6.25
mm and 7.92 mm, respectively. Specifically, IrO, was firstelectrodeposited onto the
ring electrode (RE) of the RRDE by cyclic voltammetry. First, 0.15 g IrCl, was
dissolved in 100 mL ultrapure water and stirred for 30 min, followed by the addition of
0.65 mg oxalic acid dihydrate. After 10 min, 1 mg H,O, (30%) was added and after 10
min of stirring, the pH was raised to 10.5 with K,COj;. Next, the solution was heated at
90 °C for 15 min and cooled to room temperature in an ice bath to speed up its
development. After preparation, the solution was aged at room temperature for a
minimum of two days. Last, the deposition of IrO, on the Ring electrode was carried
out by means of cyclic voltammetry, using 300 cycles between -0.4 V and 0.75 V (vs.
SCE) at 0.5 Vsl
Then, the pH dependence of the open circuit potential (£,.,) was measured with the
IrO-deposited RE. A three-electrode cell was constructed of the RRDE, graphite rod
and a saturated calomel electrode (SCE) as working, counter, and reference electrodes,
respectively. Then, the pH dependence of the open circuit potential (£,,) in Ar-
saturated electrolyte was measured with IrO, RE (Figure S20). The relationship
between Eocp and the pH value of the ring electrode (pH;ing) can be described by the
following equation

PHiing = a % (Eoq + b) (1)
where a and b were obtained by linear fitting of £, against the pH values of the bulk
seawater (Figure S21).
Next, the measurement of pH on the catalyst surface was performed under different
applied potentials. Linear sweep voltammetry was performed on the Rugncs-WOx-
loaded disk electrode (DE), Rugas-WO4-loaded disk electrode (DE) and RuO,/WO-
loaded disk electrode (DE) in 0.5 M H,SO, electrolytes, and meanwhile, open circuit
potential was recorded on the IrO,-deposited RE. The pH value of the IrO,-deposited
RE was evaluated from the Eocp using equation (1). The pH value of the catalyst-loaded
DE can be deducted from the pH value of the IrO-deposited RE by the following
equation:

CH+.Ring = CoH-,Ring = Np % (CH+pisk - Con-pisk) T (1 - Np) X (Ch+ putk — CoH-puik)  (2)



where Cy.+ ping and cy+ pisk are the concentrations of H™ on the RE and DE, respectively,

CoH-,ring aNd Con-pisk are the concentrations of OH- on the RE and DE, respectively,
Cu+puik and cop-puk are the concentrations of H™ and OH- in the bulk electrolyte,

respectively, and Np = 0.37 is the collection efficiency of the RE.
PEM measurements

In the proton exchange membrane (PEM) electrolyzer characterization, a membrane
electrode assembly (MEA) with an active geometric area of 1 cm x 1 cm was precisely
constructed via hot-pressing of the respective catalysts. Commercial platinum-on-
carbon (Pt/C, 40 wt%) was adopted as the cathode catalyst, whereas the Rugncs-WOy
electrocatalyst served as the anode catalyst. The Rugncs-WOy electrocatalytic powder
was homogeneously dispersed in a mixture of isopropanol, deionized water, and 5 wt%
Nafion® resin ethanol solution to formulate a uniform catalyst ink. The mass loading
of the Pt/C (40 wt%) cathode was precisely controlled at 1 mg cm2, whereas that of the
Rugncs-WOy anode was rigorously set to 2 mg cm 2. The Rugncs-WOy electrocatalyst
and Pt/C were separately cast onto polytetrafluoroethylene (PTFE) membranes via a
controlled deposition process. Nafion® 117 was utilized as the PEM and subjected to
successive treatment with hydrogen peroxide (H20,) and 0.5 M sulfuric acid (H2SOa4)
at 80 °C for 1 hour to achieve surface activation. The PEM exhibited a dimension of
2.6 cm x 2.6 cm and a thickness of 183 um. Following this, the catalyst-loaded PTFE
membranes were hot-pressed onto the preconditioned Nafion® 117 membrane at 120
°C under a pressure of 10 MPa for 5 minutes so as to construct the MEA. Thereafter, a
PEM water electrolyzer (PEMWE) was assembled and subjected to electrochemical
testing at 30 °C using 0.5 M H,SO, as the electrolyte. The polarization curve of the
PEMWE was recorded at a sweep rate of 5 mV s, and a long-term
chronopotentiometric measurement was performed at a constant current density of 1 A

cm 2 to systematically evaluate its electrochemical stability over an extended period.

DFT calculations

DFT calculations were performed with VASP software using the Perdew—Burke—



Ernzerhof (PBE) energy level and projector augmented wave (PAW) methods. The
PAW method was used to represent core-valence electron interactions. A 4x4x1
Monkhorst—Pack k-point grid was used for Brillouin zone integration. Valence electron
states were expanded on a plane-wave basis set with an energy cutoff of 570 eV. A
Gaussian dispersion of 0.05 eV was used during geometry optimization. The
convergence criterion for iterations in the self-consistent field (SCF) was set to 10° eV,

and the residual forces for the optimized atomic positions were less than 0.02 eV/A.
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Fig. S1 XRD pattern of (a) Rugas-WOy; (b) RuO,/WOx.
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Fig. S2 TEM image of Rugncs-WOy.
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Fig. S3 TEM image of Rugas-WO,.
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Fig. S6 XPS spectra of O s for (a) Rugncs-WOy; (b) Rugas-WOy; (¢) RuO,/WO.
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Fig. S8 Ru K-edge EXAFS fitting curves in R space for (a) Rugncs-WOx; (b) Rugas-
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Fig. S11 Ru K-edge WT-EXAFS for (a) Ru foil; (b) RuO,.
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Fig. S15 In-situ Raman device diagram.
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Fig. S17 (a) In situ FTIR spectra were recorded at potentials from OCV to 1.6 V on
Rugas-WOy. (b) In situ Raman spectra were recorded at potentials from OCV to 1.6 V
on Ruga-WOy. Percentage of different types of interfacial water structures at applied
potential by (c) In situ FTIR spectra and (d) In situ Raman.
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electrodes with the current densities.
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Fig. S25 Nyquist plots of (a) Rugncs-WOy; (b) Rugas-WOy and (c) RuO,/WOy at

different Voltages. (d) Equivalent circuit used for fitting the Nyquist curves.
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Fig. S26 Bode phase plots of (a) Rugas-WOy; (b) RuO,/WOy at different voltages.
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Fig. S28 CV curves of (a) Rugncs-WOy; (b) Rugas-WOy; (¢) RuO,/WO.
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Fig. S30 OER polarization curves normalized by the ECSA for RuO,, Rugncs-WOy,
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Fig. S31 pH independent CV analysis of redox peak of Rugas-WOy and RuO,/WO,
measured from 0.0 to 1.4 V vs. SCE.
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Fig. S32 LSV curves of (a) Rugas-WOx. (b) RuO/WOy recorded with and without 1
M methanol.
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Fig. S33 XRD pattern of Rugncs-WOy before and after OER stability test in 0.5 M
H,SO, solution.
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Fig. S34 XPS spectra of Rugnes-WOy before and after OER stability test in 0.5 M
H,SO, solution.
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Fig. S37 Explicit solvation geometric configuration of (a) Rugncs-WOy; (b) Rugas-
WOy; (¢) RuO,/WOx.

Ruga-WO,

Rugnes-WO,

Fig. S38 Implicit solvation geometric configuration of (a) Rugncs-WOy; (b) Rugas-
WOy; (¢) RuO,/WOx.



Rugas-WO, Rugncs-WO, RuQ/WO,

Fig. S39 Differential charge density for (a) Rugncs-WOx; (b) Rugas-WOy; (¢)
RuO,/WO.

Fig. S40 Bader charge transfer of *OH adsorption: (a) Rugas-WOy, (b) RuO,/WOx, (¢)
Rugnes-WOy.. Difference Charge of *OH adsorption on (d) Rugnes-WOkx.

Fig. S41 The electron delocalization effect enhances the polarization of the adsorbed
intermediate *OH on Rugncs-WOx.(a2) Unpolarized(b) Polarized.

Fig. S42 The bond angle and bond length of the O*~Ru—*0O moiety on the surface of
(a) Rugnes-WOy; (b) Rusas-WOy; (¢) RuOx/WOx.



a Ru, -WOx

OPM___(*0+0—>0-0)=1.812 |
& | !
4 AEM  LOM . (*0+0—>Vo+*00)=1.704 ; 2o %o % I
| LOM AEM__('0—*00H}=1.670 2 I . (B
3 | —opm m*OH-*OH (P 7 T8 roH oM
0z ! [ Fsps
) m *OH \:- 5 = "OOH (AEM) { *0-*0 (OPM
[ #mfomwmw &% "O-0(OPM)
m ! Vo-"00 (LOM)

*OH-*OH/*O

*O-*OH*OOHN o-*00
Reaction Coordinate

*2HAO-F0

M+0,

b riomox  opmy, 010 50.0-1.603 r | ‘
AEM  LOM. ("0+0—>Vo+*00)=1.575 ; P 4

— | LOM  AEM_,(*0—>*00H)=1.741 m I %

S *OH-"0H (OPM) ; el "2 (LOM)

3 OPM _ (OPM))] / &x %

V) §

- *00H (AEM)

?

Vo-*00 (LOM)
*OH-*OH/*O *O-*OH/*Q0OHN ;-*00 *2H/*0-*0
Reaction Coordinate

Fig. S43 The Gibbs free energy illustration by (a) Rugas-WOy, (b) RuO,/WOy atalysts
during the OER process by AEM, LOM and OPM pathways.
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Fig. S44 The distribution of the catalyst on the membrane surface before (a) and after
(b) the stability test.
Table S1 Structural parameters extracted from the Ru K-edge EXAFS fitting. (S¢?>=0.69).

Catalysts shell CN R(A) o2 AE, R factor
Ru foil Ru-Ru 12 2.672 0.00338 4.176 0.021
RuO, Ru-O, 6 1.991 -0.00042 1.941 0.018
Ru-Ru 6 3.153 0.00717
Ru-Ru, 2 3.562 -0.00200
Rugps-WOx Ru-0O; 3.67 2.039 0.00440 -3.205 0.035
Rugnes-WOx Ru-O, 4.84 2.041 0.00398 -3.628 0.015
RuOx/WOx Ru-0O, 5.58 2.016 0.00403 -1.254 0.031

Table S2. Comparison of representative Ru-based OER catalysts in 0.5 M H,SOy, electrolyte.



Catalyst j(mA cm?) mn(mV) Stability Reference

Rugnes-WOK 10 171 1000 h This work
(Ru-W)Ox 10 170 300 h 1
Vn-RuO2 10 227 1050 h 2
RusW,04 10 227 550 h 3
Ru0,-Ce0,-CC 10 180 1000 h 4
ZnRuOx 10 230 320 h 5
Ru@V-RuO,/C 10 176 25h 6
Zn-RuO, 10 173 1000 h 7
Ruane)-Co304 10 198.5 150 h 8
Rug 1Mng 9Oy 10 210 1200 h 9
Zn-RuO2@ZnO 10 170 600 h 10
Ru—C02MnOsa.s 10 176 600 h 11

Table S3. PEMWE performance comparison of different catalysts..

Catalyst Cell voltage (Vcell) @ 1 A cm? Reference

Rugae-WO, 1.696 This work
Ni-RuO, 1.95 12
Er-RuOy 1.84 13
H; glr; xRu,O4 1.78 14
RuFe@CF 1.898 15
PtRu-Co304 1.83 16
Ru/Ti,0, 1.78 17
M-RulrFeCoNiO, 1.85 18
Ru/TiOy 1.71 19
Cr0.2Ru0.802-x 1.77 20
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