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1. DIVE details 

In this work, we developed an automated workflow for extracting structured scientific information 

from research articles, leveraging large language models (LLMs) and a modular, configurable 

Python pipeline. The workflow is designed to process a large corpus of scientific papers, identify 

and classify figures, extract relevant textual and image data, and output structured results for 

downstream analysis. The following subsections describe the workflow design, implementation, 

and parameterization in detail. 

Workflow Overview: The workflow is implemented in Python and orchestrated using a state 

machine paradigm, where each processing step is encapsulated as a node in a directed graph. The 

workflow begins by reading a list of Digital Object Identifiers (DOIs) from a user-specified CSV 

file. For each DOI, the corresponding pre-processed JSON file (containing the paper's content and 

metadata) is located within a set of user-defined directories. The workflow supports parallel 

processing using Python's concurrent.futures.ThreadPoolExecutor, enabling efficient handling of 

large datasets. 

Figure Classification and Prompt Generation: For each paper, the workflow iterates through 

the content list to identify figures with captions. Each caption is classified into one of three 

categories: PCT-type (Pressure-Composition-Temperature isotherms), Electrochemical Discharge-

type, or TPD/Isotherm-type (Temperature Programmed Desorption or Isotherm). Classification is 

performed by prompting a language model (LLM) with the caption and a set of category-specific 

keywords. The prompt requests the model to assign the caption to a category based on keyword 

matching and predefined priority rules. Multiple LLM invocations are used for each caption, and 

the majority vote determines the final category assignment. The prompt templates are also 

available in the GitHub repository: https://github.com/gtex-hydrogen-storage/DIVE. 

Data Extraction Workflow: Based on the presence and type of figures, the workflow dynamically 

selects the appropriate extraction path: If relevant figures are present, the workflow generates a 

context-rich prompt that includes figure captions and surrounding textual context. Associated 

images are encoded in base64 and included in the prompt if required. If no relevant figures are 

detected, the workflow falls back to text-only extraction, using the main body of the paper as input. 

The extraction itself is performed by invoking a large language model (LLM) with a carefully 

constructed prompt. The prompt templates are modular and can be customized for different 



extraction tasks. The workflow supports both single-step and two-step extraction modes, 

controlled by a user-configurable parameter. 

User Configuration and Parameters 

The workflow is highly configurable, with all user-editable parameters grouped at the top of the 

code or accessible via command-line arguments. Key parameters include: 

--doi_csv: Path to the input CSV file containing DOIs. 

--pdf_sources: List of directories containing pre-processed paper JSON files. 

--output_csv: Path to the output CSV file for results. 

--system_message: System prompt for the LLM. 

--two_step: Boolean flag to enable two-step extraction. 

--max_worker: Number of parallel threads for processing. 

--save_every: Frequency (in number of papers) for checkpointing results. 

Additional parameters for LLM configuration (API endpoints, model names, temperature, token 

limits, etc.) are also exposed for advanced users. 

2. Prompt Design for Image-Based Extraction in the DIVE Workflow 

In the DIVE workflow, specialized prompt templates were developed to guide large language 

models (LLMs) in extracting structured data from three major categories of scientific figures: PCT  

isotherms, electrochemical discharge curves, and TPD or isotherm plots. Each prompt is carefully 

engineered to maximize the accuracy and completeness of information extraction by providing the 

LLM with both contextual and task-specific instructions. 

For each figure type, the prompt begins with a contextual summary, presenting the figure caption 

and surrounding textual context to help the model identify the relevant material, experimental 

conditions, and key features. The prompt then instructs the model to perform a stepwise extraction: 

first, to summarize the figure’s context in natural language, and second, to extract quantitative and 

qualitative data from each subplot or curve according to a predefined JSON schema. The schema 



is tailored for each figure type, specifying required fields such as chemical formula, hydrogen 

storage capacity, pressure and temperature conditions, and detailed curve descriptions. 

To ensure consistency and facilitate downstream analysis, the prompts enforce strict output 

formatting, including the use of lists for multi-value fields and normalization of missing data. The 

prompts also provide explicit instructions for handling figures with multiple subplots or cycles, 

and for distinguishing between absorption and desorption processes using visual cues such as 

legends, colors, or arrows. By combining detailed contextual information, clear extraction steps, 

and rigorous output constraints, these prompts enable robust and reproducible data extraction from 

complex scientific images. 

3. DigHyd Data Checking System  

Manual data verification plays a crucial role in validating and improving the accuracy of the DIVE 

(Descriptive Interpretation of Visual Evidence) automated data extraction workflow. To ensure 

the high reliability and scientific value of hydrogen storage materials data, the DigHyd Data 

Checking System (https://datachecking.dighyd.org) has been developed as an efficient online 

platform for manual review and correction of AI-extracted data. 

Users can easily register (Figure S1a) and log in to access the data checking page. The platform 

enables reviewers to view and edit hydrogen storage test data directly in the browser, facilitating 

cross-checking with original literature and figures (Figure S1b). Data is managed in a standardized 

table format (Figure S1c), with dropdown menus for key fields such as “Material Type” and 

“Metal Alloy Category” to ensure consistency and data integrity. For the three common types of 

hydrogen storage test images, the system provides detailed input examples and instructions—

including specific guidance for electrochemical hydrogen storage (where discharge capacity needs 

to be converted to hydrogen storage density) and for recording gravimetric hydrogen density at the 

endpoint of time-dependent tests. 

If the AI detects data under different pressure conditions, new tables and corresponding images 

are automatically generated for each condition, allowing users to verify and upload hydrogen 

storage densities as guided by domain experts. The system also allows users to edit or correct 

previously uploaded data at any time, maintaining traceability and flexibility. By integrating 



manual verification with AI-assisted extraction, the DigHyd Data Checking System significantly 

enhances data quality and reliability. It serves as a critical foundation for high-throughput materials 

discovery and robust, database-driven research in hydrogen storage materials. 

 

Figure S1. The DigHyd Data Checking System 

 

 

 

 

 

 

 



4. Literature Screening Strategy for Hydrogen Storage Materials 

To construct a high-quality database for hydrogen storage materials, a systematic literature 

screening process was implemented: 

Step 1: Initial Search 

Papers were retrieved from Scopus using the broad keyword “hydrogen storage.” The search 

resulted in 28,842 papers. 

Step 2: Topic Refinement 

Titles and keywords were filtered to include terms related to computational and theoretical studies, 

such as “DFT,” “first-principles,” “simulation,” “modeling,” “machine learning,” “review,” and 

related phrases. The number of papers was reduced to 23,345. 

Step 3: Material Relevance 

Papers were retained only if their titles included “hydrogen,” “hydrogenation,” or 

“dehydrogenation.” The number of papers was reduced to 15,649. 

Step 4: Elemental Criteria 

Studies mentioning only hydrogen in the title were excluded; at least one additional metal element 

must be present. The number of papers was reduced to 4,488. 

Step 5: Abstract Screening 

Abstracts were further screened for relevant computational/theoretical terms to ensure a focus on 

materials modeling, simulation, or theory. Papers related to formic acid, liquid organic hydrogen 

carriers, or photocatalysis were excluded at the abstract level. The final number of papers was 

reduced to 4,053. 

This multi-step screening ensures the final dataset focuses on high-value, computational and 

theoretical research about metal-based hydrogen storage materials. 

 

 



5. Machine Learning Details 

Feature Engineering: Each chemical formula was parsed into a Composition object using the 

pymatgen library. To handle potential parsing errors, a safe parsing function was defined, which 

returns a null value for invalid formulas. Rows with invalid compositions were subsequently 

filtered out. 

Elemental Property Features: Elemental property features were extracted using the 

ElementProperty featurizer from the matminer library, with the “magpie” preset. This featurizer 

computes a variety of statistics based on elemental properties for each composition. Missing values 

were imputed, and errors during featurization were ignored to ensure a complete feature matrix. 

Element Fraction Features: To further enhance model performance, the atomic fraction of each 

element in every material was calculated. For each Composition object, the molar amount of each 

element was normalized to obtain its fraction. The set of all elements present in the dataset was 

determined, and for each element, a corresponding feature (e.g., frac_Ca, frac_Mg) was created. 

If an element was absent in a given sample, its fraction was set to zero. 

Feature Selection and Dataset Splitting: After feature engineering, columns unrelated to 

prediction (such as the target property itself, the element fraction dictionary, and material type) 

were removed. Only numerical features were retained. The dataset was then randomly split into 

training and test sets in an 80:20 ratio. 

Model Selection and Hyperparameter Optimization: An XGBoost regression model 

(XGBRegressor) was employed, using mean squared error (MSE) as the loss function. Grid search 

with three-fold cross-validation (GridSearchCV) was used to optimize the following 

hyperparameters: number of trees (n_estimators), maximum tree depth (max_depth), learning rate 

(learning_rate), subsample ratio (subsample), feature subsample ratio (colsample_bytree), 

minimum loss reduction (gamma), L1 regularization (reg_alpha), and L2 regularization 

(reg_lambda). The best parameter set was selected based on the lowest negative mean squared 

error. 

 

 



6. Score distributions of data extracted by different multimodal and LLMs 

 

Figure S2. Score distributions of data extracted by (a) direction extraction workflow Gemini-
2.5-Flash and (b) DIVE workflow (Gemini-2.5-Flash + DeepSeek R1) (c) DIVE workflow 

(Gemini-2.5-Flash + DeepSeek V3) (d) DIVE workflow (Gemini-2.5-Flash + DeepSeek-Qwen3-
8B) 

 

 



 

Figure S3. Score distributions of data extracted by (a) direction extraction workflow Claude-
Sonnet-4 and (b) DIVE workflow (Claude-Sonnet-4 + DeepSeek R1) (c) DIVE workflow 

(Claude-Sonnet-4 + DeepSeek V3) (d) DIVE workflow (Claude-Sonnet-4+ DeepSeek-Qwen3-
8B) 

 

 

 

 

 

 

 



 

 

Figure S4. Score distributions of data extracted by (a) direction extraction workflow Gemini-
2.0-Flash and (b) DIVE workflow (Gemini-2.0-Flash + DeepSeek R1) (c) DIVE workflow 

(Gemini-2.0-Flash + DeepSeek V3) (d) DIVE workflow (Gemini-2.0-Flash + DeepSeek-Qwen3-
8B) 

 

 

 

 

 

 



 

 

 

Figure S5. Score distributions of data extracted by (a) direction extraction workflow OpenAI 
O1-mini and (b) DIVE workflow (OpenAI O1-mini + DeepSeek R1) (c) DIVE workflow 

(OpenAI O1-mini + DeepSeek V3) (d) DIVE workflow (OpenAI O1-mini + DeepSeek-Qwen3-
8B) 

 

 



 

Figure S6. Score distributions of data extracted by (a) direction extraction workflow Lamma-4-
Maverick and (b) DIVE workflow (Lamma-4-Maverick + DeepSeek R1) (c) DIVE workflow 
(Lamma-4-Maverick + DeepSeek V3) (d) DIVE workflow (Lamma-4-Maverick + DeepSeek-

Qwen3-8B) 

 

 

 

 

 

 

 



 

Figure S7. Score distributions of data extracted by (a) direction extraction workflow Lamma-4-
Scout and (b) DIVE workflow (Lamma-4-Scout + DeepSeek R1) (c) DIVE workflow (Lamma-

4-Scout + DeepSeek V3) (d) DIVE workflow (Lamma-4-Scout + DeepSeek-Qwen3-8B) 

 

 

 

 

 

 

 



 

Figure S8. Score distributions of data extracted by (a) direction extraction workflow Qwen2.5-
VL-72B and (b) DIVE workflow (Qwen2.5-VL-72B + DeepSeek R1) (c) DIVE workflow 
(Qwen2.5-VL-72B + DeepSeek V3) (d) DIVE workflow (Qwen2.5-VL-72B + DeepSeek-

Qwen3-8B) 

 

 

 

 

 

 

 

 



7. Instructions for creating ChatGPT-based AI agent 

 

Figure S9. First part of the instruction constructed by the DigHyd agent, enabling the agent to 

call the data-plotting API to generate analytical charts based on user requirements. 

 

 

 



 

Figure S10. Second part of the DigHyd agent’s instruction, which informs the large language 

model of the structure of the database CSV file to facilitate data access and summarization. 

 

 

 

 

 

 



 

Figure S11. Third part of the DigHyd agent’s instruction, which guides the large language model 

on how to proceed when the user requests the design of new materials. 

 

 

 

 

 

 

 

 

 

 

 



8. Cases of new materials designed by DigHyd 

 

Figure S12. Workflow of AI agent–driven design of hydrogen storage materials. (a) The user 

specifies key requirements, including material type, constituent elements, and performance targets. 

(b) The DigHyd agent proposes 8 novel candidate compositions based on data mined from over 

4,000 historical publications. (c) The candidate compositions are evaluated using a pretrained 

machine learning model to predict their gravimetric hydrogen density. (d) The predicted 

gravimetric hydrogen densities of the proposed materials. (e) Validation of the designed materials 

(f) Optimization of the final recommendations 

 

 

 



 

 

Figure S13. Workflow of AI agent–driven discovery of new hydrogen storage materials. (a) 

The user specifies key requirements, including material type, constituent elements, and 

performance targets. (b) The DigHyd agent proposes 8 novel candidate compositions based on data 

mined from over 4,000 historical publications. (c) The candidate compositions are evaluated using 

a pretrained machine learning model to predict their gravimetric hydrogen density. (d) The 

predicted hydrogen storage densities are ranked. (e) Based on the model predictions, the DigHyd 

agent suggests further optimization strategies and outputs the final material design. (See 

Supplementary Video 3 for the complete process and details.) 

 

 



Table S1. Large language and vision-language model versions and inference settings for each 

stage of the pipeline. 

Model Name Version Temperature Max 

tokens 

Retry 

Number 

Stage 1: Figure type classification 

DeepSeek-R1-

0528-Qwen3-8B 

https://huggingface.co/deepseek-

ai/DeepSeek-R1-0528-Qwen3-8B 
0.6 30000 1 

Stage 2: Image Analysis 

Gemini-2.5-Flash 
gemini-2.5-flash 

(06/17 2025) 
0.6 10000 3 

Claude 4 Sonnet 
claude-sonnet-4 

(05/22 2025) 
0.6 10000 3 

Gemini-2.0-Flash 
gemini-2.0-flash-001 

(02/05 2025) 
0.6 10000 3 

OpenAI O4-mini o4-mini-2025-04-16 0.6 10000 3 

Lamma-4-

Maverick 

https://huggingface.co/meta-

llama/Llama-4-Maverick-17B-128E-

Instruct 

0.6 10000 3 

Lamma-4-Scout 
https://huggingface.co/meta-

llama/Llama-4-Scout-17B-16E 
0.6 10000 3 

Qwen2.5-VL-

72B-Instruct 

https://huggingface.co/Qwen/Qwen2.5-

VL-72B-Instruct 
0.6 10000 3 

Stage 3: Text Data Extraction 

DeepSeek-R1-

0528-Qwen3-8B 

https://huggingface.co/deepseek-

ai/DeepSeek-R1-0528-Qwen3-8B 
0.6 30000 3 

DeepSeek-R1 
https://huggingface.co/deepseek-

ai/DeepSeek-R1 
0.6 30000 3 

 

 

 

 



Table S2. Example comparison between ground-truth data and AI-extracted data, illustrating 

completeness and accuracy scores. 

Ground truth data AI extracted data 
(Completeness score = 50 
Accuracy score = 42.18) 

[ 
  { 
    "ID": "1", 
    "doi": "10.1016/j.ijhydene.2022.09.280", 
    "Formula": "La1.5Y1.5Ni12", 
    "Hydrogenation temperature": "[313.15, 'K']", 
    "Hydrogenation pressure": "[0.075, 'MPa']", 
    "Dehydrogenation temperature": "[313.15, 'K']", 
    "Dehydrogenation pressure": "[0.05, 'MPa']", 
    "Volumetric hydrogen capacity": "[None, 'kg H₂/m³']", 
    "Gravimetric hydrogen density": "[1.33, 'wt.%', '7.52', 
'MPa', '313.15', 'K']", 
    "H2 experiment release": "[0.8, 'wt.%']", 
    "H2 experiment adsorption": "[0.8, 'wt.%']", 
    "enthalpy change (ΔH, kJ/mol H2)": "[None, 'kJ/mol H₂', 
None, 'kJ/mol H₂']", 
    "entropy change (ΔS, J/mol H2·K)": "[None, 'J/mol H₂·K', 
None, 'J/mol H₂·K']", 
    "Interstitial Hydride Category": "AB4", 
    "Material type": "Interstitial Hydride", 
    "Publication year": 2022 
  }, 
  { 
    "ID": "2", 
    "doi": "10.1016/j.ijhydene.2022.09.280", 
    "Formula": "La1.5Y1.5Ni11Mn1.0", 
    "Hydrogenation temperature": "[313.15, 'K']", 
    "Hydrogenation pressure": "[0.098, 'MPa']", 
    "Dehydrogenation temperature": "[313.15, 'K']", 
    "Dehydrogenation pressure": "[0.04, 'MPa']", 
    "Volumetric hydrogen capacity": "[None, 'kg H₂/m³']", 
    "Gravimetric hydrogen density": "[1.4, 'wt.%', '5', 'MPa', 
'313.15', 'K']", 
    "H2 experiment release": "[1.17, 'wt.%']", 
    "H2 experiment adsorption": "[1.17, 'wt.%']", 
    "enthalpy change (ΔH, kJ/mol H2)": "[None, 'kJ/mol H₂', 
None, 'kJ/mol H₂']", 
    "entropy change (ΔS, J/mol H2·K)": "[None, 'J/mol H₂·K', 
None, 'J/mol H₂·K']", 
    "Interstitial Hydride Category": "AB4", 
    "Material type": "Interstitial Hydride", 
    "Publication year": 2022 
  } 
] 

[ 
  { 
    "ID": "1", 
    "doi": "10.1016/j.ijhydene.2022.09.280", 
    "Formula": "La1.5Y1.5Ni12", 
    "Hydrogenation temperature": ["40","°C"], 
    "Hydrogenation pressure": ["5.8", "MPa"], 
    "Dehydrogenation temperature": ["40","°C"], 
    "Dehydrogenation pressure": ["0.05","MPa"], 
    "Volumetric hydrogen capacity": 
["NA","NA","NA","NA","NA","NA"], 
    "Gravimetric hydrogen density": 
["1.3","wt.%","8","MPa","40","°C"], 
    "H2 experiment release": [ "1.0","wt.%"], 
    "H2 experiment adsorption": ["1.15","wt.%"], 
    "enthalpy change (ΔH, kJ/mol H2)": ["NA","kJ/mol 
H2","NA","kJ/mol H2"], 
    "entropy change (ΔS, J/mol H2·K)": ["NA","J/mol 
H2·K","NA","J/mol H2·K"], 
    "Material type": "Interstitial Hydride", 
    "Interstitial Hydride Category": "AB4", 
    "Publication year": "2022" 
  }, 
  { 
    "ID": "2", 
    "doi": "10.1016/j.ijhydene.2022.09.280", 
    "Formula": "La1.5Y1.5Ni11Mn1.0", 
    "Hydrogenation temperature": ["40", "°C"], 
    "Hydrogenation pressure": ["0.04","MPa"], 
    "Dehydrogenation temperature": ["40","°C"], 
    "Dehydrogenation pressure": ["0.02","MPa"], 
    "Volumetric hydrogen capacity": 
["NA","NA","NA","NA","NA","NA"], 
    "Gravimetric hydrogen density": 
["1.4","wt.%","8","MPa","40","°C"], 
    "H2 experiment release": ["1.2","wt.%"], 
    "H2 experiment adsorption": ["1.25","wt.%"], 
    "enthalpy change (ΔH, kJ/mol H2)": ["NA","kJ/mol 
H2","NA","kJ/mol H2"], 
    "entropy change (ΔS, J/mol H2·K)": ["NA","J/mol 
H2·K","NA","J/mol H2·K"], 
    "Material type": "Interstitial Hydride", 
    "Interstitial Hydride Category": "AB4", 
    "Publication year": "2022" 
  } 
] 

 

Taking the above table as an example, for the completeness score, we compare the number of extracted 

entries with the number of ground-truth entries. In the example shown in the revised table, both the ground-

truth data and the AI-extracted data contain two entries. Therefore, the completeness score reaches the 

maximum value of 50. 



Before computing the accuracy score, we first standardize units between the ground-truth data and the AI-

extracted data. Unit normalization is performed by a rule-based conversion function that identifies common 

temperature and pressure units (e.g., °C, K, MPa, bar, atm, kPa, Pa) through keyword recognition and 

converts them into a unified representation prior to comparison. 

For accuracy evaluation, we then use an embedding-based matching function to align the AI-extracted 

dictionaries with the ground-truth dictionaries. During matching, we do not impose a similarity threshold. 

Instead, for each AI-extracted dictionary, we search across all ground-truth dictionaries and select the most 

similar one, ensuring that every AI-extracted entry is paired with a corresponding ground-truth entry. 

Once matched, numerical attributes are scored individually. For example: 

• For Hydrogenation temperature, the ground truth is 313.15 K and the AI-extracted value is 40 °C. 

After unit conversion, these values are equivalent, and this item receives the full score of 10 points. 

• For Hydrogenation pressure, the ground truth is 0.075 MPa, whereas the AI-extracted value is 5.8 

MPa. As these values differ substantially, this item receives 0 points. 

• For H₂ adsorption capacity, the ground truth is 0.8 wt.% and the AI-extracted value is 1.15 wt.%, 

resulting in partial agreement and a score of 5 points. 

The scores of all numerical items within a matched entry are summed and then normalized by dividing by 

(number of items × 10) and scaling to a maximum of 50 points, yielding the final accuracy score. Because 

the score is normalized and every AI-extracted entry is forcibly matched to a ground-truth entry, 

hallucinated or poorly extracted entries naturally lead to low per-item scores and are penalized in the final 

accuracy value. 

 

 

 

 



Table S3. Example of the JSON structure generated by MinerU, illustrating text and image blocks. 

[ 
… 
  { 
    "type": "text", 
    "text": "In situ XRD is a very powerful tool for identifying phase transformations during hydrogen 
desorption……", 
    "page_idx": 2 
  }, 
  { 
    "type": "text", 
    "text": "The as-milled material was heated with a rate of 5 K min−1 to a final temperature of 
400 °C……", 
    "page_idx": 2 
  }, 
  { 
    "type": "image", 
    "img_path": "images/figure_1.jpg", 
    "img_caption": [ 
      "Fig. 1. In situ XRD measurement of LiBH4–MgH2 composites during hydrogen desorption." 
    ], 
    "img_footnote": [], 
    "page_idx": 2 
  }, 
  { 
    "type": "text", 
    "text": "At approximately 330 °C, hydrogen desorption from MgH2 occurs….", 
    "page_idx": 2 
  }, 
  { 
    "type": "text", 
    "text": "During the isothermal holding period, the formation of MgB2 is observed……", 
    "page_idx": 2 

} 
… 

] 
 

After PDF parsing using MinerU, each paper is converted into a structured JSON file represented as an 

ordered list of blocks, preserving the original reading order of the document. Each block corresponds to 

either a text segment or an image (figure) and is described by a dictionary with a mandatory "type" field. 

Based on this JSON structure, for each image block we extract a fixed-size contextual window consisting 

of 5 text blocks immediately preceding and 5 text blocks immediately following the image block. These 

text blocks typically correspond to approximately 5 natural paragraphs before and after the figure in the 

original PDF. In most cases, this window provides sufficiently complete contextual information to associate 

the figure with the relevant materials, experimental conditions, and terminology described in the text. 

 



 

Figure S14. Example screenshot of the complete prompt template used for image-based PCT data 
extraction. 



9. Failure mode analyses 

We include a representative low-scoring case to illustrate typical error patterns and their impact on the final 

score. Figure S14 shows the original PCT figure from the paper 10.1016/j.ijhydene.2011.02.001. To 

facilitate error analysis, we additionally provide a side-by-side comparison table of the AI-extracted 

results (left) and the ground-truth annotations (right), where clearly incorrect extracted content is 

highlighted in red. 

 

Figure S15 Original PCT figure from 10.1016/j.ijhydene.2011.02.001 

Table S4. Comparison table of the AI-extracted results (left) and the ground-truth annotations (right) 
AI Extracted Data Ground Truth Data 

[ 
  { 
    "ID": "1", 
    "doi": "10.1016/j.ijhydene.2011.02.001", 
    "Formula": "LiAlH4-MgH2-TiF3", 
    "Hydrogenation temperature": ["300", "°C"], 
    "Hydrogenation pressure": ["2", "MPa"], 
    "Dehydrogenation temperature": ["315", "°C"], 
    "Dehydrogenation pressure": ["0.3", "MPa"], 
    "Volumetric hydrogen capacity": ["NA", "NA", 
"NA", "NA", "NA", "NA"], 
    "Gravimetric hydrogen density": ["6", "wt%", "3", 
"MPa", "315", "°C"], 
    "H2 experiment release": ["2.48", "wt%"], 
    "H2 experiment adsorption": ["2.68", "wt%"], 
    "enthalpy change (ΔH, kJ/mol H2)": ["78", "kJ/mol 
H2", "82", "kJ/mol H2"], 
    "entropy change (ΔS, J/mol H2·K)": ["NA", "NA", 
"NA", "NA"], 
    "Material type": "Multi-component Hydride", 

[ 
  { 
    "ID": "1", 
    "doi": "10.1016/j.ijhydene.2011.02.001", 
    "Formula": "LiAlH4-MgH2-TiF3 composite", 
    "Hydrogenation temperature": "NA", 
    "Hydrogenation pressure": "NA", 
    "Dehydrogenation temperature": ["315", "°C"], 
    "Dehydrogenation pressure": ["3", "bar"], 
    "Volumetric hydrogen capacity": "NA", 
    "Gravimetric hydrogen density": ["5.7", "wt %", 
"0.05", "bar", "315", "°C"], 
    "H2 experiment release": ["5.5", "wt %"], 
    "H2 experiment adsorption": "NA", 
    "enthalpy change (ΔH, kJ/mol H2)": ["78", "kJ/mol 
H2", "82", "kJ/mol H2"], 
    "entropy change (ΔS, J/mol H2·K)": ["148", "J/mol 
K", "150", " J/mol K "], 
    "Material type": "Multi-component Hydride", 
    "Interstitial Hydride Category": "NA", 



    "Interstitial Hydride Category": "NA", 
    "Publication year": "2011" 
  }, 
  { 
    "ID": "2", 
    "doi": "10.1016/j.ijhydene.2011.02.001", 
    "Formula": "LiAlH4-MgH2-TiF3", 
    "Hydrogenation temperature": ["300", "°C"], 
    "Hydrogenation pressure": ["2", "MPa"], 
    "Dehydrogenation temperature": ["340", "°C"], 
    "Dehydrogenation pressure": ["0.5", "MPa"], 
    "Volumetric hydrogen capacity": ["NA", "NA", 
"NA", "NA", "NA", "NA"], 
    "Gravimetric hydrogen density": ["6", "wt%", "3", 
"MPa", "340", "°C"], 
    "H2 experiment release": ["2.48", "wt%"], 
    "H2 experiment adsorption": ["2.68", "wt%"], 
    "enthalpy change (ΔH, kJ/mol H2)": ["78", "kJ/mol 
H2", "82", "kJ/mol H2"], 
    "entropy change (ΔS, J/mol H2·K)": ["NA", "NA", 
"NA", "NA"], 
    "Material type": "Multi-component Hydride", 
    "Interstitial Hydride Category": "Others", 
    "Publication year": "2011" 
  }, 
  { 
    "ID": "3", 
    "doi": "10.1016/j.ijhydene.2011.02.001", 
    "Formula": "LiAlH4-MgH2-TiF3", 
    "Hydrogenation temperature": ["300", "°C"], 
    "Hydrogenation pressure": ["2", "MPa"], 
    "Dehydrogenation temperature": ["360", "°C"], 
    "Dehydrogenation pressure": ["1", "MPa"], 
    "Volumetric hydrogen capacity": ["NA", "NA", 
"NA", "NA", "NA", "NA"], 
    "Gravimetric hydrogen density": ["6", "wt%", "3", 
"MPa", "360", "°C"], 
    "H2 experiment release": ["2.48", "wt%"], 
    "H2 experiment adsorption": ["2.68", "wt%"], 
    "enthalpy change (ΔH, kJ/mol H2)": ["78", "kJ/mol 
H2", "82", "kJ/mol H2"], 
    "entropy change (ΔS, J/mol H2·K)": ["NA", "NA", 
"NA", "NA"], 
    "Material type": "Multi-component Hydride", 
    "Interstitial Hydride Category": "Others", 
    "Publication year": "2011" 
  } 
] 
 

    "Publication year": "2011" 
  }, 
  { 
    "ID": "2", 
    "doi": "10.1016/j.ijhydene.2011.02.001", 
    "Formula": "LiAlH4-MgH2-TiF3 composite", 
    "Hydrogenation temperature": "NA", 
    "Hydrogenation pressure": "NA", 
    "Dehydrogenation temperature": ["340", "°C"], 
    "Dehydrogenation pressure": ["5", "bar"], 
    "Volumetric hydrogen capacity": "NA", 
    "Gravimetric hydrogen density": ["6.1", "wt %", 
"0.08", "bar", "340", "°C"], 
    "H2 experiment release": ["5.5", "wt %"], 
    "H2 experiment adsorption": "NA", 
    "enthalpy change (ΔH, kJ/mol H2)": ["78", "kJ/mol 
H2", "82", "kJ/mol H2"], 
    "entropy change (ΔS, J/mol H2·K)": ["148", "J/mol 
K", "150", " J/mol K "], 
    "Material type": "Multi-component Hydride", 
    "Interstitial Hydride Category": "NA", 
    "Publication year": "2011" 
  }, 
  { 
    "ID": "3", 
    "doi": "10.1016/j.ijhydene.2011.02.001", 
    "Formula": "LiAlH4-MgH2-TiF3 composite", 
    "Hydrogenation temperature": "NA", 
    "Hydrogenation pressure": "NA", 
    "Dehydrogenation temperature": ["360", "°C"], 
    "Dehydrogenation pressure": ["10", "bar"], 
    "Volumetric hydrogen capacity": "NA", 
    "Gravimetric hydrogen density": ["6.1", "wt %", 
"0.08", "bar", "360", "°C"], 
    "H2 experiment release": ["5.7", "wt %"], 
    "H2 experiment adsorption": "NA", 
    "enthalpy change (ΔH, kJ/mol H2)": ["78", "kJ/mol 
H2", "82", "kJ/mol H2"], 
    "entropy change (ΔS, J/mol H2·K)": ["148", "J/mol 
K", "150", " J/mol K "], 
    "Material type": "Multi-component Hydride", 
    "Interstitial Hydride Category": "NA", 
    "Publication year": "2011" 
  } 
] 

Based on this case study, we summarize four common failure modes: 

Failure mode 1:Hallucination / spurious fields 

As shown in Figure R3, the figure contains only a dehydrogenation (release) process, for which the 

correct behavior is to record only the corresponding release-related temperature/pressure information. 

However, the model incorrectly hallucinated additional information (e.g., temperature/fields associated 



with a non-existent hydrogenation process), which leads to direct penalties in the item-level accuracy 

scoring. 

Failure mode 2: Numerical inaccuracy due to visual reading errors 

According to the ground truth, the LiAlH₄–MgH₂–TiF₃ composite reaches maximum release capacities of 

5.7, 6.1, and 6.1 wt.% at 315°C, 340°C, and 360°C, respectively. The model, however, extracted these 

values as approximately 6 wt.% across conditions, likely due to multimodal visual estimation errors when 

reading plotted curves/axis ticks. 

Failure mode 3: Misinterpretation of multi-plateau PCT behavior 

While many PCT curves exhibit a single plateau, Figure R3 contains two plateaus. The model extracted 

the release amount near the end of the first plateau (≈ 2.48 wt.%), whereas the ground truth corresponds 

to the release amount after the second plateau (≈ 5.5–5.7 wt.%). This indicates that the model can struggle 

to correctly interpret and select the appropriate plateau endpoint in multi-step PCT behavior. 

Failure mode 4: Missing data when key quantities appear only in derived plots. 

When thermodynamic parameters (e.g., enthalpy/entropy from a van’t Hoff plot) are only provided in 
secondary plots or figure-derived analyses and not stated explicitly in the main text near the figure, the 
current workflow may fail to recover them, resulting in missing-field penalties. 

 

 

 

 

 

 

 

 

 

 



10. Diversity of test set 

 

Figure S16. Diversity summary of the 100 evaluation articles, including publication years, journal 

distribution, figure/technique categories, entry complexity, and attribute coverage. 

• Publication years: The 100 evaluation papers span 2004–2025 (21 years) and cover 13 journals. 

The largest single source is International Journal of Hydrogen Energy (30/100, 29.7%), with the 

remaining papers distributed across multiple venues (e.g., Advanced Materials 11, Chemical 



Engineering Journal 10, Journal of Alloys and Compounds 6, Carbon 6, and several others), plus 

an “Other” category (15/100, 14.9%) representing additional journals. 

• Figure types and experimental techniques. The test set includes multiple experimental modalities 

commonly used in hydrogen-storage studies. In particular, the evaluated papers contain TPD 

(Temperature-Programmed Desorption) figures (46 articles), PCT (Pressure–Composition–

Temperature) figures (40 articles), electrochemical measurements (12 articles), and textual/tabular-

only data (3 articles). These categories reflect the diversity of experimental techniques and 

reporting styles encountered in the literature. 

• Data complexity. The number of extracted entries per article varies substantially, with most papers 

containing only a few entries per paper (typical range ≈ 1–10), while a smaller fraction contains 

much larger numbers of entries, forming a long tail up to approximately 35 entries per article. In 

addition, the coverage of different quantitative attributes is uneven, reflecting real-world reporting 

diversity (e.g., gravimetric capacity is most frequently available, whereas entropy is reported far 

less often). 

 

 

 

 

 

 

 



10. Robustness of the DIVE workflow to multi-curve figures, overlapping curves, and low-

resolution images 

To provide concrete evidence of DIVE’s robustness to multi-curve figures, overlapping curves, and low-

resolution images, we include a representative case study here. 

 

Figure S17. The desorption P–C isotherms for La₂Mg(Ni₁−xCoₓ)₉ (x = 0–0.5) alloys at 25 °C (DOI: 

10.1016/j.electacta.2004.08.004) 

As shown in Figure S17 (DOI: 10.1016/j.electacta.2004.08.004;), the figure contains six closely spaced 

PCT curves with substantial overlap, presented primarily in black-and-white. Curve identity is largely 

indicated by subtle scatter-marker differences, and the overall image resolution is relatively low. This figure 

therefore represents a challenging scenario for visual digitization. 

Table S5. AI extracted data for multi-curve, overlapping curves, and low-resolution images 

AI extracted data (Gemini 2.5 pro + DeepSeek-R1-0528-Qwen3-8B) 
[ 
  { 
    "ID": "1", 
    "doi": "10.1016/j.electacta.2004.08.004", 
    "Formula": "La₂MgNi₉", 
    "Hydrogenation temperature": ["25", "°C"], 
    "Hydrogenation pressure": ["1", "atm"], 
    "Dehydrogenation temperature": ["25", "°C"], 
    "Dehydrogenation pressure": ["0.093", "atm"], 
    "Volumetric hydrogen capacity": ["NA", "NA", "NA", "NA", "NA", "NA"], 
    "Gravimetric hydrogen density": ["1.03", "wt%", "0.093", "atm", "25", "°C"], 



    "H2 experiment release": ["0.65", "H/M"], 
    "H2 experiment adsorption": "NA", 
    "enthalpy change (ΔH, kJ/mol H2)": ["NA", "NA", "NA", "NA"], 
    "entropy change (ΔS, J/mol H2·K)": ["NA", "NA", "NA", "NA"], 
    "Material type": "Interstitial Hydride", 
    "Interstitial Hydride Category": "AB3", 
    "Publication year": "2004" 
  }, 
  { 
    "ID": "2", 
    "doi": "10.1016/j.electacta.2004.08.004", 
    "Formula": "La₂Mg(Ni₀.₉Co₀.₁)₉", 
    "Hydrogenation temperature": ["25", "°C"], 
    "Hydrogenation pressure": ["1", "atm"], 
    "Dehydrogenation temperature": ["25", "°C"], 
    "Dehydrogenation pressure": ["0.075", "atm"], 
    "Volumetric hydrogen capacity": ["NA", "NA", "NA", "NA", "NA", "NA"], 
    "Gravimetric hydrogen density": ["1.04", "wt%", "0.075", "atm", "25", "°C"], 
    "H2 experiment release": ["0.6", "H/M"], 
    "H2 experiment adsorption": "NA", 
    "enthalpy change (ΔH, kJ/mol H2)": ["NA", "NA", "NA", "NA"], 
    "entropy change (ΔS, J/mol H2·K)": ["NA", "NA", "NA", "NA"], 
    "Material type": "Interstitial Hydride", 
    "Interstitial Hydride Category": "AB3", 
    "Publication year": "2004" 
  }, 
  { 
    "ID": "3", 
    "doi": "10.1016/j.electacta.2004.08.004", 
    "Formula": "La₂Mg(Ni₀.₈Co₀.₂)₉", 
    "Hydrogenation temperature": ["25", "°C"], 
    "Hydrogenation pressure": ["1", "atm"], 
    "Dehydrogenation temperature": ["25", "°C"], 
    "Dehydrogenation pressure": ["0.06", "atm"], 
    "Volumetric hydrogen capacity": ["NA", "NA", "NA", "NA", "NA", "NA"], 
    "Gravimetric hydrogen density": ["1.05", "wt%", "0.06", "atm", "25", "°C"], 
    "H2 experiment release": ["0.55", "H/M"], 
    "H2 experiment adsorption": "NA", 
    "enthalpy change (ΔH, kJ/mol H2)": ["NA", "NA", "NA", "NA"], 
    "entropy change (ΔS, J/mol H2·K)": ["NA", "NA", "NA", "NA"], 
    "Material type": "Interstitial Hydride", 
    "Interstitial Hydride Category": "AB3", 
    "Publication year": "2004" 
  }, 
  { 
    "ID": "4", 
    "doi": "10.1016/j.electacta.2004.08.004", 
    "Formula": "La₂Mg(Ni₀.₇Co₀.₃)₉", 
    "Hydrogenation temperature": ["25", "°C"], 
    "Hydrogenation pressure": ["1", "atm"], 
    "Dehydrogenation temperature": ["25", "°C"], 
    "Dehydrogenation pressure": ["0.05", "atm"], 
    "Volumetric hydrogen capacity": ["NA", "NA", "NA", "NA", "NA", "NA"], 
    "Gravimetric hydrogen density": ["1.06", "wt%", "0.05", "atm", "25", "°C"], 
    "H2 experiment release": ["0.5", "H/M"], 
    "H2 experiment adsorption": "NA", 
    "enthalpy change (ΔH, kJ/mol H2)": ["NA", "NA", "NA", "NA"], 
    "entropy change (ΔS, J/mol H2·K)": ["NA", "NA", "NA", "NA"], 
    "Material type": "Interstitial Hydride", 
    "Interstitial Hydride Category": "AB3", 
    "Publication year": "2004" 
  }, 



  { 
    "ID": "5", 
    "doi": "10.1016/j.electacta.2004.08.004", 
    "Formula": "La₂Mg(Ni₀.₆Co₀.₄)₉", 
    "Hydrogenation temperature": ["25", "°C"], 
    "Hydrogenation pressure": ["1", "atm"], 
    "Dehydrogenation temperature": ["25", "°C"], 
    "Dehydrogenation pressure": ["0.04", "atm"], 
    "Volumetric hydrogen capacity": ["NA", "NA", "NA", "NA", "NA", "NA"], 
    "Gravimetric hydrogen density": ["1.0", "wt%", "0.04", "atm", "25", "°C"], 
    "H2 experiment release": ["0.45", "H/M"], 
    "H2 experiment adsorption": "NA", 
    "enthalpy change (ΔH, kJ/mol H2)": ["NA", "NA", "NA", "NA"], 
    "entropy change (ΔS, J/mol H2·K)": ["NA", "NA", "NA", "NA"], 
    "Material type": "Interstitial Hydride", 
    "Interstitial Hydride Category": "AB3", 
    "Publication year": "2004" 
  }, 
  { 
    "ID": "6", 
    "doi": "10.1016/j.electacta.2004.08.004", 
    "Formula": "La₂Mg(Ni₀.₅Co₀.₅)₉", 
    "Hydrogenation temperature": ["25", "°C"], 
    "Hydrogenation pressure": ["1", "atm"], 
    "Dehydrogenation temperature": ["25", "°C"], 
    "Dehydrogenation pressure": ["0.036", "atm"], 
    "Volumetric hydrogen capacity": ["NA", "NA", "NA", "NA", "NA", "NA"], 
    "Gravimetric hydrogen density": ["0.989", "wt%", "0.036", "atm", "25", "°C"], 
    "H2 experiment release": ["0.4", "H/M"], 
    "H2 experiment adsorption": "NA", 
    "enthalpy change (ΔH, kJ/mol H2)": ["NA", "NA", "NA", "NA"], 
    "entropy change (ΔS, J/mol H2·K)": ["NA", "NA", "NA", "NA"], 
    "Material type": "Interstitial Hydride", 
    "Interstitial Hydride Category": "AB3", 
    "Publication year": "2004" 
  } 
] 

For Figure S17, the AI-extracted structured output (Table S6) demonstrates that DIVE can still recover 

fine-grained quantitative trends. In particular, the extracted dehydrogenation equilibrium pressures capture 

a consistent monotonic shift across compositions, resolving values of 0.093, 0.075, 0.060, 0.050, 0.040, and 

0.036 atm. Despite the strong overlap near curve endpoints, the extracted gravimetric hydrogen density also 

preserves the expected trend, yielding 1.03, 1.04, 1.05, 1.06, 1.00, and 0.989 wt.% across the six curves. 

These results indicate that DIVE remains reliable even when curves are highly similar, partially overlapping, 

and visually difficult to separate. Overall, this example suggests that DIVE can maintain high recognition 

fidelity under non-ideal image conditions commonly encountered in the literature. 

 

 

 



11. Accuracy breakdown for Step 1 (caption-based figure identification) 

Step 1 task definition. For Step 1, we classify each figure caption into four categories: 

• 0: None (not relevant) 

• 1: PCT (pressure–composition–temperature isotherms) 

• 2: ELEC (electrochemical discharge) 

• 3: TPD (temperature-programmed desorption / related curves) 

Evaluation protocol. We collected >800 captions from the 100-paper evaluation set and compared 

the LLM’s predicted labels with human-verified ground truth. For computing PR/F1, we treat {1,2,3} 

as “relevant” and 0 as “not relevant.” The results are: 

• Precision: 88.89% (of captions predicted as relevant, 88.89% are truly relevant) 

• Recall: 89.31% (of truly relevant captions, 89.31% are retrieved) 

• F1: 89.10% 

• Accuracy: 88.67% 

Table S6. Full per-caption results 

doi Caption AI Ground truth result 

10.1016/j.jallcom.200

4.12.158 

Fig. 1. Observed (points) and calculated (line) neutron 

diffraction patterns for an $\mathrm{ErNi}_{3}$ sample 

deuterided at 100 bar (a), calculated patterns of the 

contributing phases $\upbeta_{2}$ - (b) and 

$\upgamma$ -deuteride (c). Vertical bars indicate positions 

of Bragg peaks; difference pattern represented at the 

bottom; 

$\lambda=1.493814(19)\mathrm{\normalfont\AA}$ . 

3 0 FP 

10.1016/j.ijhydene.20

23.03.329 

Fig. 3 e PeC-T curves of the annealed 

$\mathbf{LaY}_{1\cdot9}\mathbf{Ni}_{10}\mathbf{Mn

}_{0\cdot5}\mathbf{Al}_{0\cdot2}$ alloys (a) and the 

XRD patterns of Alloy-1050 at different hydrogen 

absorption states (b). 

1 1 TP 

…… 

Full per-caption results (811 rows) can be in caption_evaluation_results.csv in our repository 

(https://github.com/gtex-hydrogen-storage/DIVE).  
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