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1. Experimental Section

1. 1. Materials and analysis methods

All chemicals were commercially obtained and used without further purification and the detailed
information of materials is shown in Supporting Information. The analysis methods are shown in
Supporting Information.

1.2. Preparation of catalysts

1.2.1. Preparation of NiO, Co;04, NiCoO and NiCo0,0,/CC

The reactants of Ni(NOs),-6H,0 (1 mmol), Co(NOs3),-6H,0 (2 mmol) and CO(NH,), (10 mmol) were
dissolved in 50 mL of DI water and stirred thoroughly to form a homogeneous pink solution. After that,
the solution was transferred to a stainless Teflon-lined autoclave of 100 mL inner volume, and a piece
of the CC (1x3 cm?) was vertically immersed into the mixture. Then the autoclave was sealed and placed
in an electric oven set at a temperature of 120 °C for 8 h. After the reaction, the CC with deep pink
precursor product evenly covering the surface was collected, which was washed repeatedly with DI
water and ethanol to remove the residues. Finally, to achieve a chemical transformation to NiCo,QO,, the
precursor grown on carbon fiber cloth was then annealed at 350 °C in air atmosphere for 2 h. The
different crystal structure electrodes were prepared by adjusting the ratio of nickel nitrate hexahydrate
and cobaltous nitrate hexahydrate to 1:0, 0:1, and 1:1, to obtain the NiO, Co3;0,, and NiCoO electrodes,
respectively.

1.2.2. Preparation of Au/CC

Au nanoneedle arrays were grown on carbon cloth 1x3 cm?. Au nanoneedle arrays were synthesized
by three-electrode system with silver chloride (Ag/AgCl) as the reference electrode and Pt sheet as the
counter electrode. The growth of Au nanoneedles was carried out in 0.5 M HCl and 160 mM HAuCl, at
a constant potential (-0.4 V vs. RHE) for 300 s. The obtained Au nanoneedle array was taken out and
thoroughly rinsed with ethanol and distilled water.

1.3. Characterizations

The morphology and microstructure of the as-prepared electrodes were investigated via field emission
scanning electron microscopy (SEM, Phenom Nano G2, Holland) at an acceleration voltage of 15 kV
and transmission electron microscopy (TEM, JEM-F200, JEOL, Japan). High-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy
(EDS) mapping were taken on Thermo Fisher Scientific-Titan ETEM G2 operated at 200 kV, equipped
with a probe aberration-corrector (AC) to improve the resolution of images. The crystal phase of the
samples was characterized via X-ray diffraction (XRD, Bruker D8 Advance, Germany) using Cu Ka
radiation at a scanning rate of 10° min‘! in the 26 from 10° to 80° and the operating current and voltage
were 40 kV and 40 mA, respectively. The X-ray photoelectron spectroscopy (XPS) measurements were
carried out by Thermo escalab (250XI, America). The samples were irradiated with monochromatic Al-
Ko radiation. Survey scans were performed using a step size of 0.1 eV per step. Binding energy was
calibrated by the C 1s peak (284.8 eV) as a reference. The spectra were processed and analyzed by the
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software code Athena.

1.4. In-situ Fourier transform infrared spectroscopy

The in-situ Fourier transform infrared spectroscopy (FT-IR) measurements were conducted at Nicolet
iS50 (Thermo Scientific) instrument based on the absorption mode equipped with a Mercury Cadmium
Telluride (MCT) detector in an atmosphere cooled by liquid nitrogen.

1.5. In-situ Raman spectroscopy

In-situ Raman spectra were collected using an in Via-Reflex laser Raman spectrometer (Renishaw,
UK) equipped with a 50x long-working-distance objective lens. A 532 nm solid-state laser was used as
the excitation source, operating at 20% of its maximum power intensity (approximately 25 mW at the
sample surface). The spectra were acquired with an exposure time of 10 s per accumulation, and each
measurement was repeated twice to improve the signal-to-noise ratio.

1.5. Electrochemical test

The electrochemical measurements were conducted using a standard threeelectrode system
configuration on CHI760E electrochemical workstation (CH Instruments, Ins. Shanghai, China).
Platinum electrode and Hg/HgO electrode were used as counter electrode and reference electrode,
respectively. | M KOH or 1 M KOH + 1 M HMF was used as electrolyte. Linear sweep voltammetry
(LSV) measurement was conducted at a scan rate of 5 mV s-'. Presented potentials were normalized to
reversible hydrogen electrode (RHE) according to the equation: Erpyg = Engngo + 0.059 x pH + 0.098.
The LSV measurement results were fitted and calculated to obtain the Tafel slope. The equation formula
of the Tafel curves is: 1 =a + b X log [j|. n represents the overpotential (RHE), b represents the Tafel
slope and j is the current density. Cyclic voltammetry (CV) experiments were conducted in non-Faradic
current region with different scanning rates from 2 to 10 mV s to determine the double layer
capacitances (Cyq) values of the catalysts. The electrochemical surface area (ECSA) normalized current
density was calculated as:

ECSA-normalized current density = current density x C/Cy

where C; is the specific capacitance. 0.04 mF cm? was adopted as the value of C; based on previous
reports.

The stability measurements were carried out using chronopotentiometry measurement at a constant
working potential.

In operando electrochemical impedance spectroscopy (EIS) tests spanned a frequency range of 10-2
to 10° Hz at various potentials in 1 M KOH and 1M KOH with PA, with an AC amplitude of 5 mV.

1.6. Calculation method

1.6.1. Products analysis:

High performance liquid chromatography instrument (HPLC, Agilent 1260 Infinity Series, USA) with
an ultraviolet-visible (UV-Vis) detector and an Agilent Zorbax SB-C18 (150 mm X 4.6 mm, 5 pum)
column was carried out to detect organic molecules containing 5-Hydroxymethylfurfural (HMF) and

related oxidation products. The procedure was as follows: 25 pL of solution was taken out from the

3



electrolyte after reaction, diluted with 950 puL of deionized water, and then neutralized with 25 puL of
0.5 M H,S0, solution. Subsequently, 10 uL of the above solution was removed for product analysis.
The mobile phases A and B were ammonium formate and methanol, respectively.

The theoretical charge of HMF oxidation reaction was calculated by the following formula:

6 x (1.6x10" C) x 0.015 L % (0.0077 mol-L-!) x (6.02x10?* mol-L!) = 66.9 C

The conversion, yield and Faraday efficiency were calculated as follows:

HMF conversion (%) = [n (consumed HMF)/n (initial HMF)] x100%

FDCA yield (%) = [n (generated FDCA)/n (initial HMF)] x100%

Faraday efficiency (%) = [n (generated FDCA)/(Charge/(6xF))] x100%

Where n was the molar amount of the reactant, calculated from HPLC data, and F was Faraday
constant (96500 C mol!).

1.6.2 Determination of cathode products and calculation of FE.

Gas products from the cathodic compartment during CO,RR were analyzed using a gas
chromatography (GC online test, Agilent 8860) equipped with a thermal conductivity detector (TCD to
H,) and flame ionization detector (FID to CO). Ar was used as the carrier gas. When the mixed gas flow
introduced into GC, 1 mL of gas was sampled to determine the concentration of gaseous products. The
CO and H, Faradaic efficiencies were calculated based on:

For gaseous products, the FE was calculated as follows:

vx10 8 x ¥
— X pxF

FE g, = 5 x 100 %

v (ppm): volume concentration of certain gas product in the exhaust gas from the cathode

compartment.
V: the gas volume in the cathode compartment.
n: the number of electrons transferred when one target gas molecule generated
Q: the total passed charge.
Vi =22.4L mol.
F =96500 C mol™.
The FEco and FEy, were tested online and averaged for multiple data, and the error is less than 6%.
And the selectivity of CO was calculated as follows.

FEgaS
Selectivi = x 100 %
FE

gas
total

1.6.3 Determination of calculation of EE.
the full-cell EE is highly associated with the cell voltage and faradaic efficiency, as given by the

equation :

FE - Energy required AG’n 3 zE%Fn 3 EQQ
Enegy input E.t E. it E_,lt
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For HMFOR-CO,RR:

EH It E(? EHMFOR -E CO,RR
EE = FE = FE = FE
E celfl t E cell E cell
For HMFOR-HER:
Eg It Ee EHMFOR - EHER
EE = FE = =
Ecelllt Ecell Ecell

0
AG": the standard Gibbs free energy change,

n: the molar amount of the desired product,

E : the thermodynamic potential of the overall reaction,

E E

HMFOR= 03y, CO2RR_

0.11V, Ener=o v,

Ecen : actual applied potential,

F: the Faraday constant, 96500 C mol-,

z 1s the electron transfer number,

Q: the amount of the Coulomb charge transferred into the desired product,

I: the total current,

t: the operation time,

FE: the faradaic efficiency

1.7. Theoretical calculation method:

The purpose of DFT calculation in this study is to reveal the intrinsic electronic structure difference
between NiCo,04 and Co30, catalysts and its influence on the intrinsic adsorption trend of reaction
intermediates. Spin-polarized first-principle calculations were performed by the density functional
theory (DFT) using the Vienna Ab-initio Simulation Package (VASP) package. The generalized gradient
approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional were used to describe the
electronic exchange and correlation effects with semi-empirical correction by Grimme (DFT+D3)
included. Uniform G-centered k-points meshes with a resolution of 27x0.05 A-! and Methfessel-Paxton
electronic smearing were adopted for the integration in the Brillouin zone for geometric optimization.
The simulation was run with a cutoff energy of 500 eV throughout the computations. The geometry
optimization was considered convergent when the electronic energy and Hellmann-Feynman forces
convergence criterion was smaller than 1075 eV and 0.03 eV A™!, respectively. A vacuum distance of 15
A was set to ensure sufficient vacuum and avoid interactions between two periods. The free energy was
calculated using the equation: G=E + ZPE — TS, where G, E, ZPE, and TS were the free energy, total
energy from DFT calculations, zero point energy, and entropic contributions (T was set to be 298.15 K),
respectively. In order to obtain more accurate electronic properties, GGA+U method was applied with
U-J values with 5.5 eV for Ni-3d and 3 eV for Co 3d electrons.

1.7.1. The calculated adsorption energy of HMF and OH on Co;0, (111) and NiCo,0, (111)
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surfaces

The adsorption energy of HMF and OH on Co030, (111) and NiCo,0,4 (111) surfaces was calculated
by the following equation:

AE(ads)=E(total)-E(surface)-E(molecule)
in which, E(total) represents the energy of HMF and OH adsorbed on Co;0, (111) and NiCo,04 (111)
surfaces, E(surface) represents the energy of Co;O4 (111) and NiCo,04 (111) surface, E(molecule)
represents the energy of HMF and OH molecules. The calculated results are listed in Table S1-2.

1.7.2 Energy change of HMF oxidized to FDCA at Ni and Co sites of NiCo,0, (111) surface

The catalytic process of from benzyl alcohol to benzoic acid at Ni and Co sites of NiCo204 (111)

surface can be expressed as follows:

Path 1:
Stepl: * + C¢HgO5 (g) 2 C¢HgO5*
Step2: CHgO3* + 20H- > C¢HsO,*+ H,0O
Step3: C¢HgO4* + 20H- > C¢H,0,4* + 2H,0
Step4: CcH404* + 20H- - C¢H,O5*+ H,0
Step5: CH4O5* > * + CsH,05 (2)

Path 2:

Stepl: * + C¢HgO5 (g) 2 CsHgO5*
Step2: C¢HgO3* + 20H- > CqH4,05*+ 2H,0
Step3: CsH4O3* + 20H- - C¢H,0,* + H,O
Step4: CcH404* + 20H- > C¢H,O5*+ H,0
Step5: CcH4O5* > * + CsH405 (2)
where* presents the NiCo,O,4 (111) surface, and intermediates* denotes the corresponding absorbed

intermediates.



2. Supplementary Figures
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Figure S1. Synthetic processes of NiC0,0;.
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Figure S3. SEM images of (a) NiC0,04 (b) NiO and (c) Co30,.
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Figure S4. (a) TEM and (b) HRTEM of the NiCo0,0,4 samples.
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Figure SS. (a) The TEM images and (b) SAED of NiCo0,0,.
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Figure S6. EDS mapping images of the NiCo,0,4 sample.
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Figure S7. Full-scan XPS spectra of (a) Co;04, (b) NiCo0,0,4 and (¢) NiO.

13

Binding Energy (eV)




a b

Ni 2p 2pip 2ps,

N

NiCo,0,

Intensity (a.u.)
Intensity (a.u.)

\ A

NiO [Co,0,

890 880 870 860 850 810 801 792 783 774
Binding Energy (eV) Binding Energy (eV)

Figure S8. (a) High-resolution Ni 3d XPS spectra of NiCo,0, and NiO. (b) High-resolution Co
2p XPS spectra of NiCo0,04 and Co30,.
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Figure S9. LSV of NiC0,04 in 0, 5, 10,20, 40 mM HMF.
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Figure S10. SEM of Ni Co with different feeding ratios : (a) 1:1, (b) 1:2.
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Figure S11. LSV of Ni Co with different feeding ratios: 1: 1 and 1: 2.
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Figure S12. Tafel of NiO, Co;04 and NiCo,04 for HMFOR in 10 mM HMF + 1 M KOH

solution.
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Figure S13. ECSA spectra of the (a) NiO, (b) Co3;04 and (¢) NiCo,0, samples. (d) Electric
double layer capacitor (EDLC) spectrum of the NiO, Co30,4 and NiCo0,0,4 samples.
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Figure S17. Concentration of HMF and its oxidation products under different charges on
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Figure S18. The color change of the reaction solution during the specific experiment.
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Figure S21. SEM image of NiCo,0, after electrochemical oxidation.
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Figure S22. XRD patterns of NiCo,0,4 before and after HMFOR cycling stability.
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used to monitor the infrared data every 5 min after the end of electrification for 20 min.
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Figure S32. The optimized structures of HMF and OH adsorbed on (a, b) Co;04 (111) and (b,

d) NiCo0,04 (111) surfaces.
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Figure S33. The adsorption configurations of HMFOR intermediate DFF on Ni sites and Co
sites of NiCo0,0, and Co sites of Co030..
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Figure S37. SEM image of (a) Au and (b) NiCo,0, after CO,RR-HMFOR cycle stability.
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Figure S38. XRD image of (a) Au and (b) NiCo,0, after CO,RR-HMFOR cycle stability.
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3. Supplementary Tables

Table S1. The equation of HMFOR two paths transformation and

transformation.

functional group

HMFCA path

reaction equation

Functional groups
changes

IHMF — HMFCA
2 HMFCA — FFCA

3 FFCA — FDCA

C6H6O3+H20 — C6H4O3(DFF)+4H++2C_

C6H4O3(DFF)+H20 — C6H404(FFCA)+4H++2C_

CeHsO4(FFCA)+H,0 — C4H,O5(FFCA)+4H2e-

-CH,0OH — -CHO
-CHO — -COOH

-CHO — -COOH

DFF path

1 HM F— DFF
2 DFF — FFCA

3 FFCA — FDCA

CcHsO3+H,0 — C6H4O3(DFF)+4H++2C'
C6H403(DFF)+H20 — C6H404(FFCA)+4H++26_

C¢H,04(FFCA)+H,0 — CeH,O5(FFCA)+4H +2¢

-CH,0OH — -CHO
-CHO — -COOH

-CHO — -COOH
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Table S2. The related EIS fitting parameters of Co;04 sample for OER.

Potential

V) Rs Rct CPEI-T CPEI1-P WI1-R WI-T W1-P

1.1 2.134  0.079886  0.0027128 0.8907 0.16357 0.010774  0.39725
1.15 2.115 0.10172 0.010199 0.76865 0.00011927 1.3022E-6 0.39936
1.2 2.095  0.041854  0.0027737 1.003 0.17311 0.0095949  0.39915
1.25 2.078  0.046346 0.00203 1.038 0.18092 0.0077846  0.41788
1.3 2.064  0.055173 0.0035431  0.95532 0.17394 0.0073434 0.40531
1.35 2.053 0.122 0.013686 0.75522  9.6263E-5 1.5576E-6 0.41639
1.4 2.043 0.11119 0.016495 0.75588  0.00028431 5.9005E-6 0.37773
1.45 2.018  0.061537 0.0044607  0.95088 0.29651 0.17209  0.35473
1.5 2.006  0.076364 0.0037006  0.94055 0.1751 0.043092  0.37525
1.55 2.011 0.10484  0.0068501  0.83516  0.00015735 2.0843E-6  0.3639
1.6 2.012  0.087649 0.0029502  0.93738  0.0004478  1.7162E-6 0.30862
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Table S3. The related EIS fitting parameters of Co;04 sample for HMFOR.

Potential

V) Rs Rct CPEI-T CPEI1-P WI1-R WI-T W1-P

1.1 4.363 0.23042  0.011739 0.52996 0.0022513  4.9695E-5 0.41168
1.15 4.229 0.18725  0.031066 0.55925 0.010064  0.00021467 0.38159
1.2 4.309 0.13553 0.01966 0.57599 9.6788E-5 9.818E-7  0.41475
1.25 4.299 0.13497  0.041895 0.55519 0.00013938  9.4207E-7  0.39434
1.3 4.292 0.12464  0.019288 0.65395 0.00013316  1.0311E-6  0.40639
1.35 4.286 0.13285  0.026343 0.63175 9.633E-5 9.9544E-7  0.40497
1.4 4.285 0.11424  0.016125 0.71283 0.0088829  0.00052253 0.40334
1.45 4271  0.090053  0.017477 0.75182 0.027999 0.0018345 0.32488
1.5 4.241 0.13042 0.03224 0.65355 0.0002765  5.4165E-6  0.36005
1.55 4.216 0.11616  0.011571 0.72772 0.00029063  4.2653E-6  0.36464
1.6 4.23 0.096047  0.80899  0.00065151 0.00065151 5.4229E-6  0.33962
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Table S4. The related EIS fitting parameters of NiCo,0, sample for OER.

Potential

V) Rs Ret CPEI-T  CPEl-P WI1-R WI1-T W1-P
1.1 1.522  0.049416 0.053801  0.71513 0.17855 0.035614 0.40886
1.15 1.525  0.092603  0.049337  0.70595 0.00024012 9.1937E-6  0.40522
1.2 1.51 0.085944  0.068783  0.68686  0.00043994 1.3908E-5  0.37506
1.25 1.509  0.046779  0.06724 0.71945 0.16335 0.044812 0.39962
1.3 1.509  0.087115 0.066514  0.68701 0.00012829 2.6833E-6  0.37498
1.35 1.51 0.053053  0.013231  0.87476  0.00058983  5.0325E-6 0.3315
1.4 1.51 0.054719  0.017293 0.8596 0.0005827 4.9671E-6  0.32521
1.45 1.501  0.088385  0.10159 0.63269  0.00014564  2.188E-6 0.35489
1.5 1.494 0.09483 0.13265 0.60344 0.01493 0.0022233  0.0022233
1.55 1.502  0.077478  0.056532 0.7208 0.0002582  9.473E-6 0.378
1.6 1.505  0.063132  0.048573  0.74378 0.00046375 5.7042E-6  0.32967
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Table S5. The related EIS fitting parameters of NiCo,04 sample for HMFOR.

Potential

V) Rs Ret CPEI-T CPEI-P WI1-R WI-T W1-P

1.1 3.768 0.075278  0.017849 0.74455  0.00025875 2.5815E-6 0.36276
1.15 3.749 0.061386  0.010266 0.81456  0.00042796 3.7546E-6 0.34545
1.2 3.723 0.067967  0.021944 0.73873  0.00039692 5.3761E-6 0.34927
1.25 3.704 0.066638  0.019912 0.76914  0.00032391 6.4318E-6 0.35161
1.3 3.694 0.062639  0.017949 0.77655  0.00047373 7.2627E-6 0.34631
1.35 3.693 0.059789  0.014972 0.80535  0.0010616 1.1844E-5 0.33113
1.4 3.686 0.043597  0.0048286  0.92897  0.00099596 6.9506E-6 0.31193
1.45 3.676 0.060061 0.020553 0.75781  0.00015445 1.0474E-6 0.33659
1.5 3.673 0.073473  0.035172 0.70602  0.0005249 1.0806E-5 0.35407
1.55 3.68 0.054123  0.0091034 0.8674  0.00031196 2.9193E-6 0.33736
1.6 3.686 0.047333  0.0073318  0.89668 2.208 1.907 0.61835
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Table S6. The related EIS fitting parameters of NiO sample for OER.

Potential

V) Rs Ret CPE1-T CPE1-P WI1-R WI-T W1-P
1.1 1.896 0.30581  0.0027893  0.81778 0.9494 0.12407  0.3207
1.15 1.906 0.30591 0.0044723  0.76202 0.88019 0.12616  0.32667
1.2 1.899 0.26794  0.0039383  0.79303 1.014 0.21897  0.32705
1.25 1.891 0.28902 0.004907 0.7742 0.98815 0.23111  0.34351
1.3 1.886 0.31365  0.0048691 0.76803 1.054 0.26911  0.36736
1.35 1.877 0.35529  0.0065415  0.72746 0.91753 0.27906  0.38051
1.4 1.861 0.36784  0.0085388 0.7029 0.92846 047129  0.39794
1.45 1.847 0.37568 0.013076 0.66273 0.96201 0.66201  0.41399
1.5 1.839 0.37794 0.016692 0.63844 0.96061 0.75809  0.41469
1.55 1.835 0.36499 0.018738 0.63319 0.95219 0.8105  0.40016
1.6 1.832 0.34104 0.023074 0.62028 0.89745 0.81117  0.35139
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Table S7. The related EIS fitting parameters of NiO sample for OER.

Potential

V) Rs Rct CPE1-T CPE1-P WI1-R WI-T W1-P
1.1 3.02 0.32502  0.0031751  0.76401 0.6334 0.041468 0.29142
1.15 2.89 0.30839  0.0023675  0.77733 0.84228 0.080437 0.30108
1.2 2.96 0.27224  0.0031099  0.76484 0.67435 0.069012  0.29331
1.25 2911 0.44971 0.010823 0.6123 4.475 2.218 0.55328
1.3 2.883 0.46459 0.016028 0.57735 4.742 2.573 0.56693
1.35 2.724 0.28064  0.0066282  0.73761 0.69947 0.12551  0.30027
1.4 2.747 0.28563  0.0068586  0.73174 0.94263 0.27482 0.3281
1.45 2.741 0.35478 0.015005 0.64029 1.027 0.52338  0.40609
1.5 2.72 0.33039 0.013152 0.66506 1.2 0.79968 0.4272
1.55 2.715 0.3112 0.014689 0.66227 1.014 0.662 0.39143
1.6 2.696 0.3345 0.023885 0.61199 0.8089 0.52294  0.35555
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Table S8. The calculated DFT energy, ZPE and TS of HMF and OH on Co;04 (111) and
NiCo,04 (111) surfaces.

E(total) ZPE TS G
Co0304 Co site -612.35471833  2.962466 0.453499 -609.84575133
HMF  NiCo,O4 Cosite  -592.07955534  2.956818 0.548353 -589.67109034
NiCo,04 Nisite  -591.47586093  2.980203 0.458931 -588.95458893
Co;0, Co site -526.73128963  0.314396 0.091998 -526.50889163
OH NiCo0,04 Cosite  -506.04384326  0.324152 0.109335 -505.82902626
NiCo,O4 Nisite  -505.58735423  0.311344 0.111436 -505.38744623
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Table S9. The calculated adsorption energy of HMF and OH on Co3;0, (111) and NiCo,04

(111) surfaces.

E(total) E(surface) E(molecule) AE(ads)
Co;0, Co site -609.84575133  -515.26635498  -92.62330428  -1.95609207
HMF  NiCo,0O4 Cosite  -589.67109034  -494.49289166  -92.62330428  -2.55489440
NiCo,04 Nisite -588.95458893  -494.49289166  -92.62330428  -1.83839299
Co;0, Co site -526.50889163  -515.26635498  -10.19637991 -1.04615674
OH NiCo,04 Co site  -505.82902626  -494.49289166  -10.19637991  -1.13975469
NiCo,0O4 Nisite  -505.38744623  -494.49289166  -10.19637991  -0.69817466
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Table S10. The calculated intermediates energies on NiCo,0O4 (111) surface at Co site, unit:

eV.
Energy ZPE TS G AG Plot G

Surface -494.492892 / / -494.492892 0.000000 0.000000
C¢HsO3*(HMF) -592.079555 2.956818  0.548353  -589.671090  -2.554894  -2.554894
CeHsO*(HMFCA)  -598.994266 3.09813 0.579052  -596.475188  -0.653723  -3.208617
C¢H,0,*(FFCA) -592.240267 2.468447  0.510337  -590.282157  -1.898978  -5.107596
C¢H,O5*(FDCA) -599.376771 2.596473 0.52379 -597.304088  -0.871556  -5.979152
H,O -14.224359 0.567711  0.585737 -14.242385 2.554706  -3.424446

OH- -10.196380 / / -10.196380

CsHOs (g) -95.220568 2.990311  0.393047 -92.623304

CeH4Os (g) -102.447856 2.66063 0.469264  -100.256490
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Table S11. The calculated intermediates energies on NiCo,0,4 (111) surface at Ni site, unit: eV.

Energy ZPE TS G AG Plot G

Surface -494.4928917 / / -494.4928917  0.0000000  0.0000000
C¢HsO3*(HMF) -591.4758609 2.98020 0.45893  -588.9545889 -1.8383930 -1.8383930
CeHsO*(HMFCA)  -599.1229675 3.12279 0.56411  -596.5642915 -1.4593275 -3.2977205
C¢H,O4*(FFCA) -592.1448480 247198 0.49318  -590.1660470 -1.6937653 -4.9914858

C¢H,O5*(FDCA) -599.3767712 2.59647 0.52379  -597.3040882 -0.9876662 -5.9791520

H,O -14.2243588 0.56771 0.58574 -14.2423848  2.5547064 -3.4244456
OH- -10.1963799 / / -10.1963799

CeHsO5 (g) -95.2205683 2.99031 0.39305 -92.6233043

CeH4Os (g) -102.4478562 2.66063 0.46926  -100.2564902

55



Table S12. The calculated intermediates energies on Co;04 (111) surface at Co site, unit: eV.

Energy ZPE TS G AG Plot G
Surface -515.26635498 / / -515.2663550  0.0000000  0.0000000
CeHgO3*(HMF)  -612.35471833  2.96247 0.45350  -609.8457483 -1.9560891 -1.9560891
C¢HsO*(HMFCA) -619.35320895  3.10203 0.53358  -616.7847590 -0.7886356 -2.7447247
CcH4,O4*(FFCA)  -612.89988356  2.47630 0.44996  -610.8735436 -2.1807944 -4.9255190
C¢H,Os*(FDCA)  -619.94837956  2.60078 0.51889  -617.8664896 -0.8425710 -5.7680900
H,O -14.2243588 0.56771 0.58574 -14.2423848  2.3436444  -3.4244456
OH- -10.1963799 / / -10.1963799
CsHOs (g) -95.2205683 2.99031 0.39305 -92.6233043
CeH4Os (g) -102.4478562 2.66063 0.46926  -100.2564902
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Table S13. The calculated intermediates energies on NiCo,0O4 (111) surface at Co site, unit:

eV.
Energy ZPE TS G AG Plot G

Surface -494.492892 / / -494.4928917  0.0000000  0.0000000
C¢HO3*(HMF) -592.079555 2.956818 0.548353  -589.6710903  -2.5548944  -2.5548944
C¢H40;5*(DFF) -584.166818 2.481337 0.405167  -582.0906484  -0.5115679  -3.0664623
CcH4O4*(FFCA) -592.240267 2.468447 0.510337  -590.2821571  -2.0411336  -5.1075958
C¢H4O5*(FDCA) -599.376771 2.596473 0.52379 -597.3040882  -0.8715561 -5.9791520
H,0 -14.224359 0.567711 0.585737 -14.2423848 2.5547064  -3.4244456

OH- -10.196380 / / -10.1963799

CeHeOs5 (g) -95.220568 2.990311 0.393047 -92.6233043

CeH4Os5 (g) -102.447856 2.66063 0.469264  -100.2564902
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Table S14. The calculated intermediates energies on NiCo,0, (111) surface at Ni site, unit: eV.

Energy ZPE TS G AG Plot G

Surface -494.4928917 / / -494.4928917  0.0000000  0.0000000
C¢HsO3*(HMF) -591.4758609 2.98020 0.45893 -588.9545889  -1.8383930  -1.8383930
C¢H405*(DFF) -583.9633017 2.35228 0.46383 -582.0748567  -1.2122775  -3.0506705

CcH40,*(FFCA) -592.1448480 2.47198 0.49318 -590.1660470  -1.9408153  -4.9914858

C¢H4Os*(FDCA) -599.3767712 2.59647 0.52379 -597.3040882  -0.9876662  -5.9791520

H,0 -14.2243588 0.56771 0.58574 -14.2423848 2.5547064  -3.4244456
OH" -10.1963799 / / -10.1963799

CeHeO3 (2) -95.2205683 2.99031 0.39305 -92.6233043

CeH4Os (g) -102.4478562 2.66063 0.46926 -100.2564902
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Table S15. The activity comparison of CO,RR-HMFOR device.

Electrocathode-CO,RR

Electroanode-HMFOR

CO,RR-HMFOR device activity

cathode reduced oxidation j (mA cmr
catalyst product anode catalyst product Eea 2) Ref.
H, (28.5%)
and CO
FDCA
o . .
Au (6}%}1 f) NiCo,0, (FE=91.9%) 1.70 4.5 This work
94.7%
maleic acid
co (20.0%) and
PdO,/ZIF-8 FE = 979 PdO,/ZIF-8 formic acid 2.70 160 [1]
¢ (64.3%)
FE =84.3%
. HCOOH . FDCA
Cu,Bi FE = 90% NiCoLDHs FE = 85% 2.35 150 2]
. . 2.05
. HCOOH Ni(OH),/Ni FDCA
BiInC pp —g5.19 foam FE-g882% (@solar 1138 3]
cell)
CuZO/Cu- C2H4 FDCA
NF@Cu FE=745% CUONF@Cu  pp e 273 188.8 [4]
HCOOH FDCA
InOOH-Oy FE =87.5% InOOH-Oy FE = 91.6% 2.27 10 [5]
: 2.06
Bi@C-700- HCOOH . FDCA
4 FE = 94 8% Bi@C-700-4 FE = 81 2% (a solar 10.64 [6]
cell)
GDL  FE-492% NOHGNE pp g5 4, 140 400 7]
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Table S16. Comparison of full-cell energy efficiency of various catalysts during CO,

electroreduction.
cathode J(mA cm 0
catalyst Ecenl 2) reduced product EE (%) Ref
(1)
B, @85%) ana DA 2%
Au 1.70 4.5 CO (66.1%) s This work
FE = 94.7% and H, (5.2%)
e EE o, = 43.3%
ErSAC-Flow 50 CO (290%) 422
cell
(8]
Er SAC-MEA - 50 CO (>90%) 43.2
NiNC-IMI- .
AEM -3.0 -200 CO (100%) ~40 [9]
PT/Cu-GDE - -2000 C- (85%) >50 [10]
Cug.oZno, 1 3.7 -150 Cy: (91£2%) 28-32 [11]
C: (93%) .
Cu,(OH);F - 700 Ethanol (50%) Ethanol (30%) [12]
CG'néfldlum 3.3 100 C,- (80%) 28 [13]
PFSAé?lOdlfed 3.6 200 C, (75%) 25 [14]
0 0
EC-Cu ] 200 Cy. (75%) Cy. (30%) (1]

ethylene (60%) ethylene (20%)
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