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1.  General Information

The 'H NMR spectra were recorded on Bruker NMR spectrometers operating at 400 and 151 MHz. Mass
spectra were recorded by an AB Sciex TripleTOF 4600 mass analyzer (AB Sciex, Framingham, MA, USA).
UV-vis spectra were recorded using Perkin-Elmer Lambda 950-PKA UV-Vis. All low-temperature steady-
state fluorescence and phosphorescence spectra were recorded using a Horiba Jobin Yvon FluoroMax-4
Spectrofluorometer equipped with a Dewar flask. Low-temperature fluorescence spectra can be measured
using the stable-state fluorescence mode without time delay. Low-temperature phosphorescence spectra can
be recorded using phosphorescence mode after a time delay of 0.05-50 ms (adjustable delay time range: 50 ps—
100 ms) to eliminate the influence of low-temperature fluorescence spectra. Cyclic voltammetry measurements
were conducted using the electrochemical workstation Multiautolab M204. Photoluminescence quantum
yields (PLQY) in doped films were measured utilizing an integrating sphere of a Hamamatsu absolute PLQY
spectrometer (C11347-01). Thermogravimetric analyses (TGA) were conducted on a Netzsch TGA 2019F1,
and differential scanning calorimetry (DSC) measurements were carried out on a Netzsch DSC 214. Both TGA
and DSC measurements were under N, flow.

1.1. Quantum Chemical Method

All simulations were performed using the Gaussian 16 program package [ The ground-state (S,) geometries
were optimized for all the investigated molecules using the B3LYP/6-31g(d, p) method in vacuum, with the
initial guess set to the vacuum-optimized geometries. The excited state was optimized using TD-
DFT/B3LYP/6-31g(d,p) in toluene with the polarizable continuum model (PCM).2! Frontier molecular
orbitals (FMOs), natural transition orbitals (NTOs), and root-mean-square displacements (RMSDs) were
further analyzed using the wavefunction analyzers Multiwfn and VMD, with results obtained from Gaussian
16.5%1 The Huang-Rhys (HR) factors were determined with the DUSHIN module in MOMAP (Molecular
Materials Property Prediction Package), and the calculated spectra were obtained using Frank-Condon (FC)
analysis with a sum-over-states approach implemented in the MOMAP software.[]

1.2.  Device Fabrication and Characterization

Glass substrates pre-coated with a 95-nm-thick layer of indium tin oxide (ITO) with a sheet resistance of 10
Q per square were thoroughly cleaned in an ultrasonic bath containing tetrahydrofuran, isopropyl alcohol,
detergent, and deionized water. They were then treated with O, plasma for 5 minutes in sequence. Organic
layers were deposited onto ITO-coated glass substrates by thermal evaporation under high-vacuum conditions

(~107 Pa). The cathode was patterned using a shadow mask with 3 mm x 3 mm openings. Deposition rates are



1 —2 A s for organic materials and 2 - 5 A s! for aluminum, respectively. The current density, luminance
versus driving voltage characteristics, and EL spectra were measured by a Keithley 2400 and a Konica Minolta

CS2000 chromameter. EQEs were automatically estimated from the current density, brightness, and EL

spectra, assuming a Lambertian distribution.



2.  Synthetic procedures

All the reagents were purchased from the Casmart Reagent Platform or Bidepharm and used as received
without further purification. The target molecules' intermediates were synthesized via a one-step, common
palladium-catalyzed Buchwald-Hartwig reaction. The target molecules were synthesized via one-step
common borylation reactions. The synthetic procedures are detailed below. All compounds show good
solubility in toluene, chloroform, and THF, with Indo-tCzBN exhibiting slightly lower solubility due to the

bulky t-Bu groups.
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Scheme S1. Synthetic procedures of DPA-CzBN, Indo-CzBN, and Indo-CzBN.

Synthesis of Compound 1: In a 250 mL flask charged with argon, a mixture of N, N-diphenyl-9H-
carbazol-4-amine(6.68g,20.0 mmol), 9-(2-bromo-3-fluorophenyl)-9H-carbazole (6.8 g, 20.0 mmol ), Cs
,CO;(13.1 g, 40 mmol), and 120 mL N, N-dimethylformamide was vigorously stirred together at 11
0 °C overnight. The cooled mixture was filtered via diatomite and washed with dichloromethane. Af
ter removed the organic solvent, the residual solid was further purified by flash column chromatogra
phy on silica gel (eluting with petroleum ether/dichloromethane) to yield the pure product 1 as a w
hite solid (9.79 g, 15 mmol, 75% yield).1H NMR (600 MHz, Chloroform-d) 6 8.18 (d, J = 7. 7 H
z, 2H), 7.79 — 7.74 (m, 3H), 7.72 (d, J = 7.3 Hz, 1H), 7.46 (d, J = 7.5 Hz, 2H), 743 (d, J = 7.6

Hz, 1H), 7.38 — 7.31 (m, 3H), 7.21 (d, J = 7.5 Hz, 6H), 7.15 (d, J = 8.2 Hz, 5H), 7.06 (dd, J =

152, 7.1 Hz, 3H), 6.95 (t, J = 7.1 Hz, 2H).

Synthesis of Compound 2:In a 250 mL flask charged with argon, a mixture of 12-phenyl-5,12-dihy
droindolo[3,2-a]carbazole(6.65g,20.0 mmol), 9-(2-bromo-3-fluorophenyl)-9H-carbazole (6.8g, 20.0 mmo



1), Cs2C0O3(13.1 g, 40 mmol), and 120 mL N, N-dimethylformamide was vigorously stirred togethe
r at 110 °C overnight. The cooled mixture was filtered via diatomite and washed with dichlorometh
ane. After removed the organic solvent, the residual solid was further purified by flash column chro
matography on silica gel (eluting with petroleum ether/dichloromethane) to yield the pure product 2
as a white solid (10.3 g, 16mmol, 79% yield).'H NMR (600 MHz, Chloroform-d) & 8.24 (d, J = 8.
4 Hz, 1H), 8.16 (d, J = 7.4 Hz, 3H), 7.80 — 7.76 (m, 1H), 7.73 (d, J = 7.8 Hz, 2H), 7.67 (s, SH),
7.49 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.32 (ddt, J = 27.5, 17.3, 7.8 Hz, 6H), 7.25 (s,
1H), 7.20 (d, J = 8.1 Hz, 1H), 7.12 (d, J = 7.6 Hz, 2H), 6.83 (t, J] = 7.6 Hz, 1H), 594 (d, J = 8.1
Hz, 1H).

Synthesis of Compound 3: In a 250 mL flask charged with argon, a mixture of 2-(tert-butyl)-12-ph
enyl-5,12-dihydroindolo[3,2-a]carbazole(7.77g,20.0 mmol), 9-(2-bromo-3-fluorophenyl)-3,6-di-tert-butyl-9
H-carbazole (9.05g, 20.0 mmol ), Cs2CO3(13.1 g, 40 mmol)and 120 mL N, N-Dimethylformamide
were vigorously stirred together at 110 °C for overnight. The cooled mixture was filtered via diato
mite and washed with dichloromethane. After removing the organic solvent, the residual solid was f
urther purified by flash column chromatography on silica gel (eluted with petroleum ether/dichlorom
ethane) to yield the pure product 3 as a yellow solid (11.6 g, 14 mmol, 71% yield). 1H NMR (600
MHz, Chloroform-d) & 8.24 (dd, J = 8.4, 1.9 Hz, 1H), 8.17 (dd, J = 12.6, 4.6 Hz, 3H), 7.79 — 7.7
3 (m, 1H), 7.69 (h, J = 8.1, 7.5 Hz, 6H), 7.62 (dt, J = 8.5, 4.2 Hz, 1H), 7.55 (dd, J = 8.5, 2.1
Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 741 (d, J = 8.4 Hz, 1H), 7.37 — 7.30 (m, 3H), 7.20 (dd, J
8.6, 1.9 Hz, 1H), 7.16 — 7.12 (m, 2H), 7.10 (dd, J = 8.5, 1.9 Hz, 1H), 6.66 (s, 1H), 1.49 (d, J
8.6 Hz, 18H), 1.14 (s, 9H).

Synthesis of Target Compound DPA-CZBN: In a 120 mL sealed tube charged with argon, substrate
s 1 ( 1.30g, 2.0 mmol) and 15 mL N, N-Diisopropylethylamine (DIPEA) were added. After adding
boron bromide (5.00 g, 20.0 mmol), the tube was sealed and stirred at 220 °C for 48 h. After cool
ing to room temperature, the reaction was quenched by slowly adding ethanol (5.0 mL) under an ic
e bath. The organic solvent was concentrated under vacuum conditions. The residual solid was furt
her purified by flash column chromatography on silica gel (eluting with petroleum ether/dichloromet
hane) to yield the pure product DPA-CzBN as a bright yellow solid (0.86 g, 1.4mmol, 74% yield).
IH NMR (600 MHz, Chloroform-d) 6 893 (d, J = 7.9 Hz, 1H), 8.89 (d, J = 7.4 Hz, 1H), 8.57 —
8.42 (m, 2H), 8.36 (t, J = 7.4 Hz, 3H), 8.24 (d, ] = 7.5 Hz, 1H), 8.00 (t, J = 8.2 Hz, 1H), 7.80
(d, J = 79 Hz, 1H), 7.63 (dt, J = 16.9, 7.6 Hz, 2H), 7.50 (t, J] = 7.8 Hz, 1H), 7.44 (d, J = 7.7
Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.28 (d, J = 8.1 Hz, 3H), 7.22 (d, J = 8.5 Hz, 4H), 7.15 (q, J
= 7.7 Hz, 2H), 7.03 (t, J = 7.4 Hz, 2H).

Synthesis of Target Compound Indo-CzBN: The synthesis of Compound Indo-CzBN followed the i
dentical methodology used for Compound DPA-CzBN, The resulting product was a bright green soli
d with a yield of 69%.1H NMR (600 MHz, Chloroform-d) & 9.74 (s, 1H), 9.15 (d, J = 7.4 Hz, 1
H), 851 (t, J = 10.7 Hz, 2H), 8.46 (s, 1H), 8.39 (d, J = 21.6 Hz, 3H), 8.26 (s, 1H), 7.99 (s, 1H),



7.78 (s, 1H), 7.70 (s, SH), 7.63 (s, 1H), 7.47 (s, 3H), 7.42 (s, 1H), 7.38 (s, 1H), 6.94 (s, 1H), 6.09
(d, ] = 8.0 Hz, 1H).

Synthesis of Target Compound Indo-tCzBN: The synthesis of Compound Indo-tCzBN followed the identical
methodology used for Compound DPA-CzBN, The resulting product was a bright yellow solid with a yield of
70%.1H NMR (600 MHz, Chloroform-d) & 9.81 (s, 1H), 9.27 (s, 1H), 8.50 (s, 2H), 8.38 (dd, J = 19.7, 10.3
Hz, 4H), 8.29 (s, 1H), 8.03 — 7.96 (m, 1H), 7.73 (t, J = 11.2 Hz, 6H), 7.46 (s, 3H), 7.41 (d, J = 7.2 Hz, 1H),
6.82 (s, 1H), 1.76 (s, 9H), 1.55 (s, 9H), 1.17 (s, 9H).



3. Thermo-stability Properties
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Figure S1. The thermogravimetric analysis curves of (A) CzBN, (B) DPA-CzBN, (C) Indo-CzBN, and (D) Indo-

tCzBN, respectively.
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Figure S2. The differential scanning calorimetry curves of (A) CzBN, (B) DPA-CzBN, (C) Indo-CzBN, and (D)

Indo-tCzBN, respectively.



4.

Computational Data
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Figure S3. The natural transition orbits (NTOs) of CzBN, DPA-CzBN, Indo-CzBN, and Indo-CzBN in S,

and S, states.
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Figure S4. The natural transition orbits (NTOs) of CzBN and DPA-CzBN in T, states (n<4).
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Figure S5. The natural transition orbits (NTOs) of Indo-CzBN and Indo-7CzBN in T, states (n<4).
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Figure S6. The calculated root-mean-square deviations (RMSDs) of CzBN, DPA-CzBN, Indo-CzBN, and

Indo-#CzBN, respectively.
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Figure S7. The primary intermolecular -7 interactions in the DPA-CzBN crystal.
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Figure S8. The primary intermolecular n-m interactions in the Indo-CzBN crystal.
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5. Photophysical properties
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Figure S10. Solvation effect: the PL spectra of CzZBN, DPA-CzBN, Indo-CzBN, and Indo-tCzBN in different
solvents. Herein, HEX, TOL, THF, DCM, and DMF denote the solvents of n-hexane, toluene, tetrahydrofuran,

1,4-dioxane, and N, N-dimethylformamide, respectively.

Table S1. Summary of photophysical properties of CzBN, DPA-CzBN, Indo-CzBN, and Indo-tCzBN,

respectively.
Emitters T Nabs? Xem® HOMOY LUMO?Y S 7° AEg®
[°C] [nm] [nm] [eV] [eV] [eV] [eV] [eV]
CzBN 450 458 477 -5.2 -2.6 2.59 2.46 0.13
DPA-CzBN 492 467 482 -5.4 -2.6 2.51 2.34 0.17
Indo-CzBN 530 465 480 -5.4 -2.6 2.55 2.44 0.11
Indo-#CzBN 517 472 488 -5.4 -2.5 2.53 2.48 0.04

3 decomposition temperature (73) (5% weight loss); ® UV-vis absorption in toluene solutions at room temperature;
9 PL peaks in dilute toluene solution at room temperature; ¥ experimental HOMO/LUMO determined from cyclic
voltammetry and calculated of the bandgap in UV-vis absorption spectra; ¥ S;, T;, and AEgrs were evaluated in

dilute toluene at 77 K.



Table S2. The UV-vis characteristics of CzZBN, DPA-CzBN, Indo-CzBN, and Indo-#CzBN in different solvents.

Emitters Aem (nm)/FWHM (nm)
Hex Tol THF DCM DMF
CzBN 465/20 477/23 478/25 481/29 485/31
DPA-CzBN 471/18 482/21 482/22 486/26 489/29
Indo-CzBN 471/19 480/21 479/22 484/25 485/26
Indo-CzBN 476/18 488/19 487/21 491/25 495/25

Table S3. Photo-physical properties of 3 wt.% CzBN, DPA-CzBN, Indo-CzBN, and Indo-#CzBN in doped films

deposited by vacuum evaporation were measured at room temperature.The PLQY is an average of three

measurements with a standard deviation of +£1.2%.

Dpr. Dpr Drapr Tpp TpF K Kise® Krisc® KTADF
Emitters
(7] (%] [%] [ns] [us] [107']  [107s']  [10%']  [10%]
CzBN 80.2 59.4 20.8 8.44 75.41 7.0 4.8 1.1 0.68
DPA-CzBN 81.2 69.3 11.9 4.01 340.9 17.0 7.6 0.16 0.11
Indo-CzBN 85.7 74.4 11.3 4.85 61.9 15.0 5.3 0.9 0.71
Indo-#CzBN 97.5 78.2 19.3 4.14 56.0 19.0 5.3 2.0 1.6




6. Crystal properties
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Figure S13. Packing modes of Indo-CzBN crystals.



Figure S14. Packing modes of Indo-#CzBN crystals.

Table S4. Crystal data and structure refinement for DPA-CzBN, Indo-CzBN, and Indo-tCzBN.

Identification code DPA-CzBN Indo-CzBN Indo-tCzBN
Empirical formula C4Hy6BN; C,H,4BN; Cs4sHysBN;
Formula weight 583.47 581.45 749.76
Temperature/K 170 170 130

Crystal system triclinic monoclinic monoclinic
Space group P-1 P2/c P2,/c

a/lA 9.6464(3) 35.034(3) 5.7410(4)
b/A 13.1116(4) 5.3550(5) 20.0142(14)
c/A 13.2323(5) 33.077(3) 34.391(3)
o/° 60.773(2) 90 90

p/e 76.190(2) 117.999(5) 91.849(5)
y/° 83.758(2) 90 90
Volume/A3, z 1418.27(9) 5479.1(9) 3949.5(5)
Density/g cm? 1.366 1.410 1.261
wmm! 0.614 0.635 0.552

V4 2 8 4

CCDC 2485480 2485481 2485482




7. Electrochemical measurements
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Figure S15. Cyclic voltammetry measurements of CzBN, DPA-CzBN, Indo-CzBN, and Indo-fCzBN,

respectively.
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8. OLED characterization
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Figure S16. (A) The device architecture and energy diagram, (B) the functional layer materials used in these
OLEDs, (C) the EL spectra, (D) EQE-luminance curves, (E) current density—voltage—luminance curves, (F)
comparison chart of FWHM values, and (G) comparison chart of EQE,,,, values of non-sensitized OLEDs

based on CzBN, DPA-CzBN, Indo-CzBN, and Indo-#CzBN with a doping concentration of 1 wt.%.
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Figure S17. (A) The device architecture and energy diagram, (B) the functional layer materials used in these
OLEDs, (C) the EL spectra, (D) EQE-luminance curves, (E) current density—voltage—luminance curves, (F)

comparison chart of FWHM values, and (G) comparison chart of EQE,,,, values of non-sensitized OLEDs

based on CzBN, DPA-CzBN, Indo-CzBN, and Indo-CzBN with a doping concentration of 5 wt.%.

Table S5. EL performance of interlayer HF-OLEDs based on CzBN, DPA-CzBN, Indo-CzBN, and Indo-tCzBNBN,

respectively, with a doping concentration of 3 wt.%.

Emmiter Dop. Ve CE/PE/EQE FWHM L, AeL CIE
(%] (VI (dAY(Am W /(%) (@m)  (cdm?)  (nm) xy)

CzBN 3 32 46.9/45.4/25.0 36 484 14190 (0.11,0.35)

DPA-CzBN 3 3.1 52.6/53.3/30.2 28 486 16160 (0.10,0.33)

Indo-CzBN 3 3.1 46.8/47.5/28.1 27 486 13130 (0.09,0.33)

Indo-1CzBN 3 3.1 69.5/70.4/39.0 26 490 23540 (0.09,0.38)




Table S6. Summary of OLEDs based on MR-TADF emitters with a single BN molecular structure.

Emitter Ref A (nm) FWHM (nm) EQE,..x (%) CIE(x, y)
482 31 24.7 (0.10,0.29)
CzBN 486 46 23.7 (0.13,0.43)
This work 490 54 23.6 (0.14,0.48)
484 36 25.0 (0.11,0.35)
486 25 24.4 (0.09,0.32)
488 27 25.5 (0.09,0.37)
DPA-CzBN
This work 490 27 25.3 (0.09,0.40)
486 27 28.1 (0.09,0.33)
484 26 25.6 (0.09,0.30)
486 31 27.1 (0.11,0.41)
Indo-CzBN
This work 490 42 27.8 (0.14,0.48)
486 28 30.2 (0.10,0.33)
490 26 33.8 (0.08,0.37)
490 26 37.4 (0.08,0.44)
Indo-tCzBN
This work 492 27 35.5 (0.08,0.46)
490 26 39.0 (0.09,0.38)
m-Cz-
456 25 23.0 (0.1, 0.06)
DABNA Angew. Chem. Int. Ed. 2025,
tBu-Cz- €202510190
467 27 28.5 (0.13.0.13)
DABNA
D-BNNGe 495 26 31.0 (0.09,0.51)
D-BNOGe Adv. Optical Mater. 2024, 12, 465 41 15.5 (0.13,0.17)
D-BNSGe 2401033 488 32 20.7 (0.11,0.37)
mono-mx-
481 48 21.4 (0.13,024)
CzDABNA Adv. Funct. Mater. 2023, 33,
tri-mx- 2213461
472 34 26.9 (0.13.0.19)
CzDABNA
/m-Cz-
P Chem. Sci., 2025, 16, 3904-3915 492 2 278 (0.10, 0.45)
BCzBN
tCzAzBN 474 28 18.7 (0.11, 0.17)
tCzPAzBN  Mater. Horiz., 2025,12, 9737-9748 473 25 35.2 (0.12, 0.16)
tCzPAzBN 473 29 40.1 (0.15,0.25)
BN-CP1 496 25 40.0 (0.09,0.50)
BN-CP2 Adv. Mater., 2022, 34, 2106954 497 26 36.4 (0.10,0.53)
S-Cz-BN 494 31 28.8 (0.10,0.46)



D-Cz-BN

D-p—-1-
PCzBN
SFIBN

SF3BN
m-PCz-BNCz

m-DPAcP-
BNCz
m-BN-BNCz

m-SF-BNCz
tDPAC-BN

tDMAC-BN
BNCz-NPO

BNCz-NPS

Angew. Chem., Int. Ed., 2022, 61,
€202113206

Adv. Opt. Mater., 2023, 11,
2203002

Angew. Chem., Int.
Ed., 2022, 61, 202201886

Adv. Mater., 2023,
35, 2205166

Chem. Eng. J., 2022,
431, 133221

Nat. Commun.,

2024, 15,6175

488

496

492
496
504

496

492
496
460
472
480

476

24

26

27
30
29

28

28
28
28
34
26
30

37.2

33.9

35.9
322
36.8
42.0

35.0
41.1
21.6
223
37.6
322

(0.11,0.43)

(0.08,0.52)

(0.07,0.47)
(0.09,0.51)
(0.11,0.61)

(0.09, 0.54)

(0.09, 0.48)
(0.09, 0.53)
(0.13,0.09)
(0.11,0.18)
(0.11,0.18)
(0.13,0.18)




9. NMR Spectra
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Figure S18. "H NMR spectrum of CzBN in CDCl; solvent.
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Figure S19. '"H NMR spectrum of compound 1 in CDCI; solvent.
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Figure S20. '"H NMR spectrum of DPA-CzBN in CDClj; solvent.
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Figure S21. '"H NMR spectrum of compound 2 in CDCl; solvent.
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Figure S22. '"H NMR spectrum of Indo-CzBN in CDCI; solvent.
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Figure S23. '"H NMR spectrum of compound 3 in CDCl; solvent.
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Figure S24. '"H NMR spectrum of Indo-tCzBN in CDCl; solvent.



10. Mass spectra
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Figure S25. Mass spectra of DPA-CzBN in CHCI, solvent
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Figure S26. Mass spectra of Indo-CzBN in CHCI, solvent
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Figure S27. Mass spectra of Indo-tCzBN in CHCI, solvent
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