Supporting Information

MXene-Supported Cu-Ag Nanohybrids for Electrochemical Nitrate and Nitrite Detection in Alkaline Media

Vishwanath Ankalgi^a, Mohammed Arkham Belgami^a, Bhakti Kulkarni^a, Sang Mun Jeong^{b*}, Chandra Sekhar Rout^{a*}

^aCentre for Nano and Material Sciences, Jain University, Ramanagara, Bangalore 562112, India. ^bDepartment of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.

Corresponding Authors: <u>r.chandrasekhar@jainuniversity.ac.in</u> (C. S. Rout)

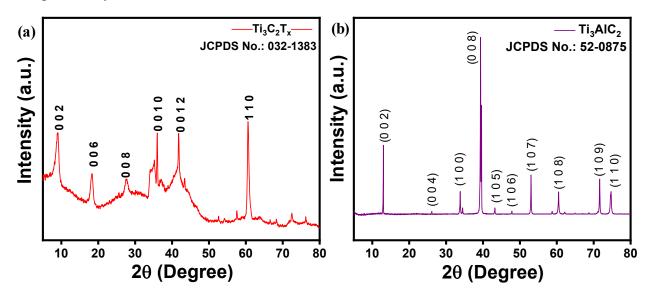
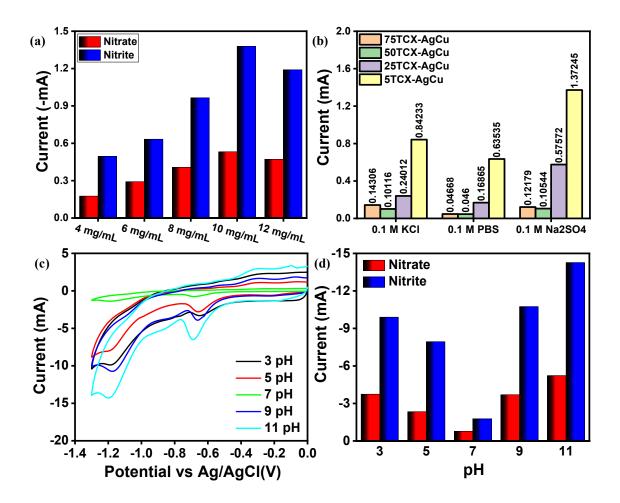
smjeong@chungbuk.ac.kr (S. M. Jeong)

Experimental Section

Electrochemical detection of Analyte

This study observed that the careful selection of the electrolyte (An ionic medium that enables electrochemical reactions by providing both electroactive species and background ions for charge transport and conductivity.), optimization of pH, adjustment of the mass loading ratio, and use of the surface charge collectively contributed to enhanced nitrate removal efficiency. Optimization of the pH was further undertaken to elucidate the probable sensing mechanisms operative within the system. Among various electrolytes tested, 0.1 M Na₂SO₄ at pH 11.0 was identified as the most suitable supporting electrolyte (An inert ionic species added to maintain high ionic strength, minimize ion migration, and stabilize the electric field during electrochemical measurements, without participating in redox reactions.) for subsequent electrochemical processes. Corresponding to the sequential reduction of nitrate (NO₃⁻) to nitrite (NO₂⁻) and subsequently to ammonia (NH₃). The complete reaction suggests a one-step multidetection type device. The equimolar ratio of both Ag nanoparticles was involved in NO₃- reduction at -0.89 V of overpotential, and Cu nanoparticles reduced the NO₂ at -1.15 V overpotential, respectively. Given that the pH of most soil environments tends to be alkaline, the sensor's good performance at higher pH levels makes it well-suited for detecting NO₃ in soil. In this work, both aqueous and soil samples were analyzed to evaluate the selectivity and sensitivity of the Ag- and Cu-modified Ti₃C₂T_x (denoted as 5TCX-AgCu) towards NO₃- detection. Additionally, Zobell's solution (consisting of 0.1 M KCl with an equimolar mixture of potassium ferrocyanide and potassium ferricyanide) was employed to conduct film characterization studies and to determine the oxidation-reduction potential (ORP) of the unmodified and modified electrode substrates. Film characterization studies were further carried out on the screen-printed carbon electrode (SPCE) substrate using Zobell's solution, with cyclic voltammetry (CV) measurements performed within a potential window of -0.6 to +0.6 V. Electrochemical impedance spectroscopy was utilized to extract key parameters, including solution resistance (R_s) and charge transfer resistance (R_{ct}), as well as to analyze ion diffusion behavior through Warburg impedance modeling. Based on the results obtained from film studies and impedance analyses, the SPCE substrate was found to exhibit excellent electrochemical properties, thereby confirming its suitability for NO₃- and NO₂sensing applications. Electrochemical characterizations, including CV, square wave voltammetry (SWV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA), were

systematically conducted to achieve precise calibration and thorough evaluation of the 5TCX-AgCu as a modified electrode for electrochemical sensing applications. For NO₃⁻ and NO₂⁻ detection, a potential window of 0 to -1.3 V was employed during CV and SWV measurements. Different concentrations of NO₃⁻ and NO₂⁻ were successively introduced into the electrolyte system as the modified electrode was immersed, allowing for the assessment of sensor performance across a range of analyte levels.

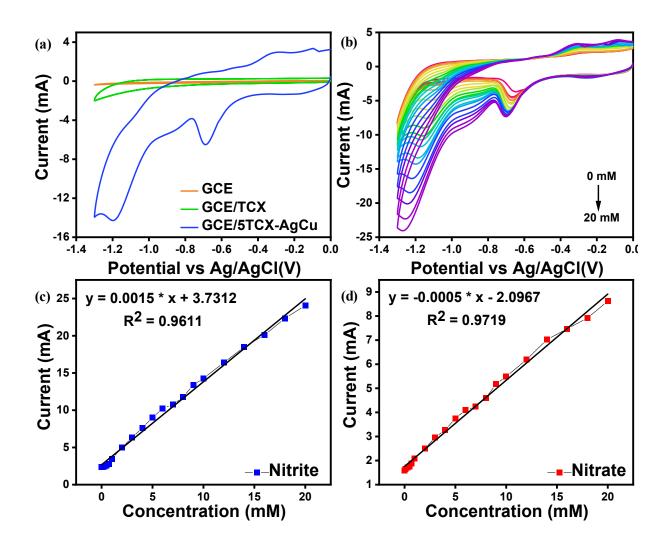
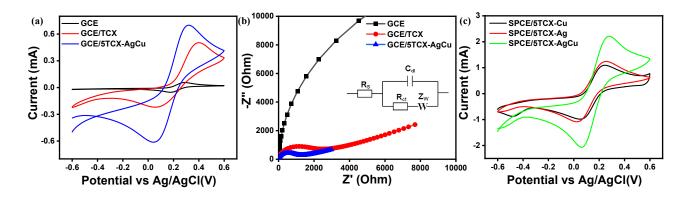

Figure S1: XRD analysis of (a) Ti₃C₂T_x, (b) Ti₃AlC₂.

Table S1: Comparison table for particle size.


Technique	Average Size (nm)	Measurement Basis
XRD	6-15 nm	Crystallite size via Scherrer equation
SEM	12-30 nm	Surface morphology
TEM	3-5 nm	Individual particles

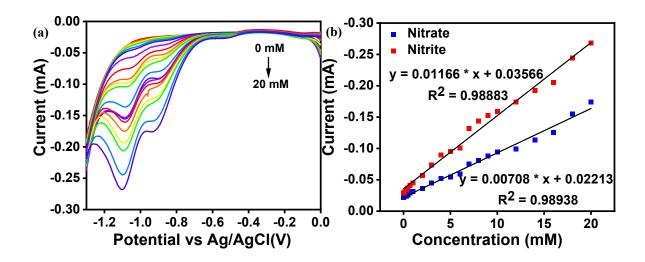

Figure S2: (a) Mass loading studies done in 0.1M Na₂SO₄(pH 7.0) for 5TCX-AgCu, (b) Bar graph represents comparative CV responses of 20 mM NO₃⁻ detection in different electrolytes (pH 7.0); (c) Evaluation of pH-dependent electrochemical response of the 5TCX-AgCu composite, (d) Bar graph representation of pH graph.

Figure S3: (a) CVs for GCE, GCE/TCX, and GCE/5TCX-AgCu were recorded in 0.1 M Na₂SO₄ (pH 11) containing 10 mM NO₃⁻; (b) CV responses of 5TCX-AgCu were evaluated in 0.1 M Na₂SO₄ (pH 11) over a NO₃⁻ concentration range of (0, 0.1, 0.3, 0.5, 0.7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 mM); Corresponding calibration plots were constructed for (c) NO₂⁻ and (d) NO₃⁻ detection.

Figure S4: (a) CV comparison of bare GCE, GCE/TCX, and GCE/5TCX-AgCu electrodes; (b) EIS comparison in Zobell's solution for oxidation–reduction potential (ORP) assessment, (c) CV comparison of SPCE/TCX-Ag, SPCE/TCX-Cu, and SPCE/TCX-AgCu in Zobell's solution.

Figure S5: (a) SWV responses of the 5TCX-AgCu in 0.1M Na₂SO₄ (pH 11.0); (b) Calibration plot of NO₃⁻ and NO₂⁻.

Table S2: Comparison studies reported using different modified electrodes for electrochemical NO₃⁻ sensing.

Electrode & Method	Electrolyte &	Linear	Limit of	Sensitivity Ref.
Materials	pН	Range	Detection	$(\mu A \mu M^{-1})$
		(μM)	(μ M)	cm ⁻²)

PPy/Ag	CV	Na ₂ SO ₄ , pH 3	1-104	5	NR	31
NPs/GCE	DPV	Na ₂ SO ₄ , pH 7	$1-10^5$	2	2.317	32
Ag NPs/AuE	CV	Sea water, pH 5	$10-10^4$	10	NR	33
	SWV	NaCl, pH 7	0.39-50	0.39	0.1057	34
Pd-Au NPs	LSV	Water, pH 7.2	16-242	1.19	0.29	35
composite						
Gr/CuE	Am	NaOH, pH 12	9-940	10	0.173	36
Porous Cu-Ni	Am	Na ₂ SO ₄ , pH 13	$20-10^3$	2, 7	10.9, 5.1	37
alloy						
Rh-modified	Am	Na ₂ SO ₄ , pH 7	$20-10^3$	20, 6	12.3, 6	37
Cu porous		and 13				
layer						
Macroporous	SWV	NaOH, pH 14	20-	NR	0.093	38
Ag film/ITO			5×10^3			
5TCX-	SWV	Na ₂ SO ₄ , pH 11	10-10 ⁵	5.2	120.75	Present
AgCu/SPCE						Work

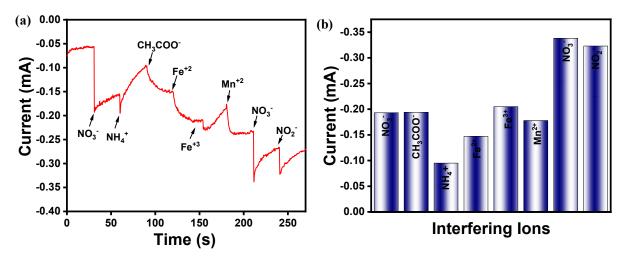
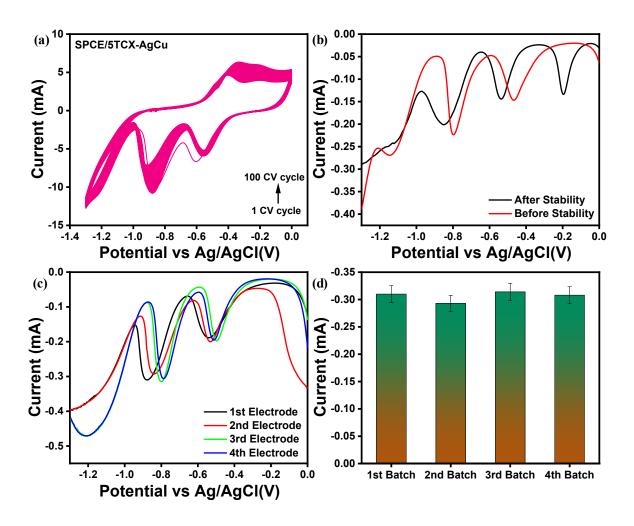

CV: Cyclic Voltammetry, SWV: Square wave Voltammetry, DPV: Differential Pulse Voltammetry, LSV: Linear Sweep Voltammetry, Am: Amperometric, PPy: Polypyrrole, NP: Nanoparticle, TCX: Ti₃C₂T_x, Pd: Palladium, Au: Gold, Cu: Copper, Ni: Nickel, Ag: Silver, Rh: Rhodium, Gr: Graphite, GCE: Glassy carbon electrode, SPCE: Screen printed carbon electrode, AuE: Gold electrode, CuE: Cu electrode.

Table S3: Comparison studies reported using different modified electrodes for electrochemical NO₂⁻ sensing by reduction.


Electrode &	Method	Electrolyte &	Linear	Limit of	Sensitivity	Ref.
Materials		pН	Range	Detection	$(\mu A \mu M^{-1}$	
			(μ M)	(μ M)	cm ⁻²)	
Bare copper	DPV	Na ₂ SO ₄ , pH 2	0.17-100	0.17	NR	39
POM/GCE	Am	Li ₂ SO ₄ , pH 1.2	0.1-	0.1	385.94	40
			20000			
BDD	DPV	PBS, pH 6	10-8000	18	NR	41

PB/CPE	Am	PBS, pH 1	25-1000	9	NR	42
Cu/MWCNT/	SWV	Na ₂ SO ₄ , pH 3	0.1-75	0.03	NR	11
RGO/GCE						
Rh-	Am	PBS, pH 2	0.25-10	0.08	60	43
complex/MW						
CNT/GCE						
PtNP/TH/M	CV	NaOH, pH 7	0.5–150	0.2	0.05	44
WCNT						
5TCX-	SWV	Na ₂ SO ₄ , pH 11	$1-10^3$	0.031	898.12	Present
AgCu/SPCE						work

SWV: Square Wave Voltammetry, **DPV:** Differential Pulse Voltammetry, **Am:** Amperometric, **POM:** Polyoxometalates, **BDD:** Boron-Doped Diamond, **PB:** Prussian Blue, **CPE:** Carbon Paste Electrode, **Cu:** Copper, **MWCNT:** Multiwalled Carbon Nanotubes, **RGO:** Reduced Graphene Oxide, **GCE:** Glassy Carbon Electrode, **Rh:** Rhodium, **PtNP:** Platinum Nanoparticle, **TH:** Thionine, **TCX:** Ti₃C₂T_x, **Ag:** Silver, **Cu:** Copper, **SPCE:** Screen Printed Carbon Electrode.

Figure S6: Interference study for the 5TCX-AgCu, (a) Potentiostatic method representation, (b) Bar graph representation.

Figure S7: (a) CV performed over 100 cycles in 0.1 M Na₂SO₄ (pH 11.0) containing 20 mM NO₃⁻ demonstrating electrochemical stability. (b) SWV was recorded before and after the stability test under the same conditions. (c) Evaluation of the reproducibility of SPCE/5TCX-AgCu electrodes in 0.1 M Na₂SO₄ (pH 11.0) using four independently fabricated sensors. (d) Bar graph representation of the same.

Table S4: Real sample analysis for the 5TCX-AgCu.

Samples	Spiked (mM)	Found (mM)	Recovery %
Soil water	16	13.6	85
	18	15.9	82.7

	20	17.5	87.5
Lake water	16	15	93.75
	18	17.2	95.5
	20	18.6	93
River water	16	14.9	93.12
	18	17	94.44
	20	18.5	92.5

References:

- H. Bagheri, A. Hajian, M. Rezaei and A. Shirzadmehr, *Journal of Hazardous Materials*, 2017, **324**, 762–772.
- 31 M. Atmeh and B. E. Alcock-Earley, *J Appl Electrochem*, 2011, **41**, 1341–1347.
- G. Khadigeh, .
- 33 K. Fajerwerg, V. Ynam, B. Chaudret, V. Garçon, D. Thouron and M. Comtat, *Electrochemistry Communications*, 2010, **12**, 1439–1441.
- D. Chen Legrand, C. Barus and V. Garçon, *Electroanalysis*, 2017, **29**, 2882–2887.
- 35 S. Zhao, J. Tong, Y. Li, J. Sun, C. Bian and S. Xia, *Micromachines*, 2019, **10**, 223.
- T. Öznülüer, B. Özdurak and H. Öztürk Doğan, *Journal of Electroanalytical Chemistry*, 2013, **699**, 1–5.
- N. Comisso, S. Cattarin, P. Guerriero, L. Mattarozzi, M. Musiani, L. Vázquez-Gómez and E. Verlato, *J Solid State Electrochem*, 2016, **20**, 1139–1148.
- 38 M.-C. Tsai, D.-X. Zhuang and P.-Y. Chen, *Electrochimica Acta*, 2010, **55**, 1019–1027.
- 39 S. M. Shariar and T. Hinoue, *ANAL. SCI.*, 2010, **26**, 1173–1179.
- 40 M. Ammam, B. Keita, L. Nadjo and J. Fransaer, *Talanta*, 2010, **80**, 2132–2140.
- 41 Z. Zhang, G. Ogata, K. Asai, T. Yamamoto and Y. Einaga, *ACS Sens.*, 2023, **8**, 4245–4252.
- 42 L. A. Pradela-Filho, B. C. Oliveira, R. M. Takeuchi and A. L. Santos, *Electrochimica Acta*, 2015, **180**, 939–946.
- 43 R. Hallaj, A. Salimi, B. Kavosi and G. Mansouri, *Sensors and Actuators B: Chemical*, 2016, **233**, 107–119.

44 R. Yu, L. Wang, Q. Xie and S. Yao, *Electroanalysis*, 2010, **22**, 2856–2861.