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Figure S1. The swelling rate of SS-DHMC-AuNPs-AMWCNTs film (n=3). 

The swelling rate is formulated as: (Wx-W0)/W0. W0 means initial weight, Wx 
means weight after immersion.The composite membrane showed a good swelling rate 
of 2.15 afer immersion in water for 96 hours.



Figure S2. Biocompatibility Evaluation of SS-DHMC-AuNPs-AMWCNTs Patch on 
Human Skin.

Representative photographs demonstrating biocompatibility of (A) control 
(commercial dressing) and (B) SS-DHMC-AuNPs-AMWCNTs membrane on human 
skin at different time points: initial application, after 24 h and 48 h of wear, and 
immediately after removal. The images reveal that the SS-DHMC-AuNPs-
AMWCNTs membrane maintained non-irritating properties throughout the 48-hour 
wearing period and post-removal, exhibiting comparable performance to the 
commercial dressing.



Figure S3. Relationship between redox peak currents and glucose concentration for 
SS-DHMC-AuNPs-AMWCNTs electrode.

A strong linear correlation was observed between glucose concentration and both the 

oxidation (R² = 0.992) and reduction (R² = 0.999) peak currents of the SS-DHMC-

AuNPs-AMWCNTs electrode.



Figure S4. Relationship between redox peak currents and scan rate for SS-DHMC-
AuNPs-AMWCNTs electrode.

The oxidation (R² = 0.999) and reduction (R² = 0.997) peak currents of the SS-

DHMC-AuNPs-AMWCNTs electrode demonstrated excellent linear relationships 
with the square root of the scan rate.



Figure S5. Cyclic Voltammetry Curves of SS-DHMC-AuNPs-AMWCNTs with 
Varying Contents of Conductive Fillers in PBS (pH 7.0).

The CV curves demonstrate the electrochemical performance of SS-DHMC-AuNPs-
AMWCNTs composites containing 5%, 10%, 15%, and 20% conductive fillers.  The 
sample with 10% conductive filler exhibits the largest CV curve area and the most 
well-defined redox peaks, indicating superior charge storage capacity and 
electrochemical activity compared to other compositions.



Figure S6.  Correlation analysis between Non-Invasive sweat glucose test results and 
commercial blood glucose meter measurements.

The scatter plot compares the glucose concentrations detected by the sweat sensor 
(DPV current signal) and a commercial glucometer, with the orange shaded region 
representing the 95% confidence interval.  The two methods exhibit a high degree of 
agreement, as indicated by the strong linear correlation (R2 = 0.981).



Figure S7. Flexible sensor folds 180 degrees.

(a), before folding; (b) folding 180 degrees; (c) after folding.



Fig. S8. (a) and (b) are the pre-fluid of SS-DHMC and SS-DHMC-AuNPs-

AMWCNTs. (c) and (d) are the congealed SS-DHMC and SS-DHMC-AuNPs-

AMWCNTs liquid after 24 hours.



Table S1. Comparative analysis of detection performance between SS-DHMC-
AuNPs-AMWCNTs and other non-enzymatic glucose sensors

Modified 
Electrodes

LOD
(μM)

Sensitivity
(μA mM-1 
cm-2)

Linear 
range 
(mM)

Electrol
yte

Real sample 
analysis

Ref. Interferences Stable days

Co@Pt /C/GCE 300 2.26 1.00–
30.00

0.1 M 
PB

Blood 
serum

[1] AAP,Fru,A
A,UA,Cl-

30

Pt/MXene/GCE 29.15 3.43 0−8 mM 0.1 M 
PBS

Human 
sweat

[2] UA, DA, 
LA, 
and AA

11

Chitosan/K-
carrageenan

5 -- 0.01-7 0.1M 
PBS

-- [3] AA,UA,UR 22

Cu2O 
NPs@CSs/CSF

0.29 426.6 0.001-2 0.1M 
NaOH

Blood 
serum

[4] UA,AA,Na
Cl

7

AuNPs/PANI/CC 3.08 150 0.0126-
10

0.5M 
KOH

-- [5] D-
galactose,A
A, Fru, 
NaCl, KCl, 
UA,AMP

15

CeO2/Au 10 44 0.01-20 0.01M 
PBS

-- [6] - -

GOx/(SiO2-
PA)/GCE

12 -- 0.16-8 0.01M 
PBS

Bovine, 
mouse, 
rabbit and 
human 
blood

[7] UA,AA 30

Gr/PANI/AuNPs/
GOD

100 378 0.2-11.2 0.1M 
PBS

Human 
blood

[8] DA,AA,UA -

Pd-Pt core-shell 
nanocubes

41.1 170 0.3~6.8 0.1 M 
NaOH

Calf serum [9] AA,UA,Fru,
Suc,Mal,Sor

-

Ag-
NPs/PoPD/ITO

12 -- 0.15-13 0.1M 
PBS

Human 
blood

[10] AA,UA 70

SS-DHMC-
AuNPs-
AMWCNTs

4 13.43 and
5

0.025-
0.4

0.1M 
PBS

Human 
sweat and 
blood

This 
work

AA,DA,KCl
,NaCl,UA,U
R,LA

30



Table. S2. The detection of glucose in human sweat samples.

Sample Add (μM) Detection (μM) Recovery R.S.D

(N=3)

1 30.00 24.86 0.877 1.6%

2 50.00 44.92 0.898 2.6%

3 100.00 102.76 1.028 1.3%

Table. S3. The detection of glucose in human blood samples.

Sample Blood glucose 
concentration (mM) as 

measured by glucometer

Blood glucose 
concentration (mM) 
as measured by film

Recovery R.S.D
(N=3)

1(2H) 4.40 4.08 0.927 5.6%
1(4H) 3.37 3.12 0.926 2.8%
2(2H) 5.10 4.75 0.931 8.9%
2(4H) 4.47 4.18 0.935 3.8%
3(2H) 5.63 5.89 1.046 3.4%
3(4H) 3.90 3.98 1.021 1.9%
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