Photo-promoted one-pot coupling isomerizationcodimerization of norbornadiene for efficient synthesis of liquid fuel with density higher than 1 g/mL

Pei Li, ^{a,†} Ruichen Liu,^{a,†} Cong Li, ^a Li Wang,^{a,b,c} Xiangwen Zhang,^{a,b,c} and Guozhu

Li^{a,b,c,*}

^a Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

^c Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China

[†] These authors contribute equally in this work.

*Corresponding author. Tel. /fax: +86 22 27892340.

E-mail address: gzli@tju.edu.cn

Figure S1. Effect of metal precursor on codimerization. Reaction conditions: 10

mmol of QC, 40 mmol of NBD, n-hexane as solvent. $n_{QC}/n_{metal catalyst} = 300/1$, n_{Pd}/n_{TPP}

=1/2, 1h.

Figure S2. Effect of phosphine ligand type and phosphine complex concentration on codimerization of NBD and QC. Reaction conditions: 10 mmol of QC, 20 mmol of NBD, n_{QC}/n_{Pd2(dba)3·CHCl3}= 300/1, n-hexane as solvent. The molar ratios of Pd₂(dba)₃·CHCl₃ and TPP were (a) 1/2, (b) 1/4 and (c)1/8.

Figure S3. UV-vis absorption spectra of EMK in different solvents. 1 is cyclohexanone, 2 is benzyl alcohol, 3 is n-butanol, 1+2 is the mixture of cyclohexanone and benzyl alcohol with a volume ratio of 1:1. The ratio of the other binary mixtures is also 1:1. 1+2+3 is the mixture of cyclohexanone, benzyl alcohol and n-butanol with a ratio of 1:1:1.

Figure S4. ³¹P NMR spectra (400 MHz) of TPP in the reaction mixture (a) before reaction and (b-c) after reaction. (b) 60°C, 2 h. (c) 60°C, 2 h, 64 mW/cm². Reaction conditions:15 mmol QC, 30 mmol NBD, C_{TPP}=2C_{Pd2(dba)3·CHCl3}=15mmol/L, n-hexane as solvent.

Figure S5. Effect of different monodentate phosphine ligands on coupling reactions. Reaction conditions: 17mmol of NBD, $n_{NBD}/n_{Pd2(dba)3\cdot CHCI3}/n_P = 800/1/2$, 253mg of EMK, 25ml of the solvent (the volume ratio of cyclohexanone/benzyl alcohol/n-butanol = 0.36 / 0.29 / 0.35), light intensity of 64mW/cm².

Figure S6. Diagram of the parallel photochemical reactor.

Figure S7. GC spectrum of the product mixture in one-pot coupling isomerization-

codimerization reactions.

Figure S8. Mass spectrum of exo-endo (exo-endo-

hexacyclo[9.2.1.02,10.03,7.04,9.06,8]tetradec-12-ene).

Figure S9. Mass spectrum of exo-exo (exo-exo-

hexacyclo[9.2.1.02,10.03,7.04,9.06,8]tetradec-12-ene).

Figure S10. Mass spectrum of NBD trimer.

	m _{Pd2(dba)3} ·CHCl3/mg	m _{TPP} /mg	m _{photosensitizer} /mg	Time/min	VRsolvent ^a
Minimum	17	8.8	100	60	0
Maximum	26	17.6	300	120	1

 Table S1. Variables of the NBD coupling reactions.

^a VR: Volumetric ratio.

Entry	m _{EMK} / mg	V _{acetone} / ml	Conversion (%)	Selectivity (%)				exo- exo
			NBD	QC	exo-endo	exo-exo	trim	yield (%)
1	100	15	11.4	13.4	0.5	86.1	0	9.8
2	200	15	15.7	18.3	0.2	81.4	0	12.8
3	300	15	15.2	17.9	0.3	81.7	0	12.4
4	200	25	20.6	4.1	0.5	95.4	0	19.6

Table S2. Effects of the amounts of photosensitizer and solvent on the coupling reactions.

Reaction conditions: 16mmol of NBD, $n_{NBD}/n_{Pd2(dba)3\cdot CHCl3}/n_{TPP} = 1000/1/2$; acetone as solvent, light intensity of 6mW/cm².

Reaction type	Reaction rate equations			
Photoisomerization reaction	$r_{NBD} = \frac{dc_{NBD}}{dt} = -k_1 c_{NBD}$			
Thermal codimerization reaction	$r_{NBD} = \frac{dc_{NBD}}{dt} = k_{-1}c_{QC} - k_2c_{NBD}c_{QC}$ $r_{QC} = \frac{dc_{QC}}{dt} = -k_{-1}c_{NBD} - k_2c_{NBD}c_{QC}$ $r_{exo} = \frac{dc_{exo}}{dt} = k_2c_{NBD}c_{QC}$			
Coupling reactions	$r_{NBD} = \frac{dc_{NBD}}{dt} = -k_{1}c_{NBD} + k_{-1}c_{QC} - k_{2}c_{NBD}c_{QC}$ $r_{QC} = \frac{dc_{QC}}{dt} = k_{1}c_{NBD} - k_{-1}c_{QC} - k_{2}c_{NBD}c_{QC}$ $r_{exo} = \frac{dc_{exo}}{dt} = k_{2}c_{NBD}c_{QC} - k_{3}c_{QC}c_{exo}$			