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Computational section：

First-principles calculations were performed within the density functional theory 

(DFT) framework, as implemented in the Vienna ab initio Simulation Package 

(VASP).1,2 The core electrons were represented by the projector-augmented-wave 

(PAW) potential.3,4 Generalized-gradient approximation (GGA) was used to determine 

the exchange-correlation potential.5

A 4×4 Pt supercell model with four layers was constructed, using the (100) or (111) 

surface as the interface. A 15 Å vacuum layer was introduced along the Z-axis to 

minimize interlayer interactions. Atoms in the bottom layer were fixed to simulate the 

bulk crystal structure. The plane wave cutoff energy of 400 eV and Γ-centered k-meshes 

with k-spacing of 0.3 Å-1 were used for geometry optimization and static self-

consistency (SCF). A 6×6×1 Monkhorst-Pack k-meshe was employed to sample the 

Brillouin zone for differential charge density and density of states (DOS). Electronic 

convergence and the geometry optimization force criterion were set to 10-5 eV and 0.01 

eV Å-1, respectively. All atoms, except those in the bottom layer, were fully relaxed 

until the total force on each atom converged to 0.03 eV Å-1.

As a result, the reaction free energy (ΔG) was further calculated by the equation: 

ΔG = ΔEDFT + ΔZPE -TΔS + eU + 0.059×lg (pH)                           (S1)

where ΔEDFT represents the reaction energy obtained from DFT calculation; ΔZPE 

is the phonone zero-point energy; TΔS is the change in the harmonic entropy 

contribution to the free energy and is obtained by calculating the partition function 

using vibrational frequencies; U is the applied potential (U = 0 or 0.3 V); and e is the 

charge transfer in each elementary step. Additionally, the thermodynamic corrections 
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for all adsorbed and free species considered in this study were referenced from citation.6 

The visualization for all calculations was handled with the VESTA software.7

Fig. S1 (a) HAADF-TEM image of PtIrZn-2; (b)-(d) elemental mapping images 

illustrating the distribution of Pt, Ir, and Zn; (e) line-scanning profiles recorded across 

the orange line indicated in the inset; and (f) HAADF-TEM-EDX spectrum of PtIrZn-

2.
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Fig. S2 (a) HAADF-TEM image of PtIrZn-3; (b)-(d) elemental mapping images 

illustrating the distribution of Pt, Ir, and Zn; (e) line-scanning profiles recorded across 

the orange line indicated in the inset; and (f) HAADF-TEM-EDX spectrum of PtIrZn-

3.

Fig. S3 XPS full-scan survey spectra of PtIrZn-1, PtIrZn-2, and PtIrZn-3.
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Fig. S4 (a) XPS full-scan survey spectra and high-resolution XPS spectra of Pt 4f (b), 

Ir 4f (c), and Zn 2p (d) for the PtIrZn-1 catalyst film before and after activation.
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Fig. S5 DFT computational models: side view (a) and top view (b) of PtIrZn-1(100), 

and side view (c) and top view (d) of PtIrZn-1(111).

Fig. S6  CV s of PtIrZn-1 (a), PtIrZn-2 (b), and PtIrZn-3 (c) in 1 M KOH and 1 M 

KOH + 0.1 M NH3.
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Fig. S7 CVs of PtIrZn-1 (a), PtIrZn-2 (b), and PtIrZn-3 (c) measured in 1 M KOH 

over the potential range of 0.94 to 1.04 V vs. RHE at various scan rates from 20 to 100 

mV s-1.

Table S1. Calculations Based on the Scherrer Equation.

Gauss Crystal 

Face

2Θ Β

(rad)

D

(nm)

D

(nm)

A

(nm)

V

(nm3)

ΔV

(%)

(111) 40.1364 0.02669 5.5 0.22448 0.38880 0.05877 2.66

(200) 46.6425 0.02746 5.4 0.19457 - - -

PtIrZn-1

(number of iterations：

27)

(220) 68.1646 0.02623 6.3 0.13746 - - -

(111) 39.9752 0.03197 4.6 0.22535 0.39030 0.05946 1.53

(200) 46.4454 0.03694 4.0 0.19535 - - -

PtIrZn-2

(number of iterations：

20)

(220) 67.8569 0.03808 4.3 0.13800 - - -

(111) 39.8944 0.02718 5.4 0.22579 0.39106 0.05981 0.95

(200) 46.4776 0.03556 4.2 0.19522 - - -

PtIrZn-3

(number of iterations：

17)

(220) 67.8339 0.02976 5.6 0.13805 - - -

Note: K = 0.89, λ = 0.154056 nm, V0 = 0.0604 nm3;
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Table S2. EIS Resistance Data.

Catalyst Rs (Ω) Rct (Ω)

PtIrZn-1 6.405 518.9

PtIrZn-2 5.358 1218

PtIrZn-3 4.570 3070

commercial Pt/C 5.944 865

PtIr 8.923 8860

PtZn 4.503 5242
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