Study Objectives	Major Contributions	References
Evaluate the performance and	Lower fuel consumption and reduced CO,	28
emission characteristics of miniature	CO2, and NOx emissions were observed for	
turbojet engines with JET A-1 fuel	JET A-1/HEFA blends compared to pure JET	
blended with Camelina oil-derived	A-1, indicating improved fuel efficiency and	
biofuel produced through HEFA	emission performance.	
technology.		
Study the effects of Jatropha and	Increasing Camelina content led to significant	29
Camelina-derived biofuels on gas	CO, UHC, and soot reductions, although NOx	
turbine emissions and performance	emissions increased slightly due to higher	
with varying biofuel blend ratios (80,	combustion temperatures. Mixed emission	
50, and 30 vol.%).	trends were noted for Jatropha-based fuels.	
Assess the performance and emissions	Engine performance metrics were similar for	30
of Jet A-1 blended with up to 20	both fuels, with slight increases in CO and HC	
vol.% coconut oil-derived kerosene on	emissions for coconut blends and negligible	
a 1S/60 Rover gas turbine engine	differences in NOx emissions.	
across different power levels.		
Examine the thermal behaviour of	The B-20 blend showed similar combustion	31
honge oil methyl ester (HOME) and	performance to diesel with high thermal	
its B-20 blend using calorimetric	stability and extended combustion duration. It	
experiments at a 10°C/min heating	exhibited lower activation energy at the start	
rate in air and oxygen.	of combustion, with varying ignition and	
	burnout indices across fuels.	
		32
Study the thermal characteristics of	HOME exhibited a wider combustion	
HOME, B-20 blend, and diesel using	temperature range due to stable intermediates.	
DSC and TG analyses at a 4.72 K/s	The B-20 blend showed low offset temperature	
heating rate.	and lower emissions of harmful gases, offering	
	the potential for engine optimization with	
	blends.	
Compare the thermal properties of	Mixed biodiesel showed high volatility with	33
Jatropha and honge biodiesels and	combustion properties like diesel, supporting	
their mixture with diesel using TG-	its use as an efficient alternative fuel. Its lower	
DSC at a 10°C/min heating rate.	combustion intensity suggests better	
	combustion characteristics than pure	
	biodiesels.	
Investigate the effect of safflower	Thrust decreased by 27.5% with bio-jet fuel.	
methyl ester (SME) and Jet A1 fuel	HC emissions were reduced by up to 51% , but	34
thrust fuel consumption and	off CO ₂ emissions rose quickly and fuel	
emissions during various power	consumption exceeded 50% at take-off.	
cycles.	1	
-		_
Examined the combustion	Combustion efficiency remained above 90%	35
characteristics and exhaust emissions	tor SAF blends up to 50%, with stable	
of SAF derived from coconut off blended with IFT Δ_{-1} fuel in a L850	comoustion. Specific fuel consumption increased by 9% for a 50% SAE blend while	
olended with JET A-T fuel in a J-030	mercased by 770 for a 5070 SAT blend, willt	

Table 1 Summary of studies on combustion, thermal behaviour, and emission characteristics of biofuels.

jet engine, with blends from 0% to 50% SAF.	energy consumption decreased, indicating lower overall energy needs. CO and CO ₂ emissions increased with higher SAF, while HC emissions decreased.	36
Assess the effect of biodiesel from waste cooking oil on diesel engine output and environmental pollution when blended with diesel and 1- pentanol.	The 70/20/10 % diesel/biodiesel/1-Pentanol blend showed superior combustion, reduced CO and UHC, and thermal efficiency close to diesel. Adding 1-pentanol improved in- cylinder pressure and combustion due to better fuel atomization and oxygen content.	

Table 2 Selected physicochemical properties of standard JET A-1 and different HEFA-SAF42-46

Test (units)	ASTM Method	J100	HS100	HS100 (camelina)	J50HS50	Limits (ASTM D 1655)
Density (a) 15°C (kg.m ⁻³)	D4052	840	760-800	759.5	786	775-840
Energy Density	D3338	42.8	43.5-44.12	43.3	-	42.8
Kinematic @ -20°C	D445	8	1.2-1.8	3.83	4.2	8
Viscosity $(mm^2.s^{-1})$						
Heating value (MJ.kg ⁻¹)	D240/D4 809	42.8	43.5	-	-	42.8
Acid value $(mgKOH.g^{-1})$	D974/D6	0.004	0.02	-	-	0.015
Freezing point	D2386	-47	-49	-57.2	-	-47
Flash Point	D93/D56	38	40-45	43.2	52	38
Smoke point	D1322	25	25-30	>50	10.1	25 (min)
(°C) Sulphur content (wt.%)	D4294	0.04	0.001	-	-	0.3 (max)

Fuel Samples	Reaction region	Peak temperature	Heat flow	Enthalpy (J/g)
	temperature (°C)	(°C)	(mW/mg)	
J100	40-248	234	-0.4372	-90.53
HS100	50-263	248	-0.3262	-69.68
J50HS50	49-324	239	-0.4296	-118.14
J10HS90	46-321	286.08	-0.4923	-135.38
J30HS70	42-332	290.12	-0.5755	-167.90

Table 3 Heat flow and Enthalpy at peak temperature for Tested Jet Fuels

Table 4 Combustion Properties of Tested Jet Fuels

Fuel	T _{ignite}	T _{peak}	T _{burn-}	Peak Mass	Mean	I _D	CPI
sample	(°C)	(°C)	out	Loss Rate	Mass Loss	(mass/min°C ²)	$(mass^2/min^{2\circ}C^3)$
			(°C)	(DTG _{mass} ,	Rate	×10-4	×10-6
				%/min)	(DTG _{mean} ,		
					%/min)		
J100	183±5	234 ± 6	$250 \pm$	1.6 ± 0.08	0.8 ± 0.04	3.50 ± 0.18	2.10 ± 0.11
			7				
HS100	191 ± 5	248 ± 6	$272 \pm$	1.4 ± 0.07	0.7 ± 0.035	2.70 ± 0.14	1.37 ± 0.07
			8				
J50HS50	187 ± 5	239 ± 6	$290\pm$	1.45 ± 0.07	0.725	2.72 ± 0.14	1.52 ± 0.08
			8		± 0.036		
J10HS90	197 ± 5	286.08	$302 \pm$	1.3 ± 0.065	0.65	2.17 ± 0.11	1.10 ± 0.06
		± 7	8		± 0.033		
J30HS70	202 ± 5	290.12	$311 \pm$	1.2 ± 0.06	0.6 ± 0.03	1.91 ± 0.10	0.90 ± 0.05
		± 7	8				
J10HS90 J30HS70	197± 5 202± 5	286.08 ± 7 290.12 ± 7		1.3 ± 0.065 1.2 ± 0.06	± 0.036 0.65 ± 0.033 0.6 ± 0.03	2.17 ± 0.11 1.91 ± 0.10	1.10 ± 0.06 0.90 ± 0.05

Fig. 1 (a) Photographic view of the SDT Q600 TA.

Fig. 1 (b) Schematic view of the TGA device used.

Fig. 2 TGA profiles of tested fuel samples.

Fig. 3 DTG profiles of tested fuel samples.

Fig. 4 DSC combustion curves of tested fuel samples.

Fig. 5 Relative percentage of branched and linear hydrocarbons in pure JET A-1 (J100) and HEFA-SAF (HS100).

Fig. 6 Branched to linear hydrocarbons ratio for HEFA and JET as a function of injector temperature.

Figure 7 JET A-1 (J100) Chromatogram (a) TIC, (b) ion extract m/z 91 obtained by GC-MS analysis.

Figure 8 HEFA-SAF (HS100) Chromatogram (TIC) obtained by GC-MS analysis.